传热学实际现象应用
- 格式:doc
- 大小:154.00 KB
- 文档页数:18
1.冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么会觉得很暖和?并且经过拍打以后,效果为什么会更加明显?答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气,而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温作用。
而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
2.冬天,在相同的室外温度条件下,为什么有风比无风感觉更冷些?答:假定人体表面温度相同时,人体的散热在有风时相对于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。
而空气的强制对流换热强度要比自然对流强烈,因而在有风时从人体带走的热量更多,所以感到更冷一些。
注意:人对冷暖感觉的衡量指标是散热量的大小而不是温度高低,即当人体散热量低时感到热,散热量高时感到冷,经验告诉我们,当人的皮肤散热热流为58W/m2感到热,232 W/m2感到舒服,696 W/m2感到凉快,而大于928 W/m2感到冷。
3.夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?答:首先,夏季和冬季的最大区别是室外温度不同,夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。
而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外,因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低,因此尽管冬季室内温度22℃比夏季20℃略高,但人体在冬季通过辐射与墙壁的散热比夏季高得多。
根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
4.利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是不结霜的冰箱耗电量大?答:当其他条件相同时,冰箱结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此要达到相同的制冷室温度,必然要求蒸发器处于更低的温度,所以结霜的冰箱耗电量更大。
5.有人将一碗热稀饭置于一盆凉水中冷却,为使稀饭凉得更快一些,你认为他应该搅拌碗中的稀饭还是盆中的凉水?为什么?答:从稀饭到凉水是一个传热过程,显然稀饭和水的换热在不搅动时是自然对流,而稀饭的换热比水要差,因此要强化传热增加散热量,应该用搅拌的方式强化稀饭侧的传热。
问题1 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?回答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。
而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。
而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
问题2 冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?回答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。
而空气的强制对流换热强度要比自然对流强烈。
因而在有风时从人体带走的热量更多,所以感到更冷一些。
讨论:读者应注意的是人对冷暖感觉的衡量指标是散热量的大小而不是温度的高低,即当人体散热量低时感到热,散热量高时感到冷,经验告诉我们,当人的皮肤散热热流为58W/㎡时感到热,为232W/㎡时感到舒服,为696W/㎡时感到凉快,而大于为928W/㎡时感到冷。
问题3 夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?回答:首先,冬季和夏季的最大区别是室外温度不同。
夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。
而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。
因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。
因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。
根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
问题4 利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜的冰箱耗电量大?回答:当其它条件相同时,冰箱的结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此,要达到相同的制冷室温度,必然要求蒸发器处于更低的温度。
热力学练习题理解热传导和热辐射的应用在热力学中,热传导和热辐射是两个重要的热能传递方式。
热传导是指物体内部热能的传导过程,而热辐射则是指物体通过辐射方式传递热能。
本文将就热传导和热辐射的应用进行探讨。
1. 热传导的应用热传导在工程和科学领域中有广泛的应用。
以下是一些例子:1.1 传热器件设计在制冷领域中,传热器件的设计是非常重要的。
传热器件通过热传导的方式将热能从高温区域传递到低温区域,以实现冷却效果。
例如,冰箱的制冷系统中的蒸发器就是一种传热器件,它通过热传导将室内的热能吸收并传递到制冷剂上,从而降低室内的温度。
1.2 电子器件散热在电子器件中,散热是一个重要的问题。
当电子器件运行时,会产生大量的热量,如果无法及时散热,就会导致器件过热、性能下降甚至损坏。
因此,在电子设备设计中,通常会包括散热模块,通过热传导将产生的热能传递到散热器上,通过空气对散热器的冷却作用,实现对电子器件的散热。
2. 热辐射的应用热辐射是一种通过电磁波传递热能的过程,其应用范围十分广泛。
以下是一些热辐射的应用例子:2.1 太阳能利用太阳能是一种清洁、可再生的能源,其利用方式之一就是利用太阳的热辐射能。
太阳光通过辐射方式传递热能,在太阳能集热器中,太阳能被吸收转化为热能,从而提供热水或产生蒸汽,用于供热、供暖等用途。
2.2 红外线应用红外线是一种波长较长的电磁辐射,它具有穿透力强、对人体安全等特点。
因此,在安防领域中,红外线被广泛应用于红外线监控系统,用于夜间监控或者低照度环境下的监控。
此外,红外线还可以用于红外线热成像等领域。
2.3 外太空通信在外太空中,由于无法传递声音和电磁波传播受限,因此常常会利用热辐射进行通信。
通过利用热辐射的原理,太空航天器可以向地球发送热辐射信号,地面接收器也可以利用热辐射来与太空航天器进行通信。
3. 热传导与热辐射的比较热传导和热辐射都是热能传递的重要方式,但它们也有一些区别。
3.1 传热介质热传导需要通过物质来传递热能,因此需要具备物质的存在。
传热学就是研究热量传递规律的一门科学。
只要不同物体或物体不同部分之间存在温度差,它们之间就会发生热量的传递,热量传递有三种方式:导热、对流换热和辐射换热。
在制冷空调领域,热量传递普遍存在。
例如在压缩式制冷系统中,从蒸发器回来的气态制冷剂进入压缩机,被压缩为高温高压的气体,然后进入冷凝器内放热,把热量传递给周围的介质(一般为空气或水),同时制冷剂被冷却成液态,然后经节流进入蒸发器,在蒸发器内沸腾吸热,即可得到我们需要的冷却的水或空气。
因此,认识、掌握热量传递的过程和规律,在制冷空调技术实践中有着极其重要的意义。
在传热学的工程应用中,通常要达到两个基本目的:(1)能准确计算所研究系统中传递的热量;(2)能准确预测所研究物体中的温度分布。
第一章 稳态导热在三种热量传递方式中,导热是最容易利用数学工具进行分析和处理,对传热学的深入学习就从导热开始。
本章首先引出导热的基本定律和一般数学表达式,然后介绍制冷空调装置中常见壁面(如平壁和圆筒壁)中热流量和温度分布的规律和计算方法。
第一节 导热基本概念和傅里叶定律一、导热的概念导热即热传导,是指发生在物质本身各部分之间或直接接触的物质与物质之间的热量传递现象。
它是依靠物质的分子、原子或自由电子等微观粒子的热运动来传递热量的,也就是说,导热是在分子集团不发生宏观相对运动时,单纯由微观粒子的直接作用(如迁移、碰撞或振动等)而引起的热量传递现象。
导热是物质的属性,导热过程可以在固体、液体及气体中发生。
但是在重力场下,单纯的导热一般只发生在密实的固体中,这是因为,在有温差时,液体和气体的密度会改变从而形成对流,不能维持单纯的导热。
在专业学习和实践中,一般把发生在换热器管壁、肋片、管道保温层、墙壁等固态材料中的热量传递过程都看成导热问题。
二、温度场在工程应用中,常常需要预测物体的温度分布,通常将某一时刻物体中各点温度分布的状况称为温度场。
一般来说,温度场是空间和时间的函数,其数学表达式为),,,(τz y x t = 1-1式中,x,y 和z 是空间坐标;τ是时间坐标;t 代表温度。
《传热学综述及在航空航天中的应用》姓名:____ _______学号:___授课教师: _传热学综述及在航空航天中的应用一 传热学基本原理导热基本定律是由法国物理学家傅里叶于1822年通过实验经验的提炼、运用数学方法演绎得出,也称傅里叶定律: dTA dx φλ=-式中: 为导热热流量(W ),单位时间内通过某一给定面积的热量;A 为与热流方向垂直的面积;dT/dx 表示该截面上沿热流方向的温度增量,简称为温度梯度(K/m ); 是比例系数,称为导热系数或导热率[W/(m ×K)]。
热对流是指由于流体的宏观运动使物体不同的流体相对位移而产生的热量传递现象。
特点:只能发生在流体中;必然伴随有微观粒子热运动产生的导热。
对流换热是指流体与固体表面之间的热量传递。
热对流换热的基本定律是英国科学家牛顿(Newton )于1701年提出的牛顿冷却定律:()w f hA T T φ=-式中: 为对流换热热流量(W ); 和 分别表示壁面温度和流体温度(℃或K );A 为固体壁面对流换热表面积( );h 为对流换热系数,也称表面传热系数 。
h 不是物性参数,其值反映了对流换热能力的大小,与换热过程中得许多因素有关。
热辐射是由于物体内部微观粒子的热运动而使物体向外发射辐射能的现象。
在热量传递方式上,热辐射与热传导和热对流相比具有许多固有的特点:热辐射无需物体直接接触,可以在无中间介质的真空中传递,并且 真空度越高,热辐射传递效果越好。
在传递过程中伴随着能量形式的转换,即发射时将热能转换为辐射能,而被吸收时又将辐射能转换为热能。
任何热力学温度大于零的物体都不停地向空间发出热辐射。
热辐射基本定律:4AT φσ=式中:φ为辐射热流量(W );T 为热力学温度(K );A 为辐射表面积(2m );σ为斯特藩-波尔兹曼常数,也称黑体辐射常数,其值为8245.6710/()W m K -⨯ 。
实际物体辐射热流量的计算可以采用斯特藩-波尔兹曼定律的修正形式:4AT φεσ=式中:ε称为该物体的辐射率,也称黑度。
传热学在机械制造方面的应用IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】传热学在机械制造方面的应用[摘要]:传热学是研究由温度差异引起的热量传递过程的科学。
传热现象在我们的日常生活中司空见惯,早在人类文明之初,人们就学会了烧火取暖。
随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展被广泛地应用于工农业生产与人们的日常生活之中。
当今世界,国与国之间的竞争是经济竞争.而伴随着经济的高速发展,也带来了资源、人口与环境等重大国际问题,传热学在促进经薪发展和加强环境保护方面起着举足轻重的作用。
现在,机械工程仍不断地向传热学提出大量新的课题。
如浇铸和冷冻技术中的相变导热,切削加工中的接触热阻和喷射冷却等。
[关键词]:热传递,传热学,机械领域,发展趋势1传热学传热学概念通常被称为热科学的工程领域包括热力学和传热学[1]。
传热学的作用是利用可以预测能量传递速率的一些定律去补充热力学分析,因后者只讨论在平衡状态下的系统。
这些附加的定律是以3种基本的传热方式为基础的,即导热、对流和辐射。
传热学是研究不同温度的物体或同一物体的不同部分之间热量传递规律的学科。
传热不仅是常见的自然现象,而且广泛存在于工程技术领域。
例如,提高锅炉的蒸汽产量,防止燃气轮机燃烧室过热、减小内燃机气缸和曲轴的热应力、确定换热器的传热面积和控制热加工时零件的变形等,都是典型的传热学问[2]。
传热学发展传热学作为学科形成于19世纪[2]。
在热对流方面,英国科学家牛顿于1701年在估算烧红铁棒的温度时,提出了被后人称为牛顿冷却定律的数学表达式,不过它并没有揭示出对流换热的机理。
对流换热的真正发展是19世纪末叶以后的事情。
1904年德国物理学家普朗特的边界层理论和1915年努塞尔的因次分析,为从理论和实验上正确理解和定量研究对流换热奠定了基础。
1929年,施密特指出了传质与传热的类同之处。
传热学中的传热特性和传热方式传热学是力学、物理学、化学等多学科交叉的研究领域,主要研究物质内部的能量转移和传递。
在传热学中,传热特性和传热方式是非常重要的概念,下面将详细介绍它们的含义和应用。
一、传热特性传热特性是指物质进行传热时的基本特点,包括传热介质的导热性、传热面积、传热速度和传热温差等。
在传热学中,我们常用传热特性来描述和分析物质内部能量转移的过程和规律。
1.导热性导热性是介质传递热量的性质和能力,是介质传递热量的关键特性之一。
导热性的大小与介质的热传导能力相关,通常用导热系数来表示,导热系数越大,介质传递热量的能力越强。
在不同介质中,导热系数存在差异,例如金属的导热系数很大,热传导能力强;空气的导热系数较小,热传导能力较弱。
导热性是介质进行传热的基础,它的大小对于物质内部能量转移的过程和速率有着决定性的影响。
2.传热面积传热面积是指热量传递的面积,通常用传热面积来表示。
传热面积的大小对物质内部能量转移的速率和效率有着重要影响。
一般来说,传热面积越大,热量的传递速率就越快,传热效率也就越高。
3.传热速度传热速度是指热量传递的速率,通常用传热速度来描述。
传热速度的大小对于传热特性的分析和计算至关重要。
在物质内部能量转移的过程中,传热速度被认为是一个重要的参数,它决定了物质内部能量的转移速率。
4.传热温差传热温差是介质传递热量的一个关键参数,它是指传热介质的两个温度之差。
传热温差的大小对于介质内部能量转移的速率和效率有着重要的影响。
一般来说,传热温差越大,热量的传递速率就越快,传热效率也就越高。
二、传热方式传热方式是指介质内部能量转移的方式和方法,它通常根据传递介质的性质和传递方式的不同进行分类。
1.导热传递导热传递是通过介质内部分子热振动产生的热传导现象进行能量转移的。
导热传递是介质内传递热量的一个基本方式,它的传递速率与介质的导热系数和传热温差有关。
在导热传递的过程中,介质内部的分子不断地进行热振动和能量传递,最终整个介质内部的热量被传递出去。
传热学及其应用引言:热量在温度差作用下从一个物体传递至另外一个物体,或者在同一物体的各个部分之间进行传递的过程称为传热。
将传热进行分类的一个基本原则是按照热量传递的不同机理,即热量以何种方式或何种运动形式进行传递。
经过大量归纳总结,人们发现按传热的不同机理,可将传热划分成三种基本方式:热传导、热对流和热辐射。
当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。
流体中,温度不同的各部分之间发生相对位移时所引起的热量传递过程叫热对流。
流体各部分之间由于密度差而引起的相对运动称为自然对流;而由于机械(泵或风机等)的作用或其它压差而引起的相对运动称为强迫对流(或受迫对流)。
物体通过电磁波传递能量的过程称为辐射。
物体会因各种原因发出辐射能。
由于热的原因,物体的内能转化成电磁波的能量而进行的辐射过程称为热辐射。
一、传热学的应用实际传热过程一般都不是单一的传热方式,如火焰对炉壁的传热,就是辐射、对流和传导的综合,而不同的传热方式则遵循不同的传热规律。
为了分析方便,人们在传热研究中把三种传热方式分解开来,然后再加以综合。
热科学的工程领域包括热力学和传热学.传热学的作用是利用可以预测能量传递速率的一些定律去补充热力学分析,因后裔只讨论在平衡状态下的系统.这些附加的定律是以三种基本的传热方式为基础的,即导热、对流和辐射。
传热学是研究不同温度的物体,或同一物体的不同部分之间热量传递规律的学科。
传热不仅是常见的自然现象,而且广泛存在于工程技术领域。
例如,提高锅炉的蒸汽产量,防止燃气轮机燃烧室过热、减小内燃机气缸和曲轴的热应力、确定换热器的传热面积和控制热加工时零件的变形等,都是典型的传热问题。
在化学和石油化学工业领域内,使用着大量各式各样的传热和传质设备。
从一定意义上说,该领域是换热设备门类最齐全、形式最多的一个行业。
传热学基本原理及工程应用一 传热学基本原理1 三种热传递方式的特点和基本定律1)导热特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。
导热基本定律是由法国物理学家傅里叶于1822年通过实验经验的提炼、运用数学方法演绎得出,也称傅里叶定律: dT Adx φλ=-式中:φ为导热热流量(W ),单位时间内通过某一给定面积的热量;A 为与热流方向垂直的面积(2m );dT/dx 表示该截面上沿热流方向的温度增量,简称为温度梯度(K/m );λ是比例系数,称为导热系数或导热率[W/(m ×K)],它是物体的热物性参数。
其值的大小反映了物体导热能力的强弱;公式右边的“-”号表征热流方向与温度梯度方向相反,2)热对流热对流是指由于流体的宏观运动使物体不同的流体相对位移而产生的热量传递现象。
特点:只能发生在流体中;必然伴随有微观粒子热运动产生的导热。
对流换热是指流体与固体表面之间的热量传递。
热对流换热的基本定律是英国科学家牛顿(Newton )于1701年提出的牛顿冷却定律:流体被加热时,()w f hA T T φ=- 流体被冷却时,()f w hA T T φ=-式中:φ为对流换热热流量(W );w T 和f T 分别表示壁面温度和流体温度(℃或K );A 为固体壁面对流换热表面积(2m );h 为对流换热系数,也称表面传热系数2[/()]W m K 。
h 不是物性参数,其值反映了对流换热能力的大小,与换热过程中得许多因素有关。
3)热辐射热辐射:由于物体内部微观粒子的热运动(或者说由于物体自身的温度)而使物体向外发射辐射能的现象。
在热量传递方式上,热辐射与热传导和热对流相比具有许多固有的特点:热辐射无需物体直接接触,可以在无中间介质的真空中传递,并且 真空度越高,热辐射传递效果越好。
在传递过程中伴随着能量形式的转换,即发射时将热能转换为辐射能,而被吸收时又将辐射能转换为热能。
1.热传导(1)为什么冬天晒过的棉被盖上去暖和,拍打后效果更好。
要点:导热系数小保温材料答:棉被经过晾晒后,可使棉花空隙中进入更多的空气,而空气在狭小的棉絮空间里热量的传递方式主要是导热,由于空气的导热系数小,具有良好的保温性能,拍打后让更多的空气进入,效果明显。
(2)在夏天,20℃的室温感到舒适,而冬天同样20℃的室温感到冷。
要点:热传导,辐射换热,对流换热答:冬夏最大的区别就是室外温度不同。
夏季室外温度高,因此通过墙壁的传热方向是室外传到室内,而冬季室外气温比室内低,通过墙壁热量传递的方向是室内到室外。
因此冬季墙壁表面温度低于夏季。
人体在室内主要是与周围的空气发生对流换热,和墙壁发生辐射换热,人在冬季通过辐射换热与墙壁的散热比夏季高得多,因此冬季感觉到冷。
(3)用套管式温度计测量管道中流体的温度,为减小测量误差,若有铜和不锈钢两种材料,哪一种做套管较好套管温度计安装在那个位置好要点:套筒式温度计答:1.选择不锈钢。
温度计套管产生误差的主要原因是由于沿肋高(即套管长度方向)有热量导出和套管表面与流体之间存在换热热阻。
因而要减小温度计套管的误差,要选择导热系数小的材料,增加导热热阻,故选择不锈钢。
2.安装在拐角处位置好,因为拐角处由于离心力的作用,在横截面上产生了二次环流,增加了扰动,从而强化了换热,对应的换热系数增加,从而使测温误差减小。
(4)试解释冰箱结霜后耗电量增加。
要点:传热热阻答:冰箱工作是先吸入处于低压常温下的制冷剂,并压缩到高温高压的蒸汽;然后制冷剂通过蛇形管冷凝器,向外界散热,制冷剂从气体变为液体;最后制冷剂通过更细的蛇形管蒸发器,由于节流作用,从液体变为气体,这个过程需要吸热。
而这部分热量来自于冰箱中的食物。
当冰箱结霜后,蒸发器与冷藏室中增加了传热热阻,那么如果希望冷藏室的温度保持初始温度,需要冰箱中的食物向制冷剂传递更多的能量,这就要求制冷剂的温度能够降得更低,这就要求增加压缩机的功率,增加了耗电量。
传热学基本原理及工程应用传热学基本原理1三种热传递方式的特点和基本定律1)导热特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分, 中间没有明显的物质迁移。
导热基本定律是由法国物理学家傅里叶于 1822年通过实验经验的提炼、运用数学方法式中:'为导热热流量(W ),单位时间内通过某一给定面积的热量;A 为与热流方向2 垂直的面积(m ); dT/dx 表示该截面上沿热流方向的温度增量,简称为温度梯度( K/m ); '是比例系数,称为导热系数或导热率[W/(m x K )],它是物体的热物性参数。
其值的大小 反映了物体导热能力的强弱;公式右边的“ -”号表征热流方向与温度梯度方向相反,2) 热对流 热对流是指由于流体的宏观运动使物体不同的流体相对位移而产生的热量传递现象。
特 点:只能发生在流体中; 必然伴随有微观粒子热运动产生的导热。
对流换热是指流体与固体 表面之间的热量传递。
热对流换热的基本定律是英国科学家牛顿(Newton )于1701年提出的牛顿冷却定律:流体被加热时, =hA (T w -T f )流体被冷却时,二 hA (T f 讥)式中:'为对流换热热流量(W ); Tw 和Tf 分别表示壁面温度和流体温度(C 或K );2 2 A 为固体壁面对流换热表面积 (m ); h 为对流换热系数,也称表面传热系数 W /(m «)]。
h 不是物性参数,其值反映了对流换热能力的大小,与换热过程中得许多因素有关。
3) 热辐射热辐射:由于物体内部微观粒子的热运动(或者说由于物体自身的温度) 而使物体向外 发射辐射能的现象。
在热量传递方式上,热辐射与热传导和热对流相比具有许多固有的特点:热辐射无需物体直接接触,可以在无中间介质的真空中传递,并且真空度越高,热辐 演绎得出,也称傅里叶定律: dTdx射传递效果越好。
在传递过程中伴随着能量形式的转换,即发射时将热能转换为辐射能,而被吸收时又将辐射能转换为热能。
传热学心得体会传热学是研究热量在物质内部传递的科学,是热力学、物理学、化学以及工程学的重要分支之一。
在传热学的学习中,我深刻地认识到热量在物质之间的传递是日常生活和工程实践中不可避免的现象,因此对我个人的成长和未来的发展产生了深远的影响。
首先,学习传热学让我对自然界中的热现象有了更深刻的理解。
作为一种物质属性,温度是反映分子热运动程度的物理量,而热量是能量的一种表现形式。
在传热学中,我了解到热量的传递方式主要有三种:传导、对流和辐射。
在日常生活中,这些方式都可以找到对应的实例。
例如,夏天中暑时,身体中的热量通过对流和辐射方式向周围环境传递,而寒冷的冬季,我们感到温暖的空气则是通过传导方式从加热器等热源传递而来。
通过传热学的学习,我对自然界中热量的传递方式和产生的原因有了更加深刻的理解。
其次,传热学的学习也让我认识到热量传递对于工程实践的重要性。
在化工、冶金、能源等诸多领域,传热是一个至关重要的环节。
例如,石化行业中的蒸汽发生器、热交换器等设备中,传热现象的发生对于工艺的稳定性和效率都有着重要的影响。
因此,在现代工程中,传热学的应用和研究显得尤为重要。
在我参与的实习项目中,我也能够更清晰地感受到传热的重要性。
最后,在传热学的学习中我还注意到了实践与理论之间的联系。
传热学理论的学习要结合工程实践中的案例进行学习,只有两者相结合才能更加深入地理解和应用相关的知识。
例如,在理论学习中,我只能了解热导率、传热系数等基本概念的意义和计算方式,但是在工程实践中,我才真正体会到这些概念在实际工程中的应用价值。
总之,传热学的学习让我对自然界中的热现象有了更深入的观察和理解,也让我认识到热量的传递对于工程实践的重要性。
在未来,我将进一步深入掌握和应用传热学知识,为未来的工程实践做出更大的贡献。
传热学的应用传热学的作用是利用可以预测能量传递速率的一些定律去补充热力学分析,传热不仅是常见的自然现象,而且广泛存在于工程技术领域。
我们的生活中就有很多传热学的例子,而且就是我们每天都会碰见的事,这时在我们了解了传热学我们就可以用传热学的知识来解释这种现象或事情。
我们许多人都喜欢在冬天有暖暖阳光时晒被子,我们都会深有体会,冬天经过在白天太阳底下晒过的棉被,晚上盖起来会觉得很暖和,并且经过拍打以后,效果更加明显。
这就可以用传热学的知识来解释,棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。
而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。
而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
我们还会觉得奇怪的一件事那就是冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热。
而空气的强制对流换热强度要比自然对流强烈。
因而在有风时从人体带走的热量更多,所以感到更冷一些。
在冬季的晴天,白天和晚上空气温度相同,但白天感觉暖和,晚上却感觉冷。
白天和晚上人体向空气传递的热量相同,且均要向温度很低的太空辐射热量。
但白天和晚上的差别在于:白天可以吸收来自太阳的辐射能量,而晚上却不能。
因而晚上感觉会更冷一些。
夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?首先,冬季和夏季的最大区别是室外温度不同。
夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。
而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。
因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。
因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。
根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
生活中的传热学原理及应用1. 传热学的基本概念传热学是研究热量在物质之间传递的科学,包括传导、对流和辐射三种传热方式。
在生活中,我们常常可以观察到这些传热现象的应用。
2. 传热学在日常生活中的应用2.1 热传导的应用•厨房里的热传导技术:我们在炒菜时,会发现锅烧得很热,这是由于热量在锅底和食物之间通过热传导传递。
通过合理使用锅具,我们可以加快食物的烹饪速度。
•冬天的保暖技巧:冬天,我们常常会使用保暖衣物,如羽绒服。
羽绒服之所以能保暖,是因为其内部充满了羽绒,羽绒具有良好的保暖效果,能够阻止外界冷空气的热传导,保持人体的热量。
2.2 对流的应用•空调和暖气的工作原理:空调和暖气利用对流的原理来调节室内温度。
冷气机通过制冷循环来降低室内的温度,而暖气则通过通风或者辐射来升高室内的温度。
•科学地避暑降温:我们在夏天会选择去游泳池游泳,这是因为水具有良好的传热性质。
游泳时,我们的身体与水接触,体温通过对流传递给水,从而降低体温达到降温的效果。
2.3 辐射的应用•太阳能的利用:太阳是一个巨大的辐射能源,我们可以利用太阳能发电或者使用太阳能热水器来提供热水。
太阳光通过辐射传递能量,被吸收后转化为其他形式的能量。
•红外线热像仪的应用:红外线热像仪可以通过检测物体放射出的红外线来显示物体的热分布情况。
这种技术在医学、军事、建筑等领域有广泛的应用。
3. 传热学在工程领域的应用除了日常生活中的应用,传热学在工程领域也有着重要的应用价值。
下面列举几个例子:•热交换器的设计和优化:热交换器是一种用于传递热量的设备,广泛应用于化工、能源、制冷等领域。
通过传热学的理论和方法,可以设计出更高效、更节能的热交换器。
•电子设备的散热技术:随着电子设备的发展,散热成为一个重要的问题。
传热学可以用来设计和改进散热装置,保持电子设备的温度在安全范围内。
•锅炉和发动机的效率提升:在能源行业中,传热学被广泛应用于提高燃烧设备的效率。
通过优化设计和改进燃烧过程,可以降低能源消耗,提高设备的效率。
传热学实际现象应用1.热传导(1)为什么冬天晒过的棉被盖上去暖和,拍打后效果更好。
要点:导热系数小保温材料答:棉被经过晾晒后,可使棉花空隙中进入更多的空气,而空气在狭小的棉絮空间里热量的传递方式主要是导热,由于空气的导热系数小,具有良好的保温性能,拍打后让更多的空气进入,效果明显。
(2)在夏天,20℃的室温感到舒适,而冬天同样20℃的室温感到冷。
要点:热传导,辐射换热,对流换热答:冬夏最大的区别就是室外温度不同。
夏季室外温度高,因此通过墙壁的传热方向是室外传到室内,而冬季室外气温比室内低,通过墙壁热量传递的方向是室内到室外。
因此冬季墙壁表面温度低于夏季。
人体在室内主要是与周围的空气发生对流换热,和墙壁发生辐射换热,人在冬季通过辐射换热与墙壁的散热比夏季高得多,因此冬季感觉到冷。
(3)用套管式温度计测量管道中流体的温度,为减小测量误差,若有铜和不锈钢两种材料,哪一种做套管较好?套管温度计安装在那个位置好?要点:套筒式温度计答:1.选择不锈钢。
温度计套管产生误差的主要原因是由于沿肋高(即套管长度方向)有热量导出和套管表面与流体之间存在换热热阻。
因而要减小温度计套管的误差,要选择导热系数小的材料,增加导热热阻,故选择不锈钢。
2.安装在拐角处位置好,因为拐角处由于离心力的作用,在横截面上产生了二次环流,增加了扰动,从而强化了换热,对应的换热系数增加,从而使测温误差减小。
(4)试解释冰箱结霜后耗电量增加。
要点:传热热阻答:冰箱工作是先吸入处于低压常温下的制冷剂,并压缩到高温高压的蒸汽;然后制冷剂通过蛇形管冷凝器,向外界散热,制冷剂从气体变为液体;最后制冷剂通过更细的蛇形管蒸发器,由于节流作用,从液体变为气体,这个过程需要吸热。
而这部分热量来自于冰箱中的食物。
当冰箱结霜后,蒸发器与冷藏室中增加了传热热阻,那么如果希望冷藏室的温度保持初始温度,需要冰箱中的食物向制冷剂传递更多的能量,这就要求制冷剂的温度能够降得更低,这就要求增加压缩机的功率,增加了耗电量。
(5)何为肋效率?在设计肋片时,是否肋片越长越好?要点:肋效率答:肋片效率指的是肋片的实际散热量与假设整个肋片温度都与肋根温度相同时的理想散热量之比。
设计的肋片越长当然能通过增加表面积来强化传热,但是同时增加了固体导热热阻,降低了肋效率。
(6)为什么玻璃测温计测温必须在测温点放置一定的时间?如果设计体温计,有哪些方法可以缩短测温的放置时间?要点:非稳态导热、热容量越小、时间常数越小反映温度变化越快答:1.对于玻璃测温计的分析可以简化为分析玻璃体中水银的非稳态导热问题,由于玻璃体中水银较少,所以可以用集中参数法。
根据集中参数法的分析,时间参数为:时间参数=p c v/h A,由此可知玻璃体中的物质热容量越小玻璃体的表面换热条件越好,那么温度变化越快。
由于水银的热容量比较大,那么在表面换热条件一定的条件下,温度变化较慢,时间常数较大,所以玻璃温度计测量体温必须在测温点放置一段时间。
2.根据时间参数的定义可知,要缩短测温的放置时间必须从减小物质的热容量p c v和增大表面换热条件h A 以缩短测温的放置时间。
(7)解释什么叫做热电偶的热惯性?要点:时间常数答:热电偶是一种感温元件,是一种仪表。
它直接测量温度,并把温度信号转变成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。
由于热接点的温度变化,在时间上总是滞后于被测介质的温度变化,热电偶这种现象称为热惯性。
热电偶的时间常数越小表示热惯性越小,达到稳态的时间越短。
(8)“热得快”为什么要及时清除水垢?要点:热阻答:水垢的存在相当于在传热过程中串联了一个热阻,如果不及时清除水垢,要达到相同的加热效果(把水烧开)会使耗电量增加。
(9)72℃的铁和600℃的木头摸上去的感觉是一样的,为什么?要求:导温系数a答:人手感觉到的冷暖实质是热量传递的快慢,铁的导温系数远大于木头的。
(10)为什么住新房子感觉冷?要点:导热系数大,散热量多。
答:由于水的导热系数远远大于空气,新房子的墙壁含水较多,所以住新房子感觉冷。
2.对流换热(1)两地完全相同的水珠分别落在120℃和400℃的铁板上,那一滴先气化掉?为什么?要点:沸腾曲线、核态沸腾区(温压小换热强)、膜态沸腾区答:落在120℃的铁板上的先气化,因为120℃铁板上的水珠在核态沸腾区换热强,400℃铁板上的水珠在稳定的膜态沸腾区,热量必须要经过热阻较大的气膜,换热系数非常小,换热强度小。
(2)在烧开水的某个阶段,在锅底形成的气泡在上升过程中会逐渐消失,试解释其原因。
要点:降温冷却热胀冷缩答:气泡在上升过程中,逐渐降温、冷却、热胀冷缩,并有气泡携带的水蒸气在低于沸点时凝结为水,气泡就会越来越小,逐渐消失。
(3)一台氟利昂冷凝器试验台再充氟利昂前没有抽成真空,试问对于冷凝器运行的传热性能有什么影响为什么?要点:不凝结气体对于膜状凝结换热的影响答:氟利昂在冷凝器中进行膜态凝结换热,在冲入氟利昂前没有抽成真空会使不凝结气体的成分增加。
一方面降低了气液界面蒸汽的分压力,即降低了蒸汽的饱和温度,从而减小了凝结换热的驱动力t w - t s ;另一方面蒸汽在抵达液膜表面凝结前需要通过扩散的方式才能穿过不凝结气体,从而增加了传热热阻,使传热性能降低。
(4)安装空调时在充灌制冷剂之前,往往要对系统抽成真空,简述理由?要点:不凝结气体对于膜状凝结换热的影响答:制冷剂在空调内部要进行凝结换热,凝结传热的效果会受到不凝结气体的影响,若不将系统抽成真空,则会降低凝结传热的效果,影响空调正常工作。
(5)为了强化竖管外凝结传热,在竖管外可以隔一段距离布置一些凝结液泄出罩,试简述理由。
要点:强化凝结换热答:采用泄出罩可以减薄凝结液膜,使已经凝结的液体尽快从凝结表面凝结表面排泄,从而减小凝结热阻强化了传热。
(6)就控制热流和控制壁温两种加热方式,说明确定临界热流密度的意义和实例。
要点:临界热流密度q m a x答:1.对于控制热流密度的加热方式,当热流密度超过临界热流密度时,工况将沿着虚线跳至稳定的膜态沸腾线,过热度飞升,壁面温度迅速上升,导致设备烧毁。
控制加热的热流密度使其不至于烧毁。
实例:电加热器,冷却水加热的核反应堆。
2.对于控制壁温的加热方式,当热流密度超过临界热流密度时,可能导致膜态沸腾使相同壁温下传热量大大减小。
控制壁温导致传热效率不会下降。
实例:蒸发冷凝器。
(7)为什么电厂凝汽器中水蒸气与管壁之间的换热可以不考虑辐射换热,而锅炉的炉膛内烟气与水冷壁之间的换热必须考虑辐射换热?要点:相变凝结换热(凝结换热)、辐射传热与温差有关答:水蒸气与管壁之间的换热可以不考虑辐射换热,因为水蒸气与管壁之间的对流传热是伴随有相变的凝结换热,凝结换热表面传热系数比较大,而水蒸气与管壁之间的温差比较小,两者间的辐射传热量少,所以水蒸气与管壁之间的换热可以不考虑辐射换热。
炉膛内烟气与水冷壁之间的换热,由于火焰温度高达1000℃以上,辐射换热量很大,而炉膛烟气流速小,对流换热量相对较小,所以必须考虑辐射换热。
(8)游泳者刚从游泳池上来,皮肤上有一层水,这事是阴天而且有风,分析皮肤上所有的传热过程;用传热学知识解释为什么此时要比皮肤完全干时冷的多?如果此时太阳出来了,发生在他身上的传热过程又会怎样?要点:分析各种传热方式,考虑周到。
答:1.游泳者出泳池后,皮肤发生的所有传热过程包括:(1)皮肤与水膜之间伴随有相变的对流传热(2)水膜内部的导热(3)水膜外表面与空气之间的对流换热(4)皮肤与环境的辐射换热。
2.伴随有相变的对流传热表面传热系数的数量级为104,皮肤与空气的对流换热系数数量级为102,所以皮肤有水膜时对流换热强烈,所以感到冷的多。
3.太阳出来后,(1)皮肤与水膜间伴随有相变的对流传热(2)水膜内部的导热(3)水膜外表面与空气之间的对流传热(4)皮肤与太阳的辐射换热。
因为太阳温度较高,所以辐射传热吸收的热量抵消了相变换热放出的热量,所以感觉温暖。
(9)铝壶烧水时炉火很旺,水安然无恙,水烧干后水壶很快被烧坏:要点:对流换热系数答:当壶内有水时,水与壶底发生对流换热,水侧沸腾对流换热系数大,可以对壶底进行很好的冷却,壶底的温度能够很快被传走,不至于温度升得很高;当没有水时,和壶底发生对流传热的是气体,气体的表面传热系数很小,壶底的热量无法被很快得传走,因此壶底温度升高得很快,铝壶被烧坏。
(10)为什么暖气片一般都放置在窗户的下面?要点:温差大对流传热强度高答:1.可以提高换热效率,在室内,靠近窗户处的空气温度较低,假设暖气片的温度一定,当暖气片放在窗户下面时,暖气片于周围空气温度的温差最大,从而使换热量增加,传热效率提高。
2.可以使室内温度分布均匀,靠近窗户处的温度较低,暖气片放在窗户下可以使室内的温度均匀。
(11)用空气冷却高温设备的内通道壁,为了提高冷却效果,在通道内紧插一块沿轴向放置的金属平板,能否使同道内壁的冷却加强壁温下降?要点:肋片散热、辐射换热、破坏了边界层减小了传热热阻。
答:可以使设备内通道壁的冷却加强。
相当于增加了肋片强化了散热。
同时也增加了辐射换热;加上平板后,也增加了流体的扰动,破坏了边界层,减小了对流传热热阻,强化了对流传热。
(12)一台冷油器,管内的油被管外的冷却水冷却,为了强化传热,管内加装一个细的螺旋状金属丝。
另有一台暖风器,以热水在管内流动来加热管外的空气,同样在管内加装一细的螺旋状金属丝,比较这两种方案强化换热的效果,为什么?要点:强化对流换热系数以强化对流传热、加金属丝破坏边界层强化对流传热答:1对于冷油器。
由于油的粘度较大对流换热表面传热系数较小,占整个传热过程中热阻的主要部分,在管内加装一细化螺旋金属丝,可以破坏边界层,减小油侧热阻,从而强化传热效果明显。
2.对于暖风机,空气的对流换热系数比热水要小,占整个传热过程中热阻的主要部份,但管内是水,管内加装金属丝,只能强化热水侧换热,对于总热阻则减小很少,强化效果不明显。
(13)为了强化一台冷油器的传热,有人用提高冷却水流速的方法但发现效果不明显,试分析原因?要点:冷油器主要热阻在内部的油答:冷油器由于油的粘度大,对流传热表面传热系数较小,占整个传热过程热阻的主要部分,而冷却水的对流传热热阻较小,不占主导地位,因而采用提高水速的方法,只能减小不占主导地位的水侧热阻,效果不明显。
应该试图减小内部油的热阻,如加装一根细化螺旋金属丝破坏油的边界层。
(14)温度同为20℃的空气和水,假设流动速度相同,当你把两只手分别放倒水和空气中,为什么感觉却不一样?要点:密度不同-雷诺数不同-努塞尔数不同+导热系数不同=h不同答:尽管空气和水的流速和温度相同,但是由于水的密度约为空气的1000倍,而动力黏度则相差不多,在相同的特征尺度下,雷诺数为R e=u*l/v,所以将手放入水中的雷诺数要远远大于放入空气中的雷诺数,因此放入水中的努塞尔数大;另一方面,又由于水的导热系数大于空气的导热系数,Nu=h l/入,所以将手放入水中时的对流换热系数远远大于放入空气中的对流换热系数,所以感觉不同。