计算机组成原理习题课2
- 格式:ppt
- 大小:1.03 MB
- 文档页数:63
第1章计算机组成原理考试大纲第一章计算机体系结构和计算机组成冯。
诺伊曼体系的特点Amdahl定律第二章数制和数制转换各种码制的表示和转换浮点数的表示补码加减法布思算法浮点数的加减法海明码的计算练习:5,6,7,8,101、已知X=19,Y=35,用布思算法计算X×Y和X×(-Y)。
2、使用IEEE 754标准格式表示下列浮点数:-5,-1.5,1/16,-6,384,-1/32。
3、已知X=-0.1000101×2-111,Y=0.0001010×2-100。
试计算X+Y,X-Y,X×Y和X/Y。
4、某浮点数字长12位,其中阶符1位,阶码数值3位,尾符1位,尾数数值7位,阶码和尾数均用补码表示。
它所能表示的最大正数是多少?最小规格化正数是多少?绝对值最大的负数是多少?5、求有效信息位为01101110的海明码校验码。
第三章练习:5解释下列概念:PROM,EPROM,E2PROM,Flash memory,FPGA,SRAM和DRAM。
第四章总线的分类总线操作周期的四个传输阶段总线仲裁的概念及其分类异步通信方式的种类总线的最大传输率第五章存储器的分类存储容量的扩展RAID的概念、特点以及分类Cache的地址映射Cache的写策略Cache的性能分析3C练习:4,5,71.一个容量为16K×32位的存储器,其地址线和数据线的总和是多少?用下列存储芯片时,各需要多少片?1K×4位,2K×8位,4K×4位,16K×l位,4K×8位,8K×8位2.现有1024×l的存储芯片,若用它组成容量为16K×8的存储器。
(1)实现该存储器所需的芯片数量?(2)若将这些芯片分装在若干块板上,每块板的容量为4K×8,该存储器所需的地址线总数是多少?几位用于选片?几位用作片内地址?(3)画出各芯片的连接逻辑图。
计算机组成原理第2章习题答案第2章习题及解答2-2 将下列⼗进制表⽰成⼆进制浮点规格化的数(尾数取12位,包括⼀位符号位;阶取4位,包括⼀位符号位),并写出它的原码、反码、补码三和阶移尾补四种码制形式; (1)7.75解:X=7.75=(111.11)2=0.11111×211[X]原=0011×0.11111000000 [X]反=0011×0.11111000000 [X]补=0011×0.11111000000 [X]阶称,尾补=1011×0.11111000000 (2) –3/64解:X=-3/64=(-11/26)2=(-0.00001)2=-0.11×2-100[X]原=1100×1.11000000000 [X]反=1011×1.00111111111 [X]补=1100×1.010********[X]阶称,尾补=0100×1.010********(3) 83.25解:X=-3/64=(1010011.01)2=0.101001101×2111 [X]原=0111×0.101001101 [X]反=[X]补=[X]原[X]阶称,尾补=1111× 0.10100110(4) –0.3125解:X=(–0.3125)10=(-0.0101)2=-0.101×2-1 [X]原=1001×1.10100000000 [X]反=1110×1.010******** [X]补=1111×1.01100000000[X]阶称,尾补=0111×1.011000000002-4 已知x 和y ,⽤变形补码计算x+y ,并对结果进⾏讨论。
(2) x=0.11101,y=-0.10100 解:[X]补=00.11101, [Y]补=11.01100, [-Y]补=00.10100 [X]补+ [Y]补=00.11101+11.01100=00.01001X+Y=0.01001[X]补- [Y]补= [X]补+ [-Y]补=00.11101+00.10100=01.10001 X+Y 正溢(3) x=-0.10111,y=-0.11000解: [X]补=11.01001, [Y]补=11.01000, [-Y]补=00.11000 [X]补+ [Y]补=11.01001+11.01000=11.10001X+Y=-.011111[X]补- [Y]补= [X]补+ [-Y]补=11.01001+00.11000=00.00001 X -Y =0.000012-5 已知x 和y ,⽤变形补码计算x-y ,并对结果进⾏讨论。
( 2= ==( 2= = =( 2===第二章1.(1) 35 =−100011)[ 35]原 10100011[ 35]补 11011100 [ 35]反 11011101(2)[127]原=01111111[127]反=01111111[127]补=01111111(3) 127 =−1111111)[ 127]原 11111111[ 127]补 10000001[ 127]反 10000000(4) 1 =−00000001)[ 1]原 10000001[ 1]补 11111111 [ 1]反 111111102.[x]补 = a 0. a 1a 2…a 6解法一、(1) 若 a 0 = 0, 则 x > 0, 也满足 x > -0.5此时 a 1→a 6 可任意(2) 若 a 0 = 1, 则 x <= 0, 要满足 x > -0.5, 需 a 1 = 1 即 a 0 = 1, a 1 = 1, a 2→a 6 有一个不为 0解法二、-0.5 = -0.1(2) = -0.100000 = 1, 100000(1) 若 x >= 0, 则 a0 = 0, a 1→a 6 任意即可;(2) [x]补= x = a 0. a 1a 2…a 6(2) 若 x < 0, 则 x > -0.5只需-x < 0.5, -x > 0[x]补 = -x, [0.5]补 = 01000000 即[-x]补 < 01000000a 0 * a 1 * a 2 a 6 + 1 < 01000000⋅ (1 2 ) 即: 2 2 ⋅ 2(最接近 0 的负数)即: 2 2 ⋅ (2 + 2[ 2 2 ⋅ 2 ⋅ (1 2 ) ] [ 22 1 ⋅ ( 1) , 2 2 ⋅ (2 1 + 2 ) ]a 0 a 1a 2 a 6 > 11000000即 a 0a 1 = 11, a 2→a 6 不全为 0 或至少有一个为 1(但不是“其余取 0”)3.字长 32 位浮点数,阶码 8 位,用移码表示,尾数 23 位,用补码表示,基为 2EsE 1→E 8MsM 21M 0(1) 最大的数的二进制表示E = 11111111Ms = 0, M = 11…1(全 1)1 11111111 01111111111111111111111(2) 最小的二进制数E = 11111111Ms = 1, M = 00…0(全 0) 1 11111111 1000000000000000000000(3) 规格化范围正最大E = 11…1, M = 11…1, Ms = 08 个22 个即: 227 122正最小E = 00…0, M = 100…0, Ms = 08 个7121 个负最大E = 00…0, M = 011…1, Ms = 18 个 21 个负最小7 1E = 11…1, M = 00…0, Ms =18 个22 个22 )即: 22⋅ ( 1) 规格化所表示的范围用集合表示为:71, 227122 7 7 2244.在 IEEE754 标准中,一个规格化的 32 位浮点数 x 的真值表示为:X=( 1)s ×(1.M )× 2 E 127(1)27/64=0.011011=1.1011× 22E= -2+127 = 125= 0111 1101 S= 0M= 1011 0000 0000 0000 0000 000最后表示为:0 01111101 10110000000000000000000 (2)-27/64=-0.011011=1.1011× 22E= -2+127 = 125= 0111 1101 S= 1M= 1011 0000 0000 0000 0000 000最后表示为:1 01111101 10110000000000000000000 5.(1)用变形补码进行计算:[x]补=00 11011 [y]补=00 00011[x]补 = [y]补 = [x+y]补00 11011 + 00 00011 00 11110结果没有溢出,x+y=11110(2) [x]补=00 11011 [y]补=11 01011[x]补 = [y]补 = [x+y]补=00 11011 + 11 01011 00 00110结果没有溢出,x+y=00110(3)[x]补=11 01010 [y]补=11 111111[x]补 = [y]补 = [x+y]补=00 01010 + 00 11111 11 01001结果没有溢出,x+y=−101116.[x-y]补=[x]补+[-y]补 (1)[x]补=00 11011[-y]补=00 11111[x]补 =00 11011 [-y]补 = + 00 11111 [x-y]补= 01 11010结果有正溢出,x−y=11010(2)[x]补=00 10111[-y]补=11 00101[x]补 =00 10111 [-y]补 = + 11 00101 [x-y]补结果没有溢出,x−y=−00100(3)[x]补=00 11011 [-y]补=00 10011[x]补= 00 11011[-y]补= + 00 10011[x-y]补= 01 01110结果有正溢出,x−y=100107.(1)用原码阵列乘法器:[x]原=0 11011 [y]原=1 11111因符号位单独考虑,|x|=11011 |y|=111111 1 0 1 1×) 1 1 1 1 1——————————————————————————1 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 0 0 0 1 0 1[x×y]原=1 1101000101用补码阵列乘法器:[x]补=0 11011 [y]补=1 00001乘积符号位为:1|x|=11011 |y|=111111 1 0 1 1×) 1 1 1 1 1——————————————————————————1 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 0 0 0 1 0 1[x×y]补=1 0010111011(2) 用原码阵列乘法器:[x]原=1 11111 [y]原=1 11011因符号位单独考虑,|x|=11111 |y|=110111 1 1 1 1×) 1 1 0 1 1——————————————————————————1 1 1 1 11 1 1 1 10 0 0 0 01 1 1 1 11 1 1 1 11 1 0 1 0 0 0 1 0 1[x×y]原=0 1101000101用补码阵列乘法器:[x]补=1 00001 [y]补=1 00101乘积符号位为:1|x|=11111 |y|=110111 1 1 1 1×) 1 1 0 1 1——————————————————————————1 1 1 1 11 1 1 1 10 0 0 0 01 1 1 1 111111[x×y]补=0 11010001018.(1) [x]原=[x]补=0 11000[-∣y ∣]补=1 00001被除数 X 0 11000 +[-|y|]补 1 00001----------------------------------------------------余数为负 1 11001 →q0=0左移 1 10010 +[|y|]补0 11111----------------------------------------------------余数为正 0 10001 →q1=1左移 1 00010 +[-|y|]补1 00001----------------------------------------------------余数为正 0 00011 →q2=1左移 0 00110 +[-|y|]补1 00001----------------------------------------------------余数为负 1 00111 →q3=0左移 0 01110 +[|y|]补0 11111----------------------------------------------------余数为负 1 01101 →q4=0左移 0 11010 +[|y|]补0 11111----------------------------------------------------余数为负 1 11001 →q5=0+[|y|]补0 11111 ----------------------------------------------------余数 0 11000故 [x÷y]原=1.11000 即 x÷y= −0.11000 余数为 0 11000(2)[∣x ∣]补=0 01011[-∣y ∣]补=1 00111被除数 X 0 01011 +[-|y|]补 1 00111----------------------------------------------------余数为负 1 10010 →q0=0x+y= 1.010010*2 = 2 *-0.101110左移 1 00100 +[|y|]补 0 11001----------------------------------------------------余数为负 1 11101 →q1=0左移 1 11010 +[|y|]补0 11001----------------------------------------------------余数为正 0 10011 →q2=1左移 1 00110 +[-|y|]补1 00111----------------------------------------------------余数为正 0 01101 →q3=1左移 0 11010 +[-|y|]补1 00111----------------------------------------------------余数为正 0 00001 →q4=1左移 0 00010 +[-|y|]补1 00111----------------------------------------------------余数为负 1 01001 →q5=0 +[|y|]补0 11001----------------------------------------------------余数 0 00010x÷y= −0.01110余数为 0 000109.(1) x = 2-011*0.100101, y = 2-010*(-0.011110)[x]浮 = 11101,0.100101 [y]浮 = 11110,-0.011110 Ex-Ey = 11101+00010=11111 [x]浮 = 11110,0.010010(1)x+y 0 0. 0 1 0 0 1 0 (1)+ 1 1. 1 0 0 0 1 01 1. 1 1 0 1 0 0 (1)规格化处理: 1.010010 阶码11100-4 -4x-y0 0. 0 1 0 0 1 0 (1) + 0 0. 0 1 1 1 1 00 0 1 1 0 0 0 0 (1) 规格化处理:0.110000阶码11110x-y=2-2*0.110001(2) x = 2-101*(-0.010110), y = 2-100*0.010110[x]浮= 11011,-0.010110 [y]浮= 11100,0.0101109Ex-Ey = 11011+00100 = 11111 [x]浮= 11100,1.110101(0) x+y 1 1. 1 1 0 1 0 1+ 0 0. 0 1 0 1 1 00 0. 0 0 1 0 1 1规格化处理: 0.101100 x+y= 0.101100*2阶码-611010x-y1 1.1 1 0 1 0 1 + 1 1.1 0 1 0 1 01 1.0 1 1 1 1 1规格化处理: 1.011111 阶码11100x-y=-0.100001*2-410.(1) Ex = 0011, Mx = 0.110100Ey = 0100, My = 0.100100 Ez = Ex+Ey = 0111 Mx*My 0. 1 1 0 1* 0.1 0 0 101101 00000 00000 01101 00000 001110101规格化:26*0.111011(2) Ex = 1110, Mx = 0.011010Ey = 0011, My = 0.111100 Ez = Ex-Ey = 1110+1101 = 1011 [Mx]补 = 00.011010[My]补 = 00.111100, [-My]补 = 11.00010010计算机组成原理第五版习题答案00011010 +[-My]11000100 11011110 10111100+[My]00111100 11111000 111100000.0 +[My]00111100 00101100 010110000.01 +[-My]11000100 00011100 001110000.011 +[-My]11000100 11111100 111110000.0110 +[My]00111100 00110100 011010000.01101 +[-My]1 1 0 00 1 0 0 0 0 1 0 1 10 00.01101 商 = 0.110110*2-6, 11.4 位加法器如上图,C i = A i B i + A i C i 1 + B i C i 1 = A i B i + ( A i + B i )C i 1 = A i B i + ( A i B i )C i 1(1)串行进位方式余数=0.101100*2-6C 1 = G 1+P 1C 0 C 2 = G 2+P 2C 1 C 3 = G 3+P 3C 2 C 4 = G 4+P 4C 3 其中:G 1 = A 1B 1G 2 = A 2B 2G 3 = A 3B 3 G 4 = A 4B 4P1 = A 1⊕B 1(A 1+B 1 也对) P 2 = A 2⊕B 2 P 3 = A 3⊕B 3 P 4 = A 4⊕B 4(2)并行进位方式 C 1 = G 1+P 1C 0C 2 = G 2+P 2G 1+P 2P 1C 0C 3 = G 3+P 3G 2+P 3P 2G 1+P 3P 2P 1C 0C 4 = G 4+P 4G 3+P 4P 3G 2+P 4P 3P 2G 1+P 4P 3P 2P 1C 0“计算机组成原理第五版习题答案12.(1)组成最低四位的74181 进位输出为:C4 = C n+4 = G+PC n = G+PC0,C0为向第0 位进位其中,G = y3+y2x3+y1x2x3+y0x1x2x3,P = x0x1x2x3,所以C5 = y4+x4C4C6 = y5+x5C5 = y5+x5y4+x5x4C4(2)设标准门延迟时间为T,与或非”门延迟时间为1.5T,则进位信号C0,由最低位传送至C6需经一个反相器、两级“与或非”门,故产生C0的最长延迟时间为T+2*1.5T = 4T(3)最长求和时间应从施加操作数到ALU 算起:第一片74181 有3 级“与或非”门(产生控制参数x0, y0, C n+4),第二、三片74181 共 2 级反相器和 2 级“与或非”门(进位链),第四片74181 求和逻辑(1 级与或非门和 1 级半加器,设其延迟时间为3T),故总的加法时间为:t0 = 3*1.5T+2T+2*1.5T+1.5T+3T = 14T13.设余三码编码的两个运算数为X i和Y i,第一次用二进制加法求和运算的和数为S i’,进位为C i+1’,校正后所得的余三码和数为S i,进位为C i+1,则有:X i = X i3X i2X i1X i0Y i = Y i3Y i2Y i1Y i0S i’ = S i3’S i2’S i1’S i0’s i3 s i2 s i1 s i0Ci+1FA FA FA FA十进校正+3VFA s i3'FAs i2'FAs i1'FAs i0'二进加法X i3 Y i3 X i2 Y i2 X i1 Y i1 X i0 Y i0当C i+1’ = 1时,S i = S i’+0011并产生C i+1当C i+1’ = 0时,S i = S i’+1101根据以上分析,可画出余三码编码的十进制加法器单元电路如图所示。
习题1参考答案一、选择题1.微型计算机的分类通常是以微处理器的 D 来划分。
A.芯片名 B. 寄存器数目C.字长 D. 规格2. 将有关数据加以分类、统计、分析,以取得有价值的信息,我们称为 A。
A.数据处理 B. 辅助设计C.实时控制 D. 数值计算3.计算机技术在半个世纪中虽有很大的进步,但至今其运行仍遵循这一位科学家提出的基本原理D 。
A.爱因斯坦B. 爱迪生C. 牛顿D. 冯·诺伊曼4.冯·诺伊曼机工作方式的基本特点是 A 。
A.按地址访问并顺序执行指令 B.堆栈操作C.选择存储器地址 D.按寄存器方式工作5.目前的CPU包括_A_和cache。
A. 控制器、运算器B. 控制器、逻辑运算器C. 控制器、算术运算器D. 运算器、算术运算器二、填空1. 数字式电子计算机的主要外部特性是快速性、准确性、通用性、逻辑性。
2. 世界上第一台数字式电子计算机诞生于 1946 年。
3. 第一代电子计算机逻辑部件主要由电子管组装而成。
第二代电子计算机逻辑部件主要由晶体管组装而成。
第三代电子计算机逻辑部件主要由集成电路组装而成。
第四代电子计算机逻辑部件主要由大规模集成电路组装而成。
4. 当前计算机的发展方向是网络化计算机系统、分布式计算机系统和智能化计算机系统等方向发展。
5. 电子计算机与传统计算工具的区别是自动化程度高。
6.冯·诺依曼机器结构的主要思想是 1.采用二进制代码表示数据和指令;2.采用存储程序的工作方式;3.计算机的硬件系统由五大部分组成。
7. 冯·诺依曼机器结构由控制器、存储器、运算器、输入设备和输出设备五大部分组成。
8. 中央处理器由运算器和控制器两部分组成。
9. 计算机中的字长是指机器数的二进制位数(或计算机一次可以处理的二进制位数)。
10. 运算器的主要部件是算术逻辑运算单元ALU。
11. 控制器工作的实质是指挥和协调机器各个部件有条不紊工作。
第2章练习题参考答案一、判断题(正确Y,错误N)1. CPU在很大程度上决定了计算机的性能,CPU的运算速度又与CPU的工作频率密切相关。
因此,在其它配置相同时,使用主频为500MHz的Pentium4作为CPU 的PC机,比使用主频为1GHz Pentium4作为CPU的PC机速度快。
N2. 近年来,PC机中使用的1394接口比USB传输速度更快。
Y3. Cache存储器的存取速度比主存储器要快得多。
因此,为了提高程序的运行速度,在软件开发时,应尽可能多地使用Cache存储器。
N4. 主存储器在物理结构上由若干插在主板上的内存条组成。
目前,内存条上的芯片一般选用DRAM而不采用SRAM。
Y5. 在Pentium处理器中,整数ALU和浮点运算器可以分别对整数和实数同时进行运算处理。
Y6. RAM是随机存取存储器的缩写,其中“随机”的含义是:不论从(向)哪个地址读出或写入数据,所需时间都是相同的。
N7. 3.5英寸软盘的角上有一个小口,当滑动保护片将其盖住时,软盘就不能进行读写操作了。
N8. CPU工作时,它所执行的指令和处理的数据都是直接从磁盘或光盘中取出,处理结果也直接存入磁盘。
N9. 一般情况下,计算机加电后自动执行BIOS中的程序,将所需的操作系统软件装载到内存中,这个过程称为“自举”或“引导”。
Y10. 若某台PC机主板上的CMOS信息丢失,则该机器将不能正常运行,此时只要将其他计算机中的CMOS信息写入后,该机器便能正常运行。
N11. BIOS芯片和CMOS芯片实际上是一块芯片的两种叫法,是启动计算机工作的重要部件。
N12. 一个完整的计算机系统的两个基本组成部分是操作系统和数据库系统.N13. USB接口是一种高速的并行接口。
N14. 计算机中总线的重要指标之一是带宽,它指的是总线中数据线的宽度,用二进位数目来表示(如16位,32位总线)。
N15. 在BIOS中不包含扫描仪、打印机等设备的驱动程序。
计算机组成原理练习题《计算机组成原理》课后练习题第一章计算机系统概论1、从器件角度看,计算机经历了五代变化。
但从系统结构看,至今绝大多数计算机仍属于()计算机。
A并行B冯·诺依曼C智能D串行2、冯·诺依曼机工作的基本方式的特点是()。
A多指令流单数据流B按地址访问并顺序执行指令C堆栈操作D存贮器按内容选择地址3、在下面描述的汇编语言基本概念中,正确的表述是()。
A对程序员的训练要求来说,需要硬件知识B汇编语言对机器的依赖性高C用汇编语言编写程序的难度比高级语言小D汇编语言编写的程序执行速度比高级语言慢A符号语言B机器语言C机器语言与汇编语言D汇编语言A任何可以由软件实现的操作也可以用硬件来实现B直接面向高级语言的机器目前已经实现C固件就功能而言类似于软件,而从形态上来说又类似于硬件D在计算机系统的层次结构中,微程序属于硬件级,其他四级都是软件级6、计算机系统的层次结构从下至上可分为五级,即微程序设计级或逻辑电路级、一般机器级、操作系统级、()级、()级。
7、取指周期中从内存读出的信息流称为()流、执行周期中从内存读出的信息流称为()流。
5、下面说法不正确的是()。
4、计算机硬件能直接执行的语言有()。
《计算机组成原理》课后练习题第二章运算器1、某机字长32位,其中1位表示符号位。
若用定点整数表示,则最小负整数为()。
A-(231-1)B-(230-1)C-(231+1)D-(230+1)2、以下有关运算器的描述,()是正确的。
A只做加法运算B只做算术运算C算术运算与逻辑运算D只做逻辑运算3、在定点二进制运算器中,减法运算一般通过()来实现。
A原码运算的二进制减法器B补码运算的二进制减法器C原码运算的十进制加法器D补码运算的二进制加法器4、下列数中最小的数是()。
A(101001)2B(52)8C(101001)BCDD(233)165、计算机系统中采用补码运算是为了()。
A与手工运算方式保持一致B提高运算速度C简化计算机的设计D提高运算的精度6、32位浮点数格式中,符号位为1位,阶码为8位,尾数为23位,则它能表示的最大规格化正数为()。