几何图形初步单元测试题(Word版 含解析)
- 格式:doc
- 大小:1.20 MB
- 文档页数:19
一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【答案】(1)2;4(2)解:当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm(3)4(4)解:①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴ = = ;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴ = =1;综上所述 = 或1【解析】【解答】解:(1.)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(3.)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM= AB=4,故答案为:4;【分析】(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM= AB;(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.3.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,则∠AOC=________ .如图(2)若∠BOD=35°,则∠AOC=________ .(2)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(3)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直.(填空)当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .【答案】(1)145°;145°(2)解:∠AOC与∠BOD互补.∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(3)AB;OD;30°;CD;OA;45°;OC;AB;60°;AB;CD;75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-35°=145°;如图2,若∠BOD=35°,则∠AOC=360°-∠BOD-∠AOB-∠COD=360°-35°-90°-90°=145°;(3)解:当 AB ⊥ OD 时,∠AOD = 30°.当 CD ⊥ OA 时,∠AOD = 45°.当 OC ⊥ AB 时,∠AOD = 60°.当 AB ⊥ CD 时,∠AOD = 75°.即∠AOD角度所有可能的值为:30°、45°、60°、75°.【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可计算出∠AOC的度数;根据∠AOC=360°-∠BOD-∠AOB-∠COD可计算出∠AOC的度数;(2)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(3)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.4.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.5.已知,如图,在四边形ABCD中,,延长BC至点E,连接AE交CD于点F,使(1)求证:;(2)求证:;(3)若BF平分,请写出与的数量关系________ 不需证明【答案】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAF=∠DAE+∠CAF,∴∠BAF=∠CAD;(2)证明:∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,∴∠B=∠D,∵AB∥CD,∴∠B+∠BCD=180°,∴∠D+∠BCD=180°,∴AD∥BE;(3)2∠AFB+∠CAF=180°【解析】【解答】解:(3)如图2,∵AD∥BE,∴∠E=∠1=∠2,∵BF平分∠ABC,∴∠3=∠4,∵∠AFB是△BEF的外角,∴∠AFB=∠4+∠E=∠4+∠1,∴∠AFB=3+∠2,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠3+∠4+∠1+∠CAF+∠2=180°,即2∠AFB+∠CAF=180°.故答案为:2∠AFB+∠CAF=180°.【分析】(1)根据∠BAC=∠DAE,运用等式性质即可得出∠BAC+∠CAF=∠DAE+∠CAF,进而得到∠BAF=∠CAD;(2)根据∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,可得∠B=∠D,最后根据∠B+∠BCD=180°,可得∠D+∠BCD=180°,进而判定AD∥BE;(3)根据AD∥BE,可得∠E=∠1=∠2,再根据BF平分∠ABC,可得∠3=∠4,根据∠AFB是△BEF的外角,得出∠AFB=∠4+∠E=∠4+∠1,即∠AFB=3+∠2,最后根据AD∥BC,得到∠ABC+∠BAD=180°,进而得到2∠AFB+∠CAF=180°.6.(1)如图,请证明∠A+∠B+∠C=180°(2)如图的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D(3)如图,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明(4)如图,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.【答案】(1)证明:如图1,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1,∠A=∠2,又∵∠BCD=∠BCA+∠2+∠1=180°,∴∠A+∠B+∠ACB=180°;(2)证明:如图2,在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(3)解:如图3,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+ (∠B+∠D);(4)解:②∠3+∠4﹣∠1﹣∠2不变正确.理由如下:作PQ∥AB,如图4,∵AB∥CD,∴PQ∥CD,由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,由PQ∥CD得∠5=∠2,∵∠APQ+∠5+∠1=90°,∴180°﹣∠3﹣∠4+∠2+∠1=90°,∴∠3+∠4﹣∠1﹣∠2=90°.【解析】【分析】(1)如图1,延长BC到D,过点C作CE∥BA,根据二直线平行,同位角相等、内错角相等得出∠B=∠1,∠A=∠2,根据平角的定义得∠BCA+∠2+∠1=180°,再等量代换即可得出结论:∠A+∠B+∠ACB=180°;(2)根据三角形的内角和得出:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,根据对顶角相等得出∠AOB=∠COD,根据等式的性质得出∠A+∠B=∠C+∠D;(3)∠P=90°+ (∠B+∠D),理由如下:根据角平分线的定义得出∠1=∠2,∠3=∠4,根据(2)的结论得出(∠1+∠2)+∠B=(180°﹣2∠3)+∠D ①,∠2+∠P=(180°﹣∠3)+∠D ②,由①得 180°﹣2∠3=∠1+∠2+∠B -∠D ③,②×2得:2∠2+2∠P=2(180°﹣∠3)+2∠D ④,将③代入④即可得出结论:∠P=90°+ (∠B+∠D);(4)②∠3+∠4﹣∠1﹣∠2不变正确. 理由如下:作PQ∥AB,如图4,根据平行于同一直线的两条直线互相平行得出PQ∥CD,根据平行线的性质得出∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,∠5=∠2,根据角的和差得出∠APQ+∠5+∠1=90°,再整体替换即可得出∠3+∠4﹣∠1﹣∠2=90°.7.问题情境:如图1,AB∥CD,∠PAB=125°,∠PCD=135°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为________度。
《第4章几何图形初步》一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为度.10.一个角的补角等于它的余角的6倍,则这个角的度数为.11.13°30'=°;(2)0.5°='= ″.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画条直线.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?《第4章几何图形初步》参考答案与试题解析一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.【点评】解题时勿忘记圆锥的特征及圆锥展开图的情形.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据余角、补角的定义计算.【解答】解:根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点评】根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°【考点】方向角.【专题】应用题.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:点A位于点O的北偏西65°的方向上.故选B.【点评】结合图形,正确认识方位角是解决此类问题的关键.4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到一个矩形右上角有一条线段,故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线【考点】线段的性质:两点之间线段最短.【分析】根据直线的性质,线段的性质,以及线段的大小比较对各选项分析判断即可得解.【解答】解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项正确;C、利用圆规可以比较两条线段的大小关系,是线段的大小比较,故本选项错误;D、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误.故选B.【点评】本题考查了线段的性质,直线的性质,是基础题,熟记各性质是解题的关键.6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°【考点】钟面角.【专题】计算题.【分析】早上8时,时针指向8,分针指向12.钟表12个数字,每相邻两个数字之间的夹角为30°.分针与时针之间有四个格,可求解.【解答】解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选C.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°【考点】翻折变换(折叠问题).【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等.【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活【考点】专题:正方体相对两个面上的文字.【分析】根据正方形展开图相对的面应相隔一个面作答.【解答】解:和“崇”相隔一个面的面为“低”,故选A.【点评】解决本题的关键是理解正方体侧面展开图相对的面之间应相隔一个面.二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为20 度.【考点】余角和补角.【专题】计算题.【分析】根据余角定义直接解答.【解答】解:∠B=90°﹣70°=20°.【点评】本题比较容易,考查互余角的数量关系.根据余角的定义可得∠B=90°﹣70°=20度.10.一个角的补角等于它的余角的6倍,则这个角的度数为72°.【考点】余角和补角.【分析】利用题中的关系“一个角的补角等于这个角的余角的6倍”作为相等关系列方程求解即可.【解答】解:设这个角为x,则它的补角为(180°﹣x)余角为(90°﹣x),由题意得:180°﹣x=6(90°﹣x),180°﹣x=540°﹣6x,6x﹣x=540°﹣180°,5x=360°,x=72°.答:这个角的度数为72°.故答案为:72°.【点评】主要考查了利用余角和补角的定义和一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角之和为180度.11.13°30'=13.5 °;(2)0.5°=30 '= 1800 ″.【考点】度分秒的换算.【分析】(1)根据度分秒的换算,将30′换算成0.5°即可得出结论;(2)根据度分秒的换算,将0.5°换算成30′,再将30′换算成1800″即可得出结论.【解答】解:(1)13°30'=13°+()°=13.5°;(2)0.5°=(0.5×60)′=30′=(30×60)″=1800″.故答案为:(1)13.5;(2)30;1800.【点评】本题考查了度分秒的换算,熟练的掌握度分秒的进率是解题的关键.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条条直线.【考点】直线、射线、线段.【专题】规律型.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.【考点】度分秒的换算.【专题】计算题.【分析】(1)先进行度、分、秒的除法计算,再算加法.(2)先进行度、分、秒的乘法计算,再算减法.【解答】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=9°33′29″.【点评】此类题是进行度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?【考点】方向角.【分析】分别建立找到图书馆在学校的东北方向,在医院的南偏东60°方向,两直线的交点即是图书馆的位置.【解答】解:在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AO,在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BO,则AO与BO的交点为点O,则点O就是图书馆的位置.【点评】此题考查了方向角的知识,注意东北方向指的是东偏北45°这个知识点,难度一般.15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.【考点】比较线段的长短.【专题】计算题.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.【考点】角的计算.【专题】计算题.【分析】设∠COD=x,则∠AOD可表示为60°﹣x,于是∠AOB=90°+60°﹣x=150°﹣x,再根据∠AOB 是∠DOC的3倍得到150°﹣x=3x,解得x=37.5°,然后计算3x即可.【解答】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【点评】本题考查了角的计算:会利用角的倍、分、差进行角度计算.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?【考点】角平分线的定义.【分析】已知一副三角板的直角顶点O重叠在一起,就是已知图形中的两个三角形各角的度数,这样重叠时存在的角的关系是:∠AOD=∠AOB+∠COD﹣∠COB.【解答】解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.【点评】根据角平分线定义得出所求角与已知角的关系转化求解.注意一副三角板的直角顶点O重叠在一起时角的关系.。
第四章:几何图形初步 单元测试卷・、填空题:(每空1分,共28分) 1.82 032' 5" += 1809.四条直线两两相交时,交点个数最多有 _________ 个. 10.如果一个角是30°,用10倍的望远镜观察,这个角应是 ___________ ° . 11.38 041,的角的余角等于 ___________ ,123 059'的角的补角等于 ____________ .12 .如果N 1的补角是N 2,且N 1>Z2,那么N2的余角是 _____________ (用含N 1的式子表示). 13 .如果 Na 与NB 互补,且Na : N 8 =5 :4,那么,N a 二 _________ , ZP = __________ . 14 .根据下列多面体的平面展开图,填写多面体的名称.a ) __________ ,a ) ________ , o ) ________ •15 .圆锥由 ____ 面组成,其中一个是 ______ 面,另一个是 _____ 面. 16 .已知:Z AOB = 35° , Z BOC = 75° ,贝ijNAOC = 二、选择题:(每题2分,共14分)17、如图,是一个正方体纸盒的展开图,若在其中三个正方形A 、B 、C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数, 则填入正方形A 、B 、C 、中的三个数依次是 ()A 、l 、一 3、0B 、0、一 3、1C 、一 3> 0、1D 、- 3、1、0 18 .如图(8),直线 a 、b 相交,N 1= 130°,则 N2+N3=()A.50°B.100 0C.130C.1802 .如图(1),线段AD 上有两点B 、条线段.(1)3 .一个角是它补角的一半 ,则这个角的余角是(5)4 .线段AB=8cm ,C 是线段AB 上的一点,BC=5cm ,则AC= ____________5 .如图(2),直线AB 、CD 相交于点0 ,0E 平分N C0D,则N B0D 的余角 _____________ ,NC0E 的补角是 ___________ , Z AOC 的补角是 __________________________ .6 .如图(3),直线AB 、CD 相交于点0,NA0E =90°,从给出的A 、B 、C 三 个答案中选择适当答案填空. (1) N 1与N 2的关系是( (3) N 3与N 2的关系是(A.互为补角B.互为余角2)(4C.即不互补又不互余7 .如图(4) ,NA0D =90° ,NC0E =90°,则图中相等的锐角有对.8 .如图(5)所示,射线0 A 表示 方向,射线0B 表示 C,图中共有3 -1 B A19.轮船航行到C处观测小岛A的方向是北偏西48。
一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q 运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为________ cm.【答案】(1)16;8(2)解:设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x= ,∴CO=(3)48【解析】【解答】解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t= ,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t= 或16s时,2OP﹣OQ=8.②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.3.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关. 4.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.5.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF(1)证明:BD⊥BC;(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD 的度数:(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF ∴∠ABC= ∠ABE,∠ABD= ∠ABF∴∠ABC+∠ABD= (∠ABE+∠ABF)= ×180°=90°∴BD⊥BC(2)解:∵CD∥EFBD平分∠ABF∴∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°又AP平分∠DAG,∠BAG=50°∴∠DAP= ∠DAG∴∠APD=180°-∠DAP-∠ADP=180°-∠DAG-∠ABF=180°- (∠DAB-∠BAG)-∠ABF=180°-∠DAB+ ×50°-∠ABF=180°- (∠DAB+∠ABF)+25°=180°- ×180°+25°=115°(3)45°【解析】【解答】(3)解:如图,∵AQ∥BC∴∠1=∠4,∠2+∠3+∠4=180°,∵BC平分∠ABE,∴∠1=∠2=∠4,∴∠3+∠4=90°,又∵CD∥EF,AN⊥EF,AP平分∠BAN∴∠PAN= (90°-∠3),∠NAQ=90°-∠4,∴∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4)=45°- ∠3+90°-∠4=135°-(∠3+∠4)=135°-90°=45°.【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°,∠DAP= ∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN= (90°-∠3),∠NAQ=90°-∠4,则∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4),代入计算即可求解.6.如图(1)图中,∠ABC的两边和∠DEF的两边分别互相平行,既AB∥DE,BC∥EF,试说明∠ABC=∠DEF.(2)一个角的两边分别平行于另一个角的两边,除了图1中相等情形外,是否存在其他不相等情形,探究此情形下两个角的关系(画出图形,写出结论并说明理由).(3)如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(画出图形,直接写出结论)(4)如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是什么关系?(画出图形,直接写出结论)【答案】(1)∵ AB∥DE,∴∠E=∠EOB,∵BC∥EF ,∴∠EOB=∠B,∴∠ABC=∠DEF;(2)如图,∵ AB∥DC,∴∠1=∠DMB,∵BE∥FD ,∴∠BMD+∠2=180°,∴∠2+∠1=180°;(3)此题分两种情况,如图①∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P+∠O=360°-∠PEO-∠PFO=180°;如图② ∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P=∠O;综上所述:一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补;(4)如图所示,①∵AB∥EH,∴∠ABC=∠BDE,∵BC⊥EG,∴∠CFE=90°,∴∠BDE+∠E=90°,∴∠E+∠ABC=90°;②∵BC⊥EG,∴∠CFE=90°,∵AB∥EH∴∠MBC=∠HDB,∵∠HDB=∠E+∠CFE=∠E +90°,∴∠MBC=∠E+90°,即∠MBC-∠E=90°,综上所述,如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是和为90°,或差为90°。
人教版2022年七年级上册第4章《几何图形初步》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列说法中正确的是()A.两点确定两条直线B.过一点可以作无数条直线C.过一点只能作一条直线D.三点确定一条直线2.如图经过折叠能围成棱柱的是()A.①②④B.②③④C.①②③D.①③④3.成功没有快车道,努力才是通往成功的光明大道.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“功”字所在面相对面上的汉字是()A.成B.绝C.偶D.然4.如图,已知点O是直线AB上一点,∠AOC=58°,∠BOD=74°,则∠COD等于()A.42°B.46°C.48°D.51°5.甲、乙两个城市,乙城市位于甲城市北偏东40°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km6.如果一个角的余角等于这个角的补角的,那么这个角的度数是()A.30°B.45C.60°D.757.若∠α的补角为60°,∠β的余角为60°,则∠α和∠β的大小关系是()A.∠α<∠βB.∠α>∠βC.∠α=∠βD.无法确定8.钟表上,下午3:40时时针和分针之间形成的角(小于平角)的度数为()A.150°B.140°C.130°D.120°9.刘琪同学将一副三角板按如图所示位置摆放,摆放位置中∠α=∠β的图形是()A.B.C.D.10.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BD=7cm,则BC的长为()A.2cm B.3cm C.4cm D.5cm二.填空题(共5小题,满分20分,每小题4分)11.计算90°﹣40°25′=.12.若∠α=53°23′17″,则∠α的补角的度数为.13.如图,经过刨平的木板上的两个点,能弹出一条笔直的直线,并且只有一条,其中蕴含的数学道理是.14.已知线段AB=8cm,在直线AB上有一点C,且BC=3cm,点M为线段AC的中点,则线段AM的长是多少.15.如图所示是一个几何体的表面展开图,则该几何体的体积为.(结果用含π式子表示)三.解答题(共8小题,满分70分)16.(6分)计算:180°﹣(35°54'+21°33').17.(6分)下面是一个正方体的平面展开图,请把10,,﹣,0.1,,﹣7分别填入六个正方形中,使得折成正方体后,相对面上的数互为倒数.18.(6分)一个角的补角加上20°后等于这个角的余角的3倍,求这个角.19.(8分)如图,在平面内有A,B,C三点.(1)画直线AB;画射线AC;画线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至点E,使DE=AD;(3)数一数,此时图中共有多少条线段?多少条射线?20.(10分)(1)如图1,已知∠AOB=∠COD=90°,OE是∠AOC的角平分线,当∠BOD=42°时,求∠AOE 的度数;(2)如图2,已知∠AOB=80°,∠COD=110°,∠AOC=2∠BOD时,求∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α、β、n的式子表示∠BOD的值.21.(10分)如图,点B是线段AC上一点,且AB=28cm,.(1)求线段AC的长;(2)如果点O是线段AC的中点,求线段OB的长.22.(12分)已知∠AOB,过顶点O作射线OP,若∠BOP=∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图1,射线OP1,OP2都是∠AOB的“好线”.(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数.(2)如图2,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”.(3)如图3,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,请求出符合条件的所有的旋转时间.23.(12分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB 的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.人教版2022年七年级上册第4章《几何图形初步》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、应为两点确定一条直线,故本选项错误;B、过一点可以作无数条直线,故C选项错误,B选项正确;D、三点确定一条直线或三条直线,故D选项错误.故选:B.2.【解答】解:由题意知,①可以围成四棱柱,②可以围成五棱柱,③可以围成三棱柱,故选:C.3.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“功”字所在面相对面上的汉字是“然”.故选:D.4.【解答】解:根据题意可得,因为∠AOC+∠COD+∠BOD=180°,所以∠COD=180°﹣∠AOC﹣∠BOD=180°﹣58°﹣74°=48°.故选:C.5.【解答】解:如图:∵乙城市位于甲城市北偏东40°方向,距离为80km,∴甲城市位于乙城市南偏西40°方向,距离为80km,故选:D.6.【解答】解:设这个角为x°,则这个角的余角=90°﹣x°,补角=180°﹣x°,由题意得,90°﹣x°=(180°﹣x°),解得x=60.故选:C.7.【解答】解:∵∠α=180°﹣60°=120°,∠β=90°﹣60°=30°.∴∠α>∠β,故选:B.8.【解答】解:30°×(5﹣)=130°.所以3:40时,时针与分针所成的角度130°.故选:C.9.【解答】解:A、根据同角的余角相等可得∠α=∠β,符合题意;B、由三角板的性质可知,∠α>∠β,不符合题意;C、由三角形外角的性质可知,∠α<∠β,不符合题意;D、由平角的定义可知,∠α+∠β=180°,不符合题意.故选:A.10.【解答】解:∵AB=10cm,BD=7cm,∴AD=3cm,∵D是线段AC的中点,∴AC=6cm.∴BC=4cm.故选:C.二.填空题(共5小题,满分20分,每小题4分)11.【解答】解:90°﹣40°25′=89°60′﹣40°25′=49°35′,故答案为:49°35′.12.【解答】解:∵∠α=53°23′17″,∴∠α的补角的度数=180°﹣53°23′17″=126°36′43″,故答案为:126°36′43″.13.【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的直线,并且只有一条,其中蕴含的数学道理是两点确定一条直线.故答案为:两点确定一条直线.14.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=11cm,∵M是线段AC的中点,则AM=AC=5.5(cm);②当点C在线段AB上时,AC=AB﹣BC,=5cm,∵M是线段AC的中点,则AM=AC=2.5(cm).故答案为:5.5cm或2.5cm.15.【解答】解:V=Sh=π()2×6=24π,故答案为:24π.三.解答题(共8小题,满分70分)16.【解答】解:180°﹣(35°54'+21°33')=179°60'﹣57°27′=122°33'.17.【解答】解:如图所示:.18.【解答】解:设这个角为α,则这个角的补角为180°﹣α,余角为90°﹣α,根据题意可得,180°﹣α+20°=3(90°﹣α),解得:α=55°,所以这个角为55°.19.【解答】解:(1)如图,直线AB,线段BC,射线AC即为所求;(2)如图,线段AD和线段DE即为所求;(3)图中共有8条线段,6条射线.20.【解答】解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=42°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣42°=138°,∴∠AOE=∠AOC=×138°=69°答:∠AOE的度数为69°;(2)如图2,∵∠AOB=80°,∠COD=110°,∴∠AOC=∠AOB+∠COD﹣∠BOD=80°+110°﹣∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=80°+110°﹣∠BOD,∴∠BOD==,答:∠BOD的度数为°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD﹣∠BOD=α+β﹣∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β﹣∠BOD,∴∠BOD=,答:∠BOD=.21.【解答】解:(1)∵AB=28cm,BC=AB,∴BC=7cm.∴AC=AB+BC=28+7=35(cm);(2)∵点O是线段AC的中点,∴OC=AC=35=17.5(cm),∵BC=7cm,∴OB=OC﹣BC=17.5﹣7=10.5(cm).22.【解答】解:(1)∵OP是∠AOB的“好线”,且∠BOP=30°,∴∠AOP=2∠BOP=60°,①当OP在∠AOB的外部时,∠AOB=∠AOP﹣∠BOP=30°,②当OP在∠AOB的内部时,∠AOB=∠AOP+∠BOP=90°.(2)∵OB是∠MOP的平分线,且∠MOB=30°,∴∠BOP=∠MOB=30°,∠MOP=2∠MOB=60°,∴∠PON=120°,∵OA是∠PON的平分线,∴∠AOP=∠PON=60°,∴∠BOP=∠AOP,∴OP是∠AOB的一条“好线”;(3)设旋转的时间为t秒,①80﹣12t=4t,∴t=5,②3(12t﹣80)=4t,∴t=,综上所述,所有符合条件的旋转时间为5秒或秒.23.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.。
第四章几何图形初步单元达标检测卷一、单选题:1.如图,李老师家在学校的南偏东55°方向,距离是500米,则学校在李老师家的()A.北偏西35°方向,相距500米处B.北偏东35°方向,相距500米处C.北偏西55°方向,相距500米处D.北偏东55°方向,相距500米处 2.若208'A ∠=︒,201'0'53'∠=︒B ,20.252015'∠=︒=︒C ,则().A.B C A ∠>∠>∠ B.B A C ∠>∠>∠ C.A C B ∠>∠>∠ D.C A B ∠>∠>∠3.计算:135333030306︒︒''''⨯-÷的值为()A.335355︒'''B.363355︒'''C.63533︒'''D.53533︒'''4.如图,直线a ,b 相交于点O ,射线c ⊥a ,垂足为点O ,若∠1=40°,则∠2的度数为()A.50°B.120°C.130°D.140° 5.下列说法中正确的有().(1)线段有两个端点,直线有一个端点;(2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关;(4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A.1个 B.2个 C.3个 D.4个6.用如图所示的纸片折成一个长方体纸盒,折得的纸盒是().A. B. C. D.7.如图,已知直线上顺次三个点A 、B 、C ,已知10cm AB =,4cm BC =.D 是AC 的中点,M 是AB 的中点,那么MD =()cm .A.4B.3C.2D.18.如图,点A 、B 在线段EF 上,点M 、N 分别是线段EA 、BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长是()A.10cmB.11cmC.12cmD.13cm 9.已知,平面内20AOB ∠=︒,50AOC ∠=︒,射线OM 、ON 分别平分AOB ∠,AOC ∠,求MON ∠的大小是()A.10︒ B.10︒或35︒ C.35︒ D.15︒或35︒10.如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为A.15°B.30°C.45°D.60°二、填空题:11.(1)32°43′30″=________°;(2)86.47°=________°________′________″12.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.13.一个角的补角加上10︒后,等于这个角的余角的3倍,则这个角是____________.14.如图,点O 是直线AB 上的一点,OE 平分AOC ∠,OD 平分BOC ∠,则图中与1∠互余的角是________.15.如图,点C 在线段AB 上,D 是线段AC 的中点,若CB=2,CD=3CB ,则线段AB 的长_____.16.如图,已知∠AOB 是直角,ON 平分∠AOC ,OM 平分∠BOC ,则∠MON 的度数为________________°.17.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.18.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.19.小英利用量角器作∠AOB =80°,以OB 为始边作∠BOC =20°,OD 平分∠AOB ,则∠COD 的度数为_________.20.已知80AOB ∠= ,40BOC ∠= ,射线OM 是AOB ∠平分线,射线ON 是BOC ∠平分线,则MON ∠=________.三、解答题:21.计算:(1)49°38′+66°22′(2)180°﹣79°19′(3)22°16′×5(4)182°36′÷422.已知α∠和∠β互为补角,并且∠β的一半比α∠小30︒,求,αβ∠∠.23.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.24.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.25.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.26.已知,如图,点C 在线段AB 上,且AC=6cm ,BC=14cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长度;(2)在(1)中,如果AC=acm ,BC=bcm ,其它条件不变,你能猜测出MN 的长度吗?请说出你发现的结论,并说明理由.27.如图,90AOB ∠=︒,OC 在AOB ∠的内部,分别作AOC ∠、BOC ∠的平分线OM 、ON .(1)若30BOC ∠=︒,求MON ∠的度数;(2)若将OC 绕点O 顺时针旋转,使OC 在AOB ∠的外部且锐角2BOC x ∠=︒,仍然分别作AOC ∠、BOC ∠的平分线OM 、ON ,画出示意图,你能求出MON ∠的度数吗?若能,求出其值,若不能,试说明理由;(3)若将OC 绕点O 逆时针旋转,使OC 在AOB ∠的外部且锐角2AOC y ∠=︒,仍然分别作AOC ∠、BOC ∠的平分线OM 、ON ,画出示意图,你还能求出MON ∠的度数吗?若能,求出其值,若不能,说明理由.28.已知O 为直线AB 上一点,∠COE 是直角,OF 平分∠AOE.(1)如图①,若∠COF =34°,则∠BOE =________;若∠COF =n°,则∠BOE =________;∠BOE 与∠COF 的数量关系为________________.(2)当射线OE 绕点O 逆时针旋转到如图②的位置时,(1)中∠BOE 与∠COF 的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠COF =65°,在∠的内部是否存在一条射线OD ,使得2∠BOD 与∠AOF 的和等于∠BOE 与∠BOD 的差的一半?若存在,请求出∠BOD 的度数;若不存在,请说明理由.答案一、单选题:1-10CABCC CCCDC二、填空题:11.32.72586281212.126︒13.40°14.BOD ∠和COD ∠15.1416.4517.20°.18.2619.20°或60°20.60°或20°三、解答题:21.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′22. 已知α∠和∠β互为补角,并且∠β的一半比α∠小30︒,∴α∠=180︒-∠β,α∠-12β∠=30︒,∴180︒-∠β-12β∠=30︒,得31502β∠=︒,100β∠=︒,∴α∠=180︒-∠β=80︒,∴80,100αβ∠=︒∠=︒.23.解:设∠AOC =x ,则∠BOC =2x.∴∠AOB =3x.又OD 平分∠AOB ,∴∠AOD =1.5x.∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.24.(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点,所以1 5.4cm 2AE AB ==.所以6 5.40.6cmDE AD AE =-=-=25.解:因为15cm AC =,35CB AC =,所以3159(cm)5CB =⨯=,所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===.所以127.5 4.5(cm)DE AE AD =-=-=.26.(1)∵AC=6cm ,BC=14cm ,点M 、N 分别是AC 、BC 的中点,∴MC=3cm ,NC=7cm ,∴MN=MC+NC=10cm ;(2)MN=12(a+b )cm.理由是:∵AC=acm ,BC=bcm ,点M 、N 分别是AC 、BC 的中点,∴MC=12acm ,NC=12bcm ,∴MN=MC+NC=12(a+b )cm.27.(1)OM Q 平分AOC ∠,ON 平分BOC ∠,()1116030222MOC AOC AOB BOC ∴∠=∠=∠-∠=⨯︒=︒,1152CON BOC ∠=∠=︒,45MON MOC CON ∴∠=∠+∠=︒;(2)如图所示:OM Q 平分AOC ∠,ON 平分BOC ∠,()()111+90245222MOC AOC AOB BOC x x ∴∠=∠=∠∠=︒+︒=︒+︒,12CON BOC x ∠=∠=︒,故45MON COM CON ∠=∠-∠=︒;(3)如图所示:OM Q 平分AOC ∠,ON 平分BOC ∠,12COM AOC y ∴∠=∠=︒,()()11190245222CON BOC AOB AOC y y ∠=∠=∠+∠=︒+︒=︒+︒,故45MON CON COM ∠=∠-∠=︒.28.试题分析:(1)根据角平分线的性质结合直角、平角的定义即可得到结果;(2)设EOF x ∠=,根据角平分线的性质可得AOF EOF x ∠=∠=,即可得到180º2BOE x =-,再由90ºCOE ∠=可得90ºCOF x ∠=-,从而得到结论;(3)由∠COF=65°可得∠BOE=2∠COF=130°,即可得到∠AOF 的度数,又2∠BOD+∠AOF=(∠BOE-∠BOD),即可求得结果.(1)若∠COF =34°,则∠BOE =68°;若∠COF =m°,则∠BOE =(2)m °;所以∠BOE=2∠COF ;(2)成立.理由如下:设EOF x∠=∵OF 平分∠AOE∴AOF EOF x∠=∠=∴180º2BOE x=-∵90ºCOE ∠=∴90ºCOF x∠=-∴∠BOE=2∠COF ;(3)存在,∠BOD=16°.理由如下:∵∠COF=65°∴∠BOE=2∠COF=130°∴∠AOF=(180°-∠BOE)=25°又2∠BOD+∠AOF=(∠BOE-∠BOD)∴2∠BOD+25°=(130°-∠BOD)∴∠BOD=16°.。
冀教版七年级上册数学《几何图形初步》单元测试卷(word版有答案)一、选择题(本大题有 16个小题, 共 42分.1~10小题各3分, 11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图, 点O在直线AB上.若∠1=40°, 则∠2的度数是( )A.50°B.60°C.120°D.140°2.如图, 图中有( )A.3条直线B.3条射线C.3条线段D.以上都不对3.如图所示,从A地到达 B地,最短的路线是( )A. A→C→E→BB. A→F→E→BC. A→D→E→BD. A→C→G→E→B4.下列关于角的说法正确的有( )①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点 D;④角可以看作由一条射线绕着它的端点旋转而形成的图形。
A.1个B.2个C.3个D.4个5.如图,下列表示不正确的是( )A. AB+BC=ACB.∠C=∠αC.∠B+∠ABD=180°D.∠1+∠2=∠ADC6.将选项中的三角形绕直线l旋转一周,可以得到如图所示的立体图形的是( )7.把8.32°用度、分、秒表示正确的是( )A.8°3′2′′B.8°30′20′′C.8°18′12′′D.8°19′12′′8.若∠AOB=60° , ∠AOC=30° , 则∠BOC为( )A.30°B.90°C.30° 或90°D.不确定9.如图, 已知∠ACB=90° , ∠1=∠B, ∠2=∠A, 则下列说法错误的是( )A.∠A与∠B不互为余角B.∠1与∠2互为余角C.∠2与∠B互为余角D.∠1与∠A互为余角10.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点.如果MC比NC长2 cm,那么AC 比BC长( )A.1cmB. 2cmC.4 cmD.6cm11.如图,C, B是线段 AD上的两点,若AB=CD, BC=2AC,那么AC与CD的关系为( )DA. CD=2ACB. CD=3ACC. CD=4ACD.不能确定12.如果线段 AB=13 cm,MA+MB=17 cm,那么下面说法正确的是( )A. M点在线段AB上B. M点在直线AB上C. M点在直线AB外D. M点可能在直线AB上,也可能在直线AB外13.已知直线AB,射线OC,OD都在如图所示的量角器上,点O在直线AB上,则下列判断中不正确的是( )A.∠AOC=56°B.∠AOD=134°C.∠AOC 比∠COD小D.∠BOD与∠BOC互补15.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形有( )16.如图,在数轴上有A,B, C, D 四个整数点(即各点均表示整数),且2AB=BC=3CD.若A, D 两点表示的数分别为-5和6,点E 为BD 的中点,则下列选项中,离线段 BD 的中点最近的整数是()A.-1B.0C.1D.2二、填空题(本大题有3个小题,共 11分.17小题3分:18~19小题各有2个空,每空2分.把答案写在题中横线上)17. 如图, 点A, O, B 在一条直线上, 且∠AOC=50° , OD平分∠AOC, 则∠BOD= .19.如图,点C, D 将线段 AB 分成2:3:4三部分, E, F 分别是 AC,BD 的中点,且AB=36,则EF14.下列第一行所示的四个图形,每个图形均是由四种简单的图形a ,b ,c ,d(圆、直线、三角形、长方形)中的两种组成。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE(1)若∠COF=20°,则∠BOE=________°(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.【答案】(1)40(2)解:∵∴∴(3)解:存在.理由如下:∵设∴∵∴∴∴∴【解析】【解答】⑴∴∵OF平分∠AOE,∴∴∴故答案为:40。
【分析】(1)根据,∠EOF=∠COE-∠COF=40°,再由角平分线的定义得出∠AOF=∠EOF=40°,最后∠BOE=∠AOB−∠AOE=120°−80°=40°.(2)由角平分线的定义得出∠AOE=2∠EOF,再利用等量代换得∠AOE=120°−∠BOE=2(60°−∠COF) , 整理得∠BOE=2∠COF;(3)∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α ,∠AOF=∠EOF=2α ,根据∠AOD+∠BOD=120°,构建一个含α的方程,5α+70°=120°求出α,进而求出∠DOF和∠COF.2.综合题(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=________.(用含α与β的代数式表示)【答案】(1)解:∵CO⊥AB,∴∠AOC=∠BOC=90°,∵OE平分∠AOC,∴∠EOC= ∠AOC= ×90°=45°,∵OF平分∠BOC,∴∠COF= ∠BOC= ×90°=45°,∠EOF=∠EOC+∠COF=45°+45°=90°;(2)解:∵OE平分∠AOD,∴∠EOD= ∠AOD= ×(80+β)=40+ β,∵OF平分∠BOC,∴∠COF= ∠BOC= ×(80+β)=40+ β,∠COE=∠EOD﹣∠COD=40+ β﹣β=40﹣β;∠EOF=∠COE+∠COF=40﹣β+40+ β=80°;(3)【解析】【解答】(3)如图2,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE= (α+β),∴∠COE=∠DOE﹣∠COD= ,如图3,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE= (α﹣β),∴∠COE=∠DOE+∠COD= .综上所述:,故答案为:.【分析】(1)根据垂直的定义得到∠AOC=∠BOC=90°,根据角平分线的定义即可得到结论;(2)根据角平分线的定义得到∠EOD=40+ β,∠COF=40+ β,根据角的和差即可得到结论;(3)如图2由已知条件得到∠AOD=α+β,根据角平分线的定义得到∠DOE=(α+β),即可得到结论.3.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7(2)MN=MC+NC= (AC+BC)= a(3)MN=MC-NC= AC- BC= (AC-BC)= b(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC-BC即AB的一半.有AC-BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB 的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.4.根据下图回答问题:(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.【答案】(1)∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵∠MAC+∠ACM=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)∠BAM+∠MCD=90°,理由:如图,过M作MF∥AB,∵AB∥CD,∴MF∥AB∥CD,∴∠BAM=∠AMF,∠FMC=∠DCM,∵∠M=90°,∴∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH.理由:过点G作GP∥AB,∵AB∥CD∴GP∥CD,∴∠BAC=∠PGC,∠CHG=∠PGH,∴∠PGC=∠CHG+∠CGH,∴∠BAC=∠CHG+∠CGH.【解析】【分析】(1)已知CM平分∠ACD,AM平分∠BAC,根据角平分线的定义可得∠BAC=2∠MAC,∠ACD=2∠ACM,再由∠MAC+∠ACM=90°,即可得∠BAC+∠ACD=180°,根据同旁内角互补,两直线平行即可得AB∥CD;(2)∠BAM+∠MCD=90°,过M作MF∥AB,即可得MF∥AB∥CD,根据平行线的性质可得∠BAM=∠AMF,∠FMC=∠DCM,再由∠M=90°,即可得∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH,过点G作GP∥AB,即可得GP∥CD,根据平行线的性质可得∠BAC=∠PGC,∠CHG=∠PGH,所以PGC=∠CHG+∠CGH,即可得∠BAC=∠CHG+∠CGH.5.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD ∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OG A=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.3.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM 与∠NOC之间的数量关系,并说明理由.【答案】(1)解:∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,∴第t秒时,三角板转过的角度为10°t,当三角板转到如图①所示时,∠AON=∠CON∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t∴90°+10°t=210°﹣10°t即t=6;当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t∴210°﹣10°t=60°即t=15;当三角板转到如图③所示时,∠AON=∠CON= ,∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°∴10°t﹣210°=30°即t=24;当三角板转到如图④所示时,∠AON=∠AOC=60°∵∠AON=10°t﹣180°﹣90°=10°t﹣270°∴10°t﹣270°=60°即t=33.故t的值为6、15、24、33.(2)解:∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°【解析】【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.4.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?【答案】(1)解:∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°(2)解:∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON= α+15°﹣15°= α(3)解:∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC= β.∵∠MON=∠MOC﹣∠CON,∴∠MON= β+45°﹣β=45°(4)解:根据(1)、(2)、(3)可知∠MON= ∠BOC,与∠BOC的大小无关【解析】【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC= α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC= β+15°,∠CON= β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.5.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.6.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.7.如图(1)图中,∠ABC的两边和∠DEF的两边分别互相平行,既AB∥DE,BC∥EF,试说明∠ABC=∠DEF.(2)一个角的两边分别平行于另一个角的两边,除了图1中相等情形外,是否存在其他不相等情形,探究此情形下两个角的关系(画出图形,写出结论并说明理由).(3)如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(画出图形,直接写出结论)(4)如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是什么关系?(画出图形,直接写出结论)【答案】(1)∵ AB∥DE,∴∠E=∠EOB,∵BC∥EF ,∴∠EOB=∠B,∴∠ABC=∠DEF;(2)如图,∵ AB∥DC,∴∠1=∠DMB,∵BE∥FD ,∴∠BMD+∠2=180°,∴∠2+∠1=180°;(3)此题分两种情况,如图①∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P+∠O=360°-∠PEO-∠PFO=180°;如图② ∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P=∠O;综上所述:一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补;(4)如图所示,①∵AB∥EH,∴∠ABC=∠BDE,∵BC⊥EG,∴∠CFE=90°,∴∠BDE+∠E=90°,∴∠E+∠ABC=90°;②∵BC⊥EG,∴∠CFE=90°,∵AB∥EH∴∠MBC=∠HDB,∵∠HDB=∠E+∠CFE=∠E +90°,∴∠MBC=∠E+90°,即∠MBC-∠E=90°,综上所述,如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是和为90°,或差为90°。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中.∵BC=CD,∠ACB=∠ACE,AC=CE.∴△ABC≌△EDC(SAS).(2)解:①在△BCF和△DCG中∵BC=DC, ∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠BFC=∠DGC,∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.2.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM 与∠NOC之间的数量关系,并说明理由.【答案】(1)解:∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,∴第t秒时,三角板转过的角度为10°t,当三角板转到如图①所示时,∠AON=∠CON∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t∴90°+10°t=210°﹣10°t即t=6;当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t∴210°﹣10°t=60°即t=15;当三角板转到如图③所示时,∠AON=∠CON= ,∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°∴10°t﹣210°=30°即t=24;当三角板转到如图④所示时,∠AON=∠AOC=60°∵∠AON=10°t﹣180°﹣90°=10°t﹣270°∴10°t﹣270°=60°即t=33.故t的值为6、15、24、33.(2)解:∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°【解析】【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.3.如图(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。
一、初一数学几何模型部分解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.3.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.图①图②(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出 + 与的数量关系.【答案】(1)解:,∵、分别是和的角平分线,∴∴(2)解:在△中, + ,,(3)解:【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.4.综合题(1)ⅰ问题引入如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=________(用α表示);ⅱ拓展研究如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,试求∠BOC的度数________(用α表示).ⅲ归纳猜想若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=________(用α表示).(2)类比探索ⅰ特例思考如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数________(用α表示).ⅱ一般猜想若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=________(用α表示).【答案】(1)90°+∠α;120°+∠α;(2)120°-∠α; .【解析】【解答】(1)ⅰ90°+∠α;ⅱ如图②,∵∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,∴∠BOC=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=180°-(180°-∠α)=180°-60°+∠α=120°+∠α;ⅲ;( 2 )ⅰ如图③,∵∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,∴∠BOC=180°-(∠DBC+∠ECB)=180°- [360°-(∠ABC+∠ACB)]=180°- [360°-(180°-∠A)]=180°-(180°+∠α)=180°-60°-∠α=120°-∠α.;ⅱ .【分析】(1)ⅰ根据角平分线的定义,可得出∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅱ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅲ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果。
《第4章几何图形初步》一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= .14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= °.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.《第4章几何图形初步》参考答案与试题解析一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= 52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD ﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= 40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′B D=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.第21页(共21页)。
七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中.∵BC=CD,∠ACB=∠ACE,AC=CE.∴△ABC≌△EDC(SAS).(2)解:①在△BCF和△DCG中∵BC=DC, ∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠BFC=∠DGC,∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.2.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。
(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
【答案】(1)130°(2)90°﹣∠A(3)解:(i)∠MPB+∠NPC= − ∠A.理由如下:∵∠BPC= +∠A,∴∠MPB+∠NPC= −∠BPC=180∘−( + ∠A)= −12 ∠A.(ii)不成立,有∠MPB−∠NPC= − ∠A.理由如下:由题图④可知∠MPB+∠BPC−∠NPC= ,由(1)知:∠BPC= + ∠A,∴∠MPB−∠NPC= −∠BPC= −( + ∠A)=− ∠A.【解析】【解答】(1)故答案为:( 2 )由 = 得∠MPB+∠NPC= −∠BPC= 1−( + ∠A)= − ∠A;故答案为:∠MPB+∠NPC= −∠A【分析】(1)根据角平分线的定义得出∠PBC+∠PCB=(∠ABC+∠ACB),再根据三角形的内角和定理及∠A的度数,求出∠ABC+∠ACB的值,然后再利用三角形的内角和就可求出∠BPC的度数。
(2)根据角平分线的定义得出∠PBC+∠PCB=(∠ABC+∠ACB),再根据三角形的内角和定理得出∠BPC=180°-(∠PBC+∠PCB),∠ABC+∠ACB=180°-∠A ,代入计算即可得出结论。
人教版七年级上册数学第四章几何图形初步单元测试卷附解析一、单选题(共10题;共30分)1.(3分)下列图形沿着某一直线旋转180°后,一定能形成圆锥的是()A.直角三角形B.等腰三角形C.矩形D.扇形2.(3分)以下哪个图形经过折叠可以得到正方体()A.B.C.D.3.(3分)下列各图中直线的表示法正确的是().A.B.C.D.4.(3分)下列说法正确的是()A.射线PA与射线AP是同一条射线B.射线OA的长度是12cmC.直线ab,cd相交于点MD.两点确定一条直线5.(3分)已知点A、B、C都是直线m上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm或6cm C.8cm或2cm D.4cm6.(3分)下列角中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B.C .D .7.(3分)下列图中的 ∠1 也可以用 ∠O 表示的是( )A .B .C .D .8.(3分)某测绘兴趣小组用测绘装置对一建筑的位置进行测量,测量前指针指向北偏东38°,测量后指针顺时针旋转了14周,则此时指针指向为( )A .北偏西52°B .南偏东52°C .西偏南42°D .东偏北42°9.(3分)已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为( )A .120°B .60°C .30°D .150°10.(3分)如图,从点O 出发的5条射线,可以组成的锐角的个数是( )A .8B .9C .10D .11二、填空题(共5题;共15分)11.(3分)如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为 cm .12.(3分)已知线段AB=6cm ,点C 为直线AB 上一点,且BC=2cm ,则线段AC 的长是cm.13.(3分)将19.36°用度分秒表示为.14.(3分)钟表上显示8:30,时针与分针的夹角为。
一、初一数学几何模型部分解答题压轴题精选(难)1.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明。
【答案】(1)解:猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)解:猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B,∴∠FED=2∠B,∵∠FED=∠B+∠EDB,∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.【解析】【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.2.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.3.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)①当t=________秒时,OM平分∠AOC?(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【答案】(1)2.25;45(2)解:∠NOC﹣∠AOM=45°,∵∠AON=90°+10t,∴∠NOC=90°+10t﹣45°=45°+10t,∵∠AOM=10t,∴∠NOC﹣∠AOM=45°(3)3(4)解:②∠NOC﹣∠AOM=45°.∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,∴∠NOC﹣∠AOM=45°.【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM= =22.5°,∴t=2.25秒,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;故答案为:2.25,45;·(3)①∵∠AOB=5t,∠AOM=10t,∴∠AOC=45°+5t,∵OM平分∠AOC,∴∠AOM= AOC,∴10t= (45°+5t),∴t=3秒,故答案为:3.【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.4.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的直线分别交射线,,于点E,F,C.(1)如图1,若,,,求的度数;(2)如图2,若,请探索与的数量关系,并证明你的结论;(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,∴∠BAP=∠PAE= ∠BAM= ,∠ABP=∠PBE= ∠ABN= ,∴∠BPC=∠BAP+∠ABP= ;(2)解:,理由如下:∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,∵,∴,又∵,∴,∴;(3)【解析】【解答】解:(3)∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,如图,当点P在线段BD上时,,∴;如图,当点P在线段BD的延长线上时,,即,∴,即;故答案为:.【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;(2)设,,根据角平分线的性质结合四边形内角和定理即可求解;(3)分点P在线段BD上和点P在线段BD的延长线上两种情况讨论即可求解.5.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。
一、初一数学几何模型部分解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.图①图②(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出 + 与的数量关系.【答案】(1)解:,∵、分别是和的角平分线,∴∴(2)解:在△中, + ,,(3)解:【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.3.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O =40°,∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=又∵CF平分∠ACD ,∴ (角平分线定义)∴∠ECF=(2)证明:∵CG⊥CF,∴ .∴又∵)∴∵∴ (等角的余角相等)即CG平分∠OCD(3)解:结论:当∠O=60°时,CD平分∠OCF .当∠O=60°时∵DE//OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD∴∠DCF=60°,∴即CD平分∠OCF【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.4.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.5.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是________;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 =3,若存在,求线段PD的长;若不存在,请说明理由.【答案】(1)解:设运动t秒时,BC=8单位长度,①当点B在点C的左边时,由题意得:6t+8+2t=24解得:t=2(秒);②当点B在点C的右边时,由题意得:6t﹣8+2t=24解得:t=4(秒)(2)解:4或16(3)解:存在关系式 =3.设运动时间为t秒,1)当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即 =3;2)当3<t<时,点C在点A和点B之间,0<PC<2,①点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+2PC=AB﹣BC+2PC=2﹣BC+2PC,当PC=1时,有BD=AP+3PC,即 =3;点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC,当PC= 时,有BD=AP+3PC,即 =3;3°当t= 时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC= 时,有BD=AP+3PC,即 =3;4°当<t 时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC= 时,有BD=AP+3PC,即 =3.∵P在C点左侧或右侧,∴PD的长有3种可能,即5或3.5【解析】【解答】解:(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.【分析】(1)设运动t秒时,BC=8(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;(2)由(1)中求出的运动时间即可求出点B在数轴上表示的数;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.6.综合题(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.(2)对于(1)问,如果我们这样叙述:“已知点C在直线AB上,且AC=6cm,BC=4cm,点M、N分别是AC,BC的中点,求线段MN的长度.”结果会有变化吗?如果有,求出结果;如果没有,说明理由.【答案】(1)解:∵AC=6cm,且M是AC的中点,∴MC= AC= 6=3cm,同理:CN=2cm,∴MN=MC+CN=3cm+2cm=5cm,∴线段MN的长度是5m(2)解:分两种情况:当点C在线段AB上,由(1)得MN=5cm,当C在线段AB的延长线上时,∵AC=6cm,且M是AC的中点∴MC= AC= ×6=3cm,同理:CN=2cm,∴MN=MC﹣CN=3cm﹣2cm=1cm,∴当C在直线AB上时,线段MN的长度是5cm或1cm.【解析】【分析】(1)根据线段的中点定义,由M是AC的中点,求出MC、CN的值,得到MN=MC+CN的值;(2)当点C在线段AB上,由(1)得MN的值;当C在线段AB 的延长线上时,再由M是AC的中点,求出MC、CN的值,得到MN=MC﹣CN的值.7.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB 的下方.(1)若OM恰好平分∠BOC,求∠BON的度数;(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.【答案】(1)解:∵∠BOC=120°,OM恰好平分∠BOC∴∠BOM=∠BOC=60°又∵∠MON=90°∴∠BON=∠MON−∠BOM=90°−60°=30°(2)解:设的余角为x°,则由题意得:,x=15,3x=45,所以的度数为45°(3)解:(0°< <90°)..【解析】【分析】(1)利用角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON−∠BOM,即可求出结果。
人教版七年级上册《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD 的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.【专题】计算题.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.【点评】本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.14、B15、C【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.二、填空题16、55°46′.【考点】度分秒的换算.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.17、18°15′0″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:18.25°=18°+0.25×60=18°15′0″,故答案为:18°15′0″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.18、67.5度.19、_720、m或3m.【考点】两点间的距离.【分析】A、B、C三点在同一条直线上,则A可能在线段BC上,也可能A在CB的延长线上,应分两种情况进行讨论.【解答】解:如图①,当点A在线段BC上时,AC=BC﹣AB=2m﹣m=m;如图②,当点A在线段CB的延长线上时,AC=BC+AB=2m+m=3m.故答案为:m或3m.【点评】本题是求线段的长度,能分清是有两种情况,正确进行讨论是解决本题的关键.21、8【考点】两点间的距离.【分析】根据题意求出CD的长,根据线段中点的定义解答即可.【解答】解:∵CB=3cm,DB=7cm,∴CD=4cm,∵D是AC的中点,∴AC=2CD=8cm,故答案为:8.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.22、4 .【考点】两点间的距离.【专题】推理填空题.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.23、8或1224、2 cm.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25、10 或 50 .【考点】比较线段的长短.【专题】压轴题;分类讨论.【分析】画出图形后结合图形求解.【解答】解:(1)当 C 在线段 AB 延长线上时,∵M、N 分别为 AB、BC 的中点,∴BM= AB=30,BN= BC=20;∴MN=50.当 C 在 AB 上时,同理可知 BM=30,BN=20,∴MN=10;所以 MN=50 或 10.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.26、30 º或90 º;27、485.三、简答题28、【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.29、【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=5cm.30、【考点】两点间的距离.【专题】方程思想.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【点评】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31、(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;32、【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;33、【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.34、【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.35、【考点】余角和补角.【分析】(1)根据∠DOB=90°可得∠AOD=90°,再由∠DOE=50°,∠EOD=90°,可得∠DOC=40°,然后再根据角的和差关系可得∠AOC的度数;(2)根据同角的余角相等可得∠AOE=∠DOC,∠EOD=∠COB;(3)首先根据余角定义可得∠DOE+∠DOC=90°,由∠DOE变大可得∠DOC变小,再由∠AOC=90°+∠DOC 可得∠AOC变小.【解答】解:(1)∵∠DOB=90°,∴∠AOD=90°,∵∠DOE=50°,∠EOD=90°,∴∠DOC=40°,∴∠AOC=90°+40°=130°,故答案为:130°.(2)∠AOE=∠DOC,∠DOE=∠BOC,如果∠DOC≠50°,它们还会相等,∵∠AOD=90°,∴∠AOE+∠EOD=90°,∵∠EOC=90°,∴∠EOD+∠DOC=90°,∴∠AOE=∠DOC,∵∠DOB=90°,∴∠DOC+∠COB=90°,∴∠EOD=∠COB.(3)若∠DOE变大,则∠AOC变小.∵∠EOC=90°,∴∠DOE+∠DOC=90°,∵∠DOE变大,∴∠DOC变小,∵∠AOC=∠AOD+∠DOC=90°+∠DOC,∴∠AOC变小.36、【考点】角平分线的定义.【分析】(1)由∠AOB=90°,∠AOC=30°,易得∠BOC,可得∠MOC,由角平分线的定义可得∠CON,可得结果;(2)同理(1)可得结果;(3)同理(1)可得结果;(4)根据结果与∠AOB,∠AOC的度数归纳规律.【解答】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠MOC=60°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;(2)∵∠AOB=60°,∠AOC=30°,∴∠BOC=90°,∴∠MOC=45°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=45°﹣15°=30°;(3)∵∠AOB=90°,∠AOC=60°,∴∠BOC=150°,∴∠MOC=75°,∵∠AOC=60°,∴∠CON=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(4)从上面结果中看出∠MON的大小是∠AOB的一半,与∠AOC无关.。
一、初一数学几何模型部分解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.3.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN分别平分∠ACP和∠PCD,分别交射线AB于点M,N.(1)求∠MCN的度数.(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)解:∵A B∥CD,∴∠ACD=180°﹣∠A=140°,又∵CM,CN分别平分∠ACP和∠PCD,∴∠MCN=∠MCP+∠NCP= (∠ACP+∠PCD)= ∠ACD=70°,故答案为:70°.(2)解:∵AB∥CD,∴∠AMC=∠MCD,又∵∠AMC=∠ACN,∴∠MCD=∠ACN,∴∠ACM=∠ACN﹣∠MCN=∠MCD﹣∠MCN=∠NCD,∴∠ACM=∠MCP=∠NCP=∠NCD,∴∠ACM= ∠ACD=35°,故答案为:35°.(3)解:不变.理由如下:∵AB∥CD,∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,∴∠ANC=∠NCD= ∠PCD= ∠APC,即∠APC:∠ANC=2:1.【解析】【分析】(1)由AB∥CD可得∠ACD=180°-∠A,再由CM、CN均为角平分线可求解;(2)由AB∥CD可得∠AMC=∠MCD,再由∠AMC=∠ACN可得∠ACM =∠NCD(3)由AB∥CD可得∠APC=∠PCD,再由CN为角平分线即可解答.4.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.5.如图1,点是第二象限内一点, 轴于,且是轴正半轴上一点,是x轴负半轴上一点,且 .(1)(________),(________)(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点 ,求的度数: (注: 三角形三个内角的和为 )(3)如图3,当点在线段上运动时,作交于的平分线交于 ,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.【答案】(1)-2,0;0,3(2)解:如图,作DM∥x轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)解:∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN= ∠BMD,∠OAN= ∠OAD,∴∠ANM=∠BMN+∠OAN= ∠BMD+ ∠OAD= ×90°=45°.【解析】【解答】解:(1)由,可得和,解得∴A的坐标是(-2,0)、B的坐标是(0,3);故答案为:-2,0;0,3;【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM= ∠BMD+ ∠OAD,据此即可得到结论.6.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.(1)若∠A=40°,∠B=76°,求∠DCE的度数;(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.【答案】(1)解:∵∠A=40°,∠B=76°,∴∠ACB=64°.∵CE是∠ACB的平分线,∴∠ECB ∠ACB=32°.∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=14°,∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;(2)解:∵∠A=α,∠B=β,∴∠ACB=180°﹣α﹣β.∵CE是∠ACB的平分线,∴∠ECB ∠ACB (180°﹣α﹣β).∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=90°﹣β,∴∠DCE=∠ECB﹣∠BCD β α;(3)解:如图所示.∵∠A=α,∠B=β,∴∠ACB=180°﹣α﹣β.∵CE是∠ACB的平分线,∴∠ECB ∠ACB (180°﹣α﹣β).∵CD是AB边上的高,∴∠BDC=90°,∴∠BCD=90°﹣∠B=90°﹣β,∴∠DCE=∠ECB﹣∠BCD β α,由平移可得:GH∥CD,∴∠HGE=∠DCE β α.【解析】【分析】(1)根据三角形的内角和得到∠ACB的度数,根据角平分线的定义得到∠ECB的度数,根据余角的定义得到∠BCD=90°-∠B,于是得到结论;(2)根据角平分线的定义得到∠ACB=180°-α-β,根据角平分线的定义得到∠ECB= ∠ACB= (180°-α-β),根据余角的定义得到∠BCD=90°-∠B=90°-β,于是得到结论;(3)运用(2)中的方法,得到∠DCE=∠ECB-∠BCD= β- α,再根据平行线的性质,即可得出结论.7.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.【答案】(1)证明:∵DC∥FP,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴DC∥AB(2)解:∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=80°,∴∠AGF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH平分∠EFG,∴∠GFH= ∠GFE=55°,∴∠PFH=∠GFP﹣∠GFH=80°﹣55°=25°【解析】【分析】(1)根据二直线平行,同位角相等得出,又∠1=∠2,故∠1=∠3,根据同位角相等,两直线平行得出DC∥AB;(2)根据平行于同一直线的两条直线互相平行得出AB∥FP,根据二直线平行,内错角相等得出,,根据角的和差,由算出∠GFE的度数,根据角平分线的定义得出∠GFH的度数,最后根据即可算出答案。