高一分班考试数学试题
- 格式:doc
- 大小:286.50 KB
- 文档页数:5
2020年秋季高一开学分班考试(衔接教材部分)(一)一、单选题(共8小题,满分40分,每小题5分) 1、下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )﹣2=C .m 2+m 2=2m 2D .(m +n )2=m 2+n 2【答案】C【解析】A 、m 3•m 2=m 5,故A 错误; B 、(﹣m )﹣2=B 错误;C 、按照合并同类项的运算法则,该运算正确.D 、(m +n )2=m 2+2mn +n 2,故D 错误. 2、若代数式1x−5有意义,则实数x 的取值范围是( )A . x =0B . x =5C . x ≠0D . x ≠5 【答案】D【解析】分数要求分母不为零。
5,05≠≠-x x3、已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A .【解析】设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3.故选A .4、关于二次函数,下列说法正确的是( ) A .图像与轴的交点坐标为B .图像的对称轴在轴的右侧C .当时,的值随值的增大而减小D .的最小值为-3 【答案】D【解析】∵y=2x 2+4x -1=2(x+1)2-3, ∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,2241y x x =+-y ()0,1y 0x <y x y当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.5、若,则()A.1B.2C.3D.4【答案】C【解析】将不等式因式分解得,即或,无解或,所以√(2x−1)2+2|x−2|=2x−1+4−2x=3.故选C.6、已知ABC∆的三边a、b、c满足bcbaca-=-22,判断ABC∆的形状( )A.等边三角形B.等腰直角三角形C. 等腰三角形D.直角三角形【答案】C【解析】等腰三角形提示:因式分解得:(a-b)(a+b-c)=0,因为a、b、c为三角形得三边,所以a+b-c为非零数,所以a=b,故选C.7、若关于x的一元二次方程ax2+2x-1=0无解,则a的取值范围是()A.(-1, +∞)B.(-∞,-1)C.[-1,+∞)D.(-1,0)∪(0,+∞).【答案】B【解析】当{Δ=4+4a<0a≠0时,一元二次方程无解,解得a<-1,且a≠0,所以a的取值范围是a<-1.8、不等式的解集是( )A.{x|1<x≤5}B.{x|1<x<5}C.{x|1≤x<5 }D.{x|1≤x≤5 }【答案】A【解析】原不等式化为−x+5x−1≥0,x−5x−1≤0,解得1<x≤5.9、不等式2560x x+->的解集是()A.{}23x x x-或B.{}23x x-<<321xx+≥-C .{}61x x x -或 D .{}61x x -<<【答案】C【解析】因为2560x x +->,所以(1)(6)01x x x -+>∴>或6x <-,故选C 。
2024年秋季高一入学分班考试模拟卷数学•全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知a2+b2=5,a+b=3,则a﹣b的值为()A.1B.﹣2C.±1D.±2解:把a+b=3两边平方得:(a+b)2=a2+b2+2ab=9,将a2+b2=5代入得:2ab=4,∴(a﹣b)2=a2+b2﹣2ab=5﹣4=1,则a﹣b=±1.故选:C.2.已知a,b为实数,下列说法中,其中正确的有()个.①若ab<0,且a,b互为相反数,则=−1;②若a+b<0,且ab>0,则|2a+3b|=﹣2a﹣3b;③若|a﹣b|+a﹣b=0,则b>a;④若|a|>|b|,则(a+b)(a﹣b)是正数;⑤若a<b,ab<0且|a﹣3|<|b﹣3|,则a+b>6.A.2B.3C.4D.5解:①∵ab<0,且a,b互为相反数,∴a=﹣b,∴=−=−1,故此题正确;②∵a+b<0,且ab>0,∴a<0,b<0,∴2a+3b<0,∴|2a+3b|=﹣2a﹣3b,故此题正确;③∵|a﹣b|+a﹣b=0,∴|a﹣b|=b﹣a,∴a﹣b≤0,∴a≤b,故此题错误;④∵|a|>|b|,∴a2>b2.∵(a+b)(a﹣b)=a2﹣b2,∴(a+b)(a﹣b)>0,故此题正确;⑤∵a<b,ab<0,∴a<0,b>0,∴a﹣3<0,∴|a﹣3|=3﹣a,当b>3时,|b﹣3|=b﹣3,∴|a﹣3|<|b﹣3|可化为3﹣a<b﹣3,解得a+b>6;当0<b<3时,|b﹣3|=3﹣b,∴a﹣3|<|b﹣3|可化为3﹣a<3﹣b,解得a>b与已知a<b相矛盾,∴a+b>6成立,故此题正确.故选:C.3.已知关于x2<−11)<2(−p恰好有4个整数解,则a的取值范围是()A.﹣7≤a<﹣6B.﹣7<a≤﹣6C.﹣7<a<﹣6D.﹣7≤a≤﹣6解:不等式组整理得:>4<2−,∵不等式组恰好有4个整数解,∴4<x<2﹣a,整数解为5,6,7,8,∴8<2﹣a≤9,解得:﹣7≤a<﹣6.故选:A.4.在面积为621的平行四边形ABCD中,分别过点A作直线BC的垂线AE,垂足为E,作直线CD的垂线AF,垂足为F.若AB=37,BC=27,则CE+CF的值为()A.57+10B.57−10C.57+10或2+7D.57+10或57−10解:∵四边形ABCD是平行四边形,∴AB=CD=37,BC=AD=27,∵S▱ABCD=BC•AE=CD•AF=621,∴AE=33,AF=23,①如图1,∠BAD为锐角时,在Rt△ABE中,BE=B2−B2=(37)2−(33)2=6,在Rt△ADF中,DF=B2−B2=(27)2−(23)2=4,∴CE+CF=BC+BE+CD+DF=27+6+37+4=57+10;②如图2,∠BAD为钝角时,同①得:BE=6,DF=4,∴CE+CF=BE﹣BC+CD﹣DF=6﹣27+37−4=2+7;综上所述,CE+CF的值为57+10或2+7,故选:C.5.已知关于x的方程mx2﹣(m+2)x+2=0有两个不相等的正整数根,则m的值为()A.2B.1C.2−13D.2或1解:∵方程mx2﹣(m+2)x+2=0是一元二次方程,∴m≠0,∵mx2﹣(m+2)x+2=0,∴(mx﹣2)(x﹣1)=0,∴x=1或x=2,∵方程有两个不相等的正整数根,∴2≠1,2是正整数,∴m=1.故选:B.6.已知非零实数a,b,c满足ab=13(a+b),bc=14(b+c),ca=15(c+a),则K=()A.1B.3C.4D.6解:∵ab=13(a+b),bc=14(b+c),ca=15(c+a),∴r B=3,r B=14,r B=15,即1+1=3①,1+1=4②,1+1=5③,①+②+③,得2(1+1+1)=12,∴1+1+1=6④.④﹣①,得1=3,解得c=13,④﹣②,得1=2,解得a=12,④﹣③,得1=1,解得b=1,∴K=112−13=6.故选:D.7.已知α、β是方程x2﹣7x+8=0的两根,且α>β,则2+3β2的值为()A.18(403﹣8517)B.14(403﹣8517)C.95D.17解:设p=2+3β2,q=2+3α2,∴p+q=2(rp B+3(α+β)2﹣6αβp﹣q=2(Kp B+3(β﹣α)(β+α)∵α、β是方程x2﹣7x+8=0的两根,∴α+β=7,αβ=8,∴(α﹣β)2=(α+β)2﹣4αβ=17,∵α>β,则α﹣β=17,代入后得p+q=4034,p﹣q=+3×(−17)×7∴p=18(403﹣8517)即则2+3β2=18(403﹣8517).故选:A.8.多项式2x2﹣4xy+4y2+6x+25的最小值为()A.4B.5C.16D.25解:∵2x2﹣4xy+4y2+6x+25,=x2﹣4xy+4y2+(x2+6x+9)+16,=(x﹣2y)2+(x+3)2+16,∴多项式的最小值为16.故选:C.二.多选题(共3小题)(多选)9.已知点A是⊙O外一点,且OA=3,则⊙O的半径可能是()A.2B.3C.4D.1解:∵点A是⊙O外一点,且OA=3∴⊙O的半径小于3,观察四个选项,选项A、D符合题意,故选:AD.(多选)10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中正确的是()A.abc>0B.(a+c)2﹣b2=0C.9a+4c<0D.若m为任意实数,则am2+bm+2b≥4a解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=−2=−2,∴b=4a>0,∵抛物线与y轴交点在x轴上方,∴c<0,∴abc<0,故选项A错误.∵抛物线的对称轴为直线x=﹣2,OA=5OB,∴点B坐标为(1,0),∴x=1时,y=a+b+c=0,∴(a+c)2﹣b2=(a+c+b)(a﹣b+c)=0,故选项B正确.。
分班测试题型及答案高一一、选择题(每题3分,共30分)1. 下列哪项不是高一数学必修一的内容?A. 函数的概念B. 指数函数C. 几何图形的面积计算D. 线性方程组的解法答案:C2. 在高一化学中,下列哪种物质不是碱?A. 氢氧化钠B. 氨水C. 碳酸钠D. 硫酸答案:D3. 英语中,表示“在...之后”的介词是?A. inB. onC. afterD. before答案:C4. 高一物理中,下列哪项不是牛顿第一定律的内容?A. 物体在没有外力作用下,将保持静止或匀速直线运动B. 物体的运动状态改变需要外力作用C. 物体的惯性与质量有关D. 物体的运动状态与外力无关5. 高一生物中,细胞分裂过程中,染色体数目加倍发生在哪个阶段?A. 有丝分裂前期B. 有丝分裂中期C. 有丝分裂后期D. 减数分裂第一次分裂答案:C6. 在高一历史课程中,下列哪项不是文艺复兴时期的代表人物?A. 达芬奇B. 米开朗基罗C. 莎士比亚D. 贝多芬答案:D7. 地理学中,地球的自转周期是多久?A. 24小时B. 12小时C. 48小时D. 7天答案:A8. 高一政治课程中,社会主义核心价值观包括哪些方面?A. 富强、民主、文明、和谐B. 自由、平等、公正、法治C. 爱国、敬业、诚信、友善D. 所有选项答案:D9. 语文中,下列哪项不是诗歌的基本特征?B. 押韵C. 形象性D. 逻辑性答案:D10. 计算机科学中,二进制数“1010”转换为十进制数是多少?A. 8B. 10C. 4D. 2答案:B二、填空题(每题2分,共20分)1. 高一数学中,函数的值域是指函数值的________。
答案:集合2. 化学中,元素周期表的第七周期元素的原子序数范围是______。
答案:81-1183. 英语中,动词的过去式通常在词尾加上________。
答案:-ed4. 物理中,光的折射定律是由________提出的。
答案:斯涅尔5. 生物学中,细胞膜的主要功能是________。
高一入学分班考试一、选择题:本大题共10小题,每小题6分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1.下列运算正确的是()A 、932=-B、()842=-C 、()932-=-D、16214=⎪⎭⎫ ⎝⎛--2.函数x y 2=与xy 18=的的图象相交于A 、B 两点(其中A 在第一象限),过A 作AC 垂直于x 轴,垂足为C ,则△ABC 的面积等于()A 、18B、9C、12D、63.若a,b 为实数,满足b b a a +-=-+1111,则(1+a +b)(2-a-b)的值是()A 、-1B、0C、1D、24.如图1所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是()5.如图,己知直角三角形ABC 中,斜边AB=35,一个边长为12的正方形CDEF 内接于△ABC,则△ABC 的周长为()A 、81B、84C、85D、886.有20个同学排成一行,若从左往右隔1人报数,小李报8号,若从右往左隔2人报数,小陈报6号,那么,小陈开始向小李逐一报数,小李报的号数是()A 、11B、12C、13D 、147.图中不是正方形的侧面展开图的个数为()A 、l B、2C、3D、48.张华同学从家里去学校,开始选匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑完余下的路程,下面坐标系中,横轴表示该同学从家出发后的时间t ,纵轴表示张华离学校的路程S ,则S 与t 之间函数关系的图像大致是()9.令a=0.12345678910111213……998999,其中的数字是由依次写下正整数1至999得到的,则小数点右边第2008位数字是()A、0B、5C、7D、910.若不等式ax2+7x -1>2x +5对11≤≤-a 恒成立,则x 的取值范围是()A 、-1<x<1B、-1≤x≤1C、2<x<3D、2≤x≤3二、填空题:本大题共6小题,每小题6分,共36分.把答案填在题中横线上.11.计算:()()202260tan 13321---+-=。
区高一新生入学分班考试数学试题及答案高一新生入学分班考试数学试题总分:150分,时长:120分钟第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列运算正确的是()。
A。
a·a=aB。
a÷a4=a2C。
a3+a3=2a6D。
(a3)2=a62.一元二次方程2x2-7x+k=0的一个根是x1=2,则另一个根和k的值是()A。
x2=1,k=4B。
x2=-1,k=-4C。
x2=2/3,k=6D。
x2=-2/3,k=-63.如果关于x的一元二次方程x-kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P=()A。
2/3B。
1/2C。
1/3D。
1/64.二次函数y=-x2-4x+2的顶点坐标、对称轴分别是()A。
(-2,6),x=-2B。
(2,6),x=2C。
(2,-6),x=-2D。
(-2,-6),x=25.已知关于x的方程5x-4+a=0无解,4x-3+b=0有两个解,3x-2+c=0只有一个解,则化简a-c+c-b-a-b的结果是()A。
2aB。
2bC。
2cD。
06.在物理实验课上,XXX用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()见原图)7.下列图中阴影部分的面积与算式|3/1|+(4/2)+2-1的结果相同的是(见原图)8.已知四边形S1的两条对角线相等,但不垂直,顺次连结S1各边中点得四边形S2,顺次连结S2各边中点得四边形S3,以此类推,则S2006为()A。
是矩形但不是菱形;B。
是菱形但不是矩形;C。
既是菱形又是矩形;D。
既非矩形又非菱形。
9.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β。
(考试时间:120分钟 试卷满分:1502024年秋季高一入学分班考试数学试题分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合{}1,2,3A =,{}2,3,4B =,则A B = ( ) A .{}1,2,3,4 B .{}1,4C .{}2,3D .∅22x =−,则x 的值可以是( )A .2−B .1−C .1D .23.“2x =”是“24x =”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知二次函数2y ax bx c ++的图象的顶点坐标为(2,1)−,与y 轴的交点为(0,11),则( )A .3,12,11a b c ==−=B .3,12,11a b c === C .3,6,11a b c ==−= D .1,4,11a b c ==−= 5.把2212x xy y −++分解因式的结果是( ) A .()()()112x x y x y +−++ B .()()11x y x y ++−− C .()()11x y x y −+−−D .()()11x y x y +++−6.已知命题p :1x ∃>,210x ,则p ¬是( ) A .1x ∀>,210x B .1x ∀>,210x +≤ C .1x ∃>,210x +≤ D .1x ∃≤,210x +≤7.函数y =) A .[]3,3−B .()3,1(1,3)−∪C .()3,3−D .()(),33,−∞−+∞8.若实数a b ,且a ,b 满足2850a a −+=,2850b b −+=,则代数式1111b a a b −−+−−的值为( ) A .-20B .2C .2或-20D .2或20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.下列坐标系中的曲线或直线,能作为函数()y f x =的图象的是( )A .B .C .D .10.下列命题中是全称量词命题并且是真命题的是( ) A .x ∀∈R ,2210x x ++≥ B .x ∃∈N ,2x 为偶数 C .所有菱形的四条边都相等 D .π是无理数11.下列结论中,错误的结论有( )A .()43y x x =−取得最大值时x 的值为1 B .若1x <−,则11x x ++的最大值为-2C .函数()f x =的最小值为2D .若0a >,0b >,且2a b +=,那么12a b+的最小值为3+三、填空题:本题共3小题,每小题5分,共15分.12.若多项式3x x m ++含有因式22x x −+,则m 的值是 .13.不等式20ax bx c ++>的解集是(1,2),则不等式20cx bx a ++>的解集是(用集合表示) . 14.对于每个x ,函数y 是16y x =−+,22246y x x =−++这两个函数的较小值,则函数y 的最大值是 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(13分)解下列不等式:(1)2320x x −+−≥; (2)134x x −+−≥; (3)11.21x x −≤+16.(15分)设全集R U =,集合{}|15Ax x =≤≤,集合{|122}B x a x a =−−≤≤−.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围; (2)若命题“x B ∀∈,则x A ∈”是真命题,求实数a 的取值范围.17.(15分)已知集合{}{}210,20A x ax B x x x b =−==−+=.(1)若{}3A B ∩=,求实数,a b 的值及集合,A B ; (2)若A ≠∅且A B B ∪=,求实数a 和b 满足的关系式.18.(17分)已知22y x ax a =−+.(1)设0a >,若关于x 的不等式23y a a <+的解集为{},12|A Bx x =−≤≤,且x A ∈的充分不必要条件是x B ∈,求a 的取值范围;(2)方程0y =有两个实数根12,x x , ①若12,x x 均大于0,试求a 的取值范围;②若22121263x x x x +=−,求实数a 的值.19.(17分)我国是用水相对贫乏的国家,据统计,我国的人均水资源仅为世界平均水平的14.因此我国在制定用水政策时明确提出“优先满足城乡居民生活用水”,同时为了更好地提倡节约用水,对水资源使用进行合理配置,对居民自来水用水收费采用阶梯收费.某市经物价部门批准,对居民生活用水收费如下:第一档,每户每月用水不超过20立方米,则水价为每立方米3元;第二档,若每户每月用水超过20立方米,但不超过30立方米,则超过部分水价为每立方米4元;第三档,若每户每月用水超过30立方米,则超过部分水价为每立方米7元,同时征收其全月水费20%的用水调节税.设某户某月用水x立方米,水费为y元.(1)试求y关于x的函数;(2)若该用户当月水费为80元,试求该年度的用水量;(3)设某月甲用户用水a立方米,乙用户用水b立方米,若,a b之间符合函数关系:247530=−+−.则当b a a两户用水合计达到最大时,一共需要支付水费多少元?一、单项选择题:本题共8小题,每小题5分,共402024年秋季高一入学分班考试数学答案分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1 2 3 4 5 6 7 8 CDBADBCA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 BDACABCD三、填空题:本题共3小题,每小题5分,共15分. 12.2 13.1|12x x <<6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)【解析】(1)2320x x −+−≥可化为2320,(1)(2)0x x x x −+≤∴−−≤, 所以解为1 2.x ≤≤(3分)(2)当1x <时,不等式可化为134x x −+−+≥,此时不等式解为0x ≤; 当13x ≤≤时,不等式可化为134x x −−+≥,此时不等式无解; 当3x >时,不等式可化为134x x −+−≥,此时不等式解为4x ≥; 综上:原不等式的解为0x ≤或4x ≥.(9分) (3)原不等式可化为211021x x x +−+≥+,(11分)与()()2120210x x x ++≥+≠同解, 所以不等式的解为:2x ≤−或12x >−.(13分)16.(15分)【解析】(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A B ,(2分)又{}|15Ax x =≤≤,{|122}B x a x a =−−≤≤−,因此12125a a −−< −≥ 或12125a a −−≤ −> ,解得7a ≥,所以实数a 的取值范围为7a ≥.(7分)(2)命题“x B ∀∈,则x A ∈”是真命题,则有B A ⊆,(9分) 当B =∅时,122a a −−>−,解得13a <,符合题意,因此13a <;(11分)当B ≠∅时,而{}|15{|122}A x x B x a x a =≤≤=−−≤≤−,, 则11225a a ≤−−≤−≤,无解,(14分) 所以实数a 的取值范围13a <.(15分)17.(15分)【解析】(1)若{}3∩=A B , 则{}{}2310,320x ax x x x b ∈−=∈−+=,(2分) 所以310,960a b −=−+=,解得1,33a b ==−,(4分) 所以{}{}{}{}2110103,2301,33A x ax x x B x xx =−==−===−−==−,综上:1,33a b ==−,{}{}3,1,3A B ==−;(7分)(2)若A ≠∅,则0a ≠,此时{}110A x ax a=−==,(9分) 又A B B ∪=,所以A B ⊆, 即{}2120x x x b a ∈−+=,(12分)所以2120440b a ab −+= ∆=−≥ , 所以实数a 和b 满足的关系式为212b a a=−+.(15分)18.(17分)【解析】(1)由23y a a <+,得2223x ax a a a −+<+, 即22230x ax a −−<,即()()30x a x a −+<, 又0a >,∴3a x a −<<,即{}|3A x a x a =−<<,(3分)∵x A ∈的充分不必要条件是x B ∈,∴B 是A 的真子集,则0132a a a >−<− > ,解得0123a a a> > >,则1a >, 即实数a 的取值范围是1a >.(6分) (2)方程为220y x ax a =−+=, ①若12,x x 均大于0则满足21212440200a a x x a x x a ∆=−≥ +=> => ,解得10a a a a ≥≤> > 或, 故1a ≥,即a 的取值范围为1a ≥.(10分)②若22121263x x x x +=−,则()2121212263x x x x x x +−=−, 则()21212830x x x x +−+=,即24830a a −+=,(13分) 即()()21230a a −−=,解得12a =或32a =, 由0∆≥,得1a ≥或0a ≤. 所以32a =,即实数a 的值是32.(17分)19.(17分)【解析】(1)因为某户该月用水x 立方米, 按收费标准可知, 当020x <≤时,3y x =;当2030x <≤时,()203420420y x x ×+−−;当30x >时,[2034(3020)7(30)] 1.28.4132y x x =×+×−+−×=−.(5分)所以3,020420,20308.4132,30x x y x x x x <≤=−<≤ −>(6分)(2)由题可得,当该用户水费为80元时,处于第二档,所以42080x −=, 解得25x =. 所以该月的用水量为25立方米.(10分) (3)因为247530b a a =−+−,所以()2248530244646a b a a a +=−+−=−−+≤.(13分)当24a =时,()46max a b +=,此时22b =.(15分)所以此时两户一共需要支付的水费是4242042220144y =×−+×−=元.(17分)。
浙江重点高中高一分班考试数学试卷注意:(1)试卷共有三大题21小题,满分150分,考试时间100分钟.(2)请把解答写在答题卷的对应题次上,做在试题卷上无效.一、选择题(5×8=40分)1.如图, ABC 中,D 、E 是BC 边上点,BD :DE :EC =3:2:1,M 在AC 边上,CM :MA =1:2,BM 交AD 、AE 于H 、G ,则BH :HG :GM 等于( )A.3:2:1B.5:3:1C.25:12:5D.51:24:10【答案】D【解析】【分析】连接EM ,根据已知可得,~BHD BME CEM CDA △△△△,根据相似比从而不难得到答案. 【详解】连接EM ,::1:3CE CD CM CA ==,EM ∴平行于AD .,~BHD BME CEM CDA ∴ △△△△.:3:5,:1:3HD ME ME AD ∴==.335AH ME ∴=−,:12:5AH ME ∴=, ::12:5HG GM AH EM ∴==,::3:5BH BM BD BE ∴==,::51:24:10BH HG GM ∴=.故选:D2.已知ABC 是O 的内接正三角形,ABC 的面积等于a ,DEFG 是半圆O 的内接正方形,面积等于的b ,a b的值为( )A. 2B.C.D. 【答案】D【解析】【分析】根据圆内接正三角形的性质以及正方形的性质分别用圆的半径表示出两图形面积,即可得出答案.【详解】如图所示,连接OG ,CO ,过点O 作OM BC ⊥于点M ,设O 的半径为r ,ABC 是O 的内接正三角形,30OCM °∴∠=,1122OM CO r ∴==,CM =,ABC ∴ 的高的长度为32r ,且BC =,21322a r ∴=×=,设正方形DEFG 的边长为x , 则2xOF =,2222x r x∴=+, 解得:2245x r =,245b r ∴=,45a b ∴==. 故选:D.3. 抛物线2y ax =与直线1x =,2x =,1y =,2y =围成的正方形有公共点,则实数a 的取值范围是( ) A. 114a ≤≤ B. 122a ≤≤ C. 112a ≤≤ D. 124a ≤≤ 【答案】D【解析】【分析】建立平面直角坐标系,画出四条直线围成的正方形,进一步判定其开口方向,再代入点的坐标即可解答.【详解】由下图可知:(1,2),(2,1)A B ,再根据抛物线的性质,||a 越大开口越小,把A 点代入2y ax =得2a =,把B 点代入2y ax =得14a =, 则a 的范围介于两者之间,故 124a ≤≤. 故选:D.4. 若1x >,0y >,且满足y xy x =,3y x x y=,则x y +的值为( ). A. 1 B. 2 C. 92 D. 112【答案】C【解析】【分析】由已知可得24y x x =,解得12y =,再代回已知等式求出x ,可得x y +的值. 【详解】由y xy x =,3y x x y =,得3y y x xy x x y ⋅=⋅,即24y x x =,解得12y =,把12y =代入y xy x =,得1212x x =,即x =24x x =,由1x >得4x =, 则19422x y +=+=. 故选:C5. 设3333111112399S =++++ ,则4S 的整数部分等于( ) A. 4B. 5C. 6D. 7 【答案】A【解析】【分析】由()()()32111112111k k k k k k k <=− −+− ,由此可以得到3331111115111239922991004S <=+++…+<+−< × ,然后即可求出4S 的整数部分. 【详解】当2,3,99k = ,因()()()32111112111k k k k k k k <=− −+− ,所以331111151112322991004S <=+++…++−< × , 即445S <<,故4S 的整数部分等于4故选:A .6. 如图,正方形ABCD 的边1AB =, BD 和 AC 都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A. 12π− B. 14π− C. 13π− D. 16π− 【答案】A【解析】【分析】图中1,2,3,4图形的面积和为正方形的面积,1,2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和减去正方形的面积等于无阴影两部分的面积之差.求解即可.详解】如图所示,1234S S S S S =+++正方形,31222S S S S =++扇形,两式相减,得到3490π12π213602S S S S ××−=−=−正方形扇形-1= 故选:A. 7. 在等边ABC 所在平面内有一点P ,使得,,PBC PAC PAB 都是等腰三角形,则具有该性质的点有( )A. 1个B. 7个C. 10个D. 无数个【答案】C【解析】【分析】过B 点作ABC 的中垂线,可知在三角形内有一点P 满足PBC 、PAC △、PAB 都是等腰三角形,根据等腰三角形的性质可以做两个圆,圆B 和圆A ,从而可以得出一条中垂线上有四个点满足PBC 、PAC △、PAB 都是等腰三角形,而三角形内部的一点是重合的,所以可以得出共有10个点.【详解】作三边的中垂线,交点P 肯定是其中之一,以B 为圆心,BA 为半径画圆,交AC 的中垂线于1P 、2P 两点,作2P AB △、2P BC △、2P AC △,如图,【则2P AB △、2P BC △、2P AC △都是等腰三角形,同理1P 具有题目所说的性质的点, 以A 为圆心,BA 为半径画圆,交AC 的中垂线于点3P ,该点也必具有题目所说的性质. 依此类推,在ABC 的其余两条中垂线上也存在这样性质的点,所以这些点一共有:33110×+=个. 故选:C8. 某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( )A. 2%xB. 12%x +C. ()1%%x x +⋅D. ()2%%x x +⋅【答案】D【解析】【分析】平均增长率问题,可直接用公式解题即可.【详解】假设第一季度产值为a ,则第二季度产值为(1%)a x +,第二季度产值为2(1%)a x +. 第三季度的产值比第一季度增长了2(1%)(2%)%a x a x x a+−=+⋅. 故选:D .二、填空题(5×8=40分)9.方程226x y =+=的解是__________. 【答案】11260x y == 或22228x y =− = 【解析】【分析】利用换元法,借助立方和公式展开,求解方程组可得答案.a b ,则33 2,26a b a b +=+=, 因为()()()()233223a b a b a ab b a b a b ab +=+−+=++−,【所以2(43)26ab −=,即3ab =−,与2a b +=联立可得31a b = =− 或13a b =− =; 当31a b = =−1==−,解得260x y = =; 当13a b =− =3=−=,解得22228x y =− = . 故答案为:11260x y = = 或22228x y =− = 10. 若对任意实数x 不等式ax b >都成立,那么a 、b 的取值范围为__________.【答案】0a =,0b <【解析】【分析】分情况讨论不等式恒成立的条件.【详解】当0x =时,0b <,R a ∈;当0x ≠时,若0a =,则0b <;若0a >,则b x a>,不能恒成立; 若a<0,则b x a<,不能恒成立; 即当0x ≠时,若0a =,0b <综上所述,若使不等式恒成立,则0a =,0b <.11. 设12x −≤≤,则1222x x x −−++的最大值与最小值之差为__________. 【答案】1【解析】【分析】根据自变量的范围先去绝对值再求出最大值及最小值即可.【详解】因为12x −≤≤,所以11122224222x x x x x x x −−++=−−++=−, 因为02x ≤≤,所以当0x =时,1222x x x −−++取最大值为4, 当2x =时,1222x x x −−++取最小值3, 所以1222x x x −−++的最大值与最小值之差为431−=. 故答案为:1.12. 两个反比例函数3y x =,6y x=在第一象限内的图象点1232007,,,,P P P P 在反比例函数6y x =上,它们的横坐标分别为1232007,,,,x x x x ,纵坐标分别是1、3、5 共2007个连续奇数,过1232007,,,,P P P P 分别作y 轴的平行线,与3y x =的图象交点依次为()()()'''111222200720072007,,,,,,Q x y Q x y Q x y ,则20072007P Q =__________. 【答案】40132##2006.5 【解析】【分析】由点2007P 的纵坐标结合6y x=得出其横坐标,进而由3y x =得出点2007Q 纵坐标,从而得出20072007P Q .【详解】由题可知()20072007,4013P x ,因为点2007P 在6y x =的图象上,所以200764013x =, 又()200720072007,Q x y 在3y x =的图象上,所以200740136240313y ==, 所以20072007P Q =40134013401322−=. 故答案为:40132. 13. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是__________.【答案】【解析】【分析】沿过A 点母线把圆锥侧面剪开摊平,得出圆锥侧面展开图,如图.线段1AA 的长就是所求最短距离.【详解】如图所示,在圆锥的侧面展开图中,1AA 的长就是所求最短距离.过点S 作1SB AA ⊥,则12AA AB =.因为 1AA 为圆锥底面圆的周长,即2π, 由弧长公式得12π3ASA ∠=,.所以1π22sin,3AA AB AS ==⋅=,故答案为:14. 有一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠使A 、C 两点重合,那么折痕长是__________. 【答案】454【解析】【分析】首先由勾股定理求出AC 的长,设AC 的中点为E ,折线FG 与AB 交于F ,然后求证AEF △∽ABC ,求出EF 的长.【详解】如图,由勾股定理易得15AC ===,设AC 的中点为E ,折线FG 与AB 交于F ,(折线垂直平分对角线AC ),7.5AE =. 由AEF △∽ABC ,得912EFBC AE AB ==,22.54EF ∴=∴折线长22.522.54522424EF ==×==, 故答案为:45415. 已知3、a 、4、b 、5这五个数据,其中a 、b 是方程2320x x −+=的两个根,则这五个数据的标准差是__________.【解析】【分析】先解方程得到a ,b 的值,计算出平均数和方差后,再计算方差的算术平方根,即为标准 差.【详解】2320x x −+=,解得1,2a b ==或2,1a b ==,这组数据为14253,,,,. 平均值()13142535x =++++=; 方差()()()()()2222221[3313432353]25S =−+−+−+−+−=;..16. 若抛物线2241y x px p =−++中不管p 取何值时都通过定点,则定点坐标为___________.【答案】()4,33【解析】【分析】若抛物线2241y x px p =−++中不管p 取何值时都通过定点,则含p 的项的系数为0,由此求出x 的值,再求y 的值,得出定点坐标.【详解】2241y x px p =−++可化为()2241y x p x =−−+, 当4x =时,33y =,且与p 的取值无关, 所以不管p 取何值时都通过定点()4,33. 故答案为:()4,33三、解答题17. 设m 是不小于1−的实数,使得关于x 的方程222(2)330x m x m m +−+−+=有两个不相等的实数根1x 、2x .(1)若22126x x +=,求m 的值. (2)求22121211mx mx x x +−−的最大值. 【答案】(1)m =(2)10. 【解析】【分析】(1)根据判别式可得11m −≤<,再利用韦达定理代入即可得答案;(2)将问题转化为关于m 的一元二次函数,再利用函数的性质求最值;【详解】∵方程有两个不相等的实数根,()22244(2)433440,1b ac m m m m m ∴∆=−=−−−+=−+>∴<结合题意知:11m −≤<(1)()()22222212121224(2)233210106x x x x x x m m m m m +=+−=−−−+=−+=11,m m m ∴=−≤<∴= (2)()()()()322222121212122121228821111m m m m m x x x x x x mx mx x x x x m m −+−+−+ +==−−−−− ()()2222(1)31352312(11)(1)22m m m m m m m m m m −−+ ==−+=−−−< − ∴当1m =−时,式子取最大值为10.【点睛】本题考查一元二次方程中韦达定理、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18. 如图,开口向下的抛物线2812y ax ax a =−+与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA OBC ∽△△,(1)求OC的长及BC AC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式.【答案】(1)(2)y x −+,2y x x −【解析】【分析】(1)首先求出抛物线与x 轴交点的坐标,再由三角形相似计算可得;(2)首先求出C 点坐标,利用待定系数法求出BP 的解析式,再将C 点坐标代入抛物线方程,求出a ,即可得解.【小问1详解】由题设知a<0,且方程28120ax ax a −+=有两实数根12x =,26x =,即()2,0A ,()6,0B ,所以2OA =,6OB =, OCA OBC ∽,OC OA AC OB OC BC∴==, 212OC OA OB ∴=⋅=,则OC =,所以BCOB AC OC ==;【小问2详解】因为C 是BP 的中点,所以C 点的横坐标为3,又OC =,解得C y =或C y =(舍去),(C ∴, 设直线BP 的解析式为y kx b =+,因其过点()6,0B,(C ,则有063k b k b =+ +,解得k b = =,所以y x −+;又点(C在抛物线上,92412a a a =−+,解得a =, ∴抛物线解析式为2y x x +−19. 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表 家电名称 空调 彩电 冰箱问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?【答案】空调30,彩电270,冰箱30,最高产值1050.【解析】【分析】设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,建立三元一次方程组,则总产值432A x y z =++.由于每周冰箱至少生产60台,即60z ≥,所以300x y +≤.又生产空调器、彩电、冰箱共360台,故有30x ≥台,即可求得,具体的x ,y ,z 的值.【详解】解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有()36011111209032341260x y z x y z x y z ++= ++==++ ≥ 总产值()()()4322272031080A x y z x y z x y x y x x ++++++++−−60,300z x y ≥∴+≤ ,而3360x y +=, 3603300,30x x x ∴+−≤∴≥ 1050A ∴≤ 即30,27060x y z ===,. 故每周生产空调30,彩电270,冰箱30,最高产值1050.20. 一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩概率.【答案】(1)38; (2)78. 【解析】【分析】(1)用树状图列出所有结果,再根据古典概型计算所求;(2)根据(1)树状图列出的所有结果,再根据计算所求;【小问1详解】用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:,的∴这个家庭有2个男孩和1个女孩的概率为38【小问2详解】由(1)可知,这个家庭至少有一个男孩的概率78. 21. 如图,已知O 和O 相交于A 、B 两点,过点A 作O 的切线交O 点C ,过点B 作两圆的割线分别交O 、O 于E 、F ,EF 与AC 相交于点P ,(1)求证:PA PE PC PF ⋅=⋅;(2)求证:22PE PF PC PB=; (3)当O 与O 为等圆时,且::3:4:5PC CE EP =时,求PEC 与FAP 的面积的比值.【答案】(1)证明见解析;(2)证明见解析; (3)49625. 【解析】【分析】(1)利用切线角与同弧所对角的性质得到CEB F ∠=∠,从而得到//AF CE ,由此得证; (2)结合(1)中结论,利用切割线定理即可得证;(3)利用三角形相似与勾股定理证得90C CAF ∠=∠=°,从而得到,x y 的比值,再利用面积比与相似比的关系即可得解.【小问1详解】连接AB ,CA 切O ′于A ,CAB F ∴∠=∠, 又CAB CEB ∠=∠,CEB F ∴∠=∠, //AF CE ∴,PE PC PF PA∴=, PA PE PC PF ∴⋅=⋅.【小问2详解】由(1)得2222,PE PC PE PC PF PA PF PA=∴=,则2222PE PF PC PA =, 再根据切割线定理,得2PA PB PF =⋅,22PE PF PC PB ∴=. 【小问3详解】连接AE ,由(1)知//AF CE PEC PFA , 而::3:4:5PC CE EP =,::3:4:5PA FA PF ∴=,不妨设3=PC x ,3PA y =,则4,5CE x EP x ==,4,5FA y PF y ==, 222222,EP PC CE PF PA FA ∴=+=+,90C CAF °∴∠=∠=, AE ∴为O 的直径,AF 为O ′的直径, 因为O 与O ′ 为等圆,4AE AF y ∴==,222AC CE AE += ,222(33)(4)(4)x y x y ∴++=,22251870x xy y +−=, 7(257)()0,25x x y x y y ∴−+=∴=,222249:625ECP FAP x PC PA S S y ∴=== .。
学军中学新高一分班考 数学卷一、选择题:本大题有8个小题,每小题3分,共24分.1. 下列四个命题:①平分弦的直径垂直于弦;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有( )A. 1个B. 2个C. 3个D. 4个2. 如图,在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A 28,28,1 B. 28,27.5,3 C. 28,28,3 D. 28,27.5,1 3. 已知方程组32342321x y a x y a −=−−=− 的解满足x y >,则a 的取值范围是( ) A. 1a > B. 1a < C. 5a > D. 5a < 4. 如图,在直角△BAD 中,延长斜边BD 到点C ,使BBBB =2BBDD ,连接AC ,5tan 3B =,则tan CAD ∠的值是( )AB. C. 13 D. 15 5. 如图,在Rt ABC △中,,,90AC BC ACB ∠=°,四边形,DEFG GHIJ 均为正方形,点E 在AC 上,点I 在BC 上,J 为边DG 的中点,则GH 的长为( )..A. 1921B. 1C. 6077D. 1002596. 如图,正方形OABC 的一个顶点O 是平面直角坐标系的原点,顶点A ,C 分别在y 轴和x 轴上,P 为边OC 上的一个动点,且BP PQ ⊥ ,BP PQ = ,当点P 从点C 运动到点O 时,可知点Q 始终在某函数图象上运动,则其函数图象是( )A. 线段B. 圆弧C. 抛物线的一部分D. 不同于以上的不规则曲线 7. 如图,以点()5,0M −为圆心,4为半径的圆与x 轴交于A ,B 两点,P 是☉M 上异于A ,B 的一动点,直线PA ,PB 分别交y 轴于点C ,D ,以CD 为直径的☉N 与x 轴交于点E ,F 则EF 的长为( )A. B. C. 6 D. 随P 点位置而变化 8. 已知二次函数图象的对称轴为1x =,且过点(3,0)A 与()0,1.5B ,则下列说法中正确的是( )① 当01x ≤≤时,函数有最大值2;② 当01x ≤≤时,函数有最小值2−; ③ P 是第一象限内抛物线上的一个动点,则PAB 面积的最大值为32; ④ 对于非零实数m ,当11x m >+时,y 都随着x 的增大而减小.A. ①②B. ①②③C. ①②④D. ②③④二、填空题:本大题有8个小题,每小题5分,共40分9. 已知a 是实数,且满足(30a −=,则代数式2241a a −+的值是_______________. 10. 已知函数3(1)()=+−y k x x k ,下列说法:①方程3(1)()3k x x k+−=−必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当3k >时,抛物线顶点在第三象限;④若0k <,则当1x <−时,y 随着x 的增大而增大,其中正确的序号是_______________.11. 如图,COD 是AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是_______.12. 如图,在5×5的正方形网格中,△ABC 为格点三角形(顶点都在格点上),则图中与△ABC 相似的最小的三角形与最大的三角形的面积比值为______.13. 如图,边长为2的等边ABC 的顶点A 、B 分别在MON ∠的两边上滑动,当45MON ∠=°时,点O 与点C 的最大距离是________.14. 如图,正方形ABCD 的边长为4,点O 是对角线AC ,BD 的交点,点E 为边CD 的中点,连接BE ,过点C 作CF ⊥BE ,垂足为F ,连结OF ,则OF 的长为______.15. 如图,矩形ABCD 为☉O的内接矩形,3AB BC =,点E 为弧BC 上一动点,把弓形沿AE 折叠,使点O 恰好落在弧AE 上,则图中阴影部分的面积为________.16. 已知A 是双曲线2y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限,已知点C 的位置始终在一函数图象上运动,则这函数解析式是________.三、解答题:本大题有5个小题,共56分.17. 如图,已知∠A ,请你仅用尺规,按下列要求作图和计算(保留作图痕迹,不写画法):(1)选取适当边长,在所给的∠A 图形上画一个含∠A 的直角三角形ABC ,并标上字母,其中点C 为直角顶点,点B 为另一锐角顶点;(2)以AC 为一边作等边△ACD ;(3)若设∠A =30°,BC 边长为a ,则BD 的长为__________________.18. 如图,PB 为O 的切线,B 为切点,过B 做OP 的垂线BA ,垂足为C ,交O 于点A ,连接P A 、AO ,并延长AO 交O 于点E ,与PB 的延长线交于点D.的(1)求证:P A 是O 切线;(2)若23OC AC =,且OC =4,求P A 的长和tan D 的值. 19. 已知:如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC =12cm ,BD =16cm.点P 从点B 出发,方向匀速运动,速度为1cm/s ;同时,直线EF 从点D 出发,沿DB 方向匀速运动,速度为1cm/s ,EF ⊥BD ,且与AD ,BD ,CD 分别交于点E ,Q ,F ;当直线EF 停止运动时,点P 也停止运动.连接PF ,设运动时间为t (s )(08t <<).解答下列问题:(1)当t 为何值时,四边形APFD 是平行四边形?(2)设四边形APFE 的面积为y (2cm ),求出y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使S 四边形APFE :S 菱形ABCD =17:40?若存在,求出t 的值,若不存在,请说明理由.20. 为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升.某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱利润y 1(百元)与销售数量x (箱)的关系为()()115,0201017.5,206040x x y x x +<< = −+≤< ,在乡镇销售平均每箱的利润2y (百元)与销售数量t (箱)的关系为()()26,03018,306015t y t t << = −+≤<(1)t 与x 的关系是:将2y 转化为以x 为自变量的函数,则2y 等于?(2)设春节期间售完冷冻鸡肉获得总利润W (百元)当在城市销售量x (箱)的范围是020x <<时,求W 与x 的关系式;(总利润=在城市销售利润+在乡镇销售利润)的的(3)经测算,在20x 30<≤的范围内,可以获得最大总利润,并求出此时x 的值.21. 如图,平面直角坐标系xOy 中,点A 的坐标为()2,2−,点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点E .(1)求点E 的坐标;求抛物线的函数解析式;(2)点F 为线段OB 上的一个动点(不与点O 、B 重合),直线EF 与抛物线交于M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求△BON 的面积的最大值,并求出此时点N 的坐标;(3)连结AN ,当△BON 面积最大时,在坐标平面内求使得△BOP 与△OAN 相似(点B 、O 、P 分别与点O 、A 、N 对应)的点P 的坐标.。
新高一年级分班考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分) 1、下列计算正确的是( ).A 、(a 3)2=a 5B 、a 10÷a 2=a 5C 、-a 5÷(-a )2=-a 3D 、(a +b )3=a 3+b 3 2、⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A 、相交B 、相切C 、相离D 、无法确定 3、下列命题:①若a 2=b 2,则a =b ;②若两个相似三角形面积之比是1∶4,则相似比是1∶2;③两条直线被第三条直线所截,同旁内角互补;④一组数据的众数只有一个. 其中真命题的个数是( ) A 、1个B 、2个C 、3个D 、4个4、从矩形的一个顶点向对角线引垂线,此垂线分对角线所成的两部分之比为1:3,已知两对角线的交点到矩形较长边的距离为3.6cm ,则矩形对角线长为( ).A 、7.2 B、7.C、14. D 、14.45、现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6. 用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在抛物线y =-x 2+4x 上的概率为( )A 、118B 、112C 、19D 、166、小强从如图所示的二次函数y =ax 2+bx +c 的图象中,观察得出了下面五条信息:(1)a <0; (2)c >1;(3)b >0;(4)a +b +c >0;(5)a -b +c >0.你认为其中正确信息的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个(第6题图) (第7题图) (第9题图)7、如图,△ABC 的两条中线AE 和BF 相交于点G ,△EFG 的面积为1,则△ABC 的面积为( )A 、4B 、8C 、10D 、128、整理一批图书,如果由一个人单独做要花60小时. 现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作. 假设每个人的工作效率相同,那么先安排整理的人员有( )人.A 、6B 、12C 、8D 、109、如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数y =1x(x >0)的图象上,则点E的坐标是( ). A 、(32,23) B 、22) C 、(54,45) D 、2)A B C F G10、若分式212x x m-+不论x 取何值总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m <1D 、m ≤1 二、填空题(本大题共6个小题,每小题3分,共18分) 11、分解因式:2x 2-12x +18= .12、如图,AB 是⊙O 的直径,弦CD ∥AB .若∠ABD =65°,则∠ADC = .13、已知关于x 的不等式组 5210x x a ⎧⎨⎩≥---> 无解,则a 的取值范围是___________.14、若3x a x +--2=526x -的解是正数,则a 的取值范围是 .第12题图15、如图,D 、F 分别在△ABC 的边AB 、AC 上,且AD ∶DB =CF ∶F A=2∶3, 连接DF 并延长,交BC 的延长线于点E ,则EF ∶FD =__________.16、某商品的标价比成本高a %,当该商品降价出售时,为了不亏本,降价幅度不得超过b %. 请用含有a 的代数式 表示b : .三、解答题(本大题共6个小题,共52分)17、(本题满分4分)计算: 203(14sin 4512-+︒+-18、(本题满分6分)化简求值:2212x x x +++÷211x x ---12x +, 其中x 19、(本题满分8分)课外实践活动中,王老师带领学生测量学校旗杆的高度. 如图,在A 处用测角仪(离地高度1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30°,求旗杆EG 的高度.A B G F E D C 15° 30° 23米D FB C E A20、(本题满分10分)已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 、y 轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE ⊥x 轴于点E ,t a n ∠ABO =1,OB =4,OE =2.(1)求该反比例函数的解析式;(2)求直线AB 的解析式.21、(本题满分12分)如图,△ABC 中,∠C =90°,AC =4,BC =3.半径为1的圆的圆心P 以1个单位/秒的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:秒). (1)当t 为何值时,⊙P 与AB 相切;(2)作PD ⊥AC 交AB 于点D ,如果⊙P 和线段BC 交于点E .证明:当t =165秒时,四边形PDBE 为平行四边形.图1图222、(本小题满分12分)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB 的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.x高一新生入学分班考试数 学 模 拟 试 题(试题满分:150分,考试时间:120分钟)一、选择题(本题共12小题,每小题4分,共48分.在每小题的四个选项中,只有一个符合题目要求) 1.下列计算:①(-2006)0=1;②44m21m2=-;③x 4+x 3=x 7;④(ab 2)3=a 3b 6; ⑤()35352=-,正确的是( )A.① B.①②③ C.①③④ D.①④⑤2.一次函数y=kx+b 满足k b >0,且y随x的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.一个底面半径为5cm ,母线长为16cm 的圆锥,它的侧面展开图的面积是( )A. 80πcm 2 B. 40πcm 2 C. 80cm 2 D. 40cm 2 4.以下五个图形中,既是轴对称又是中心对称的图形共有( )A. 1个 B. 2个 C. 3个 D. 4个5.在△ABC 中,∠C =90o ,AB =15,sin A =31,则BC 等于( )A.45 B. 5 C.15 D. 1456.如图,已知P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =40°,则∠BAC 的大小是( ) A. 70° B. 40° C. 50° D. 20°7.若不等式组 的解集为空集,则a 的取值范围是( )A. a >3 B. a ≥3 C. a < 3 D. a ≤ 38.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得正面朝上的点数为奇数的概率为( )A.61 B. 31 C. 41 D. 21 9.已知两圆的半径分别为6cm 和8cm ,圆心距为2cm ,那么这两圆的公切线有( )A. 1条 B. 2条 C. 3条 D. 4条10. 设a , b , c , d 都是非零实数,则四个数:-ab , ac , bd , cd ( )A.都是正数 B.都是负数⎪⎩⎪⎨⎧>->+-a x x x 54252AB CD11. 函数y = k (1-x) 和y =xk( k ≠0) 在同一平面直角坐标系中的图像可能是 xyxyxyxyA .B .C .D .12.如图,△ABC 和△DEF 是两个形状大小完全相同的等腰直角三角形,∠B =∠DEF =90°,点B 、C 、E 、F 在同一直线上.现从点C 、E 重合的位置出发,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动.设两个三角形重合部分的面积为y ,运动的距离为x .下面表示y 与x 的函数关系式的图象大致是( )二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)13.不等式组⎪⎩⎪⎨⎧≤--+<+-1312412x x x x 的整数解为14.分解因式212213122x x x x x +--=15. 如图,△ABC 中,BD 平分∠ABC , AD ⊥BD 于D , F 为AC 中点,AB = 5,BC = 7, 则DF = 16.已知二次函数图象过点A (2,1)、B (4,1)且最大值为2,则二次函数的解析式为17.如图,已知Rt △ABC 中,∠C =90,AC =2,BC =1,若以C 为圆心,CB 为半径的圆交AB 于点P ,则AP =_____________18. 如图,直线834+-=x y 与x 轴、y 轴分别交于点A 和B ,M 是 O B 上的一点,若将∆AB M 沿A M 折叠,点B 恰好落在x 轴上的点B '处,则直线A M 的解析式为三、 解答题(本题共有7小题,共72分)19.(本小题满分8分)化简: xx x x x x x x x 4)44122)(4(222-÷+----+-A CF DB'OMB xyA20.(本小题满分8分)解分式方程:22+x x -23-x =221.(本小题满分8分)如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连结AE 、CF . (1)求证:AF =CE ;(2)若 AC =EF ,试判断四边形AFCE 是什么样的四边形, 并证明你的结论.22.(本小题满分10分)为了鼓励居民节约用水,我市某地水费按下表规定收取:(1)某用户用水量为x 吨,需付水费为y 元,则水费y(元)与用水量x(吨)之间的函数关系式是: (0≤x ≤10);y =(x >10);(2)若小华家四月份付水费17元,问他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?23.(本小题满分12分)如图1,在直角梯形ABCD 中,AD ∥BC ,顶点D ,C 分别在A M ,B N 上运动(点D 不与A 重合,点C 不与B 重合),E 是AB 上的动点(点E 不与A ,B 重合),在运动过程中始终保持DE ⊥CE ,且AD +DE =AB =a . (1)求证:△ADE ∽△BEC ;(2)设AE =m ,请探究:△BEC 的周长是否与m 值有关,若有关请用含m 的代数式表示△BEC 的周长;若无关请说明理由.24.(本小题满分12分)已知抛物线25y x kx k =-+-.(1)求证:不论k 为何实数,此抛物线与x 轴一定有两个不同的交点; (2)若此二次函数图像的对称轴为x=1,求它的解析式;(3)在(2)的条件下,设抛物线的顶点为A ,抛物线与x 轴的两个交点中右侧交点为B , 若P 为x 轴上一点,且△P AB 为等腰三角形,求点P 的坐标. 25.(本小题满分14分)如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC与过B 点的切线相交于点D ,E 为CH 的中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G .(1)求证:点F 是BD 的中点; (2)求证:CG 是⊙O 的切线; (3)若FB =FE =2,求⊙O 的半径.。
新高一入学分班考数学卷(名校版)参考答案一、选择题1.当m<﹣1时,方程(m3+1)x2+(m2+1)x=m+1的根的情况是()A.两负根B.两异号根,且正根的绝对值较大C.两正根D.两异号根,且负根的绝对值较大【分析】首先将方程整理为一般形式,进而利用根据根与系数的关系以及因式分解的应用,分析各式子的符号,进而得出答案.【解答】解:∵(m3+1)x2+(m2+1)x=m+1,∴(m3+1)x2+(m2+1)x﹣(m+1)=0,∴x1x2====,∵m<﹣1,∴m2﹣m+1>0,∴x1x2<0,∴方程由两异号根,∵x1+x2=﹣=,∵m<﹣1,∴m2﹣m+1>0,m+1<0,﹣(m2+1)<0,∴x1+x2>0,∴正根的绝对值较大.故选:B.2.对于数x,符号[x]表示不大于x的最大整数例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[]=4的整数根有()A.4个B.3个C.2个D.1个【分析】根据取整函数的定义可知,4≤<5,解此方程组即可.【解答】解:∵[]=4,∴4≤<5,∴,∴,即7≤x<,故x的正数值为7,8,9.故选B.3.+的最小值为()A.B. C. D.均不是【分析】根据题意结合两点之间距离求法,利用轴对称求出最短路线进而得出答案.【解答】解:原式=+,即x轴上的点到(﹣1,1)和(2,4)的距离之和的最小值画图可知,点(4,2)关于x轴的对称点(4,﹣2)与(﹣1,1)连线与x轴的交点即为所求,此时最小值为:=.故选:B.4.在下列图形中,各有一边长为4cm的正方形与一个8cm×2cm的长方形相重叠.问哪一个重叠的面积最大()A.B.C.D.【分析】A、阴影部分是长方形,所以长方形的面积等于长和宽的乘积;B、如图,设阴影部分等腰直角的腰为x,根据勾股定理求出x的值,所以,阴影部分的面积等于正方形的面积减去俩个空白三角形的面积;C、图C,逆时针旋转90°从后面看,可与图D对比,因为图C阴影部分的倾斜度比图D阴影部分的倾斜度小,所以,图C中四边形的底比图D中四边形的底小,两图为等高不等底,所以图C阴影部分的面积小于图D阴影部分的面积;D、图D,设阴影部分平行四边形的底为x,根据正方形的面积=阴影部分的面积+两个空白三角形的面积,求出x的值,再得出阴影部分的面积;图A、图C、图D中阴影部分四边形为等高不等底,因为倾斜度不同,所以图D中阴影部分的底最大,面积也就最大;因此,只要比较图B和图D阴影的面积大小,可得到图B阴影部分的面积最大.【解答】解:A、S阴影=2×4=8(cm2);5.(2016•衡水校级模拟)设全集U=R,集合A={x|},B={x|1<2x<8},则(C U A)∩B等于()A.[﹣1,3)B.(0,2]C.(1,2]D.(2,3)【分析】分别解出集合A,B,然后根据集合的运算求解即可.【解答】解:因为集合A={x|}=(﹣∞,﹣1]∪(2,+∞),B={x|1<2x<8}=(0,3),又全集U=R,∴C U A=(﹣1,2],∴(C U A)∩B=(0,2],故选B.6.已知函数f(x)=,则f(f(2))等于()A.B.2 C.﹣1 D.1【分析】先由解析式求得f(2),再求f(f(2)).【解答】解:f(2)=,f(﹣1)=2﹣1=,所以f(f(2))=f(﹣1)=,故选A.7.设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a>0的解集是()A.x>B.x<﹣C.x>﹣D.x<8.对于任意的两个实数对(a,b)和(c,d),规定:①(a,b)=(c,d),当且仅当a=c,b=d;②运算“⊗”为:(a,b)⊗(c,d)=(ac+bd,bc﹣ad);③运算“θ”为:(a,b)θ(c,d)=(a﹣c,b﹣d).设p,q∈R,若(1,2)⊗(p,q)=(11,2),则(1,2)θ(p,q)()A.(﹣2,﹣2)B.(3,4)C.(2,1)D.(﹣1,﹣2)【分析】先根据(1,2)⊗(p,q)=(11,2),列方程组求p、q的值,再由规定运算“θ”求(1,2)θ(p,q)的结果.【解答】解:由规定②,得(1,2)⊗(p,q)=(p+2q,2p﹣q),∵(1,2)⊗(p,q)=(11,2),∴(p+2q,2p﹣q)=(11,2),由规定①,得,解得,由规定③,可知(1,2)θ(p,q)=(1,2)θ(3,4)=(1﹣3,2﹣4)=(﹣2,﹣2).故选A.二、填空题9.已知a2+4a+1=0,且,则m=.【分析】由a2+4a+1=0,得a2=﹣4a﹣1,代入所求的式子化简即可.【解答】解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.10.已知(x﹣3)2+(y﹣4)2=4,则x2+y2的最大值为49.【分析】运用几何意义解答,x2+y2的最大值就是方程(x﹣3)2+(y﹣4)2=4所代表的圆周上的点到坐标原点的距离最大值的平方,从而可得出答案.【解答】解:x2+y2的最大值就是方程(x﹣3)2+(y﹣4)2=4所代表的圆周上的点到坐标原点的距离最大值的平方,连接坐标原点与圆心(3,4)所得的直线与圆的交点,则(x2+y2)min时,|ON|取最小,(x2+y2)max时,|OM|取最大,∵原点与圆心(3,4)的距离+半径(PM)=+2=7,∴(x2+y2)max=72=49.故答案为:49.11.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是6.【分析】先设△BEF的面积是x,由于E是BC中点,那么S△DBE=S△DCE,易求S正方形=4(1+x),又四边形ABCD是正方形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△BEF∽△DAF,于是S△BEF:S△DAF=()2,E是BC中点可知BE:AD=1:2,于是S△DAF=4x,进而可得S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,等量代换可得4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积.【解答】解:如右图,设△BEF的面积是x,∵E是BC中点,∴S△DBE=S△DCE,∴S△BCD=2(1+x),∴S正方形=4(1+x),∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△BEF∽△DAF,∴S△BEF:S△DAF=()2,∵E是BC中点,∴BE=CE,∴BE:AD=1:2,∴S△DAF=4x,∵S△ABE=S△BED,∴S△ABF=S△DEF=1,∴S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,∴4(1+x)=1+x+4x+1+1+x,解得x=0.5,∴S正方形=4(1+x)=4(1+0.5)=6.12.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.13.函数f(x)=λx2+(λ﹣3)x+1对于任意实数x都有f(x)≤f(λ),则函数f(x)的最大值是.【分析】根据函数有最值,首先判断出λ<0,进而利用二次函数的最值得出f(x)的最大值,使这个最大值与f(λ)相等,解方程即可得出λ的值,进而代入求出f(x)最大值.【解答】解:由题意得,f(x)有最大值,则可得λ<0,又∵f(x)=λ(x+)2+1﹣,∴f(x)的最大值为1﹣,又∵f(x)≤f(λ),∴f(λ)=λ3+(λ﹣3)λ+1=1﹣,解得:λ=1(舍去)或λ=﹣,将λ=﹣,代入可得f(x)的最大值为.故答案为:.三、解答题14.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC=S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.15.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.【分析】(1)由圆周角定理可知∠ABC=∠BAC=60°,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2,∠ACB=60°”,在直角三角形PAC 和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==2.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=6.∴PD=AD﹣AP=6﹣2=4.2.(2013•济宁)阅读材料:若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b时,“=”成立.举例应用:已知x>0,求函数y=2x+的最小值.解:y=2x+≥=4.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,y最小=4.16问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).【分析】(1)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可;(2)经济时速就是耗油量最小的形式速度.【解答】解:(1)∵汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.∴y=x×(+)=(70≤x≤110);(2)根据材料得:当时有最小值,解得:x=90∴该汽车的经济时速为90千米/小时;当x=90时百公里耗油量为100×(+)≈11.1升.17.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是CH=AB;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【分析】(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.【解答】解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.。
高一新生入学分班考试数学 模 拟 试 题(试题满分:150分,考试时间:120分钟)一、选择题(本题共12小题,每小题4分,共48分.在每小题的四个选项中,只有一个符合题目要求) 1.下列计算:①(-2006)0=1;②44m21m2=-;③x 4+x 3=x 7;④(ab 2)3=a 3b 6; ⑤()35352=-,正确的是( )A.① B.①②③ C.①③④ D.①④⑤2.一次函数y=kx+b 满足kb >0,且y随x的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.一个底面半径为5cm ,母线长为16cm 的圆锥,它的侧面展开图的面积是( )A. 80πcm 2 B. 40πcm 2 C. 80cm 2 D. 40cm 24.以下五个图形中,既是轴对称又是中心对称的图形共有( )A. 1个 B. 2个 C. 3个 D. 4个5.在△ABC 中,∠C=90o ,AB=15,sinA=31,则BC 等于( )A.45 B. 5 C.15 D. 1456.如图,已知PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =40°,则∠BAC 的大小是( ) A. 70° B. 40° C. 50° D. 20°7.若不等式组 的解集为空集,则a 的取值范围是( )A. a>3 B. a ≥3 C. a < 3 D. a ≤ 38.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得正面朝上的点数为奇数的概率为( )A.61 B. 31 C. 41 D. 21 9.已知两圆的半径分别为6cm 和8cm ,圆心距为2cm ,那么这两圆的公切线有( )A. 1条 B. 2条 C. 3条 D. 4条 10. 设a, b, c, d 都是非零实数,则四个数:-ab, ac, bd, cd ( )A.都是正数 B.都是负数C.是两正两负 D.是一正三负或一负三正⎪⎩⎪⎨⎧>->+-a x x x 54252ABC D11. 函数y = k (1-x) 和y =xk( k ≠0) 在同一平面直角坐标系中的图像可能是 xyxyxyxyA. B. C. D.12.如图,△ABC 和△DEF 是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B 、C 、E 、F 在同一直线上.现从点C 、E 重合的位置出发,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动.设两个三角形重合部分的面积为y ,运动的距离为x .下面表示y 与x 的函数关系式的图象大致是( )二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上) 13.不等式组⎪⎩⎪⎨⎧≤--+<+-1312412x x x x 的整数解为14.分解因式212213122x x x x x +--=15. 如图,△ABC 中,BD 平分∠ABC, AD ⊥BD 于D, F 为AC 中点,AB = 5,BC = 7, 则DF = 16.已知二次函数图象过点A (2,1)、B (4,1)且最大值为2,则二次函数的解析式为17.如图,已知Rt △ABC 中,∠C=ο90,AC=2,BC=1,若以C 为圆心,CB为半径的圆交AB 于点P ,则AP=_____________18. 如图,直线834+-=x y 与x 轴、y 轴分别交于点A 和B ,M 是 OB上的一点,若将∆ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的解析式为PBCA BCF DB'OMB xyA三、 解答题(本题共有7小题,共72分)19.(本小题满分8分)化简:xx x x x x x x x 4)44122)(4(222-÷+----+- 20.(本小题满分8分)解分式方程:22+x x -23-x =221.(本小题满分8分)如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE的平行线与线段ED 的延长线交于点F ,连结AE 、CF .(1)求证:AF =CE ;(2)若 AC =EF ,试判断四边形AFCE 是什么样的四边形, 并证明你的结论.22.(本小题满分10分)为了鼓励居民节约用水,我市某地水费按下表规定收取:每户每月用水量不超过10吨(含10吨)超过......10..吨的部分水费单价1.30元/吨2.00元/吨(1)某用户用水量为x吨,需付水费为y元,则水费y(元)与用水量x(吨)之间的函数关系式是:(0≤x≤10);y=(x>10);(2)若小华家四月份付水费17元,问他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?23.(本小题满分12分)如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.(1)求证:△ADE∽△BEC;(2)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.24.(本小题满分12分)已知抛物线25=-+-.y x kx k(1)求证:不论k为何实数,此抛物线与x轴一定有两个不同的交点;(2)若此二次函数图像的对称轴为x=1,求它的解析式;(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B,若P为x轴上一点,且△PAB为等腰三角形,求点P的坐标.25.(本小题满分14分)如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH的中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.(1)求证:点F是BD的中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.参考答案一、 选择题(本题共有12小题,每小题4分,共48分)二、填空题(本题共有6小题,每小题5分,共30分)13. 0,1,2,3,4 14. )1)(1)(2(1121-+-x x x x 15. 1 16. 762)3(22-+-=+--=x x x y17.33 18. 321+-=x y 三、解答题(本题共有7小题,共72分)19.22-+x x (8分) 20.x=72(8分)21.(1)证明:在△ADF 和△CDE 中, ∵AF ∥BE , ∴∠FAD =∠ECD .又∵D 是AC 的中点, ∴AD =CD . ∵∠ADF =∠CDE , ∴△ADF ≌△CDE . ∴AF =CE . (4分)(2)解:若AC=EF ,则四边形AFCE 是矩形.由(1)知AF ∥CE , ∴四边形AFCE 是平行四边形, 又∵AC=EF ∴四边形AFCE 是矩形. (4分)22.解:(1) 1.3x ,13+2(x -10). (4分)(2)设小华家四月份用水量为x 吨.∵17>1.30×10,∴小华家四月份用水量超过10吨,由题意得:1.30×10+(x -10) ×2=17,∴2x =24,∴x =12(吨). 即小华家四月份的用水量为12吨. (3分) (3)设该月用水量不超过10吨的用户有a 户,则超过10吨不超过15吨的用户为(100-a)户.由题意得:13 a +[13+(15-10) ×2](100- a)≥1682, 化简的:10 a ≤618,∴a ≤61.8,故正整数a 的最大值为61. 即这个月用水量不超过10吨的居民最多可能有61户. (3分)23. (1)证明:∵∠DEC =90°, ∴∠AED+∠BEC=90°,又 ∵∠AED+∠ADE=90°,∴∠BEC=∠ADE , 而∠A=∠B=90°,∴△ADE ∽△BEC . (6分)(2) 结论:△BEC 的周长与m 无关.在△EBC 中,由AE =m ,AB =a ,得BE =a -m ,设AD =x ,因为△ADE ∽△BEC ,所以AD AE DE BE BC EC ==, 即:x m a xa m BC EC-==-, 解得:a m m a m a x BC EC .x x(-)(-)(-)=,=所以△BEC 的周长=BE +BC +EC =a m m a m a x a m x x(-)(-)(-)(-)++=m a x a m 1x x ⎛⎫⎪⎝⎭-(-)++=a m a m x g +(-)=22a m x - ① 因为AD =x ,由已知AD+DE =AB=a 得DE =a -x ,又AE =m在Rt △AED 中,由勾股定理得:222x m a x +=(-)化简整理得:22a m 2ax -= ②把②式代入①,得△BEC 的周长=BE +BC +EC =2ax2a x=, 所以△BEC 的周长与m 无关. (6分) 24. (1) 证明:∵⊿=k 2-4k+20=(k-2)2+16>0 ,∴不论k 为何实数,此抛物线与x 轴一定有两个不同的交点 . (4分)(2) 解:由已知得2k=1,∴k=2,∴所求函数的解析式为y=x 2-2x-3.(4分)(3)(-2,0), (3-0), (3+0), (-1,0) . (4分)25.(1)证明:∵CH ⊥AB ,DB ⊥AB ,∴△AEH ∽AFB ,△ACE ∽△ADF∴FDCEAF AE BF EH ==,∵HE =EC ,∴BF =FD ,即点F 是BD 的中点(4分)(2)方法一:连结CB 、OC .∵AB 是直径,∴∠ACB =90°,∵F 是BD 中点, ∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO , ∴∠OCF=∠OCB +∠BCF =∠OBC +∠ACO = 90°, ∴CG 是⊙O 的切线. (5分)方法二:可证明△OCF ≌△OBF .(3)解:由FC=FB=FE 得:∠FCE=∠FEC ,又由已知可得CH ∥DB , 所以∠AFB=∠BFG ,从而可证得:FA =FG ,且AB =BG .由切割线定理得:(2+FG )2=BG ×AG=2BG 2 ○1在Rt△BGF中,由勾股定理得:BG2=FG2-BF2○2由○1、○2得:FG2-4FG-12=0解之得:FG1=6,FG2=-2(舍去)∴AB=BG=24∴⊙O半径为22.(5分)。
长郡中学2024级高一综合能力检测试卷数学时量:90分钟 满分100分一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符题目要求的.1.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿日兆.”说明了大数之间的关系:1亿1=万1万,1兆1=万1×万1×亿.若1兆10m=,则m 的值为( ) A.4 B.8C.12D.16【答案】D 【解析】【分析】由指数幂的运算性质即可求解. 【详解】1万=410,所以1亿=810, 所以1兆=8816101010×=, 所以16m =. 故选:D2.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒大寒),若从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为( )A.12B.112C.16D.14【答案】D 【解析】【分析】根据概率的计算公式即可求解.【详解】从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为61244=, 故选:D3.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 所表示的数为( )A. 2B.1−C.D.1【答案】B 【解析】【分析】利用勾股定理和数轴的知识求得正确答案.【详解】由于AC =,所以点M所表示的数为)231+−=−.故选:B4. 若关于x 的不等式组()532223x x x x a + ≥−+<+恰好只有四个整数解,则a 的取值范围是( )A. 53a <−B. 5433a −≤<− C. 523a −<−≤D. 523a −<<−【答案】C 【解析】【分析】化简不等式组,由条件列不等式求a 的取值范围. 【详解】解不等式532x x +≥−,得11x ≤, 解不等式()223x x a +<+,得23x a >−, 由已知可得7238a ≤−<, 所以523a −<−≤.故选:C.5. 在ABC ,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A ,B ,P 为圆心画圆,圆A 的半径为1,圆B 的半径为2,圆P 的半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A. 内含 B. 相交 C. 外切 D. 相离【答案】B 【解析】【分析】由题意条件分析两圆圆心距与两半径和差的大小关系即可得. 【详解】由圆A 与圆P 内切,则312PA =−=,5AB =, 又点P 在ABC 内,则PA PB AB +>,且PB AB <, 所以523PB AB PA >−=−=,且5PB <, 则3232PB −<<+,由圆B 的半径为2,圆P 的半径为3, 所以圆P 与圆B 相交. 故选:B.6. 对于正整数k 定义一种运算:1()[][]44k k f k +=−,例:313(3)[][]44f +=−,[]x 表示不超过x 的最大整数,例:[3.9]3=,[ 1.8]2−=−.则下列结论错误的是( ) A. ()10f =B. ()0f k =或1C. ()()4f k f k +=D. ()()1f k f k +≥【答案】D 【解析】【分析】根据给定的定义,逐项计算判断即可.【详解】对于A ,11(1)[][]00024f =−=−=,A 正确; 对于B ,取4,1,2,3,4k n i i =+=,n 为自然数, 当4i =时,1()[1][1][1]044f k n n ++−+,当3i =时,33()[1][]1([])144f k n n n n =+−+=+−+=,当1,2i =时,11()[][][]([])04444i i i if k n n n n ++=+−+=+−+=,B 正确; 对于C ,11(4)[1][1]1[](1[])()4444k k k kf k f k +++=+−+=+−+=,C 正确; 对于D ,414313(31)[][]0,(3)[][]14444f f +++=−==−=,即(31)(3)f f +<,D 错误.故选:D7. 如图,点A 为反比例函数()10y x x=−<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例函数()40yx x=>的图象交于点B ,则AO BO 的值( )A.12B.14C.D.13【答案】A 【解析】【分析】设121214,,,A x B x x x −,由,A B 两点分别做x 轴的垂线,垂足分别为,E F ,由AO BO ⊥,得∽∠ AOE OBF ,由==AEEO AO OFBF BO,可得答案. 【详解】设AA �xx 1,−1xx 1�,BB �xx 2,4xx 2�(xx <0,xx 2>0),由,A B 两点分别做x 轴的垂线,垂足分别为,E F , 且()()12,0,,0E x F x ,因为AO BO ⊥,所以,∠=∠∠=∠AOE OBF OAE BOF , 所以∽∠ AOE OBF ,所以AE EO OF BF =,可得112214−−=x x x x ,即22124x x =,所以122x x =−, 所以12121211==−==−=A Ex x x OA BO OFx.故选:A.8. 若二次函数的解析式为()()()2215y x m x m =−−≤≤,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是( ) A. 124q −≤≤ B. 50q −≤≤C. 54q −≤≤D. 123q −≤≤【答案】A 【解析】【分析】由二次函数解析式可求得对称轴为1x m =+,进而可得412p p m ++=+,由函数图象过点(),p q ,可得2(1)4q m =−−+,可求q 的取值范围.【详解】因为二次函数解析式为()()()2215y x m x m =−−≤≤, 所以二次函数的对称轴为1x m =+,函数图象过点(),p q 和点()4,p q +,故点(),p q 和点()4,p q +关于直线1x m =+对称, 所以412p p m ++=+,所以1[0,4]p m −∈, 又()()()()2222121223(1)4q p m p m m m m m m =−−=−−−−=−++=−−+, 当1m =,max 4q =,当5m =,min 12q =−,所以124q −≤≤. 故选:A.二、填空题:本题共4小题,每小题4分,共16分.9. 分解因式:432449a a a −+−=______. 【答案】2(23)(1)(3)a a a a −++− 【解析】【分析】根据给定条件,利用公式法及十字相乘法分解因式即可得解.【详解】43222222449(2)9(23)(23)(23)(1)(3)a a a a a a a a a a a a a −+−=−−=−+−−=−++−. 故答案为:2(23)(1)(3)a a a a −++−的10. 直线1:1l y x =−与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15°,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】y =【解析】【分析】先求得2l 的倾斜角,进而求得直线2l 对应的函数表达式. 【详解】直线1:1l y x =−与x 轴交于点 1,0A , 直线1:1l y x =−的斜率为1,倾斜角为45°,所以2l 的倾斜角为60°所以直线2l 对应的函数表达式是)1y x =−=.故答案为:y=−11. 若关于x 的分式方程22411x a x ax x −−+−=−+的解为整数,则整数a =______. 【答案】1± 【解析】【分析】由分式方程有意义可知1x ≠且1x ≠−,再化简方程求解2x a=,由,a x 均为整数可求.【详解】则方程241x a x −−−1x ≠且1x ≠−. 方程可化为222211x a x ax x −−+−=+−+,即2211a a x x −+=−+, 解得2x a=,由1x ≠且1x ≠−,所以2a ≠且2a ≠−.由a 为整数,且x 为整数,则当1a =−,2x =−,或当1a =,2x =时满足题意. 所以1a =±. 故答案为:1±.12. 如图,已知两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C ,D 分别是1l ,2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为______.【答案】13【解析】【分析】因为BH CD ⊥于点H ,所以点 H 在以BE 为直径的圆上运动, 当 AH 与圆 O 相切时, BAH ∠ 最大,据此在OHA 求解即可. 【详解】12//,//,AC BD l l∴ 四边形 ACBD 是平行四边形 12AE BE AB ∴==A 为定点, 且 2//AB l AE ∴ 为定值,BH CD ⊥ 90BHE ∠∴=, 如图,取BE 的中点O ,则点 H 在以BE 为直径的圆上运动,此时 1123OE BE OA ==, 当 AH 与圆 O 相切时, BAH ∠ 最大1sin 3OH BAH OA ∠∴==故答案为:13.三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13. 某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制),对评委给某位选手的打分进行整理、描述和分析下面给出了部分信息.a .教师评委打分:86 88 90 91 91 91 91 92 92 98b .学生评委打分的频数分布直方图如下(数据分6组:第1组8285x ≤<,第2组8588x ≤<,第3组8891x ≤<,第4组9194x ≤<,第5组9497x ≤<,第6组97100x ≤≤);平均数中位数众数教师评委 91 91 m 学生评委90.8n93c .评委打分的平均数、中位数、众数如上: 根据以上信息,回答下列问题:①m 的值为______,n 的值位于学生评委打分数据分组的第______组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则x ______91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前,5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评1评委2评委3评委4评委5甲 93 90 92 93 92 乙9192929292丙 90 94 90 94 k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是______,表中k (k 为整数)的值为______.【答案】(1)①91;4;②< (2)甲;92 【解析】【分析】(1)①根据众数以及中位数的定义解答即可;②根据算术平均数的定义求出8名教师评委打分的平均数,即可得出答案; (2)根据方差的定义和平均数的意义求解即可. 【小问1详解】①由题意得,教师评委打分中91出现次数最多,故众数91m =;45名学生评委打分数据的中位数是第23个数,故n 的值位于学生评委打分数据分组的第4组; ②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x , 则1(8890919191919292)90.758x =×+++++++=,91x ∴<.【小问2详解】甲选手的平均数为1(9390929392)925×+++=, 乙选手的平均数为1(9192929292)91.85×++++=, 因为丙在甲、乙、丙三位选手中的排序居中,所以三位选手中排序最靠前的是甲,且丙的平均数大于或等于乙的平均数, 因为5名专业评委给乙选手的打分为91,92,92,92,92, 乙选手的方差2221[4(9291.8)(9191.8)]0.165S =××−+−=乙, 5名专业评委给丙选手的打分为90,94,90,94,k , 所以乙选手的方差小于丙选手的方差,所以丙选手的平均数大于乙选手的平均数,小于或等于甲选手的平均数,∴9390929392909490949192929292k ++++≥++++>++++,9291k ∴≥>, k 为整数,的k ∴的值为92.14. 根据以下素材,探索完成任务——如何设计摇椅的椅背和坐垫长度?素材一:某公司设计制作一款摇椅,图1为效果图,图2为其侧面设计图,其中FC 为椅背,EC 为坐垫,C ,D 为焊接点,且CD 与AB 平行,支架AC ,BD 所在直线交于圆弧形底座所在圆的圆心O .设计方案中,要求A ,B 两点离地面高度均为5厘米,A ,B 两点之间距离为70厘米;素材二:经研究,53OCF ∠=°时,舒适感最佳.现用来制作椅背FC 和坐垫EC 的材料总长度为160厘米,设计时有以下要求: (1)椅背长度小于坐垫长度;(2)为安全起见,摇椅后摇至底座与地面相切于点A 时(如图3),F 点比E 点在竖直方向上至少高出12厘米.(sin530.8°≈,cos530.6°≈,tan53 1.3°≈)任务:(1)根据素材求底座半径OA ; (2)计算图3中点B 距离地面的高度;(3)①求椅背FC 的长度范围;(结果精确到0.1m ) ②设计一种符合要求的方案. 【答案】(1)125厘米;(2)19.6厘米 (3)①64.580FC ≤<;②70cm ,90cm (答案不唯一). 【解析】【分析】(1)根据四边形AHNB 为矩形,35AG BG ==厘米,5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,由勾股定理求出r 即可得出答案;(2)由四边形ANBK 为矩形,进而得AK BN h ==,()125cm,125cm OK h OB =−=,然后在直角三角形中由勾股定理列出关于h 的方程,解方程求出h 即可得出答案;(3)①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,先求出cos cos 0.28QCD OAB ∠=∠=,设椅背FC x =厘米,则坐垫(160)EC x =−,即可得0.60.28(160)12x x −−≥,由此解得64.5x ≥,据此可得椅背FC 的长度范围;②在①中椅背FC 的长度范围任取一个FC 的值,再计算出EC 的值即可,例如取70FC =厘米,则1607090EC =−=(厘米);(答案不唯一,只要在FC 的长度范围内即可). 【小问1详解】过点A 作AH 垂直地面于H ,过点O 作OG AB ⊥于G ,OG 的延长线于地面交于点M ,如图所示:AB 平行于地面,∴四边形AHNB 为矩形,1352AG BG AB ===厘米, 5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,(5)OG OM GM r ∴=−=−厘米,在Rt OAG ∆中,OA r =厘米,35AG =厘米,(5)OGr =−厘米, 由勾股定理得:222OA OG AG =+,即:222(5)35r r =−+, 解得:125r =,∴底座半径OA 的长度为125厘米;【小问2详解】过点B 作BN 垂直地面于N ,BK OA ⊥于K ,如图所示:设BN h =,底座与地面相切于点A ,OA ∴垂直地面于点A ,∴四边形ANBK 为矩形,AK BN h ∴==,由任务一可知:125cm,125OA OB OK OA AK h ==∴==--, 在Rt ABK △中,cm,=70cm AK h AB =, 由勾股定理得:2222270BK AB AK h =−=−,在Rt OBK 中,()125cm,125cm OK h OB =−=, 由勾股定理得:22222125(125)BK OB OK h =−=−−,222270125(125)h h ∴−=−−,解得:19.6h =,∴点B 距离地面的高度为19.6厘米;【小问3详解】①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,如图所示://CD AB ,QCD OAB ∴∠=∠,由任务②可知:19.6AK h ==厘米,70AB =厘米, 在Rt ABK △中,19.6cos 0.2870AK OAB AB ∠===, cos cos 0.28QCD OAB ∴∠=∠=,椅背FC 和坐垫EC 的材料总长度为160厘米, ∴设椅背FC x =厘米,则坐垫(160)EC x =−, 椅背长度小于坐垫长度,160x x ∴<−,解得:80x <,在Rt CQE △中,cos 0.28CQQCD CE∠==, 0.280.28(160)CQ CE x ∴==−厘米,在Rt CFP △中,cos CPOCF CF∠=, cos cos530.6CP CF OCF x x ∴=⋅∠=⋅°≈(厘米), F 点比E 点在竖直方向上至少高出12厘米,12AP AN ∴−≥,即:()12AC CP AC CQ +−+≥,12CP CQ ∴−≥,0.60.28(160)12x x ∴−−≥,解得:64.5x ≥, 又80x < ,64.580x ∴≤≤,即:64.580FC ≤≤,∴椅背FC 的长度范围是:64.580FC ≤<;②由于64.580FC ≤<,故取70cm FC =,则1607090cm EC ==-.15. 定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P ,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x m =的“迭代函数”.例如:图1是函数1y x =+的图象,则它关于直线0x =的“迭代函数”的图象如图2所示,可以得出它的“迭代函数”的解析式为()()10,10.x x y x x +≥ =−+<(1)函数1y x =+关于直线1x =的“迭代函数”的解析式为______.(2)若函数243y x x =−++关于直线x m =的“迭代函数”图象经过()1,0−,则m =______.(3)已知正方形ABCD 的顶点分别为:(),A a a ,(),B a a −,(),C a a −−,(),D a a −,其中0a >.①若函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,求a 的值; ②若6a =,函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,求n 的取值范围.【答案】(1)1,13,1x x y x x +≥ =−+<(2)m =m =,(3)①3;②()5,1,12−∞−∪−. 【解析】【分析】(1)取点()2,3M ,()3,4N ,求两点关于1x =的对称点,利用待定系数法求左侧图象的解析式,由此可得结论;(2)判断点()1,0−与函数243y x x =−++的图象的关系,再求()1,0−关于直线x m =的对称点,由条件列方程求m 即可;(3)①求函数6y x=关于直线2x =−的“迭代函数”的解析式,作函数图象,观察图象确定a 的值; ②分别在0n >,0n =,0n <时求函数6y x=关于直线x n =的“迭代函数”解析式,讨论n ,由条件确定n 的范围.小问1详解】在函数1y x =+的图象上位于1x =右侧的部分上取点()2,3M ,()3,4N , 点()2,3M 关于直线1x =对称点为(0,3), 点()3,4N 关于直线1x =的对称点为()1,4−,设函数1y x =+,1x >的图象关于1x =对称的图象的解析式为,1y kx b x =+<, 则34b k b = −+=,解得13k b =− = ,所以函数1y x =+关于直线1x =的“迭代函数”的解析式为1,13,1x x y x x +≥ =−+<;【的【小问2详解】取1x =−可得,2431432y x x =−++=−−+=−, 故函数243y x x =−++的图象不过点()1,0−, 又点()1,0−关于直线x m =的对称点为()21,0m +, 由已知可得()()20214213m m =−++++,1m >−,所以m =或m =,【小问3详解】①当0x >或20x −≤<时,函数6y x =关于直线2x =−的“迭代函数”的图象的解析式为6y x =, 当2x <−时,设点EE (xx ,yy )在函数6y x=关于直线2x =−的“迭代函数”的图象上,则点()4,x y −−在函数6y x=的图象上,所以64y x=−−, 所以函数6y x =关于直线2x =−的“迭代函数”的解析式为[)()()6,2,00,6,,24x xy x x∞∞ ∈−∪+ =∈−− −− , 作函数6y x=关于直线2x =−的“迭代函数”的图象如下:观察图象可得3a =时,函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,②若0n >,当x n ≥时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=, 当0x <或0x n <<时,设点EE (xx ,yy )在函数6y x=关于直线x n =的“迭代函数”的图象上,则点()2,n x y −在函数6y x=的图象上,所以62y n x=−, 所以函数6y x =关于直线x n =“迭代函数”的解析式为()()()6,,6,,00,2x n xy x n n x∞∞ ∈+ =∈−∪ − , 当6n >时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,的当6n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当16n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当1n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有3个公共点,当01n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当0n =时,函数6y x =关于直线xx =0的“迭代函数”的解析式为6,06,0x xy x x> =−< , 作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,若0n <,当0n x ≤<或0x >时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=, 当x n <时,设点EE (xx ,yy )在函数6y x=关于直线x n =的“迭代函数”的图象上, 则点()2,n x y −在函数6y x=的图象上, 所以62y n x=−,所以函数6y x =关于直线x n =的“迭代函数”的解析式为[)()()6,,00,6,,2x n xy x n n x ∞∞ ∈∪+ = ∈− −,当10n −<<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当1n =−时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当512n−<<−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有6个公共点,当52n=−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有5个公共点,当7522n−<<−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有4个公共点,当72n=−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有4个公共点,当762n −<<−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n =−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n <−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,综上,n 的取值范围为()51,12∞−−∪−,. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.16. 已知抛物线2y x bx c =−++与x 轴交于点()1,0A −,()3,0B .(1)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD △面积为1S ,PBE △面积为2S ,求12S S 的值; (2)如图2,点K 是抛物线的对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线//l x 轴,点Q 是直线l 上一动点求QM QN +的最小值.【答案】(1)19(2)【解析】【分析】(1)把点()1,0A −,()3,0B 代入抛物线方程,解出抛物线的解析式,设(0,)P p ,求出直线AP 解析式为y px p =+,联立方程223y px p y x x =+ =−++, 可得2(3,4)E p p p −−+,同理可得234(,)393p p p D −−+,即可得1S ,2S ,化简可得结果; (2)作点N 关于直线l 的对称点N ′,连接MN ′,过M 点作MF NN ′⊥于F ,求出(1,0)K ,设直线MN解析式为y kx d =+,把点K 坐标代入即可知直线MN 的解析式y kx k =−,设2(,23)M m m m −++,2(,23)N n n n −++,求出2(,25)N n n n ′−+,可得QM QN QM QN MN ′′+=+≥,结合2(,23)F n m m −++,可得222421780MN MF N F k k =+=++′′,从而得到QM QN +的最小值. 【小问1详解】把点()1,0A −,()3,0B 代入抛物线方程2y x bx c =−++得:10930b c b c −−+= −++=, 解得:23b c = =, 所以抛物线方程为:223y x x =−++, 设(0,)P p ,直线AP 解析式为11y k x b =+, 把点()1,0A −,(0,)P p 代入得:1110k b b p −+= = , 所以线AP 解析式为y px p =+,联立223y px p y x x =+ =−++ ,解得:10x y =−=或234x p y p p =− =−+ , 所以2(3,4)E p p p −−+,设直线BP 解析式为22y k x b =+ 把点()3,0B ,(0,)P p 代入得:22230k b b p+= = , 直线BP 解析式为3py x p =−+ 联立2323p y x p y x x =−+ =−++ ,解得:30x y = = 或233493p x p p y − = =−+可得234(,)393p p p D −−+, 所以221142()2(3)2939ABD ABP D P p p S S S AB y y p p p =−=⋅−=−+−=− , ()2221()242(3)2ABE ABP E P S S S AB y y p p p p p =−=⋅−=−+−=− , 所以2122192(3)92(3)S p p S p p −=−= 【小问2详解】作点N 关于直线l 的对称点N ′,连接MN ′,过M 点作MF NN ′⊥于F ,如图:因为2223(1)4y x x x =−++=−−+,所以抛物线223y x x =−++的对称轴为1x =, 所以(1,0)K ,设直线MN 解析式为y kx d =+, 把点(1,0)K 代入得:=0k d +,所以=d k −,所以直线MN 的解析式为y kx k =− 设2(,23)M m m m −++,2(,23)N n n n −++,联立223y x x y kx k =−++ =−,可得2(2)30x k x k +−−−= 则2m n k +=−,3mn k =−−,因为N ,N ′关于直线l :4y =对称,所以2(,25)N n n n ′−+,则QM QN QM QN MN ′′+=+≥,又2(,23)F n m m −++, 所以222()2N F m n m n +−++′,FM m n =−, 在Rt MFN ′ 中,2222222()2()2MN MF N F m n m n m n =+=−++−++ ′ ′,222()4()22()2m n mn m n mn m n =+−++−−++222(2)4(3)(2)2(3)2(2)2k k k k k =−−−−+−−−−−−+ 421780k k =++所以当0k =时,2MN ′最小为80,此时MN ′=所以QM QN +≥,即QM QN +的最小值为。
新高一分班考试数学真题(三)一、选择题(每题5分,共40分)1.化简=-2a a ( )A .aB .a -C .aD .2a2.分式1||22---x x x 的值为0,则x 的值为 ( )A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点.若EF =2,BC =5,CD =3, 则tan C 等于 ( )A .43 B .35 C .34 D .454.如图,PA 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P = 40°,则∠BAC =( )O CBAA .040 B .080 C .020 D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是 ( )DCBAA .21 B .165 C .167 D .43 6.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为 ( )B C EA. 6B.4 C 。
5 D. 37.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )C8。
若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P,Q )是函数y 的一个“友好点对”(点对(P ,Q)与(Q ,P)看作同一个“友好点对”).已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有( )个A .0B 。
1C 。
2D 。
3 二、填空题(每题5分,共50分)9.已知a 、b 是一元二次方程2210x x --=的两个实数根,则代数式()()2a b a b ab -+-+ 的值等于10.有一个六个面分别标上数字1、2、3、4、5、6的正方体,甲、乙、丙三位同学从不同的角度观察的结果如图所示.如果记2的对面的数字为m ,3的对面的数字为n ,则方程1x m n +=的解x 满足1+<<k x k ,k 为整数,则k =11.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF =CF =8,则AB 的长为12.记函数y 在x 处的值为()f x (如函数2y x =也可记为2()f x x =,当1x =时的函数值可记为(1)1f =)。
XXX新高一分班考试数学试卷(含答案) XXX新高一分班考试试卷数学一、选择题(共20小题)1.若n(n≠0)是关于x的方程x^2+mx+2n=0的根,则m+n的值为()A。
1B。
2C。
-1D。
-22.如图,抛物线y=x^2-x-2与直线y=x-2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B。
若使点P运动的总路径最短,则点P运动的总路径的长为()A。
2√2+2B。
3√2C。
2√2+4D。
4√23.如图,抛物线m:y=ax^2+b(a0)与x轴于点A、B (点A在点B的左侧),与y轴交于点C。
将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为()A。
ab=-2B。
ab=-3C。
ab=-4D。
ab=-54.如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,则BE 的长为()A。
4B。
2√3C。
5D。
3√35.如图,边长为1的正方形ABCD绕点A旋转得到正方形AB1C1D1,若AB1落在对角线AC上,连接A,则∠AOB1等于()A。
22.5°B。
45°C。
67.5°D。
75°6.正方形ABCD中,对角线AC、BD交于O,Q为CD上任意一点,AQ交BD于M,过M作MN⊥AM交BC于N,连AN、QN。
下列结论:①MA=MN;②∠AQD=∠AQN;③S△AQN=S五边形ABNQD;④QN是以A为圆心,以AB为半径的圆的切线。
其中正确的结论有()A。
①②③④B。
只有①③④C。
只有②③④D。
只有①②7.如图,直线y=k和双曲线y=1/x相交于点P,过点P作PA垂直于x轴,垂足为A,x轴上的点kA,A1,A2,…An的横坐标是连续整数,过点A1,A2,…An:分别作x轴的垂线,与双曲线及直线y=k分别交于点B1,B2,…Bn和点C1,C2,…Cn,则k的值为()A。
高一分班考试数学试题
一、选择题(每题3分,共36分)
1.五名精锐教育的学生在“爱心捐助”活动中,捐款数额为8,10,10,4,6(单位:元),这组数据的中 位数是()
A .10
B .9
C .8
D .6
2.二次函数0,2
=+++=b a b ax x y 若中,则它的图象必经过点() A.(1-,1-)B.(1,1-)C .(1,1)D .(1-,1) 3.图①是一个边长为()m n +的正方形,小明将 图①中的阴影部分拼成图②的形状,由图①和图② 能验证的式子是()
A .22()()4m n m n mn +--=
B .2
2
2
()()2m n m n mn +-+= C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-
4.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为() A .65,240x y x y =⎧⎨
=-⎩B .65,240x y x y =⎧⎨=+⎩C .56,240x y x y =⎧⎨=+⎩D .56,
240x y x y =⎧⎨=-⎩
5.如图,小明利用有一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距 离BE 为5m ,AB 为1.5m (即小明的眼睛距地面的距离),那么这棵树高是()
A
3
2
+)mB
.(32)m
C
mD .4m 6.如图,在平面直角坐标系中,以O (0,0),A (1,1), B (3,0)为顶点,构造平行四边形,下列各点中不能作为 平行四边形顶点坐标的是() A .(-3,1)B .(4,1) C .(-2,1)D .(2,-1)
7.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为62
cm ,则打开后梯形的周长是()
图①
图②
第3题图
第6题图
A .(
10+2cmB .(
cmC .22cmD .18cm
8.已知Rt△ABC 的斜边为10,内切圆的半径为2,则两条直角边的长为() A.5和5
3B.34和53C.6和8D.5和7
9.和距离为2cm 的两条平行线都相切的圆的圆心的轨迹是() A.和两条平行线都平行的一条直线.
B.在两条平行线之间且与两平行线都平行的一条直线.
C.和两平行线的距离都等于2cm 的一条平行线.
D.和这两条平行线的距离都等于1cm 的一条平行线.
10.过圆外一点作圆的割线PBC 交圆于点B 、C ,作圆的切线PM ,M 为切点,若PB=2, BC=3,那么PM 的长为() A.5B.6C.10D.15 11.已知12x x +
=,那么16161
x x
+的值为() A.16B.8 C.4D.2
12.已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第2003个三角形的周长为() A.
2000
12 B.
2001
12 C.
2002
12 D.
2003
12
二、填空题(每题3分,共15分)
13.实数y x ,满足关系式1
1
2+-=x x y ,则y 的取值范围为.
14.令
11)(+=
x x f ,则:=++++++++)1()2
1()20101()20111()2011()2()1(f f f f f f f . 15.小明上周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋
比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶,若设他上周三买了x 袋牛奶,则根据题意列得方程为__________. 16.定义运算a
⊗b =a (1-b ),下面给出了关于这种运算的四个结论:
①2⊗(-2)=6②a ⊗b =b ⊗a
③若a +b =0,则(a ⊗a )+(b ⊗b )=2a b ④若a ⊗b =0,则a =0.
其中正确结论的序号是(填上你认为所有正确结论的序号).
17.对于实数x ,规定1
)(-='n n
nx x ,若9)(3
='x ,则=x .
三、解答题(共7道大题,49分)
第7题图
18.(6分)解不等式组43315
x x x x -≥⎧⎪
-⎨>--⎪⎩,并把解集在数轴上表示出来.
19.(6分)某区为了解全区2800名九年级学生英语口语考试成绩的情况,从中随机抽取了部分学生的成绩
(满分24分,得分均为整数),制成下表:
(1)填空:
①本次抽样调查共抽取了名学生; ②学生成绩的中位数落在分数段;
③若用扇形统计图表示统计结果,则分数段为x ≤16的人数所对应扇形的圆心角为 °;
(2)如果将21分以上(含21分)定为优秀,请估计该区九年级考生成绩为优秀的人数. 20.(6分)已知抛物线与x
轴交于A (-1,0)和B (3,0)两点,且与y 轴交于点C (0,3). (1)求抛物线的解析式;
(2)抛物线的对称轴方程和顶点M 坐标; (3)求四边形ABMC 的面积.
21.(6分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC ,DE=4cm ,
矩形ABCD 的周长为32cm ,求AE 的长.
22.(8分)如图,直角ABC ∆中,90C ∠=︒,AB =sin 5
B =,点P 为边B
C 上一动点,P
D ∥AB ,PD 交AC 于点D ,连结AP .
(1)求AC 、BC 的长;
(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大,并求出最大值.
23.(8分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用
y (元)与所买水性笔支数x (支)之间的函数关系式;
(2)对x 的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
24.(9分)如图,在平面直角坐标系中,CA ⊥x 轴于点A (1,0),DB ⊥x 轴于点B (3,0),直线CD 与x 轴、
y 轴分别交于点F 、E ,4=ABCD S 四边形.
第21题图 B
C
A
E
D F
(1)若直线CD 的解析式为3+=kx y ,求k 的值;
(2)试探索在x 轴正半轴上存在几个点P ,使△EPF 为等腰三角形,并求出这些点的坐标.
以下无正文
仅供个人用于学习、研究;不得用于商业用途。
?толькодлялюдей,которыеиспользуютсядляобучения,исследованийинедолжныиспользоватьсявкоммерческихцелях.?
Forpersonaluseonlyinstudyandresearch;notforcommercialuse.
Nurfürdenpers?nlichenfürStudien,Forschung,zukommerziellenZ weckenverwendetwerden.
Pourl'étudeetlarechercheuniquementàdesfinspersonnelles;pasàdesfinscommerciales.。