2018_2019学年高二数学上学期第一次月考试题理
- 格式:doc
- 大小:1.35 MB
- 文档页数:8
HY中学2021-2021学年高二数学上学期第一次月考试题理〔含解析〕一、单项选择题〔此题有14小题,每一小题5分,一共70分.每一小题只有一个正确答案〕1.圆x2+y2﹣4x+6y=0的圆心坐标是〔〕A.〔2,3〕B.〔﹣2,3〕C.〔﹣2,﹣3〕D.〔2,﹣3〕2.过点A〔2,3〕且垂直于直线2x+y﹣5=0的直线方程为〔〕A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=0 3.假设直线Ax+By+C=0〔A2+B2≠0〕经过第一、二、四象限,那么系数A,B,C满足条件为〔〕A.A,B,C同号B.AC>0,BC<0 C.AC<0,BC>0 D.AB>0,AC<0 4.一个几何体的三视图如下图,那么该几何体的外表积为〔〕A.3πB.4πC.2π+4 D.3π+45.F1〔﹣1,0〕,F2〔1,0〕是椭圆C的两个焦点,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,那么C的方程为〔〕A.+y2=1 B.+=1C.+=1 D.+=16.假设变量x,y满足约束条件,那么z=2x+y的最大值等于〔〕A.7 B.8 C.10 D.117.动直线l:x+my+2m﹣2=0〔m∈R〕与圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,那么弦AB 的最短为〔〕A.2 B.2C.6 D.48.椭圆+=1〔a>5〕的两个焦点为F1、F2,且|F1F2|=8.弦AB过点F1,那么△ABF2的周长为〔〕A.10 B.20 C.2D.49.设a是直线,α是平面,那么以下选项里面,可以推出a∥α的是〔〕A.存在一条直线b,a∥b,b⊂αB.存在一条直线b,a⊥b,b⊥αC.存在一个平面β,a⊂β,α∥βD.存在一个平面β,a⊥β,α⊥β10.变量x,y满足约束条件,假设使z=ax+y获得最大值的最优解有无穷多个,那么实数a的取值集合是〔〕A.{﹣3,0} B.{3,﹣1} C.{0,1} D.{﹣3,0,1} 11.假设直线x﹣y+1=0与圆〔x﹣a〕2+y2=2有公一共点,那么实数a取值范围是〔〕A.[﹣3,﹣1] B.[﹣1,3]C.[﹣3,1] D.〔﹣∞,﹣3]∪[1,+∞〕12.点F1、F2是椭圆x2+2y2=2的两个焦点,点P是该椭圆上的一个动点,那么的最小值是〔〕A.0 B.1 C.2 D.13.椭圆E:+=1〔a>b>0〕的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y =0交椭圆E于A,B两点,假设|AF|+|BF|=4,点M到直线l的间隔不小于,那么椭圆E的离心率的取值范围是〔〕A.〔0,] B.〔0,] C.[,1〕D.[,1〕14.N为圆x2+y2=1上的一个动点,平面内动点M〔x0,y0〕满足|y0|≥1且∠OMN=30°〔O 为坐标原点〕,那么动点M运动的区域面积为〔〕A.﹣2B.﹣C.+D.+二、填空题〔此题有4小题,每一小题5分,一共20分〕15.椭圆:的焦距为4,那么m为.16.假设x,y满足约束条件那么的最大值.17.由动点p〔x,y〕引圆x2+y2=4的两条切线PA,PB,切点分别为A,B,假设∠APB=90°,那么点P的轨迹方程为.18.椭圆的右焦点为F,P是椭圆上一点,点A〔0,2〕,当点P在椭圆上运动时,△APF的周长的最大值为三、解答题〔此题有5大题,每一小题12分,一共60分〕19.直线l1经过点A〔﹣1,5〕和点B〔﹣3,6〕,直线l2过点C〔2,4〕且与l1平行.〔1〕求直线l2的方程;〔2〕求点C关于直线l1的对称点D的坐标.〔要求写出求解过程〕20.设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.求点P的轨迹方程.21.如图,四棱柱ABCD﹣A1B1C1D1的所有棱长都是2,O是AC与BD的交点,A1O⊥AB,A1O⊥BC.〔Ⅰ〕证明:BD⊥平面A1CO;〔Ⅱ〕假设BD=2,求直线A1C与平面AA1D1D所成角正弦值.22.圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ〔O为坐标原点〕,求该圆的圆心坐标及半径.23.椭圆的离心率为,其左焦点到点P〔2,1〕的间隔为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.〔1〕求椭圆C的方程;〔2〕假设,求△ABP的面积.2021-2021学年一中高二〔上〕第一次月考数学试卷〔理科〕参考答案与试题解析一、单项选择题〔此题有14小题,每一小题5分,一共70分.每一小题只有一个正确答案〕1.圆x2+y2﹣4x+6y=0的圆心坐标是〔〕A.〔2,3〕B.〔﹣2,3〕C.〔﹣2,﹣3〕D.〔2,﹣3〕【解答】解:将圆x2+y2﹣4x+6y=0化成HY方程,得〔x﹣2〕2+〔y+3〕2=13∴圆表示以C〔2,﹣3〕为圆心,半径r=的圆应选:D.2.过点A〔2,3〕且垂直于直线2x+y﹣5=0的直线方程为〔〕A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=0 【解答】解:过点A〔2,3〕且垂直于直线2x+y﹣5=0的直线的斜率为,由点斜式求得直线的方程为y﹣3=〔x﹣2〕,化简可得x﹣2y+4=0,应选:A.3.假设直线Ax+By+C=0〔A2+B2≠0〕经过第一、二、四象限,那么系数A,B,C满足条件为〔〕A.A,B,C同号B.AC>0,BC<0 C.AC<0,BC>0 D.AB>0,AC<0 【解答】解:假设B=0,方程化为:Ax+C=0,不满足条件,舍去.∴B≠0,直线方程化为:y=﹣x﹣,因此直线经过第一、二、四象限,那么系数A,B,C满足条件为:﹣<0,﹣>0,∴AB>0,AC<0.应选:D.4.一个几何体的三视图如下图,那么该几何体的外表积为〔〕A.3πB.4πC.2π+4 D.3π+4【解答】解:由中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为1,高为2,故该几何体的外表积S=2×π+〔2+π〕×2=3π+4,应选:D.5.F1〔﹣1,0〕,F2〔1,0〕是椭圆C的两个焦点,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,那么C的方程为〔〕A.+y2=1 B.+=1C.+=1 D.+=1【解答】解:F1〔﹣1,0〕,F2〔1,0〕是椭圆C的两个焦点,可得c=1,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,可得,2〔a2﹣c2〕=3a,即:2a2﹣2﹣3a=0解得a=2,那么b=,所求的椭圆方程为:+=1.应选:C.6.假设变量x,y满足约束条件,那么z=2x+y的最大值等于〔〕A.7 B.8 C.10 D.11【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B〔4,2〕时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,应选:C.7.动直线l:x+my+2m﹣2=0〔m∈R〕与圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,那么弦AB 的最短为〔〕A.2 B.2C.6 D.4【解答】解:∵动直线l:x+my+2m﹣2=0〔m∈R〕,∴〔x﹣2〕+〔y+2〕m=0,∴动直线l:x+my+2m﹣2=0〔m∈R〕过定点M〔2,﹣2〕,∵圆C:x2+y2﹣2x+4y﹣4=0的圆心C〔1,﹣2〕,半径r==3,d=|MC|==1,∵圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,∴弦AB的最短间隔为:2=2=4.应选:D.8.椭圆+=1〔a>5〕的两个焦点为F1、F2,且|F1F2|=8.弦AB过点F1,那么△ABF2的周长为〔〕A.10 B.20 C.2D.4【解答】解:由题意可得椭圆+=1的b=5,c=4,a==,由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.应选:D.9.设a是直线,α是平面,那么以下选项里面,可以推出a∥α的是〔〕A.存在一条直线b,a∥b,b⊂αB.存在一条直线b,a⊥b,b⊥αC.存在一个平面β,a⊂β,α∥βD.存在一个平面β,a⊥β,α⊥β【解答】解:由线面平行的断定定理,必须指明直线a在平面α外,故排除A,a⊥b,b ⊥α,那么a可能在平面α内,故排除B,由面面平行的定义可知假设两个平面平行,那么其中一个平面内的任意一条直线都平行于另一个平面,故C正确;垂直于同一平面的一条直线与一个平面可能在一个面内,故排除D,应选:C.10.变量x,y满足约束条件,假设使z=ax+y获得最大值的最优解有无穷多个,那么实数a的取值集合是〔〕A.{﹣3,0} B.{3,﹣1} C.{0,1} D.{﹣3,0,1} 【解答】解:不等式对应的平面区域如图:由z=ax+y得y=﹣ax+z,假设a=0时,直线y=﹣ax+z=z,此时获得最大值的最优解只有一个,不满足条件.假设﹣a>0,那么直线y=﹣ax+z截距获得最大值时,z取的最大值,此时满足直线y=﹣ax+z与y=x﹣2平行,此时﹣a=1,解得a=﹣1.假设﹣a<0,那么直线y=﹣ax+z截距获得最大值时,z取的最大值,此时满足直线y=﹣ax+z与y=﹣3x+14平行,此时﹣a=﹣3,解得a=3.综上满足条件的a=3或者a=﹣1,故实数a的取值集合是{3,﹣1},应选:B.11.假设直线x﹣y+1=0与圆〔x﹣a〕2+y2=2有公一共点,那么实数a取值范围是〔〕A.[﹣3,﹣1] B.[﹣1,3]C.[﹣3,1] D.〔﹣∞,﹣3]∪[1,+∞〕【解答】解:∵直线x﹣y+1=0与圆〔x﹣a〕2+y2=2有公一共点∴圆心到直线x﹣y+1=0的间隔为∴|a+1|≤2∴﹣3≤a≤1应选:C.12.点F1、F2是椭圆x2+2y2=2的两个焦点,点P是该椭圆上的一个动点,那么的最小值是〔〕A.0 B.1 C.2 D.【解答】解:∵O为F1F2的中点,∴=2,可得=2||当点P到原点的间隔最小时,||到达最小值,同时到达最小值.∵椭圆x2+2y2=2化成HY形式,得=1∴a2=2且b2=1,可得a=,b=1因此点P到原点的间隔最小值为短轴一端到原点的间隔,即||最小值为b=1 ∴=2||的最小值为2应选:C.13.椭圆E:+=1〔a>b>0〕的右焦点为F,短轴的一个端点为M,直线l:3x﹣4y =0交椭圆E于A,B两点,假设|AF|+|BF|=4,点M到直线l的间隔不小于,那么椭圆E的离心率的取值范围是〔〕A.〔0,] B.〔0,] C.[,1〕D.[,1〕【解答】解:如下图,设F′为椭圆的左焦点,连接AF′,BF′,那么四边形AFBF′是平行四边形,∴4=|AF|+|BF|=|AF′|+|AF|=2a,∴a=2.取M〔0,b〕,∵点M到直线l的间隔不小于,∴,解得b≥1.∴e==≤=.∴椭圆E的离心率的取值范围是.应选:A.14.N为圆x2+y2=1上的一个动点,平面内动点M〔x0,y0〕满足|y0|≥1且∠OMN=30°〔O 为坐标原点〕,那么动点M运动的区域面积为〔〕A.﹣2B.﹣C.+D.+【解答】解:如图,过M作⊙O切线交⊙O于T,根据圆的切线性质,有∠OMT≥∠OMN=30°.反过来,假如∠OMT≥30°,那么⊙O上存在一点N使得∠OMN=30°.∴假设圆C上存在点N,使∠OMN=30°,那么∠OMT≥30°.∵|OT|=1,∴|OM|≤2.即〔|y0|≥1〕.把y0=1代入,求得A〔〕,B〔〕,∴,∴动点M运动的区域面积为2×〔〕=.应选:A.二、填空题〔此题有4小题,每一小题5分,一共20分〕15.椭圆:的焦距为4,那么m为4或者8 .【解答】解:由题意,焦点在x轴上,10﹣m﹣m+2=4,所以m=4;焦点在y轴上,m﹣2﹣10+m=4,所以m=8,综上,m=4或者8.故答案为:m=4或者8.16.假设x,y满足约束条件那么的最大值﹣1 .【解答】解:画出约束条件表示的平面区域,如下图;那么表示平面区域内的点P〔x,y〕与点M〔5,﹣3〕连线的斜率k的值;由图形知,当P点与A点重合时,k获得最大值;由,求得A〔1,1〕,所以k的最大值为=﹣1.故答案为:﹣1.17.由动点p〔x,y〕引圆x2+y2=4的两条切线PA,PB,切点分别为A,B,假设∠APB=90°,那么点P的轨迹方程为x2+y2=8 .【解答】解:∵∠APO〔O为圆心〕=∠APB=45°,∴PO=OA=2.∴P的轨迹是一个以原点为圆心,半径为2的圆,∴点P的轨迹方程为x2+y2=8.故答案为:x2+y2=8.18.椭圆的右焦点为F,P是椭圆上一点,点A〔0,2〕,当点P在椭圆上运动时,△APF的周长的最大值为14【解答】解:如下图设椭圆的左焦点为F′,,|AF|==4=|AF′|,那么|PF|+|PF′|=2a=6,∵|PA|﹣|PF′|≤|AF′|,∴△APF的周长=|AF|+|PA|+|PF|=|AF|+|PA|+6﹣|PF′|≤4+6+4=14,当且仅当三点A,F′,P一共线时取等号.∴△APF的周长最大值等于14.故答案为:14.三、解答题〔此题有5大题,每一小题12分,一共60分〕19.直线l1经过点A〔﹣1,5〕和点B〔﹣3,6〕,直线l2过点C〔2,4〕且与l1平行.〔1〕求直线l2的方程;〔2〕求点C关于直线l1的对称点D的坐标.〔要求写出求解过程〕【解答】解:〔1〕==﹣.∵直线l2过点C〔2,4〕且与l1平行,∴y﹣4=﹣〔x﹣2〕,化为:x+2y﹣10=0.〔2〕直线l1的方程为:y﹣5=﹣〔x+1〕,化为:x+2y﹣9=0.设点C关于直线l1的对称点D的坐标〔a,b〕,那么,解得a=,b=.可得D.20.设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.求点P的轨迹方程.【解答】解:设M〔x0,y0〕,由题意可得N〔x0,0〕,设P〔x,y〕,由点P满足.可得〔x﹣x0,y〕=〔0,y0〕,可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得=1,即有点P的轨迹方程为圆x2+y2=2;故答案为:x2+y2=2.21.如图,四棱柱ABCD﹣A1B1C1D1的所有棱长都是2,O是AC与BD的交点,A1O⊥AB,A1O⊥BC.〔Ⅰ〕证明:BD⊥平面A1CO;〔Ⅱ〕假设BD=2,求直线A1C与平面AA1D1D所成角正弦值.【解答】〔Ⅰ〕证明:∵A1O⊥AB,A1O⊥BC.又∵AB∩BC=B,AO,AB,BC⊂平面ABCD,∴A1O⊥平面ABCD;∵BD⊂平面ABCD,∴A1O⊥BD,∵四棱柱ABCD﹣A1B1C1D1的所有棱长都是2,∴CQ⊥BD,又∵A1O∩OC=O,AO,∴BD⊥平面A1CO,〔Ⅱ〕解:由〔Ⅰ〕可知OA,OB,OC两两垂直,那么以O为原点,建立空间直角坐标系,如图,∵BD=AB=AA1=2,∴OB═OD=1,AO=,OA1=1,那么A〔,0,0〕,D〔0,﹣1,0〕,C〔﹣,O,0〕,A1〔0,0,1〕,,,.设平面AA1D1D的法向量为,由,可取,那么cos=.∴直线A1C与平面AA1D1D所成角正弦值为.22.圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ〔O为坐标原点〕,求该圆的圆心坐标及半径.【解答】解:设P〔x1,y1〕,Q〔x2,y2〕,∵∴5y2﹣20y+12+m=0,∴y1+y2=4,y1y2=,x1x2=〔3﹣2y1〕〔3﹣2y2〕=9﹣6〔y1+y2〕+4y1y2=9﹣24+=;∵OP⊥OQ,∴x1x2+y1y2=0,∴+=0,∴5m=15,∴m=3;∴圆的方程为:x2+y2+x﹣6y+3=0,∴D=1,E=﹣6,F=3,∴圆心〔﹣,3〕,半径为=.23.椭圆的离心率为,其左焦点到点P〔2,1〕的间隔为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.〔1〕求椭圆C的方程;〔2〕假设,求△ABP的面积.【解答】解:〔1〕设椭圆左焦点为F〔﹣c,0〕,由题意可得,解得,∴椭圆C的方程为:=1;〔2〕设点A〔x1,y1〕,B〔x2,y2〕,线段AB的中点为M,当直线AB与x轴垂直时,直线AB的方程为x=0,与不过原点的条件不符,舍去,故可设直线AB的方程为y=kx+m〔m≠0〕,由消去y,整理得〔3+4k2〕x2+8kmx+4m2﹣12=0,那么△=64k2m2﹣4〔3+4k2〕〔4m2﹣12〕>0,x1+x2=﹣,x1x2=,所以线段AB的中点M〔﹣,〕,因为点M在直线OP上,所以=,解得m=0〔舍去〕或者k=﹣,此时x1+x2=m,x1x2=,所以AB=•|x1﹣x2|=×=,∴m=±2,所以直线,设点P到直线AB的间隔为d,那么d==,或者d==,所以△ABP的面积为:×=.励志赠言经典语录精选句;挥动**,放飞梦想。
2018-2019学年福建省莆田市第一中学 高二上学期第一次月考数学(理)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题 1.在等差数列中,如果,那么A . 95B . 100C . 135D . 80 2.已知等差数列中,,,则的值为A . 15B . 17C . 22D . 643.设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列,则实数b 的取值范围为A .[)1,+∞B .[)2,-+∞C .()3,-+∞D .9,2⎛⎫-+∞ ⎪⎝⎭4.下列命题中正确的是A . 若a b >,则ac bc >B . 若a b >, c d >,则a c b d ->-C . 若0ab >, a b >,则11a b< D . 若a b >, c d >,则a b c d >5.已知数列为等比数列,且首项,公比,则数列的前10项的和为A .B .C .D .6.已知数列满足,且,则A .B . 11C . 12D . 237.已知等差数列{}n a 的公差0,d <若462824,10,a a a a ⋅=+=则该数列的前n 项和n S 的最大值为 A . 50 B . 40 C . 45 D . 358.数列中,,则A . 97B . 98C . 99D . 100 9.若关于的不等式在区间上有解,则的取值范围是A .B .C .D .10.已知数列{}n a 满足1362,4a a a ==, n a n ⎧⎫⎨⎬⎩⎭是等差数列,则数列(){}1n n a -的前10项的和10S = A . 220 B . 110 C . 99 D . 5511.等比数列{}n a 的前n 项和11·32n n S c +=+(c 为常数),若23n n a S λ≤+恒成立,则实数λ的最大值是 A . 3 B . 4 C . 5 D . 6 12.下列说法正确的是A .没有最小值B . 当时,恒成立 C . 已知,则当时,的值最大D . 当时,的最小值为2二、填空题13.等比数列{}n a 的前n 项和为n S ,已知321510,9S a a a =+=,则1a =_______.14.数列满足,则 __________.15.若x ,y 满足约束条件10,{30, 30,x y x y x -+≥+-≥-≤则z=x −2y 的最小值为__________.16.设数列{}n a 的前n 项和为n S ,已知22a =,()1211n n n a a -++-=,则40S =______三、解答题 17.在等差数列中,,(1)求数列的通项公式;(2)设数列是首项为1,公比为的等比数列,求的前项和. 18.已知等比数列满足,数列的前项和为.(1)求数列的通项公式;(2)数列的通项公式为,求数列的前项和.19.如图所示,在四边形ABCD 中,,且(1)求的面积; (2)若,求AB 的长.20.本公司计划2018年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?()22f x ax x c =++()1,2-- ()7f x >[]2,4x ∈()2f x t x -≤-t22.在中,角的对边分别为,且.(1)求角的大小; (2)若,求的最大值2018-2019学年福建省莆田市第一中学 高二上学期第一次月考数学(理)试题数学 答 案参考答案 1.B 【解析】 【分析】 根据等差数列性质可知:,,构成新的等差数列,然后求出结果【详解】由等差数列的性质可知:,,构成新的等差数列,故选【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。
绩溪县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能2. 一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 3. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用. 4. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny5.设F为双曲线22221(0,0)x ya ba b-=>>的右焦点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF,则双曲线的离心率为()A.B C.D.3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.6.如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是()A.B.C.+D.++17.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距()A.10米B.100米C.30米D.20米8.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B. C.D.9.设集合M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k的取值范围是()A.(﹣∞,﹣1] B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1)10.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A .2160B .2880C .4320D .864011.如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y= C .y=(x 2﹣2x )e xD .y=12.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+ B.sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+二、填空题13.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.14.已知函数f(x)=恰有两个零点,则a的取值范围是.15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为小时.16.在(x2﹣)9的二项展开式中,常数项的值为.17.已知奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f(1﹣m)+f(1﹣2m)<0的实数m的取值范围是.18.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.三、解答题19.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,已知k sin B=sin A+sin C(k为正常数),a=4c.(1)当k=5时,求cos B;4(2)若△ABC面积为3,B=60°,求k的值.20.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.21.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.22.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)23.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cos θ的值.24.已知矩阵A =,向量=.求向量,使得A 2=.绩溪县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得, 消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x 1,x 12),=(x 2,x 22),得到=x 1x 2+(x 1x 2)2=﹣1+1=0,则⊥,∴△AOB 为直角三角形. 故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.2. 【答案】C. 【解析】3. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上,故选B.所述:k的取值范围为(,1]4.【答案】C【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.对于A.取x=1,y=0,不成立,因此不正确;对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;对于C.利用y=x3在R上单调递增,可得x3>y3,正确;对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.故选:C.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.5.【答案】B【解析】6.【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的表面积S=S+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.△PAC故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7.【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,设A处观测小船D的俯角为30°,连接BC、BDRt△ABC中,∠ACB=45°,可得BC=AB=30米Rt△ABD中,∠ADB=30°,可得BD=AB=30米在△BCD中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD2=BC2+BD2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.8.【答案】C【解析】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键.9.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.10.【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.故选C【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.11.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D 中函数不满足条件.故选:C .【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.12.【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.二、填空题13.【答案】3-【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273z a -=⨯+=,所以max 74z a =+=,故3a =-.14.【答案】 (﹣3,0) .【解析】解:由题意,a≥0时,x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,f(x)在(0,+∞)上至多一个零点;x≥0,函数y=|x﹣3|+a无零点,∴a≥0,不符合题意;﹣3<a<0时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a的取值范围是(﹣3,0).故答案为(﹣3,0).15.【答案】0.9【解析】解:由题意,=0.9,故答案为:0.916.【答案】84.【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.17.【答案】[﹣,].【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),即,即,得﹣≤m ≤,故答案为:[﹣,]【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.18.【答案】 3 .【解析】解:∵f (x )=(2x+1)e x,∴f ′(x )=2e x +(2x+1)e x, ∴f ′(0)=2e 0+(2×0+1)e 0=2+1=3.故答案为:3.三、解答题19.【答案】【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得54b =a +c ,又a =4c ,∴54b =5c ,即b =4c ,由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =18.(2)∵S △ABC =3,B =60°.∴12ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×12=13.∴b =13,∵k sin B =sin A +sin C ,由正弦定理得k =a +c b =513=51313,即k 的值为51313.20.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.21.【答案】【解析】解:(1)=…==5…(2)(lg5)2+2lg2﹣(lg2)2=(lg5+lg2)(lg5﹣lg2)+2lg2…=.…22.【答案】【解析】【专题】综合题;概率与统计.【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2P (ξ=0)==,P (ξ=1)==,P (ξ=2)==┉┉┉┉┉┉则随机变量ξ的分布列为ξ 0 1 2P数学期望E ξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉(Ⅲ)2×2列联表为甲班 乙班 合计 优秀 3 10 13 不优秀1710 27 合计20 2040┉┉┉┉┉K 2=≈5.584>5.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.23.【答案】【解析】解:(1)=;∴=;∴;(2)同理可求得;;∴=.【点评】考查向量数量积的运算及其计算公式,根据求的方法,以及向量夹角余弦的计算公式.24.【答案】=【解析】A 2=.设=.由A2=,得,从而解得x=-1,y=2,所以=。
河北省香河县第三中学2018-2019学年高二数学上学期第一次月考试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省香河县第三中学2018-2019学年高二数学上学期第一次月考试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省香河县第三中学2018-2019学年高二数学上学期第一次月考试题的全部内容。
河北省香河县第三中学2018-2019学年高二数学上学期第一次月考试题一 选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是正确的)1. 为了解2 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .80D .1002.下面对于茎叶图的说法正确的是( )A .茎叶图不能保留原始数据B .茎叶图可以随时添加数据C .当样本数据比较多时,用茎叶图很方便D .茎叶图不能反应数据的分布情况3。
下列有关命题的说法正确的是( )A .命题“若12=x ,则1=x ”的否命题为“若12=x ,则1≠x ”B .命题“01,2<-+∈∃x x R x ”的否定是“01,2>-+∈∀x x R x ”C .命题“若y x =,则y x sin sin =”的逆否命题为假命题D .若“p 或q ”为真命题,则p,q 至少有一个为真命题4. 执行如图所示的程序框图,则输出的k的值是()A.3B.4C.5D.65。
某研究性学习课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.126. 命题p:∀x∈R,sin x<1;命题q:∃x∈R,cos x≤-1,则下列结论是真命题的是( )A.p∧q B.¬p∧qC.p∨¬q D.¬p∧¬q7。
闵行区高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .32. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .63. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞, 4. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .5. 在ABC ∆中,b =3c =,30B =,则等于( )A B . C D .26. 定义行列式运算:.若将函数的图象向左平移m(m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A .B .C .D .7. 函数f (x )=﹣lnx 的零点个数为( ) A .0 B .1 C .2D .38. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2B .8C .﹣2或8D .2或89. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )A .1B .1-C .2D .2- 10.某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.11.已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°12.函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c <0,d >0D .a >0,b >0,c >0,d <0二、填空题13.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .14.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______.15.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .16.已知线性回归方程=9,则b= .17.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .18.已知一个算法,其流程图如图,则输出结果是 .三、解答题19.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.20.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,且()01f =.(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.21.在中,、、是 角、、所对的边,是该三角形的面积,且(1)求的大小; (2)若,,求的值。
高二化学试卷命题人:池和发审题人:陈波时间:90分钟分数:100分可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Cl 35.5一、单选题(本题共16小题,每小题3分,共48分,每小题只有一个正确选项。
)1.下列有关能源的说法不正确的是()A.光电转换的基本装置就是太阳能电池,应用相当广泛B.利用蓝绿藻等低等植物和微生物在阳光作用下可使水分解产生氢气C.贮氢合金的发现和应用,开辟了解决氢气贮存、运输难题的新途径D.煤、石油、天然气、氢能中,天然气、氢能是可再生能源2.下列说法不正确的是()A.增大压强,单位体积内气体的活化分子数增多,有效碰撞次数增多B.增大反应物浓度,活化分子百分数增大,有效碰撞次数增多C.升高温度,活化分子百分数增加,分子运动速度加快,有效碰撞次数增多D.催化剂能降低反应的活化能,提高活化分子百分数,有效碰撞次数增多3.在一密闭容器中发生反应:2A(g)+2B(g)C(s)+3D(g) ΔH<0,达到平衡时采取下列措施,可以使正反应速率v正增大、D的物质的量浓度c(D)增大的是( )A.移走少量C B.扩大容积,减小压强C.缩小容积,增大压强 D.容积不变,充入“惰”气4.下列热化学方程式中ΔH数值代表燃烧热的是()A. CH4(g)+2O2(g)===2H2O(1)+CO2(g) ΔH1B. S(s)+3/2O2(g)===SO3(g) ΔH2C. C6H12O6(s)+6O2(g)===6CO2(g)+6H2O(g) ΔH3D. 2CO(g)+O2(g)===2CO2(g) ΔH45.在四个不同容器中,不同条件下进行合成氨反应。
根据在相同时间内测定的结果判断生成氨的速率最快的是( )A. v(N2)=0.1mol·L-1·s-1 B. v(H2)=0.1mol·L-1·min-1C. v(NH3)=0.15mol·L-1·min-1 D. v(H2)=0.3mol·L-1·min-16.已知:2H2(g)+O2(g)===2H2O(l) ΔH=−571.6 kJ·mol−1;CO(g)+O2(g)===CO2(g) ΔH=−282.8 kJ·mol−1。
2018-2019学年度数学第一次月考试题(含答案)D参考答案及评分意见一、选择题(本大题共10小题,每小题4分,满分40分)1--5 C D C A B; 6--10 C A B D A二、填空题(本大题共4小题,每小题5分,满分20分)11.(-5,-3) 12.-1 13. x=4 14.y 1=y 2>y 3三、(本大题共2小题,每小题8分,满分16分)15. 由题意得+c =642+b•4+c =1 ……………3分解这个方程组得c=1b=-4, ……………7分 所以所求二次函数的解析式是y=x 2-4x+1; ……………8分16.(参考) 解:(1)移项,得, ……………1分二次项系数化为1,得, ……………2分配方,得, ……………4分即……………6分∴或,∴,……………8分四、(本大题共2小题,每小题8分,满分16分)17. 解:由题意,得=(-4)2-4(m -)=0,即16-4m+2=0,解得m =.……………4分当m =时,方程有两个相等的实数根x1=x2=2.……………8分18. 解:设AB为x m,则BC为(50-2x)m. ……………1分x(50-2x)=300.……………4分解得x1=10,x2=15.……………6分当x=10时,AD=BC=50-2x=30>25,不合题意,舍去;当x=15时,AD=BC=50-2x=20<25. ……………7分答:AB的长15 m.……………8分五、(本大题共2小题,每小题10分,满分20分)19.解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,……………1分950(1+x)2=1862.……………4分解得,x1=0.4,x2=-2.4(舍去),……………6分所以这两年该市推行绿色建筑面积的年平均增长率为40%. ……………8分(2)1862(1+40%)=2606.8.∵2606.8>2400,∴2018年我市能完成计划目标.所以如果2018年仍保持相同的年平均增长率,2018年该市能完成计划目标………10分.20.解:(1)由图象可知:B(2,4)在二次函数y 2=ax 2图象上, ∴4=a·22.∴a = 1.则y 2=x 2. ……………4分又∵A(-1,n)在二次函数y 2=x 2图象上, ∴n =(-1)2.∴n =1.则A(-1,1).又∵A ,B 两点在一次函数y 1=kx +b 图象上,∴4=2k +b.1=-k +b ,解得b =2.k =1,则y 1=x +2.∴一次函数解析式为y 1=x +2,二次函数解析式为y 2=x 2. ……………8分(2)根据图象可知:当-1<x<2时,y 1>y 2. ……………10分六、(本题满分12分)21.(1)∵二次函数y=-x 2 +2x+m 的图象与x 轴的一个交点为A (3,0),∴-9+2×3+m=0,解得:m=3; ……………2分(2)∵二次函数的解析式为:y=-x 2 +2x+3,∴当y=0时,-x 2 +2x+3=0,解得:x=3或x=-1,∴B(-1,0);……………6分(3)如图,连接BD、AD,过点D 作DE⊥AB,∵当x=0时,y=3,∴C(0,3),若S △ABD =S △ABC ,则可得OC=DE=3,∴当y=3时,-x 2 +2x+3=3,解得:x=0或x=2,∴点D的坐标为(2,3). (12)分七、(本题满分12分)22.解:(1)10或18元(6分)(2)14元。
高二圆月期末考数学试题(理科)一,选择题:本大题共12步题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.若,,则是地 ( )A .充分非必要款件B .必要非充分款件C .充要款件D .非充分非必要款件2.向量=, =,若, 且,则地值为( )A . B .C . D .3.若两直线与平行,则它们之间地距离为( )A .B .C .D.4.某中学高二(5)班共有学生56人,座号分别为1,2,3,…,56,现依据座号,用系统抽样地方式,抽取一个容量为4地样本.已知3号,17号,45号同学在样本中,那么样本中另外一个同学地座号是( )A.30B.31C.32D.335.若直线和圆O :没有交点,则过点地直线与椭圆地交点个数为( )A .至多一个 B .0个 C .1个 D .2个6.某班班会准备从含甲,乙地6名学生中选取4人发言,要求甲,乙2人中至少有一人参加,且若甲,乙同时参加,则他们发言时顺序不能相邻,那么不同地发言顺序地种数为( )A .720B .520C .600D .2647.圆与圆地公共弦长为( )A C ..8.一个算法地程序框图如图所示,该程序输出地结果为,则空白处应填入地款件是( )0>x 0>y 1>+y x 122>+y x a (1,2,)x b (2,,1)y -||a a b ⊥x y +2-21-10343=++y x 016=++my x 5522552214mx ny +=224x y +=(,)m n 22194x y +=2250x y +=22126400x y x y +--+=5536A. B. C. D.9.函数地图象向左平移个单位后为偶函数,设数列地通项公式为,则数列地前2019项之和为( )A. 0B.1C.D. 210.如图,在四棱锥中,侧面为正三角形,底面为正方形,侧面底面,为底面内地一个动点,且满足,则点在正方形内地轨迹为( )A .B .C .D .11.春节期间,5位同学各自随机从“三峡明珠,山水宜昌”,“荆楚门户,秀丽荆门”,“三国故里,风韵荆州”三个城市中选择一个旅游,则三个城市都有人选地概率是( )A.B.C.D.12.椭圆地右焦点为,其右准线与轴地交点为,在椭圆上存在点满足线段地垂直平分线过点,则椭圆离心率地取值范围是( )A .B . C.D .二,填空题:本大题共4小题,每小题5分,共20分.把结果填在题中横一上.?9≤i ?6≤i ?9≥i ?8≤i ()sin(2)(2f x x πϕϕ=+<6π{}n a ()6n n a f π={}n a 32P ABCD -PAD ABCD PAD ⊥ABCD M ABCD MP MC =M ABCD 50812081811252712522221(0)x y a b a b+=>>F A PAP F 1(0,]21,1)-1[,1)213.已知变量满足约束款件,则y x z +=4地最大值为 .14.给下面三个结论:○1命题“”地否定是“”。
编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省兴国县三中2018-2019学年高二数学上学期第一次月考试题(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省兴国县三中2018-2019学年高二数学上学期第一次月考试题(无答案)的全部内容。
答案)一、选择题1.空间中,可以确定一个平面的条件是 ( )A .两条直线B .一点和一条直线C .一个三角形D .三个点2.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A .1条或2条B .2条或3条C .1条或3条D .1条或2条或3条3.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( )A .至少有一条B .至多有一条C .有且只有一条D .没有4。
如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( ) A .平行 B .相交C .异面D .平行和异面第4题图 第5题图5.如图,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图的周长是( ) A .8 cmB .6 cmC .2(1+3) cmD .2(1+错误!) cm6. 若直线x+y -3=0始终平分圆(x -a)2+(y -b )2=2的周长,则a+b=( )A .3B .2C .5D .17.已知直线x+my+1=0与直线m 2x -2y -1=0互相垂直,则实数m 为( )A .3错误!B .0或2C .2D .0或3错误!8。
甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题的全部内容。
2018—2019学年第一学期第一次月考考试高二级数学试卷一、单选题(共12题;共24分)1。
在等差数列中,,则()A. 6 B。
7C。
8D. 92.已知数列的前前项和 ,那么它的通项公式是( )A. B。
C . D。
3。
已知数列满足 ,若,则等于()A。
1 B 。
2 C. 64D. 1284.设等差数列的前n项和为,已知,则 ( )A. -27B. 27C。
-54D. 545.在中,,,,则等于()A. B。
C.D。
6.﹣401是等差数列﹣5,﹣9,﹣13…的第()项.A。
98 B。
99C。
100D。
1017。
在等比数列{a n}中,已知a7a12=5,则a8a9a10a11=( )A。
10 B。
50C。
25D。
758.若数列{a n}为等差数列,a2 , a10是方程x2﹣3x﹣5=0的两根,则a4+a8的值为()A. 3B. ﹣3 C. 5D. ﹣59.已知等差数列{a n}的公差d≠0,且a3=2a1 , 则的值为 ( )A. B。
C.D.10。
+1与﹣1的等差中项是( )A. 1 B。
﹣1C.D。
±111.在△ABC中,若a2+b2<c2,则△ABC的形状是()A。
锐角三角形B。
直角三角形C。
钝角三角形D。
绝密★启用前陕西省西安市第一中学2018-2019学年高二10月月考数学试题一、单选题1.已知等比数列的前n项和Sn=4n+a,则a的值等于()A.-4 B.-1 C.0 D.1【答案】B【解析】【分析】根据数列的前n项和与通项的关系求出通项,再根据建立方程求解即可。
【详解】由得,=,又,且此数列为等比数列,所以有所以,答案选B。
【点睛】在运用数列的前n项和与数列的通项的关系求数列的通项时,一定要注意公式的条件为,求出通项必须验证首项是否对于所求结果成立,当已知数列为等差或等比数列时,则其首项一定适合所求的通项,常用此关系建立方程求参数。
2.现存入银行8万元,年利率为2.50%,若采用1年期自动转存业务,则5年末的本利和共有()A.8×1.0253万元B.8×1.0254万元C.8×1.0255万元D.8×1.0256万元【答案】C【解析】【分析】【详解】存入银行8万元,年利率为2.50%,若采用1年期自动转存业务,第一年末的本利和为万元,第二年末的本利和为万元,第三年末的本利和为万元,依次下去,第5年末的本利和为万元,答案选C。
【点睛】本题考查数比数列的实际应用中本息和计算公式,属于基础题。
3.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A )(B )(C)2 (D)3【答案】D【解析】试题分析:由余弦定理得,解得(舍去),选D. 【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!4.4.已知数列{an}满足a1=0,an+1= (n∈N*),则a20=()A.0 B.C.D.【答案】B【解析】试题分析:根据题意,由于数列{a n}满足a1=0,a n+1,那么可知∴a1=0,a2,a3a4=0,a5a6,故可知数列的周期为3,那么可知a20等于=a2选B.考点:数列的周期性点评:本题主要考查学生的应变能力和不完全归纳法,可能大部分人都想直接求数列的5.一艘船以4 km/h的速度与水流方向成120°的方向航行,已知河水流速为2 km/h,则经过h,则船实际航程为()A.2km B.6 km C.2km D.8 km【答案】B【解析】【分析】可先求船速与水速的合速度,再计算实际航程。
合肥九中2018 - 2019学年第一学期高二第一次月考数学试卷(考试时间120分钟满分150分)第Ⅰ卷(选择题)一.选择题:(共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( ) A.一个圆台、两个圆锥 B.两个圆台、一个圆柱C.两个圆台、一个圆锥 D.一个圆柱、两个圆锥2.圆锥的高扩大到原来的4倍,底面半径缩短到原来的错误!未找到引用源。
21,则圆锥的体积()A.缩小到原来的一半B.扩大到原来的2倍C.不变D.缩小到原来的813.下列命题正确的有( )①若△ABC在平面α外,它的三条边所在直线分别交α于P,Q,R,则P,Q,R三点共线;②若三条平行线a,b,c都与直线l相交,则这四条直线共面;③三条直线两两相交,则这三条直线共面.A.0个B.1个C.2个D.3个4.一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积为()A.1222+ B.212+C.21+D.22+5.如图所示,在正方体ABCD—A1B1C1D1中,M、N分别是BB1、BC的中点.则图中阴影部分在平面ADD1A1上的正投影为( )6.设n m ,是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题:①若αα//,n m ⊥,则n m ⊥;②若αγββα⊥m ,//,//,则γ⊥m ;③若αα//,//n m ,则n m //;④若γβγα⊥⊥,,则βα//.其中正确命题的序号是: ( )A 、①②B 、②③C 、③④D 、①④7. 长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球面的表面积为( )A .27πB .56πC .14πD .64π8.一正方体表面沿着几条棱裁开放平得到如图所示的展开图,则在原正方体中( )A .AB ∥CD B .AB ∥平面CDC .CD ∥GH D .AB ∥GH9、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .310.如图所示,正四棱锥S —ABCD 的所有棱长都等于a ,过不相邻的两条棱SA ,SC 作截面SAC ,则截面的面积为( )。
2019届高二第一学期第一次月考数学试卷一、选择题1.已知集合{10}{lg(1)}M x x N x y x =+>==-,,则M N =()A .{11}x x -<<B .{1}x x >C .{11}x x -≤<D .{1}x x ≥-2.函数21)(--=x x x f 的定义域为() (A )[1,2)∪(2,+∞)(B )(1,+∞) (C )[1,2)(D )[1,+∞)3.执行如图所示的程序框图,输出的T =()(A )29 (B )44 (C )52 (D )624.已知0x >,0y >,且231x y +=,则23x y+的最小值为( ) A .1 B .2 C .4 D .2565.已知某几何体的三视图如图所示,则该几何体的体积是() A.3π+ B.23π+ C.π D.2π6.已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与3-a b 垂直,则实数值为() (A )13-(B )119(C )(D )7.已知函数()()cos (0)f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是()A. 函数()f x 的最小周期为23πB. 函数()f x 的图象关于,012π⎛⎫-⎪⎝⎭中心对称C. 函数()f x 的图象关于直线12x π=对称D. 函数()f x 的最小值为8.在数列{}n a 中,11a =,12n n a a +=,22221234n S a a a a =-+-+…22212n n a a -+-等于()A.()1213n - B. ()41125n - C. ()1413n - D. ()1123n - 9.若sin()cos(2)1sin cos()2πθθπθπθ-+-=++,则tan θ=()A .B .C .D .10.已知y x z c y x y x x y x +=⎪⎩⎪⎨⎧≥++-≤+≥302,42,且目标函数满足的最小值是5,则z 的最大值是()A .10B .12C .14D .1511.如图,正方体1111ABCD A B C D -的棱长为,,是线段11B D 上的两个动点,且2EF =,则下列结论错误..的是() A. AC BF ⊥B. 直线AE 、BF 所成的角为定值C. EF ∥平面ABCDD. 三棱锥A BEF -的体积为定值12.已知直线0x y k +-=(0)k >与圆224x y +=交于不同的两点、,是坐标原点,且有3||||OA OB AB+≥,那么的取值范围是() A.)+∞B.C.)+∞D. 二、填空题13.在ABC ∆中,角,,所对的边分别为,,,若60C ∠=,2b =,c =,则__________. 14.数列{}n a 的前项和*23()n n S a n N =-∈,则数列{}n a 的通项公式为n a =.15.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________. 16.在底面边长为2 的正三棱锥V-ABC 中,E 是BC 的中点,若VAE ∆的面积是41,则该正三棱锥的体积为__________________三、解答题 17.化简或求值: (1)1242--(2)2(lg 2)lg 2lg5+ 18.xx x f 1)(+=已知 (1) 判断并证明f(x)的奇偶性; (2) 证明f(x)在),1[+∞的单调性。
湖南省醴陵市第二中学2018-2019学年高二数学上学期第一次月考试
题理
一、选择题.(每小题5分,共60分)
∀∈R,,那么下列结论正确的是()
1.已知命题已知命题:p x
A命题 B.命题
C.命题 D.命题
2.若ABC中,sinA:sinB:sinC=5:7:8,那么cosB=()
A. B. C. D.
3.在中,若,则等于()
A.B.C.或D.或
4.“pq为假命题”是“p为真命题”的()A.充分不必要条件. B必要不充分条件 C充要条件 D 既不充分也不必要条件5.在中,若,则的形状一定是()
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形
6.已知等比数列中,则 ( )
A.150 B.200 C.360 D.480
7、在坐标平面上,不等式组所表示的平面区域的面积为()
A.28 B.16 C. D.121
8. 已知-9,,,-1四个实数成等差数列,-9,,,,-1五个实数成等比数列,则()
A. 10
B. -30
C.±30
D.30
9、设x,y为正数,若x+y=1,则最小值为 ( )
A、6
B、9
C、12
D、15
10.等比中,,则( )
A、8
B、9
C、10
D、12
11、下列命题是真命题的有()
①“等边三角形的三个内角均为60°”的逆命题;
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题.
A、0个
B、1个
C、2个
D、3个
12.小正方形按照下图中的规律排列,每个图形中的小正方形的个数构成数列有以下结论,①;②是一个等差数列;③数列是一个等比数列;
④数列的递推公式其中正确的是()
A.①②④B.①③④ C.①② D.①④
二、填空题.(每小题5分,共20分)
13、已知实数x,y满足则z=2x+4y的最大值为________。
14.不等式的解集为,则不等式的解集为_______
15. .数列都为等差数列,分别是其前项和,且
16.已知数列满足, ,设的前项和为,则.
三、解答题.(本大题4小题,共10分)
17.已知命题p:函数在R上是增函数,命题无实根,若为真,为假,求的取值范围.18.解关于x的不等式:
19、制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能出的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的
资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元?才能使可能的盈利最大?
20.(12分)已知数列是等差数列,,
(1)求数列的通项公式。
(2)设,求的前项和。