北师大版八年级上册第六章数据的分析导学案
- 格式:doc
- 大小:828.50 KB
- 文档页数:13
八年级数学上册第六章数据的分析导学案2(新版)北师大版【学习目标】1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
5、积极合作、阳光展示、精彩点评知识梳理:(自主预习,独立完成,小组互查)1、加权平均数的公式是:若n个数的权分别是,则:叫做这n个数的加权平均数。
2、在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,…,xk出现fk次(这里f1+f2+…+fk=n)那么这n个数的算术平均数。
3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的。
如果数据的个数是偶数,则就是这组数据的中位数。
如果已知一组数据的中位数,那么可以知道,小于等于或大于等于这个中位数的数据各占一半。
4、一组数据中出现次数最多的数据就是这组数据的。
5、平均数、中位数、众数比较:(1)联系:平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据,平均数是应用较多的一种量。
实际问题中求得的平均数、众数、中位数应带上。
(2)区别:①平均数计算要用到所有数据,它能充分利用所有的数据信息,任何一个数据的变动都会相应引起平均数的变动,并且它受的影响较大;②中位数仅与数据的有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势;③众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受的影响,它是它的一个优势。
6、极差:一组数据中数据与数据的差。
极差是最简单的一种度量数据情况的量,但只能反映数据的波动范围,不能衡量每个数据的变化情况,而且受极端值的影响较大、7、各数据与平均数的差的平方的平均数叫做这批数据的方差。
第六章数据的分析1平均数第1课时算术平均数与加权平均数1.掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数.2.经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力.3.通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.重点掌握算术平均数、加权平均数的概念.难点理解加权平均数的概念,会求一组数据的加权平均数.一、情境导入1.课件出示教材第135页第六章的章前文字、章前图和一组问题,引入本章主题.2.用篮球比赛引入本节课题.师:篮球运动是大家喜欢的一种运动项目,尤其是男生更是倍爱有加.下面播放一段CBA(中国篮球协会)2005~2006赛季“广东宏远队”和“八一双鹿队”的一场比赛片段,请同学们欣赏.在学生观看了篮球比赛的片段后,请学生思考:(1)影响比赛的成绩有哪些因素?(心理、技术、配合、身高、年龄等因素)(2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”? 要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个球队队员身高的平均数作出判断)在学生的议论交流中引入本节课题:平均数.二、探究新知1.算术平均数.(1)课件出示教材第136页提供的中国男子篮球职业联赛 2011~2012 赛季冠、亚军球队队员身高、年龄的表格,提出问题:“北京金隅队”和“广东东莞银行队”两支篮球队中,哪支球队队员的身高更高?哪支球队队员更为年轻?你是怎样判断的?与同伴进行交流.学生先独立思考,计算出平均数,然后在小组交流.解:北京金隅队队员的平均身高为1.98 m ,平均年龄为25.4 岁; 广东东莞银行队队员的平均身高为2.00 m ,平均年龄为24.1岁. 所以,广东东莞银行队队员的身高更高,更为年轻.教师小结:日常生活中我们常用平均数来描述一组数据的集中趋势.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n(x 1+x 2+…+x n )叫做这n 个数的算术平均数,简称平均数,记为x.(2)课件出示教材第137页“想一想”.学生经过讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和时用了乘法,因此这是一种求算术平均数的简便方法.2.加权平均数.课件出示教材第137页例题.引导学生思考讨论:第(1)(2)问中录用的人不一样说明了什么?从而认识由于测试的每一项的重要性不同,所以所占的比份也不同,计算出的平均数就不同,因此重要性的差异对结果的影响是很大的.在学生认识的基础上,教师结合例题给出加权平均数的概念: 实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.例如,在例题中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称72×4+50×3+88×14+3+1为A 的三项测试成绩的加权平均数. 三、练习巩固教材第138页“随堂练习”第1,2题.四、小结引导学生小结算术平均数和加权平均数的概念及运用.五、课外作业教材第138~139页习题6.1第1~5题.教学中以提问的方式导入新课,通过设置的问题引导学生进行自我探索与小组间的合作交流,让学生理解算术平均数的意义,通过例题的讲解,让学生归纳总结出加权平均数的计算方法,加深了学生对加权平均数的理解,教学过程要加强练习,提高学生的计算能力,注意算术平均数与加权平均数的类比,提高学生分析问题和解决问题的能力.第2课时算术平均数与加权平均数的应用1.会求加权平均数,体会权的差异对平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题.2.通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力.3.通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.重点会求加权平均数,体会权的差异对平均数的影响.难点理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题.一、复习导入师:什么是算术平均数?什么是加权平均数?请同学们各举一个有关算术平均数和加权平均数的实例,与同伴进行交流.在学生的复习交流中引入课题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别.二、探究新知课件出示教材第139页学校广播操比赛题.对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,进行评价.解:一班的广播操成绩为:9×10%+8×20%+9×30%+8×40%=8.4(分).二班的广播操成绩为:10×10%+9×20%+7×30%+8×40%=8.1(分).三班的广播操成绩为:8×10%+9×20%+8×30%+9×40%=8.6(分).因此,三班的广播操成绩最高.对于第(2)问,让学生先在小组内各抒己见,然后在全班交流体会,归纳:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响.三、举例分析小颖家去年的饮食支出为3 600元,教育支出为1 200元,其他支出为7 200元,小颖家今年的这三项支出依次比去年增长9%,30%,6%,小颖家今年的总支出比去年增长的百分数是多少?以下是小明和小亮的两种解法,谁做得对?说说你的理由.小明:13(9%+30%+6%)= 15%. 小亮:9%×3600+30%×1 200+6%×7 2003 600+1 200+7 200=9.3%. 学生分组讨论,全班交流,说明理由:由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3 600,1 200,7 200分别视为三项支出增长率的“权”,从而求出总支出的增长率所以小亮的解法是对的.四、练习巩固1.教材第139页“议一议”.2.教材第140页“随堂练习”第1,2题.注意事项:对学生的解题过程和结果做适当的评价,特别要关注中下等生,对他们点点滴滴的进步都要给予鼓励.五、小结师:说说算术平均数与加权平均数有哪些联系与区别?教师引导学生比较、议论、交流、总结出结论:算术平均数是加权平均数各项的权都相等的一种特殊情况,即算术平均数是加权平均数,而加权平均数不一定是算术平均数.由于权的不同,导致结果不同,故权的差异对结果有影响.六、课外作业教材第140~141页习题6.2的第1~6题.数学学习不能单纯依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学的重要方式.本节课的几个教学环节通过想一想、议一议、做一做等数学活动来引导学生探索和交流,体会权的差异对平均数的影响,认识算术平均数和加权平均数的联系与区别.在改变学生学习方式的同时让学生增强数学的应用意识,了解数学的价值,提高思维能力,增进学好数学的信心.2中位数与众数1.掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判.2.通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力.3.将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度.重点理解中位数、众数的概念,会求出一组数据的中位数与众数.难点能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判.一、情境导入师:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的.下面请看一例:某次数学考试,小英得了78分.全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分.小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”.小英对妈妈说的情况属实吗?你对此有何看法?引导学生展开讨论,作出评判:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的.原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差.师:怎样说明这个问题呢?我们需要学习新的数据代表——中位数与众数.二、探究新知课件出示教材第142页有关某公司员工的收入的题目.学生四人小组讨论,交流自己的看法,教师对表现积极的学生予以鼓励.在学生讨论交流的基础上,教师进行点拨:上述问题中,经理、职员C、职员D从不同的角度描述了该公司的收入情况:(1)月平均工资2 700元,指所有员工工资的平均数是2 700元,但只有正、副经理的工资比平均工资高,是他们两人的工资把平均工资“拉”高了.(2)职员C的工资是1 900元,恰好居于所有员工工资的“正中间”(恰有4人的工资比他高,有4人的工资比他低),我们称1 900元是这组数据的中位数.(3)9个员工中有3个人的工资为1 800元,出现的次数最多,我们称1 800元是这组数据的众数.师:你认为用哪个数据表示该公司员工收入的平均水平更合适?让学生讨论,充分发表不同的观点,然后归纳:用中位数1 900元或众数1 800元表示该公司员工收入的平均水平更合适些,因为平均数2 700元受到了极端值的影响.结合上述问题的探究,引入中位数、众数的概念:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.教师指出:平均数、中位数、众数都是数据的代表,它们刻画了一组数据的“平均水平”.让学生用中位数、众数的概念解释引例中小英的数学成绩的问题.注意事项:在问题的讨论中,学生从不同的角度理解问题会有不同的观点,只要学生说得有道理,教师就应给予肯定和鼓励,不可强求结论的一致性.三、举例分析1.对于一组数据:3,3,2,3,6,3,10,3,6,3,2,下列说法正确的是( )A. 这组数据的众数是3B. 这组数据的众数与中位数的数值不等C. 这组数据的中位数与平均数的数值相等D. 这组数据的平均数与众数的数值相等答案:A2.2011~2012 赛季北京金隅队队员身高的平均数、中位数、众数分别是多少?四、练习巩固你课前所调查的20名男同学所穿运动鞋尺码的平均数、中位数、众数分别是多少?你认为学校商店应多进哪种尺码的男式运动鞋?五、小结师:平均数、中位数和众数有哪些特征?学生讨论交流,师生共同总结特征:1.用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因此在现实生活中较为常用,但它容易受极端值的影响.2.用中位数作为一组数据的代表,可靠性比较差,它不能充分利用所有数据的信息,但它不受极端值的影响,当一组数据中有个别。
教学设计平均数一、教学内容分析1、教学内容:本课是北师大版八年级上册第六章《数据的分析》第一课的内容,教材内容为先通过具体问题的解决,回顾算术平均数的概念,然后通过算术平均数计算方法的变式和例题,引入加权平均数的概念.2、内容解析:由于学生在小学已经初步了解了算术平均数的概念及其应用,所以本节课的核心概念为加权平均数,体会“权”的作用.本课所蕴藏的数学思想方法主要是统计思想和比较思想,通过“平均”和“权”,体会统计思想中的均值思想,通过“算术平均数”和“加权平均数”的联系与区别,体会数学思想中的比较思想,“算术平均数”实际上是“加权平均数”的一种特殊情况(各项的权相等),体现了从特殊到一般的数学研究思想.平均数是统计与概率领域中的重要内容,它是研究现实生活中的数据,对数据进行描述和分析的重要工具.本课是继七上《数据的收集与整理》的学习,感受数据的收集方法,掌握数据的整理和表示之后的进一步延伸,是课程标准中统计与概率的一个重要组成部分.学生通过经历统计的活动过程,发展数据分析观念,为后面进一步学习中位数、众数等知识对数据进行分析奠定基础.二、学情分析学生在小学已经初步了解了算术平均数的概念及其应用,给出一组数据,可以算出这组数据的算术平均数,但小学仅给出“平均数”这个概念,并未提出“算术平均数”的概念,且未给出求算术平均数的公式.学生在小学已学过求算术平均数的简便算法,在此基础上能够较好地引出加权平均数的概念,但是教材中并未给出加权平均数的形式化定义和计算公式,学生不易理解,可采取“实例+说明”的方式给学生加以解释.同时,学生还处于以形象思维为主,向逻辑思维形成过渡的时期,对于“权”的内涵和形式不易理解,可通过实例让学生了解权有时表现为数据出现的次数,有时更侧重于表现数据的重要程度.三、教学目标核心素养:数据分析、数学建模.1、知识与技能:理解算术平均数、加权平均数的概念,会选用合适的方法求一组数据的算术平均数和加权平均数.2、过程与方法:经历用平均数描述数据集中趋势的过程,体会数据中所蕴含的信息,发展数据分析观念;3、情感、态度与价值观:体会算术平均数与加权平均数的联系与区别,发展应用意识. 四、教学重难点分析重点:加权平均数的求法,并利用平均数解决一些实际问题. 难点:理解“权”的内涵. 五、教学理念1、 让知识点自然生长.关注、唤醒学生的已有知识和经验——算术平均数,引导学生通过自主学习、小组合作学习,从算术平均数自然而然走向加权平均数.2、教师引导时要关注概念的数学本质特征.如,在体会算术平均数与加权平均数的联系与区别这一环节时,要揭示:“算术平均数”实际上是“加权平均数”的一种特殊情况(各项的权相等).加权平均数是平均数的推广,当一组数据中不同的数重复出现的次数不同时,我们用权数的大小来反映重复次数的多少. 六、教学用具教师用:课件、多媒体教学平台 学生用:导学案、检测题. 七、教学结构设计八、教学过程 (一)引入我们常说“某次考试中,甲班的成绩比乙班的成绩更好”,怎样理解“甲班的成绩比乙班的成绩更好”?问题:小明所在小组的12位学生在某次数学考试中成绩如下(单位:分):91,88,90,88,91,90,91,93,88,87,88,93.求小明所在小组学生的平均分(结果保留一位小数).思考:你有哪些方法求小明所在小组学生的平均分? (知识点:算术平均数;数学思想:统计思想) 学生可能有的解法:解法1:利用小学已学平均数的计算方法求解(91+88+90+88+91+90+91+93+88+87+88+93)÷12 ≈ 89.8(分). 解法2:以90分为基准,每个数据都减去90分得到12个新数据如下: 1,-2,0,-2,1,0,1,3,-2,-3,-2,3.求这组新数据的平均数为:17.0123)2()3()2(3101)2(0)2(1-≈+-+-+-+++++-++-+=x则8.899017.090≈+-≈+'=x x (分). 解法3:整理这组数据如下表:8.8912≈=x (分)在日常生活中,我们常用平均数描述一组数据的集中趋势. 提问:做完该题后,你能说一说算术平均数的定义和计算公式吗?如果有n 个数:n x x x x ......,,321,那么这组数据的平均数nx x x x x n++++=.......321,这个平均数叫做这组数据的算术平均数.(提问引导意图:与小学已有经验联系,得到算术平均数的定义和公式) 提问:解法2中以90分为基准,为什么选择90为基准?如何选择集中数据?(提问引导意图:让学生养成数据分析的观念,了解平均数可以描述一组数据的集中趋势.)提问:你能说一说解法3的道理吗?(提问引导意图:这一计算过程符合加权平均数的公式特征,这里同一个分数的人数可以认为是这个分数的权数) (二)合作探究例题:学校广播站招聘音乐鉴赏栏目策划人员一名,对A 、B 、C 三名候选人进行了三项素质测试,他们各项测试成绩如下表所示:(2)据实际需要,学校广播站将音乐知识、语言、普通话三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?(提问意图:让学生通过比较,感受权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用.)加权平均数的概念:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”.如上题中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称75.65188350472=⨯+⨯+⨯为A的三项测试成绩的加权平均数.教师提问:在此题中权的形式是什么?(提问意图:让学生体会,这里的权没有直接给出数量,而是以比的形式出现.)讨论:算术平均数与加权平均数的联系与区别.“算术平均数”实际上是“加权平均数”的一种特殊情况(各项的权相等).加权平均数是平均数的推广,当一组数据中不同的数重复出现的次数不同时,我们用权数的大小来反映重复次数的多少.变式一:如果学校广播站招聘的是播音员,学校广播站将音乐知识、语言、普通话三项测试得分按1:3:4的比例确定各人的测试成绩,此时谁将被录用?教师提问:你觉得广播站调整的三项测试得分的权是否合适?(提问意图:两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用.变式二、老师在计算学期总平均分的时候按如下标准:作业占5%、平时测验占20%、期中占30%、期末考试占45%,小明的成绩如下表:(提问意图:让学生体会,与例1的区别主要在于权的形式有变化,以百分数的形式出现,加深学生对权的意义的理解.让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权.)(三)总结:这节课学习了什么?你收获了什么?(1)加权平均数在数据分析中的作用是什么?(2)权的作用是什么?(3)权的形式主要有哪些?(四)课后作业:1、某校初二年级共有5个班,在数学期中考试中参考人数和成绩如下:求该校初二年级在这次期中数学考试中的平均成绩?2、某公司打算招聘一名工作人员,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?九、学生自我评价和教学评价十、课后反思在数学教学中,以问题为载体,通过设计引导学生数学思维的问题,可以充分调动学生学习的积极性和主动性,产生学习的内驱力.有效的课堂提问,既可以促进学生思考,激发学生求知欲望,又能及时地反馈学生的学习情况,促进学生的深度学习,从而大大地增强课堂教学的实效性.如,在加权平均数概念的提出阶段,设计了四个问题,唤醒学生的已有知识和经验——算术平均数,引导学生通过自主学习、小组合作学习,从算术平均数自然而然走向加权平均数,从而实现新知识的自然生长和促进学生的深度学习:问题1、你有哪些方法求小明所在小组学生的平均分?问题2:做完该题后,你能说一说算术平均数的定义和计算公式吗?让学生与小学已有经验联系,得到算术平均数的定义和公式问题3:解法2中以90分为基准,为什么选择90为基准?如何选择集中数据?让学生养成数据分析的观念,了解平均数可以描述一组数据的集中趋势.问题4:你能说一说解法3的道理吗?让学生感受这一计算过程符合加权平均数的公式特征,这里同一个分数的人数可以认为是这个分数的权数,让学生从算术平均数自然而然走向加权平均数. 在得到“加权平均数”的概念之后,进行了两个变式训练,让学生分别感受权对平均数的影响和权的不同表现形式,让学生在变式训练中领悟加权平均蕴含的思想,并将它们融入原有的平均数的认知结构中,且能将已有的加权平均数知识迁移到新的情境中.。
八年级数学上册第六章数据的分析导学案1(新版)北师大版【学习目标】1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
【重点难点】重点:能用数据的代表(平均数、中位数和众数)和数据的波动(极差和方差)来处理分析一组数据和解决一些实际问题。
难点:理解数据的代表(平均数、中位数和众数)和数据的波动(极差和方差)的真实意义并用之于实际。
学习环节:一、自学导航1、加权平均数的公式是:若n个数的权分别是,则:叫做这n个数的加权平均数。
2、在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,…,xk出现fk次(这里f1+f2+…+fk=n)那么这n个数的算术平均数。
3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的。
如果数据的个数是偶数,则就是这组数据的中位数。
中位数是一组数据,如果已知一组数据的中位数,那么可以知道,小于等于或大于等于这个中位数的数据各占一半。
4、一组数据中出现次数最多的数据就是这组数据的。
5、平均数、中位数、众数比较:(1)联系:平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据,平均数是应用较多的一种量。
实际问题中求得的平均数、众数、中位数应带上。
(2)区别:①平均数计算要用到所有数据,它能充分利用所有的数据信息,任何一个数据的变动都会相应引起平均数的变动,并且它受的影响较大;②中位数仅与数据的有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势;③众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受的影响,它是它的一个优势。
北师大版八年级上册第六章数据的分析课程设计一、课程概述本课程以北师大版八年级上册第六章“数据的分析”为主要内容,旨在帮助学生掌握数据的收集、整理、分析的方法和技能,以及使用数学模型进行数据分析的能力。
本课程包括三个部分,分别是数据收集与整理、数据描述与分析、应用数学模型分析数据。
通过本课程的学习,学生将理解数据的意义与价值,能够采用不同的数据收集与整理方法,熟练掌握数据的分析方法和工具,进而在实际问题中应用数学模型进行数据分析,提高自己的综合能力。
二、课程内容2.1 数据收集与整理数据收集与整理是数据分析的前提和基础,包括以下内容:•数据的来源与类型:学生了解数据的来源有哪些,数据的类型有哪些,并能够根据数据类型采用适当的方法进行整理。
•数据的收集与整理方法:学生学会采用各种方法获取和整理数据,例如问卷调查、实验法、文献调查等。
•数据的质量检验:学生学会采用统计分析等方法检验数据质量,保证数据的准确性和可靠性。
2.2 数据描述与分析数据描述与分析是数据分析的核心,包括以下内容:•描述统计量的计算:学生了解数据的中心趋势和离散程度的概念和计算方法,并在实践中运用。
•数据的可视化展示:学生掌握将数据用图像和表格等形式进行展示的方法,能够分析和比较数据。
•探究数据的规律:学生掌握计算频率、概率等方法获取数据规律,能够进行统计推断分析。
2.3 应用数学模型分析数据数学模型是实际问题解决的有效工具,本部分包括以下内容:•数据建模:学生了解数据分析中数学模型的概念和分类,能够选择合适的模型进行数据建模。
•应用数学模型进行数据分析:学生掌握应用数学模型分析数据的方法,包括回归分析、时序分析、因素分析等。
三、教学方法本课程采用以下教学方法:•讲授法:通过教师讲授,将理论知识传授给学生。
•实践操作:通过案例分析和课堂操作,帮助学生掌握数据分析方法和工具的使用。
•自主探究:通过小组研究、个人探究等形式,激发学生的兴趣,培养学生的独立思考和创新能力。
6.1 平均数【学习目标】1.掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数及加权平均数.【学习重点】算术平均数的概念及计算.【学习难点】加权平均数的概念及其计算.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.说明:一连串跟球赛有关的问题的提出,学生比较熟悉又容易接受,从而达到激发学生学习新知识的强烈欲望和引入新课的目的.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题在篮球比赛中,队员的身高、年龄都是影响球队实力的因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队的更高”?怎样理解“甲队队员比乙队更年轻”?中国男子篮球职业联赛2011-2012赛季冠、亚军球队队员身高、年龄如下表:北京金隅队广东东莞银行队号码身高/cm年龄/岁号码身高/cm年龄/岁3 188 35 3 205 316 175 28 5 206 217 190 27 6 188 238 188 22 7 196 299 196 22 8 201 2910 206 22 9 211 25 12 195 29 10 190 23 13 209 22 11 206 23 20 204 19 12 212 23 21 185 23 20 203 21 25 204 23 22 216 22 31 195 28 30 180 19 32 211 26 32 207 21 51 200 26 0 183 27 5522729上述两支篮球队中,哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?与同伴进行交流.自学互研 生成能力知识模块一 算术平均数的概念及计算1.阅读教材第136页下面的内容,归纳平均数的定义.在日常生活中,我们常用平均数描述一组数据的集中趋势.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n (x 1+x 2+ …+x n )叫做这n 个数的算术平均数,简称平均数,记为x -=1n (x 1+x 2+…+x n ).2.想一想:小明是这样计算北京金隅队队员的平均年龄的:年龄/岁 19 22 23 26 27 28 29 35 相应的队员数14221221(1+4+2+2+1+2+2+1)=25.4(岁).说明:通过实际问题的解决,让学生体会数据中权的作用,理解加权平均数的计算方法,体验成功的乐趣.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.你能说说小明这样做的道理吗?【说明】通过思考,分析小明的计算方法与以前学过的算术平均数的计算方法有何区别.通过学生的讨论、探究以及教师的引导让学生对加权平均数的计算有个初步的认识了解.知识模块二加权平均数的概念及计算师生合作完成教材第137页例题的学习与探究.例某广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:测试项目测试成绩/分A B C创新72 85 67综合知识50 74 70语言88 45 67(1)(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4∶3∶1的比例确定各人的测试成绩,此时谁将被录用?(3)(1),(2)问的结果一样吗?说明了什么?【归纳结论】实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.例如在例题中4,3,1分别是创新,综合知识,语言三项测试成绩的权.则72×4+50×3+88×1为A的三项测试成绩的加权平均数.4+3+1交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一算术平均数的概念及计算知识模块二加权平均数的概念及计算检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________6.2 中位数与众数【学习目标】1.认识中位数和众数,并会求一组数据的众数和中位数.2.了解平均数、中位数、众数在描述数据时的差异,并能灵活应用这三个数据代表解决实际问题.【学习重点】掌握中位数、众数这两种数据代表的概念.【学习难点】灵活运用平均数、中位数、众数,分析数据信息,做出决策.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.情景导入生成问题某公司员工的月工资如下:员工经理经理副职员A 职员B 职员C 职员D 职员E 职员F 杂工G月工资(元) 7000 4400 2400 2000 1900 1800 1800 1800 1200学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.问题:这个公司员工的月平均工资是多少?这个公司员工收入到底怎样?你如何看待?【说明】为学生提供一个活生生的生活情境和值得深思的问题,激起学生认知的矛盾.因为疑问是构建数学的起点,对学生的心理智力产生刺激,让他们从问题中发现,有利于建立新的认知结构.自学互研生成能力知识模块一中位数与众数的概念观察:(1)这个公司员工的工资是按从高到低排列的,哪一位员工工资处在“正中间”?(2)9个员工当中,哪一种月工资出现的次数最多?【说明】这两个问题的提出让学生在心目中对于中位数和众数有了初步的认识,为下面正确理解它们的概念打下了基础.【归纳结论】一般地,几个数据按大小顺序排列,处于最中间位置的一个数据(或最中间的两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.讨论:(1)在上面的问题中,你认为用平均数、中位数和众数中哪个数据描述该公司员工收入的集中趋势更合适?(2)为什么该公司员工收入的平均数比中位数高得多?【说明】在同一个问题中分别求平均数、中位数和众数,这是为了比较三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的联系与区别,体现了它们各自在日常生活中的指导意义,培养了学生的迁移能力.知识模块二平均数、中位数和众数的应用与同伴合作完成下面问题的学习.做一做:(1)2011~2012赛季北京金隅队队员身高的平均数、中位数和众数分别是多少?(2)你课前调查的20位男同学所穿运动鞋尺码的平均数、中位数和众数分别是多少?你认为学校商店应多进哪种尺码的运动鞋?【说明】通过这几个问题的设置,其目的就是让学生根据不同情况从不同的角度灵活运用这三个数据代表处理问题.(3)平均数、中位数和众数都是描述数据集中趋势的统计量,它们各自有哪些特征呢?【说明】学生讨论得出结果,进一步加深了对平均数、中位数和众数的理解,认清了它们各自存在的优劣以及如何利用这三种数据解决实际问题.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一中位数与众数的概念知识模块二平均数、中位数和众数的应用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________6.3 从统计图分析数据的集中趋势【学习目标】1.进一步认识平均数、众数、中位数都是数据的代表,了解它们在描述数据时的差异.2.会从扇形、折线和条形等统计图中获取信息.【学习重点】对统计图进行分析计算,应用平均数、中位数、众数解决实际问题.【学习难点】灵活运用这三个数据代表解决问题.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题教师引导学生研读教材第145页“议一议”上方的内容.【说明】在同一个问题中求出众数,从而估计平均数,这是为了体现这两个量在描述一组数据集中趋势时之间的相互联系.体现了众数在日常生活中的指导意义,培养了学生的迁移能力.自学互研生成能力知识模块一从条形统计图分析数据的集中趋势先阅读教材第145页“议一议”的内容,再独立完成书中设置的3个问题,然后与同伴进行交流.【说明】利用统计图让学生在同一个问题中分别求出平均数、众数和中位数,主要是为了比较这三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的区别和联系.知识模块二从扇形统计图分析数据的集中趋势先阅读教材第145页“做一做”和第146页“想一想”的内容,并独立完成书中设置的问题,然后与同伴进行交流.【说明】在扇形统计图中很容易看出众数,从统计图中获取信息求加权平均数,巩固了以前学过的知识,加深了对这个知识点的理解.教师引导学生完成教材第146页例题的学习与探究.仿例:为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题.(1)本次接受随机抽样调查的学生人数为____,图①中m 的值为____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 解:(1)40;15;(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本的众数为35;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都为36,∴中位数为36+362=36;(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 从条形统计图分析数据的集中趋势 知识模块二 从扇形统计图分析数据的集中趋势检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________6.4 数据的离散程度【学习目标】1.知道极差、方差、标准差的概念.2.会求一组数据的极差、方差、标准差,并会用它们表示数据的离散程度. 【学习重点】 方差的概念和计算. 【学习难点】应用方差对数据的波动情况进行比较、判断.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入 生成问题教师引导学生研读教材第149页的内容,找到极差的概念,并完成书中设置的问题. 【说明】 应用实例并提问启发思考,导入极差的概念,自然而又有探索性.【归纳结论】 实际生活中,除了关心数据的集中趋势外,人们往往还关注数据的离散程度,即它们相对于集中趋势的偏离情况.一组数据中最大数据与最小数据的差(称为极差),就是刻画数据离散程度的一个统计量.自学互研 生成能力知识模块一 方差与标准差的概念先阅读教材第150页“做一做”的内容,并完成书中设置的前两个问题.【说明】 通过问题的分析以及阅读指导的再认识,让学生认识到方差是衡量一组数据的离散程度的常用方法.【归纳结论】 数学上,数据的离散程度还可以用方差或标准差刻画.方差(variance )是各个数据与平均数差的平方的平均数,即s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].其中,x -是x 1,x 2,…,x n 的平均数,s 2是方差.而标准差(standard deviation )就是方差的算术平方根.一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.知识模块二用计算器计算方差和标准差先自学自研教材第150页“做一做”和上方的例题,然后与同伴进行交流.【说明】让学生学会用计算器求方差,加深对公式的理解,体会现实生活中常常根据方差考虑数据波动大小,从而作出正确的选择和判断.说明:利用图象分析数据的离散程度,再通过计算加以验证,让学生进一步体会方差是衡量一组数据稳定性的重要标志.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.知识模块三平均数与方差的综合运用师生合作完成教材第152页的图象问题及教材第153页的“议一议”和“做一做”的内容.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一方差与标准差的概念知识模块二用计算器计算方差和标准差知识模块三平均数与方差的综合运用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________本章复习小结【学习目标】1.掌握数据的集中趋势和数据离散程度所表示的意义,并会利用它们解决实际问题. 2.通过对本章知识的整理,回顾解决问题中所涉及的转化思想,数形结合的思想,从特殊到一般的思想,加深对知识的理解.【学习重点】掌握平均数、中位数、众数、极差、方差、标准差的概念及各自的计算公式;会利用计算器求平均数,会用极差、方差、标准差来研究数据波动的大小.【学习难点】理解数据代表的意义和方差、标准差代表的意义.学习行为提示:创景设疑,帮助学生知道本节课学什么.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入 生成问题师生共同回顾本章知识点,构建知识结构图,让学生对本章知识有个整体把握,体会各知识之间的联系与区别,教学时要有的放矢.数据的分析⎩⎪⎪⎪⎨⎪⎪⎪⎧数据的集中趋势⎩⎪⎨⎪⎧平方数⎩⎪⎨⎪⎧算术平均数:x =1n (x 1+x 2+…+x n)加权平均数:x =x 1f 1+x 2f 2+…+x n fnf 1+f 2+…+fn中位数:一般地,n 个数据按大小顺序排列,处于最中间位置的 一个数据(或最中间两个数据的平均数)众数:一组数据中出现次数最多的那个数据数据的离散程度⎩⎪⎨⎪⎧极差:一组数据中最大数据与最小数据的差方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n-x )]标准差:方差的算术平方根从统计图中分析数据利用本章主要知识解决相关的实际问题,教师适当给予点评,指明应用哪些知识点,需要注意些什么问题,对学生有所警示,以防一错再错.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研 生成能力知识模块一 知识清单 加深理解 1.求加权平均数求算术平均数是求加权平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权重相等时,就变成了算术平均数.2.求中位数求一组数据的中位数时,要把这些数据按从小到大(或从大到小)的顺序排列起来,然后求中位数,不可直接取中间的数为中位数.3.方差在平均数相差不多的情况下,方差是衡量一组数据波动大小的量,方差越小,数据的波动就越小,证明数据越接近平均数.知识模块二 典例引路 全面复习例1:某鞋店为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这________,众数是________,鞋厂最感兴趣的是________数.分析:平均数可用加权平均数公式计算:x=21.5×3+22×4+22.5×4+23×7+23.5×1+24×120=45120=22.55(cm ).中位数是第10个和第11个两个数据的平均数,而这两个数据均是22.5.众数是出现次数最多的数据,同时也证明这种号码的鞋是学生中穿得最多的,也是厂家销售得最好的,是这组数据中最重要的.解:22.5,22.5,23,众.例2:某样本x 1+1,x 2+1,…x n +1的平均数为10,方差为2,求样本x 1+2,x 2+2…,x n +2的平均数及方差.分析:由平均数及方差的性质可知,若x 1,x 2,x 3…,x n 的平均数为x ,方差为s 2,则ax 1+b ,ax 2+b ,ax 3+b ,…,ax n +b 的平均数为ax +b ,方差为a 2s 2.解:由题意可知:1n [(x 1+1)+(x 2+1)+(x 3+1)+…+(x n +1)]=10,1n [(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2,所以样本x 1+2,x 2+2,x 3+2,…,x n +2的平均数和方差分别为:x =1n [(x 1+2)+(x 2+2)+…+(x n +2)]=1n [(x 1+1)+(x 2+1)+…+(x n +1)]+nn =10+1=11.s 2=1n [(x 1+2-x)2+(x 2+2-x)2+…+(x n +2-x)2]=1n [(x 1+2-11)2+(x 2+2-11)2+…+(x n +2-11)2]=错误![(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 知识清单 加深理解 知识模块二 典例引路 全面复习检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
数据的分析【学习目标】1.掌握数据的集中趋势和数据离散程度所表示的意义,并会利用它们解决实际问题.2.通过对本章知识的整理,回顾解决问题中所涉及的转化思想,数形结合的思想,从特殊到一般的思想,加深对知识的理解. 【学习重点】掌握平均数、中位数、众数、极差、方差、标准差的概念及各自的计算公式;会利用计算器求平均数,会用极差、方差、标准差来研究数据波动的大小. 【学习难点】理解数据代表的意义和方差、标准差代表的意义.学习行为提示:创景设疑,帮助学生知道本节课学什么.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点.情景导入 生成问题师生共同回顾本章知识点,构建知识结构图,让学生对本章知识有个整体把握,体会各知识之间的联系与区别,教学时要有的放矢.数据的分析⎩⎪⎪⎪⎨⎪⎪⎪⎧数据的集中趋势⎩⎪⎨⎪⎧平方数⎩⎪⎨⎪⎧算术平均数:x =1n (x 1+x 2+…+x n)加权平均数:x =x 1f 1+x 2f 2+…+x n fnf 1+f 2+…+fn中位数:一般地,n 个数据按大小顺序排列,处于最中间位置的 一个数据(或最中间两个数据的平均数)众数:一组数据中出现次数最多的那个数据数据的离散程度⎩⎪⎨⎪⎧极差:一组数据中最大数据与最小数据的差方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n-x )]标准差:方差的算术平方根从统计图中分析数据利用本章主要知识解决相关的实际问题,教师适当给予点评,指明应用哪些知识点,需要注意些什么问题,对学生有所警示,以防一错再错.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研 生成能力 知识模块一 知识清单 加深理解 1.求加权平均数求算术平均数是求加权平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权重相等时,就变成了算术平均数. 2.求中位数求一组数据的中位数时,要把这些数据按从小到大(或从大到小)的顺序排列起来,然后求中位数,不可直接取中间的数为中位数. 3.方差在平均数相差不多的情况下,方差是衡量一组数据波动大小的量,方差越小,数据的波动就越小,证明数据越接近平均数. 知识模块二 典例引路 全面复习例1:某鞋店为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20________,众数是________,鞋厂最感兴趣的是________数.分析:平均数可用加权平均数公式计算:x =21.5×3+22×4+22.5×4+23×7+23.5×1+24×120=45120=22.55(cm ).中位数是第10个和第11个两个数据的平均数,而这两个数据均是22.5.众数是出现次数最多的数据,同时也证明这种号码的鞋是学生中穿得最多的,也是厂家销售得最好的,是这组数据中最重要的. 解:22.5,22.5,23,众.例2:某样本x 1+1,x 2+1,…x n +1的平均数为10,方差为2,求样本x 1+2,x 2+2…,x n +2的平均数及方差.分析:由平均数及方差的性质可知,若x 1,x 2,x 3…,x n 的平均数为x ,方差为s 2,则ax 1+b ,ax 2+b ,ax 3+b ,…,ax n +b 的平均数为ax +b ,方差为a 2s 2.解:由题意可知:1n [(x 1+1)+(x 2+1)+(x 3+1)+…+(x n +1)]=10,1n[(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2,所以样本x 1+2,x 2+2,x 3+2,…,x n +2的平均数和方差分别为:x =1n [(x 1+2)+(x 2+2)+…+(x n +2)]=1n [(x 1+1)+(x 2+1)+…+(x n +1)]+n n =10+1=11.s 2=1n[(x 1+2-x)2+(x 2+2-x)2+…+(x n +2-x)2]=1n [(x 1+2-11)2+(x 2+2-11)2+…+(x n +2-11)2]=错误![(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=2. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑. 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 知识清单 加深理解 知识模块二 典例引路 全面复习 检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书. 课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
北师大版八年级数学上册《数据的分析》导学案1.平均数【学习目标】1.理解平均数、加权平均数的概念;2.会求一组数据的算术平均数和加权平均数.【知识梳理】1.算术平均数的概念算术平均数:一般地,对于n 个数x 1,x 2,…,x n ,我们把 叫做这n 个数的算术平均数,简称平均数,记作 。
2.加权平均数的概念加权平均数:在实际问题中,一组数据里的各个数据的“ ”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一“ ”。
3.应用加权平均数解决实际问题:在现实生活中,人们往往为了不同方面的 ,而给考查对象赋予不同的【典型例题】知识点一 算术平均数的概念1.一组数据2,0,-2,1,3的平均数是( )A.0.8B.1C.1.5D.22.如果一组数据85,x,80,90的平均数是85,那么x=( )A.84B.85C.86D.90知识点二 加权平均数的概念3.已知一组数据4,13,24的权数分别是213161,,,则这组数据的加权平均数是 4.某同学数学课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该同学数学总评成绩是 分。
知识点三 加权平均数的实际应用5.调查某一路口某时段的汽车流量,记录了30天同时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447这30天在该时段通过该路口的汽车平均辆数为( )A.125辆B.320辆C.770辆D.900辆【巩固训练】1.两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,则两班所有学生的平均分是( )A.75分B.74分C.72分D.77分2.若a,b,c 三数的平均数是6,则2a+3,2b-2,2c+5的平均数是( )A.6B.8C.12D.143.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%,小彤的三项成绩(百分制)分别为95,90,88,则小彤这学期的体育成绩为( )A.89分B.90分C.92分D.93分4.我市欲从某师范院校招聘一名“特岗教师”,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表:根据录用程序,作为人民教师面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
第六章数据的分析导学案6.1 平均数(1)学习目标:1.能说出并掌握算术平均数、加权平均数的概念。
2.会求一组数据的算术平均数和加权平均数。
学习过程: 阅读教材P136-138 页活动1:认识平均数生活中常常会对某些数据进行比较,如章前图中甲、乙、丙三个队员哪个的射击成绩更好,哪个更稳定?类似地,甲、乙两个球队中哪个队的球员更高。
在篮球比赛中,队员的身高、年龄都是影响球队实力的因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?怎样理解“甲队队员比乙队更年轻”?1.问题:(1)北京金隅对队员的平均身高为;平均年龄为。
(2)广东东莞银行对队员的平均身高为;平均年龄为。
(3)哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?与同伴交流。
交流?反思大家有哪些不同的做法,各有什么特点?知识点:在日常生活中,我们常用平均数表示一组数据的。
一般地,对于n 个数x1,x2,x n,我们把叫做这n 个数的算术平均数,简称,记为,读作“ x 拔”。
活动2:认识加权平均数例题?示范2.某广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试。
他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?解:(1)A 的平均成绩为: B 的平均成绩为:C 的平均成绩为: 因此候选人________________________________________________________ 将被录用。
(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1 的比例确定各人的测试成绩,此时谁将被录用?解:根据题意,三人的测试成绩如下:A的测试成绩为: 72 4 50 3 88 165.75 (分);B 的测试成绩为:_________________________________________________________________ ;431C的测试成绩为:_________________________________________ 。
第六章数据的分析复习教案教学目标知识与技能:1.掌握众数、中位数、极差、方差的定义.2.掌握加权平均数的意义及其求法.过程与方法:通过具体问题的分析和解决来巩固对知识的综合掌握.情感态度与价值观:增强学以致用的意识.教学重难点【重点】 1.众数、中位数、极差、方差的定义.2.加权平均数的意义及其求法.【难点】根据计算的数据结果对问题进行分析和判断.知识总结专题讲座专题一平均数【专题分析】统计初步在中考中所占的比重越来越大,题型由填空题、选择题发展到分值较高的解答题,有关平均数的计算题,也由单一的数字计算转化为与时代发展紧密相连的应用题,特别是加权平均数的计算更是热点.老师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:〔解析〕10%,30%,25%,35%说明平时作业、单元测验、期中考试、期末考试四项在总成绩中的重要程度,是四项成绩的权,权的和为1.解:小丽的总评成绩为80×10%+75×30%+71×25%+88×35%=79.05(分).小明的总评成绩为76×10%+80×30%+70×25%+90×35%=80.6(分).因为80.6>79.05,所以小明的学期总评成绩高.[规律方法]实际生活中,一组数据中各个数据的“重要程度”不总是相同的,即“权”是不同的,所以我们一般选择计算其加权平均数作为衡量“平均水平”的标准.【针对训练1】水是生命之源,为了让市民珍惜水资源,节约用水,从2019年5月1日起,武汉市居民生活用水供水价格实行三级收费标准:户籍人口4人及以下的用户,每户每月用水量中,25 m3(含25 m3)以内的部分为第一级,价格为1.90元/m3;25 m3至33 m3(含33 m3)的部分为第二级,价格为2.45元/m3;超过33 m3的部分为第三级,价格为3.00元/m3.小李家户籍人口3人,在2019年连续5个月的同一日对他家的水表作了如下记录:(1)估计2019年小李家平均每月用水量大约为多少立方米;(2)小李家从2019年5月1日起采取节水措施,若每月用水量平均节约2 m3,且每月用水量均在第一级,那么小李家2019年余下的8个月的水费大约是多少元?〔解析〕水表与电表有相似之处,可对比解题.解:(1)=20(m3).答:2019年小李家平均每月用水量约为20 m3.(2)8×(20-2)×1.90=273.60(元).答:小李家2019年余下8个月的水费大约是273.60元.专题二中位数、众数【专题分析】本专题知识在近几年中考中所占的百分比有逐年上升的趋势,大多是利用数学知识解决实际问题的题目,切合新课改的方向,主要考查利用统计图表获取信息的能力.某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量,如下表所示:(1)这15件,中位数为件,众数为件;(2)假设销售部经理把每位销售人员的月销售量定为210件,你认为是否合理?为什么?〔解析〕(1)根据平均数、中位数和众数的定义求解.(2)经观察可知销售210件为大多数人能达到的水平.解:(1)320 210 210(2)合理.因为销售210件以上(包含210件)的人数有10人,能代表大多数人的销售水平,所以销售部经理把每位销售人员的月销售量定为210件合理.[易错提示]平均数、中位数和众数是从不同的角度描述一组数据的集中趋势.平均数的大小与一组数据中的每个数据都有关系.众数是一组数据中出现次数最多的数,其大小只与部分数据有关.中位数是一组数据按大小顺序排列后,最中间的数(或中间两个数的平均数).【针对训练2】某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表:(1)该公司每人所创年利润的平均数为万元;(2)该公司每人所创年利润的中位数为万元;(3)我认为应采用数来描述该公司每人所创年利润的一般水平.〔解析〕(1)可直接求加权平均数;(2)只需取最中间的那个数据(即第8个数据2.1万元)作为该公司每人所创年利润的中位数;(3)因为用“平均数”表示该公司员工的“平均水平”显然过高,所以这里用中位数表示较为合理.〔答案〕(1)3.2 (2)2.1 (3)中位专题三极差、方差【专题分析】本专题知识是中考中一个比较重要的考点,题型有选择题、填空题和解答题,主要考查对极差、方差、标准差的意义的理解,公式掌握的灵活性以及计算的准确性.当今市场竞争激烈,产品质量是企业生存的命根子,永安厂和天星厂为争取鼓楼南路扩建用砖的市场,展开了竞争,工程队以质量择优为宗旨,对两家产品的抗断强度进行了测定,下面是检测的两组数据(单位:千克/平方厘米):永安厂:32.50,29.66,31.64,30.00,31.77,31.01,30.75,31.24,31.87,31.05;天星厂:31.00,29.56,32.02,33.00,29.32,30.37,29.98,31.35,32.86,32.04.试评定两厂生产质量的优劣.〔解析〕通常,产品的优劣通过平均水平来衡量,若平均抗断强度高,则质量优,在平均抗断强度相同的情况下,通常比较产品稳定性的好坏.解:两家产品的平均抗断强度分别为:×(32.50+29.66+…+31.05)=×311.49≈31.15;×(31.00+29.56+…+32.04)=×311.5=31.15.×[(32.50-31.15)2+(29.66-31.15)2+…+(31.05-31.15)2]≈×6.7=0.67,×[(31.00-31.15)2+(29.56-31.15)2+…+(32.04-31.15)2]≈×15.81=1.58 1,因为,所以永安厂产品的抗断强度比天星厂产品的抗断强度稳定,即永安厂产品的质量优于天星厂产品质量.[规律方法]极差是刻画数据离散程度的一个统计量,极差越大表明这组数据的离散程度也越大;方差和标准差是衡量一组数据波动大小的量,方差、标准差越大,数据的波动越大,方差、标准差越小,这组数据就越稳定.【针对训练3】某校要从九年级一班和二班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下(单位:厘米):一班:168 167 170 165 168 166 171 168 167 170二班:165 167 169 170 165 168 170 171 168 167(1)完成下面的统计分析表;(2).解:(1)3.2 168(2)选方差作为选择标准,∵一班同学身高的方差小于二班同学身高的方差,∴一班能被选取.[解题策略]方差是反映一组数据的波动大小的一个量.方差越大,则它与其平均值的离散程度越大,稳定性越差;反之,则它与其平均值的离散程度越小,稳定性越好.专题四数形结合思想【专题分析】数形结合思想是指将数(或量)与形(图形)结合起来对问题进行研究,本章中许多题目的信息都是通过统计图表给出的,有的问题将数据表现在图表上,更能直观地反映数据的特点.我们要能把抽象的数据和直观的图形结合起来,使问题化难为易,化抽象为直观.如图所示的是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).求这些车行驶速度的平均数、中位数和众数.〔解析〕观察条形图可得车速为50千米/时的有2辆;车速为51千米/时的有5辆;车速为52千米/时的有8辆;车速为53千米/时的有6辆;车速为54千米/时的有4辆;车速为55千米/时的有2辆;车辆总数为27.根据这些信息可求出平均数、中位数和众数.解:由图知共有27辆车,所以这些车行驶速度的平均数为×(50×2+51×5+52×8+53×6+54×4+55×2)≈52.4(千米/时).将这27个数据按从小到大的顺序排列,其中第14个数是52,故这些车行驶速度的中位数是52千米/时.这27个数据中,52出现了8次,出现的次数最多,故这些车行驶速度的众数是52千米/时.【针对训练4】如下图所示,有两条石级路,哪条路走起来更舒适些?(图中数据表示每一级的高度,单位:厘米)〔解析〕上台阶是否舒适,就看台阶起伏情况如何,因此需要计算两条石级路的台阶高度的平均数、极差、方差.解:通过计算可知台阶的平均高度一样,都是15厘米,上台阶是否舒适,就看台阶的高低起伏情况如何.左边石级路台阶高度的极差为16-14=2(厘米),方差为:×[(15-15)2+(14-15)2+(14-15)2+(16-15)2+(16-15)2+(15-15)2]=;右边石级路台阶高度的极差为19-10=9(厘米),方差为:×[(19-15)2+(10-15)2+(17-15)2+(18-15)2+(15-15)2+(11-15)2]=.由此可见,左边石级路的极差、方差都比右边石级路的小,所以左边石级路的起伏小,走起路来舒适些.专题五方程思想【专题分析】方程思想是指把具体问题中数量之间的关系用方程加以刻画,并运用方程的知识进行研究、解决.一次数学测试,某班40名学生的成绩统计如下表:成绩/分5060708090100,现在只知道这次数学测试中,该班的平均分是69分.请求出测试成绩为60分和80分的人数.〔解析〕根据“平均分是69分”和“总人数为40人”可建立二元一次方程组求解.解:设测试成绩为60分的有x人,测试成绩为80分的有y人,根据题意,得:解这个方程组,得所以测试成绩为60分的有18人,测试成绩为80分的有4人.【针对训练5】某班进行个人投篮比赛,受污损的表记录了在规定时间内投进n个球的人数分布情况.若已知进球3个或3个以上的人平均每个人投进3.5个球,进球4个或4个以下的人平均每个人投进2.5个球,请你根据上述条件及表中数据求出进球3个和4个的人数.解:设投进根据题意,得方程组解得答:投进3个球的人数为9,投进4个球的人数为3.。
第六章数据的分析导学案6.1 平均数(1)学习目标:1.能说出并掌握算术平均数、加权平均数的概念。
2.会求一组数据的算术平均数和加权平均数。
学习过程 : 阅读教材P136-138页活动1:认识平均数生活中常常会对某些数据进行比较,如章前图中甲、乙、丙三个队员哪个的射击成绩更好,哪个更稳定?类似地,甲、乙两个球队中哪个队的球员更高。
在篮球比赛中,队员的身高、年龄都是影响球队实力的因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?怎样理解“甲队队员比乙队更年轻”?1.中国男子篮球职业联赛 2011-2012赛季冠、亚军球队队员的身高、年龄如下:问题:(1)北京金隅对队员的平均身高为;平均年龄为。
(2)广东东莞银行对队员的平均身高为;平均年龄为。
(3)哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?与同伴交流。
交流•反思大家有哪些不同的做法,各有什么特点?知识点:在日常生活中,我们常用平均数表示一组数据的。
一般地,对于n个数x1,x2,…,x n,我们把叫做这n个数的算术平均数,简称,记为,读作“x拔”。
活动2:认识加权平均数例题•示范2.某广告公司欲招聘广告策划人员一名,对A 、B 、C 三名候选人进行了三项素质测试。
他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?解:(1)A 的平均成绩为: B 的平均成绩为:C 的平均成绩为: 因此候选人________将被录用。
(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用? 解:根据题意,三人的测试成绩如下: A 的测试成绩为:75.65134188350472=++⨯+⨯+⨯(分);B 的测试成绩为:__________________________________; C 的测试成绩为:__________________________________。
因此候选人________将被录用。
3.用某种彩票各个等次奖金额的算术平均数,作为它的平均收益时,你认为合理吗?归纳•概括知识点:上面两个例子中,同一组数据中各个数据的“ ”不一定相同。
因而,在计算一组数据的平均数时,往往给每个数据一个“ ”。
例如,在例题中 分别是创新、综合知识、语言三项测试成绩的权,而称134188350472++⨯+⨯+⨯为A的三项测试成绩的加权平均数。
运用•巩固4.某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%。
小颖的上述三项成绩依次是:92分、80分、84分,则小颖这学期的体育成绩是多少?活动3:反思小结在求平均数时,若n 个数中x 1出现f 1次,x 2出现f 2次,…x k 出现f k 次,那么这n 个数的平均数可以怎样表示?学习链接:在日常生活中,我们常用平均数表示一组数据的“ ”。
常见的方法有: 方法1:观察表格,共有15个球员,我们只需把每个球员的年龄加起来除以人数,即,平均年龄=方法2:观察到有些球员的年龄相同,先求出这些相同球员的年龄,再求和,除以球员人数。
即,平均年龄=方法3:观察到球员年龄都在20岁左右,写出每个球员年龄与20岁的偏差:-1,2,2,2,2,3,3,6,6,7,8,8,9,9,15,求出这组新数的平均值,然后再加上每个数字均剩下的部分20, 即平均年龄=总结:数据较小,且较分散时常用方法1。
出现很多重复数据时,常常运用方法2.数据相对比较集中,都较为接近某一个数据时,常用方法3.6.1平均数(2)学习目标: 1.进一步理解加权平均数的含义,会求实际情境中的加权平均数。
2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题。
学新准备:1、某次体操比赛,六位评委对某位选手的打分(单位:分)如下:9.5,9.3,9.1,9.5,9.4,9.3. 则这个选手的平均分为2、某校规定学生的体育成绩由三部分组成:早锻炼及体育课外活动表现占成绩的20﹪,体育理论测试占30﹪,体育技能测试占50﹪.小颖的上述三项成绩依次是:92分,80分,84分,则小颖这学期的体育成绩是 ,20﹪、30﹪、50﹪叫做 。
学习过程: 阅读教材P139-140页活动1:感受权对平均数的影响1. 某学校进行广播操比赛,比赛打分包括以下四项:服装统一、进退场有序、动作规范、动作整齐(每项满分10分)。
其中三个班级的成绩分别如右表。
(1)若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%、20%、30%、40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?(2)你认为上述四项中,哪一项更为重要?按自己的想法设计一个评分方案,并确定哪一个班的广播操比赛成绩最高,与同伴进行交流。
运用•巩固2.试成绩如右表。
(1)如果将学历、经验和工作态度三项得分按1:2:2的比例确定各人的最终得分,并以此为依据确定录用者,那么谁将被录用?(2)自己确定学历、经验和工作态度三项的权,并根据自己的方案确定录用者。
活动2:感受生活中加权平均数的应用3.小明骑自行车的速度是15千米/时,步行的速度是5千米/时。
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?(3)问题(1)、(2)在计算平均速度时结果一样吗?为什么?反思、交流1. 骑自行车、步行各1小时,两个速度的“重要程度”,因此,直接求平均数即可;骑自行车2小时,步行3小时,骑车速度和步行速度的“重要程度”,采用加权平均数。
2. 当实际问题中,各项的权(重要程度)不相等时,采用;当各项的权相等时,采用。
因此,平均数是平均数的一种特殊情况。
6.2 中位数与众数学习目标:1.能说出中位数、众数等数据代表的概念,能根据所给信息求出一组数据的中位数、众数等的数据代表。
2.能结合具体情境体会平均数、中位数、众数三者的差别;学新准备:1、某次数学考试,小英得了78分。
全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分。
小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”。
小英对妈妈说的情况属实吗?你对此有何看法?学习过程:阅读教材P142-143页活动1:认识中位数和众数你怎样看待该公司员工的收入?①.经理、职员C、职员D从不同的角度描述了该公司员工的收入情况。
月平均工资2000元,指所有员工工资的是2000元,说明公司每月将支付工资总计职员C的工资1200元,恰好居于所有员工工资的“”(恰有4人的工资比他高,有4人的工资比他低),我们称他为。
9个员工中有3个人的工资为1000元,出现的,我们称它为。
②、你怎样看待该公司员工的收入?你认为用哪个数据表示该公司员工收入的“平均水平”更合适③、为什么该公司员工收入的平均数比中位数高得多?与同伴交流。
知识点:一般地,n个数据按顺序排列,处于的一个数据(或最中间两个数据的)叫做这组数据的中位数。
一组数据中出现的那个数据叫做这组数据的众数。
如一组数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8,中中位数是,即,众数是。
注意:一组数据中的不止一个。
运用•巩固1.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别是.活动2:平均数、中位数和众数的特点平均数、中位数和众数都是描述数据的统计量。
计算时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用。
但它容易受极端值的影响。
②当一组数据中,出现极端值(某个数据相比较过大或过小)时,平均值受到影响,这时,通常采用来描述数据的集中趋势,它受极端值的影响较小,但不能利用所有的数据的信息。
③当一组数据中某些数据多次重复出现时,可以用来描述数据的集中趋势,但各个数据的重复次数大致相等时,往往没有特别意义。
小结6.3.从统计图分析数据的集中趋势学习目标:1.进一步理解平均数、中位数、众数等的实际含义;2.能从条形统计图、扇形统计图等统计图表中获取信息,求出或估计相关数据的平均数、中位数、众数。
学新准备:1、条形统计图的特征:能清楚地表示出每个项目的2、折线统计图的特征:能清楚地反映事物的3、扇形统计图的特征:能清楚地表示出各部分在总体中所占的学习过程:阅读教材P145-146页现实生活中,为了直观地反映数据,常常绘制成适当的图表。
但计算时,别忘了从图表中读取这些数据哟,这可是一个重要的能力。
当然,有时也可以从这些直观的图表直接估计出相应的数据代表。
活动1:从折线图中估计数据的代表1、为了检查面包的质量是否达标,随机抽取了同种规格的面包10个,这10个面包的质量如图所示。
(1)这10个面包质量的众数是多少?(2)估计这10个面包的平均质量,再具体算一算,看看 你的估计水平如何。
交流•反思2.从折线图中估计数据的代表,你有哪些经验,与同伴交流。
活动2:从条形图中估计数据的代表1.甲、乙、丙三支青年排球队各有12名队员,三队队员的年龄情况如图。
甲队队员年龄0.51 1.522.533.544.51819202122人数乙队队员年龄1234561819202122人数丙队队员年龄1234561819202122人数(1)观察三幅图,你能从图中分别看出三支球队队员年龄的众数吗?中位数呢?(2)根据图表,你能大致估计出三支球队队员的平均年龄哪个大、哪个小吗?你是怎么估计的?(3)计算出三支球队队员的平均年龄,看看你上面的估计是否准确?交流•反思2.从条形图中估计数据的代表,你有哪些经验,与同伴交流。
运用•巩固3.某鞋厂为了了解初中学生穿鞋的鞋号情况,对一所中学初二(1)班的20名男生所穿鞋号进行了调查,结果如图所示。
(1)写出男生鞋号数据的平均数、中位数、众数;(2)在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?活动3:从扇形图中估计数据的代表1.小明调查了班级里20位同学本学期计划购买课外书的花费情况,并将结果绘制成了下面的统计图. (1)在这20位同学中,本学期计划购买课外书的花费的众数是多少?(2)计算这20位同学计划购买课外书的平均花费是多少?你是怎么计算的?反思•交流(3)在上面的问题,如果不知道调查的总人数,你还能求平均数吗?01234567837码38码39码40码41码42码人数鞋码6.4.数据的离散程度(1)学习目标: 1.了解刻画数据离散程度的三个量度——极差、方差、标准差;2. 通过实例体会用样本估计总体的思想。