7-4欧拉图与汉密尔顿图
- 格式:ppt
- 大小:296.50 KB
- 文档页数:16
第7章 图论图论是建立和处理离散型数学模型的重要数学工具,它已发展成具有广泛应用的一个数学分支。
图论的发展已有200多年的历史,它最早起源于一些数学游戏的难题研究。
1736年瑞士数学家欧拉(L.Eluer )发表了关于解决哥尼斯堡七桥问题的一篇文章,标志着图论的正式诞生。
从19世纪中叶到20世纪中叶,图论问题大量出现,如汉密尔顿图问题、四色猜想等。
这些问题的出现进一步促进了图论的发展。
1847年,克希霍夫(Kirchhoff )用图论分析电网络,这是图论最早应用于工程科学的一个例子。
随着计算机科学的迅猛发展,在现实生活中的许多问题,如交通网络问题,运输的优化问题,社会学中某类关系的研究,都可以用图论进行研究和处理。
图论在计算机领域中,诸如算法、语言、数据库、网络理论、数据结构、操作系统、人工智能等方面都有重大贡献。
本章主要介绍图论的基本概念、基本性质和一些典型应用。
7.1 图的基本概念7.1.1 图的基本概念1.图的定义图在现实生活中随处可见,如交通运输图、旅游图、流程图等。
此处我们只考虑由点和线所组成的图。
这种图能够描述现实世界的很多事情。
例如,用点表示球队,两队之间的连线代表二者之间进行比赛,这样,各支球队的比赛情况就可以用一个图清楚地表示出来。
到底什么是图呢?可用一句话概括:图是用点和线来刻划离散事物集合中的每对事物间以某种方式相联系的数学模型。
因为上述描述太过于抽象,难于理解,因此下面给出图作为代数结构的一个定义。
定义7.1.1 一个图(Graph )是一个三元组〈)(G V ,)(G E ,G ϕ〉,其中)(G V 是一个非空的节点集合,)(G E 是有限的边集合,G ϕ是从边集合E 到点集合V 中的有序偶或无序偶的映射。
例7.1.1 图G =〈)(G V ,)(G E ,G ϕ〉,其中)(G V =},,,{d c b a ,)(G E =},,,,,{654321e e e e e e ,),()(1b a e G =ϕ,),()(2c a e G =ϕ,),()(3d b e G =ϕ,),()(4c b e G =ϕ,),()(5c d e G =ϕ,),()(6d a e G =ϕ。