2019山东各地高考数学联考分类篇:01集合
- 格式:doc
- 大小:136.98 KB
- 文档页数:2
问题01 数集与点集的运算一、考情分析集合是高考数学必考内容,一般作为容易题.给定集合来判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){}2,2x y y xx =-.(2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----.(3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展1.若有限集A 中有n 个元素,则集合A 的子集个数为2n,真子集的个数为2n-1. 2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUAB A B U ⇔=∅⇔=痧 .3.奇数集:{}{}{}21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z .4. 数集运算的封闭性,高考多次考查,基础知识如下:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集Z 对加、减、乘法运算是封闭的.有理数集、复数集对四则运算是封闭的.对加、减、乘运算封闭的数集叫数环,有限数集{0}就是一个数环,叫零环.设F 是由一些数所构成的集合,其中包含0和1,如果对F 中的任意两个数的和、差、积、商(除数不为0),仍是F 中的数,即运算封闭,则称F 为数域. 四、题型分析(一)与数集有关的基本运算【例1】【2018年理新课标I 卷】已知集合,则A. B.C.D.【分析】首先利用一元二次不等式的解法,求出的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.【点评】对于集合的运算,一般先把参与运算的集合化简,解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果,要注意端点值的取舍.【小试牛刀】【2017全国1理1】已知集合{}1A x x =<,{}31xB x =<,则( ). A. {}0AB x x =< B. A B =R C. {}1A B x x => D. A B =∅【答案】A【解析】{}1A x x =<,{}{}310xB x x x =<=<,所以{}0AB x x =<,{}1AB x x =<.故选A.(二)与点集有关的基本运算 【例2】已知3(,)|3,{(,)|20},2y M x y N x y ax y a M N x -⎧⎫===++==∅⎨⎬-⎩⎭,则=a ( )A .-2B .-6C .2D .一2或-6【分析】首先分析集合M 是除去点(2,3)的直线33y x =-,集合N 表示过定点(1,0)-的直线,M N =∅等价于两条直线平行或者直线20ax y a ++=过(2,3),进而列方程求a 的值.【解析】由3333(2)2y y x x x -=⇒=-≠-若M N φ=,则①:点(2,3)在直线20ax y a ++=上,即2602a a a ++=⇒=-;②:直线33y x =-与直线20ax y a ++=平行,∴362aa -=⇒=-,∴2a =-或6-.【点评】分析集合元素的构成,将集合运算的结果翻译到两条直线的位置关系是解题关键. 【小试牛刀】【2018年理数全国卷II 】已知集合,则中元素的个数为A. 9B. 8C. 5D. 4 【答案】A 【解析】,当时,;当时,;当时,;所以共有9个,选A.(三)根据数集、点集满足条件确定参数范围【例3】设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为( ) A .(-∞,2) B.(-∞,2] C .(2,+∞) D.[2,+∞)【分析】先得到A =(-∞,1]∪[a ,+∞),B =[a -1,+∞),再根据区间端点的关系求参数范围.【点评】求解本题的关键是对a 进行讨论.【小试牛刀】已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为________. 【答案】(5,6]【解析】因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. (四) 数集、点集与其他知识的交汇【例4】已知集合M 是满足下列性质的函数()f x 的全体:存在非零常数T,对任意x ∈R,有()()f x T Tf x +=成立.(1)函数()f x x =是否属于集合M ?说明理由;(2)设函数()(0x f x a a =>且1a ≠)的图象与y x =的图象有公共点,证明:()x f x a =∈M;(3)若函数()sin f x kx =∈M ,求实数k 的取值范围.【分析】抓住集合M 元素的特征,集合M 是由满足()()f x T Tf x +=的函数构成. 【解析】(1)对于非零常数T ,f (x +T )=x +T ,Tf (x )=Tx . 因为对任意x ∈R,x +T =Tx 不能恒成立,所以f (x )=x M .(2)因为函数f (x )=a x(a >0且a ≠1)的图象与函数y =x 的图象有公共点, 所以方程组:⎪⎩⎪⎨⎧==xy a y x 有解,消去y 得a x =x ,显然x =0不是方程的a x =x 解,所以存在非零常数T ,使a T=T . 于是对于f (x )=a x,有f (x +T )=a x +T = a T ·a x =T ·a x =T f (x ),故f (x )=a x ∈M .【点评】集合与其他知识的交汇处理办法往往有两种:其一是根据函数、方程、不等式所赋予的实数的取值范围,进而利用集合的知识处理;其二是由集合的运算性质,得到具有某种性质的曲线的位置关系,进而转化为几何问题处理.【小试牛刀】在直角坐标系xoy 中,全集},|),{(R y x y x U ∈=,集合}20,1s i n )4(c o s |),{(πθθθ≤≤=-+=y x y x A ,已知集合A 的补集A C U 所对应区域的对称中心为M ,点P 是线段)0,0(8>>=+y x y x 上的动点,点Q 是x 轴上的动点,则MPQ ∆周长的最小值为( ) A .24 B .104 C .14 D .248+ 【答案】B(五)与数集、点集有关的信息迁移题 【例5】若集合A 具有以下性质: (Ⅰ)0∈A,1∈A ;(Ⅱ)若x ∈A ,y ∈A ,则x -y ∈A ,且x ≠0时,1x∈A .则称集合A 是“好集”.下列命题正确的个数是( ) (1)集合B ={-1,0,1}是“好集”;(2)有理数集Q 是“好集”;(3)设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A . A .0 B .1 C .2 D .3【分析】抓住新定义的特点,根据“好集”满足的两个性质,逐个进行验证.【解析】选C,(1)集合B 不是“好集”,假设集合B 是“好集”,因为-1∈B,1∈B ,所以-1-1=-2∈B ,这与-2∉B 矛盾.(2)有理数集Q 是“好集”,因为0∈Q,1∈Q ,对任意的x ∈Q ,y ∈Q ,有x -y ∈Q ,且x ≠0时,1x∈Q ,所以有理数集Q 是“好集”.(3)因为集合A 是“好集”,所以0∈A ,若x ∈A ,y ∈A ,则0-y ∈A ,即-y ∈A ,所以x -(-y )∈A ,即x +y ∈A .【点评】紧扣新定义,抓住新定义的特点,把新定义叙述的问题的本质搞清楚,并能够应用到具体的解题过程中.【小试牛刀】【2017浙江温州高三模拟】已知集合22{(,)|1}M x y x y =+≤,若实数λ,μ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”,则以下集合中,存在“和谐实数对”的是( )A .{(,)|4}λμλμ+=B .22{(,)|4}λμλμ+= C .2{(,)|44}λμλμ-= D .22{(,)|4}λμλμ-= 【答案】C.【解析】分析题意可知,所有满足题意的有序实数对(,)λμ所构成的集合为{(,)|11,11}λμλμ-≤≤-≤≤,将其看作点的集合,为中心在原点,(1,1)-,(1,1)--,(1,1)-,(1,1)为顶点的正方形及其内部,A,B,D 选项分别表示直线,圆,双曲线,与该正方形及其内部无公共点,选项C 为抛物线,有公共点(0,1)-,故选C. 五、迁移运用1.【安徽省宿州市2018届第三次质检】已知全集,集合,集合,则( )A. B. C.D.【答案】A2.【四川省成都市2018届模拟】设,则是的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】由得或,作出函数和,以及的图象,如图所示,则由图象可知当时,,当时,,因为,所以“”是“”的充分不必要条件,故选A.点睛:本题主要考查了充分条件和必要条件的判定问题,其中正确作出相应函数的图象,利用数形结合法求解是解答的关键,着重考查了数形结合思想方法的应用,以及推理与论证能力.3.【辽宁省葫芦岛市2018届第二次模拟】设集合,,则()A. B. C. D.【答案】B【解析】,的子集个数为故选C.4.【河南省洛阳市2018届三模】设集合,,则的子集个数为()A. 4 B. 8 C. 16 D. 32【答案】C5.【安徽省皖江八校2018届联考】设集合,,若,则( )A.B.C.D.【答案】B【解析】∵,∴,即,∴,故选B. 6.【山东省济南2018届二模】设全集,集合,集合则下图中阴影部分表示的集合为( )A. B.C.D.【答案】D【解析】由题意可得:,,∴故选:D7.【安徽省江南十校2018届二模理】已知全集为,集合,,则( )A.B.C.D.【答案】C【解析】因为,,所以,即.8.【2018届四川成都高三上学期一诊模拟】已知集合2{|},{|320},A x x a B x x x =<=-+<若,A B B ⋂=则实数a 的取值范围是()A. 1a <B. 1a ≤C. 2a >D. 2a ≥ 【答案】D【解析】集合{}{}{}2|,|320|12A x x a B x x x x x =<=-+<=<<, ,A B B B A ⋂=∴⊆,则2a ≥,故选D.9.【2018届安徽蒙城高三上学期“五校”联考】已知集合{}{}0,1,1,0,3A B a ==-+,若A B ⊆,则a 的值为( )A. 2-B. 1-C. 0D. 1 【答案】A【解析】 因为{}{}0,1,1,0,3A B a ==-+,且A B ⊆, 所以31a +=,所以2a =-,故选A.10.【2018届湖南省五市十校教研教改共同体高三12月联考】已知集合{}220M x x x =--<,{N x y ==,则M N ⋃=( )A. {}1x x >- B. {}12x x ≤< C. {}12x x -<< D. {}0x x ≥ 【答案】A【解析】[)[){|12},1,1,2M x x N M N =-<<=+∞∴⋃=,选A. 11.已知集合,,则的元素个数为( )A .B .C .D . 【答案】B12.设集合,,记,则点集所表示的轨迹长度为( )A .B .C .D .【答案】D【解析】由题意的圆心为,半径为1,而圆心(-3sin α,-3cos α),满足(-3sin α)2+(-3cos α)2=9, 故圆心在以(0,0)圆心,半径为3的圆上,∴集合A 对应的几何图形为圆x 2+y 2=4和x 2+y 2=16之间的圆环区域,13.【2017全国2理2】设集合{}1,2,4A =,{}240B x x x m =-+=.若1AB =,则B =().A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C【解析】由题意知1x =是方程240x x m -+=的解,代入解得3m =,所以2430x x -+=的解为1x =或3x =,从而{}13B =,.故选C.14.若集合{}2|870,|3x M x N x x P x N ⎧⎫=∈-+<=∉⎨⎬⎩⎭,则M P 等于( )A.{}3,6B.{}4,5C.{}2,4,5D.{}2,4,5,7 【答案】C【解析】因为{}{}{}2|870|17=2,3,4,5,6,|3x M x N x x x N x P x N ⎧⎫=∈-+<=∈<<=∉⎨⎬⎩⎭,所以{}2,4,5M P =,故选C.15.已知集合{}∅=-==B A x y x A ,1,则集合B 不可能是( ) A .{}124+<x x xB .{}1),(-=x y y xC .{}1-=x yD 【答案】D 【解析】{}{}11≥=-==x x x y x A ,{}{}1)12(log 22≤=++-=y y x x y y ,故选D. 16.已知集合M 是由具有如下性质的函数()f x 组成的集合:对于函数()f x ,在定义域内存在两个变量12,x x且12x x <时有1212()()f x f x x x ->-.则下列函数①()(0)x f x e x =>;②ln ()x f x x=;③()f x =④()1sin f x x =+在集合M 中的个数是A .1个B .2个C .3个D .4个【答案】B对于③()()0f x f x '==>,函数()f x 在(0,)+∞单调递增,在定义域内存在两个变量12,x x 且12x x <时,在()f x 单调增区间时有0()1f x '<<,此时只须1x >时可得0()1f x '<<.满足题意 对于④()1sin ,,()cos f x x f x x '=+=,函数()f x 在3(2,2)()22k k k Z ππππ++∈单调递减,在定义域内存在两个变量12,x x 且12x x <时,在()f x 单调减区间时有()0f x '<,满足题意.17.设{}n a 是公比为q 的等比数列,||1q >,令1(1,2,)n n b a n =+=,若数列{}n b 有连续四项在集合{53,23,19,37,82}--中,则q =( )A .32-B .43-C .23-D .32【答案】A18.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊗B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ⊗B 中元素的个数为( )A .77B .49C .45D .30【答案】C【解析】如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A ⊗B 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A ⊗B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A ⊗B 中元素的个数为45.故选C.19.非空集合G 关于运算⊕满足:(1)对任意a ,G b ∈,都有G a b ⊕∈;(2)存在G e ∈,使得对一切G a ∈,都有a e e a a ⊕=⊕=,则称G 关于运算⊕为“融洽集”.现给出下列集合和运算:①{}G =非负整数,⊕为整数的加法;②{}G =偶数,⊕为整数的乘法;③{}G =平面向量,⊕为平面向量的加法;④{}G =二次三项式,⊕为多项式的加法;⑤{}G =虚数,⊕为复数的乘法.其中G 关于运算⊕为“融洽集”的是( )A .①③B .②③C .①⑤D .②③④【答案】B20.若集合(){},,,|04,04,04,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈且,(){},,,|04,04,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈且,用()card X 表示集合X 中的元素个数,则()()card E card F +=( )A .50B .100C .150D .200【答案】D【解析】()()333312341010200card E card F +=++++⨯=,故选D. 21.【2018届江苏省南京市多校高三上学期第一次段考】已知集合{}1,2,21A m =--,集合{}22,B m =,若B A ⊆,则实数m =__________.【答案】1【解析】由题意得2211m m m =-⇒=,验证满足22.设P 是一个数集,且至少含有两个数,若对任意a 、b P ∈,都有a b +、a b -、ab 、a P b ∈(除数0b ≠),则称P 是一个数域,例如有理数集Q 是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q M ⊆,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .【答案】①④【解析】当a b =时,0,1a a b P b -==∈,故可知①正确;当11,2,2a b Z ==∉不满足条件,故可知②不正确;对③当M 中多一个元素i 则会出现1i M +∉所以它也不是一个数域;故可知③不正确;根据数据的性质易得数域有无限多个元素,必为无限集,故可知④正确,故答案为①④.【点评】本题考查简单的合情推理、新定义问题以及转化与划归思想,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答都围绕新概念“数域” 对任意a 、b P ∈,都有a b +、a b -、ab 、这一性质展开的.。
高考数学名校地市必刷题型01集合运算姓名:__________________ 班级:______________ 得分:_________________一、单选题(共10小题)1.(2018•嘉兴模拟)已知函数f(x)=x2+ax+b,集合A={x|f(x)≤0},集合,若A=B≠∅,则实数a的取值范围是()A.B.[﹣1,5]C.D.[﹣1,3]【解答】解:设集合A={x∈R|f(x)≤0}={x|x2+ax+b≤0},由f(f(x))≤,即(x2+ax+b)2+a(x2+ax+b)+b﹣≤0,②A=B≠∅,可得b=,且②为(x2+ax+)(x2+ax+a+)≤0,可得a2﹣4×≥0且a2﹣4(a+)≤0,即为,解得≤a≤5,故选:A.【知识点】交集及其运算2.(2019•莱芜二模)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合:①M={(x,y)|y=x3﹣2x2+3};②M={(x,y)|y=log2(2﹣x)};③M={(x,y)|y=2﹣2x};④M={(x,y)|y=1﹣sin x};其中具有∟性的集合的个数是()A.1B.2C.3D.4【解答】解:由题意知:对于M中任意点P(x1,y1),在M中存在另一个点P′(x2,y2),使,即OP⊥OP′,即过原点任作一条直线与函数图象相交,都能过原点作另一条直线与此直线垂直,经验证①②③④皆满足.故选:D.【知识点】集合的表示法、函数的图象与图象的变换3.(2019•湖北模拟)已知集合A={x|0<x<2},集合B={x|﹣1<x<1},集合C={x|mx+1>0},若A∪B⊆C,则实数m的取值范围为()A.{m|﹣2≤m≤1}B.{m|﹣≤m≤1}C.{m|﹣1≤m≤}D.{m|﹣≤m≤}【解答】解:由题意,A∪B={x|﹣1<x<2},∵集合C={x|mx+1>0},A∪B⊆C,①m<0,x<﹣,∴﹣≥2,∴m≥﹣,∴﹣≤m<0;②m=0时,成立;③m>0,x>﹣,∴﹣≤﹣1,∴m≤1,∴0<m≤1,综上所述,﹣≤m≤1,故选:B.【知识点】集合的包含关系判断及应用4.(2020•安徽模拟)已知集合A={x|2x2+x﹣1<0),B={x|ln(3x﹣1)<0},则A∩B=()A.(﹣1,)B.(,)C.(,)D.(﹣1,)【解答】解:=,∴.故选:B.【知识点】交集及其运算5.(2020•石家庄一模)设集合P={x||x|>3},Q={x|x2>4},则下列结论正确的是()A.Q⫋P B.P⫋Q C.P=Q D.P∪Q=R【解答】解:集合P={x||x|>3}={x|x<﹣3或x>3},Q={x|x2>4}={x|x<﹣2或x>2},∴P⫋Q,故选:B.【知识点】集合的包含关系判断及应用6.(2020•重庆模拟)已知集合A={y|y=1﹣2x},B={x|x2﹣2x﹣3>0},则A∩∁R B=()A.∅B.[﹣1,1)C.(1,3]D.[﹣3,1)【解答】解:∵A={y|y<1},B={x|x<﹣1或x>3},∴∁R B={x|﹣1≤x≤3},∴A∩∁R B=[﹣1,1).故选:B.【知识点】交、并、补集的混合运算7.(2020•陕西一模)已知集合A={x|x2﹣4x+5>0},,则A∩B=()A.(﹣2,3)B.[﹣2,3]C.[﹣2,3)D.∅【解答】解:x2﹣4x+5=(x﹣2)2+1>0,∴集合A=R,且B={x|﹣2≤x<3},∴A∩B=[﹣2,3).故选:C.【知识点】交集及其运算8.(2020•郑州一模)设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B的子集个数为()A.2B.4C.8D.16【解答】解:∵A={x∈N|﹣2≤x≤2}={0,1,2},B={y|y≤1},∴A∩B={0,1},∴A∩B的子集个数为22=4个.故选:B.【知识点】交集及其运算、子集与真子集9.(2020•南充模拟)已知集合A={x|x﹣1≥0},B={x|x2≤1},则A∪B=()A.{x|x≥1}B.{x|x≥﹣1}C.{x|x≤1}D.{x|x≤﹣1}【解答】解:∵A={x|x≥1},B={x|﹣1≤x≤1},∴A∪B={x|x≥﹣1}.故选:B.【知识点】并集及其运算10.(2019•九江三模)已知集合A={x|x2<l},B={x|log2x<0},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:∵集合A={x|x2<l}={xx|﹣1<x<1},B={x|log2x<0}={x|0<x<1},∴B⊊A.故选:B.【知识点】集合的包含关系判断及应用二、填空题(共8小题)11.(2019•东城区一模)设A,B是R中两个子集,对于x∈R,定义:①若A⊆B.则对任意x∈R,m(1﹣n)=;②若对任意x∈R,m+n=1,则A,B的关系为.【解答】解:①∵A⊆B.则x∉A时,m=0,m(1﹣n)=0.x∈A时,必有x∈B,∴m=n=1,m(1﹣n)=0.综上可得:m(1﹣n)=0.②对任意x∈R,m+n=1,则m,n的值一个为0,另一个为1,即x∈A时,必有x∉B,或x∈B时,必有x∉A,∴A,B的关系为A=∁R B.故答案为:0,A=∁R B.【知识点】元素与集合关系的判断12.(2019•南京三模)设集合M={a|a=,2x+2y=2t,其中x,y,t,a均为整数},则集合M=.【解答】解:∵2x+2y=2t,∴2t=2x(2x﹣y+1)因x、y、t、a均为整数,则2x﹣y+1为2的整数幂,则x﹣y=0,即x=y,则2t=2x+1,t=x+1,则a==,显然x≠﹣1,当x=0时:y=0,t=1,a=0,当x≠0时:由a=,x与x+1互质,则2为x+1的倍数,则:x=﹣3,﹣2,1,则a=3,4,1,故M={0,1,3,4},故答案为:{0,1,3,4}【知识点】子集与交集、并集运算的转换13.(2019•西湖区校级模拟)如下四个结论:①∅⊆∅②0∈∅③{0}⊋∅④{0}=∅,其中正确结论的序号为.【解答】解:因为空集是任何集合的子集,故①③正确;空集是不含任何元素的集合,故②④错误,故答案为:①③【知识点】元素与集合关系的判断14.(2018•武清区校级模拟)用列举法表示集合=﹣3,﹣6,6,3,2,1【解答】解:根据x∈N,且可得:x=0时,;x=1时,;x=3时,;x=4时,;x=5时,;x=8时,;∴A={﹣3,﹣6,6,3,2,1}.故答案为:{﹣3,﹣6,6,3,2,1}.【知识点】集合的表示法15.(2018•河东区二模)集合A={x|y=},B={x|x﹣a≥0},A∩B=A,则a的取值范围是﹣∞.【解答】解:∵集合A={x|y=}={x|x≥1},B={x|x﹣a≥0}={x|x≥a},A∩B=A,∴a≤1,∴a的取值范围是(﹣∞,1].故答案为:(﹣∞,1].【知识点】子集与真子集16.(2019•上海模拟)若集合A={x|x2﹣(a+2)x+2﹣a<0,x∈Z}中有且只有一个元素,则正实数a的取值范围是【解答】解:∵x2﹣(a+2)x+2﹣a<0 且a>0∴x2﹣2x+2<a(x+1)令f(x)=x2﹣2x+2;g(x)=a(x+1)∴A={x|f(x)<g(x),x∈Z}∴y=f(x)是一个二次函数,图象是确定的一条抛物线;而y=g(x)一次函数,图象是过一定点(﹣1,0)的动直线.又∵x∈Z,a>0.数形结合,可得:.故答案为:(,]【知识点】元素与集合关系的判断17.(2020•江苏模拟)已知集合A={﹣2,1,},B={x|x2>2},则A∩B=﹣.【解答】解:∵集合A={﹣2,1,},B={x|x2>2}={x|x<﹣或x>},∴A∩B={﹣2}.故答案为:{﹣2}.【知识点】交集及其运算18.(2020•南通模拟)设集合A={0,1,2,3,4},B={2,3}.C={x∈R|1≤x<3},则(A∩C)∪B=.【解答】解:∵A={0,1,2,3,4},B={2,3},C={x∈R|1≤x<3},∴A∩C={1,2},(A∩C)∪B={1,2,3}.故答案为:{1,2,3}.【知识点】交、并、补集的混合运算三、解答题(共6小题)19.(2019•延庆区一模)已知集合S n={X|X=(x1,x2,…x n),x i∈{0,1},i=1,2,..,n}(n≥2).对于A=(a1,a2,..,a n),B=(b1,b2,..b n)∈S n,定义A与B之间的距离为d(A,B)=|a i﹣b i|.(Ⅰ)∀A,B∈S2,写出所有d(A,B)=2的A,B;(Ⅱ)任取固定的元素I∈S n,计算集合M k={A∈S n|d(A,I)≤k}(1≤k≤n)中元素个数;(Ⅲ)设P⊆S n,P中有m(m≥2)个元素,记P中所有不同元素间的距离的最小值为.证明:m.【解答】解:(Ⅰ)根据题意知,当d(A,B)=2时,对应A(1,1),B(0,0);或A(1,0),B(0,1);或A(0,1),B(1,0);或A(0,0),B(1,1);…………………(4分)(Ⅱ)当k=1时,,…………………(5分)当k=2时,;…………………(6分)写出|M k|=++…+;…………………(7分)特别的,|M n|=++…+=2n;所以M K元素个数为;…………………(8分)(Ⅲ)证明:记P′={(c1,c2,…,c n﹣α+1)|(c1,c2,…,c n﹣α+1,…,c n)∈P},我们证明|P′|=|P|.一方面显然有|P′|≤|P|;另一方面,∀A、B∈S n,且A≠B,假设他们满足a1=b1,a2=b2,…,a n﹣α+1=b n﹣α+1;则由定义有d(A,B)≤﹣1,与P中不同元素间距离至少为相矛盾;从而(a1,a2,…,a n﹣α+1)≠(b1,b2,…,b n﹣α+1);这表明P′中任意两元素不相等,从而|P′|=|P|=m;又P′中元素有n﹣+1个分量,至多有2n﹣α+1个元素.从而m≤2n﹣α+1.…………………(13分)【知识点】集合中元素个数的最值、函数最值的应用20.(2019•苏州模拟)已知非空集合M满足M⊆{0,1,2,…,n}(n≥2,n∈N+).若存在非负整数k(k≤n),使得当a∈M时,均有2k﹣a∈M,则称集合M具有性质P.设具有性质P的集合M的个数为f(n).(1)求f(2)的值;(2)求f(n)的表达式.【解答】解:(1)当n=2时,M={0},{1},{2},{0,2},{0,1,2}具有性质P,对应的k分别为0,1,2,1,1,故f(2)=5.(2)可知当n=k时,具有性质P的集合M的个数为f(t),则当n=k+1时,f(t+1)=f(t)+g(t+1),其中g(t+1)表达t+1∈M也具有性质P的集合M的个数,下面计算g(t+1)关于t的表达式,此时应有2k≥t+1,即,故对n=t分奇偶讨论,①当t为偶数时,t+1为奇数,故应该有,则对每一个k,t+1和2k﹣t﹣1必然属于集合M,且t和2k﹣t,…,k 和k共有t+1﹣k组数,每一组数中的两个数必然同时属于或不属于集合M,故对每一个k,对应的具有性质P的集合M的个数为,所以,②当t为奇数时,t+1为偶数,故应该有,同理,综上,可得又f(2)=5,由累加法解得即.【知识点】集合的表示法21.(2018•建邺区校级模拟)设集合A,B是非空集合M的两个不同子集.(1)若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数.【解答】解:(1)若集合B含有2个元素,即B={a1,a2},则A=∅,{a1},{a2},则(A,B)的个数为3;若集合B含有1个元素,则B有种,不妨设B={a1},则A=∅,此时(A,B)的个数为×1=2.综上,(A,B)的个数为5.(3分)(2)集合M有2n个子集,又集合A,B是非空集合M的两个不同子集,则不同的有序集合对(A,B)的个数为2n(2n﹣1).(5分)若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为:+=+…+()2﹣(),(7分)又(x+1)n(x+1)n的展开式中x n的系数为+…+()2,且(x+1)n(x+1)n=(x+1)2n的展开式中x n的系数为,所以=+…+()2=,因为=2n,所以当A的元素个数与B的元素个数一样多时,有序集合对(A,B)的个数为﹣2n.(9分)所以当A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为:=.(10分)【知识点】子集与真子集22.(2019•南关区校级模拟)已知集合A={(x,y)|x2+mx﹣y+2=0}和B={(x,y)|x﹣y+1=0,0≤x≤2},A∩B≠∅,求实数m的取值范围.【解答】解:由得x2+(m﹣1)x+1=0,①∵A∩B≠∅,∴方程①在区间[0,2]上至少有一个实数解,首先,由△=(m﹣1)2﹣4≥0,解得:m≥3或m≤﹣1.设方程①的两个根为x1、x2,(1)当m≥3时,由x1+x2=﹣(m﹣1)<0及x1•x2=1>0知x1、x2都是负数,不合题意;(2)当m≤﹣1时,由x1+x2=﹣(m﹣1)>0及x1•x2=1>0知x1、x2是互为倒数的两个正数,故x1、x2必有一个在区间[0,1]内,从而知方程①在区间[0,2]上至少有一个实数解.综上所述,实数m的取值范围为(﹣∞,﹣1].【知识点】集合的包含关系判断及应用23.(2019•西湖区校级模拟).已知集合,D={x|x∈A,或x∈B}.(1)当m=1时,求集合D;(2)若B⊆∁R A,求实数m的取值范围.【解答】解:(1)A={x|<2x≤8}={x|﹣1<x≤3},B={x|1≤x<4},则D=A∪B={x|﹣1<x<4};(2)∁R A={x|x>3或x≤﹣1},B⊆∁R A,当B=∅,即m≥1+3m,即m≤﹣,成立;当B≠∅,可得或,解得m>3或m∈∅,综上可得m的范围是m>3或m≤﹣.【知识点】集合关系中的参数取值问题24.(2019•西湖区校级模拟)已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}(1)若m=1时,求A∪B(2)若B⊆∁R A,求实数m的取值范围.【解答】解:(1)m=1时,A={x|﹣1<x≤3}=(﹣1,3],B={x|1≤x<4}=[1,4),A∪B=(﹣1,4);…(4分)(2)∁R A={x|x≤﹣1或x>3}=(﹣∞,﹣1]∪(3,+∞),由B⊆∁R A,可分以下两种情况:①当B=∅时,m≥1+3m,解得m≤﹣…(6分)②当B≠∅时,,解得m>3;…(8分)综上,m的取值范围是m∈(﹣∞,﹣]∪(3,+∞).…(10分)【知识点】并集及其运算、集合的包含关系判断及应用21/ 21。
专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1理科01】已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.2.【2018年新课标1理科02】已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2} C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2} 【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.3.【2017年新课标1理科01】已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.4.【2016年新课标1理科01】设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.5.【2014年新课标1理科01】已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1] C.[﹣1,2)D.[﹣2,﹣1]【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.6.【2013年新课标1理科01】已知集合A={x|x2﹣2x>0},B={x|x},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x或x<0},A∪B=R,故选:B.7.【2012年新课标1理科01】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x =3时,y =1,2,x =2时,y =1综上知,B 中的元素个数为10个故选:D .8.【2010年新课标1理科01】已知集合A ={x ∈R ||x |≤2}},,则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2} D .{0,1,2}【解答】解:A ={x ∈R ||x |≤2,}={x ∈R |﹣2≤x ≤2},故A ∩B ={0,1,2}.应选D .考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则AB =( ) A .{}|32x x -<<B .{}|52x x -<<C .{}|33x x -<<D .{}|53x x -<< 【答案】A【解析】 解:{}{}333||B x x x x =<=-<<,则{}|32A B x x ⋂=-<<,。
2019 年高考数学真题分类汇编专题 01:集合一、单选题1.(2019?浙江)已知全集 U={-1 ,0,1,2,3} ,集合 A={0,1,2} ,B={-1 ,0,1} ,则=()A. {-1}B. {0 ,1}C. {-1 ,2,3}D. {-1 , 0,1,3}【答案】 A2.(2019?天津)设集合,则()A.{2}B.{2 ,3}C.{-1 ,2,3}D.{1 ,2,3,4}【答案】 D3.(2019?全国Ⅲ)已知集合 A={-1 ,0,1,2} ,B={x|x 2≤1} ,则 A∩B= ()A.{-1 ,0,1}B.{0,1}C.{-1 ,1}D.{0,1,2}【答案】 A4.(2019?卷Ⅱ)已知集合 A={x|x>-1} ,B={x|x<2} ,则 A∩B=()A. (-1 ,+∞)B. ( - ∞, 2)C.( -1 ,2)D.【答案】 C5. (2019?卷Ⅱ)设集合 A={x|x 2-5x+6>0} ,B={ x|x-1<0},则A∩B= ()A.(- ∞, 1)B.(-2,1)C.(-3 ,-1)D.(3,+∞)【答案】 A6. (2019?北京)已知集合A={x|-1<x<2} ,B={x|x>1} ,则 AUB= ()A. (-1 ,1)B. (1,2)C.(-1 ,+∞)D.(1,+∞)【答案】 C7.(2019?卷Ⅰ)已知集合 U=,A=,B=则=()A. B.C. D.【答案】 C8. (2019?卷Ⅰ)已知集合M=,N=,则M N=()A. B.C. D.【答案】 C9.(2019?全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【答案】 C二、填空题10. (2019?江苏)已知集合,,则________.【答案】。
专题01 集合与常用逻辑用语多项选择题1.(2019秋•启东市期末)已知全集U R =,集合A ,B 满足A B Ü,则下列选项正确的有( ) A .A B B =IB .A B B =UC .()U A B =∅I ðD .()U A B =∅I ð【分析】利用A B Ü的关系即可判断.【解答】解:A B Q Ü,A B A ∴=I ,A B B =U ,()U C A B =≠∅I ,()U A C B =∅I , 故选:BD .2.(2019秋•宿迁期末)已知集合[2A =,5),(,)B a =+∞.若A B ⊆,则实数a 的值可能是( ) A .3-B .1C .2D .5【分析】利用A B ⊆,求出a 的范围,即可判断. 【解答】解:A B ⊆Q , 2a ∴<,故选:AB .3.(2019秋•临高县校级期末)已知{A =第一象限角},{B =锐角},{C =小于90︒的角},那么A 、B 、C 关系是( )A .B AC =I B .B C C =U C .B A B =ID .A B C ==【分析】可看出,“小于90︒的角“和”第一象限的角“都包含”锐角“,从而可判断出选项B ,C 都正确;而小于90︒的角里边有小于0︒的角,而小于0︒的角里边有第一象限角,从而可判断选项A 错误,而选项D 显然错误,从而可得出正确的选项.【解答】解:Q “小于90︒的角”和“第一象限角”都包含“锐角”,B C ∴⊆,B A ⊆B C C ∴=U ,B A B =I ;Q “小于90︒的角“里边有”第一象限角”,从而B A C ≠I .故选:BC .4.(2019秋•聊城期末)若“2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,则实数k 可以是( ) A .8-B .5-C .1D .4【分析】分别解出” 2340x x +-<”,“ 22(23)30x k x k k -+++>”,根据2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,即可得出. 【解答】解:“2340x x +-<” 43x ⇔-<<. “22(23)30x k x k k -+++>” x k ⇔<,或3x k >+.Q “2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,3k ∴…,或43k -+…,解得:3k …,或7k -…,则实数k 可以是AD . 故选:AD .5.(2019秋•临沂期末)对于①sin 0θ>,②sin 0θ<,③cos 0θ>,④cos 0θ<,⑤tan 0θ>,⑥tan 0θ<,则θ为第二象限角的充要条件为( ) A .①③B .①④C .④⑥D .②⑤【分析】根据三角函数角的符号和象限之间的关系分别进行判断即可. 【解答】解:假设θ为象限角则①sin 0θ>,则θ为第一象限角或θ为第二象限角, ②sin 0θ<,则θ为第三象限角或θ为第四象限角 ③cos 0θ>,则θ为第一象限角或θ为第四象限角 ④cos 0θ<,则θ为第二象限角或θ为第三象限角 ⑤tan 0θ>,则θ为第一象限角或θ为第三象限角 ⑥tan 0θ<,则θ为第二象限角或θ为第四象限角, 若θ为第二象限角,则①④可以④⑥可以, 故选:BC .6.(2019秋•泰安期末)下列选项中,p 是q 的必要不充分条件的是( )A .:37p m <<;q :方程22173x y m m +=--的曲线是椭圆B .:8p a …;q :对[1x ∀∈,3]不等式20x a -…恒成立C .设{}n a 是首项为正数的等比数列,p :公比小于0;q :对任意的正整数n ,2120n n a a -+<D .已知空间向量(0a =r ,1,1)-,(b x =r ,0,1)-,:1p x =;q :向量a r与b r 的夹角是3π【分析】A ,根据椭圆的方程以及充分条件和必要条件的定义进行判断即可;B ,求出,[1x ∀∈,3]不等式20x a -…恒成立等价于2a x …恒成立,即等价于9a …,即可判断; C ,根据等比数列的性质以及充分条件和必要条件的定义进行判断即可;D ,根据空间两向量的夹角大小求出x 的值,再根据充分必要条件的定义即可判断; 【解答】解:A ,若方程22173x y m m +=--的曲线是椭圆,则703073m m m m ->⎧⎪->⎨⎪-≠-⎩,即37m <<且5m ≠, 即“37m <<”是“方程22173x y m m +=--的曲线是椭圆”的必要不充分条件;B ,[1x ∀∈,3]不等式20x a -…恒成立等价于2a x …恒成立,等价于9a …; ∴ “8a …”是“对[1x ∀∈,3]不等式20x a -…恒成立”必要不充分条件;:{}n C a Q 是首项为正数的等比数列,公比为q ,∴当11a =,12q =-时,满足0q <,但此时12111022a a +=-=>,则2120n n a a -+<不成立,即充分性不成立,反之若2120n n a a -+<,则2221110n n a q a q --+< 10a >Q ,22(1)0n q q -∴+<,即10q +<,则1q <-,即0q <成立,即必要性成立,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的必要不充分条件.D :空间向量(0a =r,1,1)-,(b x =r ,0,1)-, 则001a b =++r r g ,cos a ∴<r,1cos 32||||a b b a b π>====⨯r r r g r r, 解得1x =±,故“1x =”是“向量a r与b r 的夹角是3π”的充分不必要条件.故选:ABC .7.(2019秋•青岛期末)已知集合{(M x =,)|()}y y f x =,若对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:21{(,)|1}M x y y x ==+;{2(,)|M x y y =;3{(,)|}x M x y y e ==;4{(,)|sin 1}M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M【分析】根据题意即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r .,结合函数图象进行判断.【解答】解:由题意,对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立 即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r .21y x =+中,当P 点坐标为(0,1)时,不存在对应的点P '. 所以所以1M 不是“互垂点集”集合,y = 所以在2M 中的任意点1(P x ∀,1)y ,在2M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r.所以2M 是“互垂点集”集合,x y e =中,当P 点坐标为(0,1)时,不存在对应的点P '. 所以3M 不是“互垂点集”集合,sin 1y x =+的图象中,将两坐标轴进行任意旋转,均与函数图象有交点,所以所以4M 是“互垂点集”集合, 故选:BD .8.(2019秋•淮安期末)已知函数2()43f x x x =-+,则()0f x …的充分不必要条件是( ) A .[1,3]B .{1,3}C .(-∞,1][3U ,)+∞D .(3,4)【分析】由()0f x …,得2430x x -+…,解得3x …或1x ….由此能求出()0f x …的充分不必要条件.【解答】解:函数2()43f x x x =-+, 由()0f x …,得2430x x -+…, 解得3x …或1x …. ()0f x ∴…的充分不必要条件是{1,3}和(3,4),故选:BD .9.(2019秋•镇江期末)使不等式110x+>成立的一个充分不必要条件是( ) A .2x > B .0x …C .1x <-或1x >D .10x -<<【分析】不等式110x +>,即10x x+>,(1)0x x +>,解得x 范围,即可判断出结论. 【解答】解:不等式110x +>,即10x x+>,(1)0x x ∴+>,解得0x >,或1x <-. 使不等式110x+>成立的一个充分不必要条件是:2x >.及1x <-,或1x >. 故选:AC .10.(2019秋•连云港期末)已知p ,q 都是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,则( ) A .p 是q 的既不充分也不必要条件 B .p 是s 的充分条件 C .r 是q 的必要不充分条件 D .s 是q 的充要条件【分析】由已知可得p r s q ⇒⇒⇒;q r s ⇒⇒,然后逐一分析四个选项得答案. 【解答】解:由已知得:p r s q ⇒⇒⇒;q r s ⇒⇒.p ∴是q 的充分条件;p 是s 的充分条件;r 是q 的充要条件;s 是q 的充要条件.∴正确的是B 、D .故选:BD .11.(2019秋•苏州期末)已知集合{|2}A x ax =…,{2B =,若B A ⊆,则实数a 的值可能是( ) A .1-B .1C .2-D .2【分析】通过集合的包含关系,判断元素的关系,通过选项的代入判断是否成立.【解答】解:因为集合{|2}A x ax =…,{2B =,B A ⊆, 若1a =-,[2A =-,)+∞,符合题意,A 对; 若1a =,(A =-∞,2],符合题意,B 对; 若2a =-,[1A =-,)+∞,符合题意,C 对; 若1a =,(A =-∞,1],不符合题意,D 错; 故选:ABC .12.(2019秋•济宁期末)下列命题中的真命题是( )A .x R ∀∈,120x ->B .*x N ∀∈,2(1)0x ->C .x R ∃∈,1lgx <D .x R ∃∈,tan 2x =【分析】根据指数函数的值域,得到A 项正确;根据一个自然数的平方大于或等于0,得到B 项不正确;根据对数的定义与运算,得到C 项正确;根据正弦函数tan y x =的值域,得D 项正确.由此可得本题的答案. 【解答】解:Q 指数函数2t y =的值域为(0,)+∞∴任意x R ∈,均可得到120x ->成立,故A 项正确;Q 当*x N ∈时,1x N -∈,可得2(1)0x -…,当且仅当1x =时等号 ∴存在*x N ∈,使2(1)0x ->不成立,故B 项不正确;Q 当1x =时,01lgx =<∴存在x R ∈,使得1lgx <成立,故C 项正确;Q 正切函数tan y x =的值域为R∴存在锐角x ,使得tan 2x =成立,故D 项正确故选:ACD .13.(2019秋•薛城区校级月考)已知集合{|1}A x ax ==,{0B =,1,2},若A B ⊆,则实数a 可以为( ) A .12B .1C .0D .以上选项都不对【分析】由子集定义得A =∅或{1}A =或{2}A =,从而1a 不存在,11a=,12a =,由此能求出实数a .【解答】解:Q 集合{|1}A x ax ==,{0B =,1,2},A B ⊆, A ∴=∅或{1}A =或{2}A =,∴1a 不存在,11a=,12a =,解得1a =,或1a =,或12a =. 故选:ABC .14.(2019秋•桥西区校级月考)设集合2{|0}A x x x =+=,则下列表述不正确的是( ) A .{0}A ∈B .1A ∉C .{1}A -∈D .0A ∈【分析】求出集合2{|0}{0A x x x =+==,1}-,利用元素与集合的关系能判断正确结果.【解答】解:集合2{|0}{0A x x x =+==,1}-, 0A ∴∈,1A -∈,{0}A ⊂,{1}A -⊂,1A ∉. AC ∴选项均不正确,BD 选项正确.故选:AC .15.(2019秋•葫芦岛月考)已知集合2{|20}A x x x =-=,则有( ) A .A ∅⊆B .2A -∈C .{0,2}A ⊆D .{|3}A y y ⊆<【分析】可以求出集合A ,根据子集的定义及元素与集合的关系即可判断每个选项的正误. 【解答】解:{0A =Q ,2},A ∴∅⊆,2A -∉,{0,2}A ⊆,{|3}A y y ⊆<.故选:ACD .16.(2019秋•临淄区校级月考)设全集U ,则下面四个命题中是“A B ⊆”的充要条件的命题是( ) A .A B A =IB .U UA B ⊇痧C .U B A =∅I ðD .U A B =∅I ð【分析】根据集合的补集,两个集合的交集、并集的定义,再由充要条件的定义判断哪些选项符合条件. 【解答】解:对于选项A ,由A B A =I ,可得A B ⊆.由A B ⊆ 可得A B A =I ,故选项A ,A B A =I 是命题A B ⊆的充要条件,故A 满足条件.对于选项B ,由S S A B ⊇痧 可得A B ⊆,由A B ⊆ 可得S S A B ⊇痧,故S S A B ⊇痧 是命题A B ⊆的充要条件,故B 满足条件.对于选项C ,由S B A φ=I ð,可得A B ⊆,由A B ⊆ 可得S B A φ=I ð,故S B A φ=I ð 是命题A B ⊆的充要条件,故C 满足条件.对于选项D ,由S A B φ=I ð,可得B A ⊆,不能退出A B ⊆,故选项D ,S A B φ=I ð不是命题A B ⊆的充要条件,故D 不满足条件. 故选:ABC .17.(2019秋•葫芦岛月考)已知集合{||4}A x Z x =∈<,B N ⊆,则( ) A .集合B N N =UB .集合A B I 可能是{1,2,3}C .集合A B I 可能是{1-,1}D .0可能属于B【分析】根据Z ,N 的定义,及集合元素的特点进行逐一判断即可.【解答】解:因为B N ⊆,所以B N N =U ,故A 正确.集合A 中一定包含元素1,2,3,集合B N ⊆,1,2,3都属于集合N ,所以集合A B I 可能是{1,2,3}正确.1-不是自然数,故C 错误.0是最小的自然数,故D 正确. 故选:ABD .18.(2019秋•市中区校级月考)给出下列关系,其中正确的选项是( ) A .{{}}∅∈∅B .{{}}∅∉∅C .{}∅∈∅D .{}∅⊆∅【分析】根据元素与集合的关系,集合并集的运算,空集是任何集合的子集即可判断每个选项的正误. 【解答】解:显然∅不是集合{{}}∅的元素,A ∴错误;∅不是集合{{}}∅的元素,∅是{}∅的元素,∅是任何集合的子集,从而得出选项B ,C ,D 都正确.故选:BCD .19.(2019秋•罗庄区期中)给出下列四个条件:①22xt yt >;②xt yt >;③22x y >;④110x y<<.其中能成为x y >的充分条件的是( ) A .①B .②C .③D .④【分析】首先分清条件与结论,条件是所选答案,结论是x y >,充分性即为所选答案推出x y >. 【解答】解:①.由22xt yt >可知,20t >,故x y >.故①是.②.由xt yt >可知,0t ≠,当0t <时,有x y <;当0t >时,有x y >.故②不是. ③由22x y >,则||||x y >,推不出x y >,故③不是; ④.由110x y <<.由函数1y x=在区间(0,)+∞上单调递减,可得0x y >>,故④是. 故选:AD .20.(2019秋•宁阳县校级期中)若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【分析】求解一元二次不等式,把若220x x --<是2x a -<<的充分不必要条件转化为(1-,2)(2-Ü,)a ,由此得到a 的范围,则答案可求.【解答】解:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-Ü,)a ,则2a …. ∴实数a 的值可以是2,3,4.故选:BCD .21.(2019秋•薛城区校级期中)若集合M N ⊆,则下列结论正确的是( ) A .M N M =IB .M N N =UC .M M N ⊆ID .M N N ⊆U【分析】利用子集、并集、交集的定义直接求解. 【解答】解:Q 集合M N ⊆,∴在A 中,M N M =I ,故A 正确;在B 中,M N N =U ,故B 正确; 在C 中,M M N ⊆I ,故C 正确; 在D 中,M N N ⊆U ,故D 正确. 故选:ABCD .22.(2019秋•凤城市校级月考)下列命题正确的有( ) A .A ∅=∅U B .()U UU A B A B =U U 痧?C .A B B A =I ID .()U U A A =痧【分析】利用集合的交、并、补运算法则直接求解. 【解答】解:在A 中,A A ∅=U ,故A 错误; 在B 中,()()()U U U A B A B =U I 痧?,故B 错误; 在C 中,A B B A =I I 同,故C 正确; 在D 中,()U U A A =痧,故D 正确. 故选:CD .23.(2019秋•北镇市校级月考)已知集合{2M =-,2334x x +-,24}x x +-,若2M ∈,则满足条件的实数x 可能为( ) A .2B .2-C .3-D .1【分析】根据集合元素的互异性2M ∈必有22334x x =+-或224x x =+-,解出后根据元素的互异性进行验证即可.【解答】解:由题意得,22334x x =+-或224x x =+-, 若22334x x =+-,即220x x +-=, 2x ∴=-或1x =,检验:当2x =-时,242x x +-=-,与元素互异性矛盾,舍去; 当1x =时,242x x +-=-,与元素互异性矛盾,舍去. 若224x x =+-,即260x x +-=, 2x ∴=或3x =-,经验证2x =或3x =-为满足条件的实数x . 故选:AC .24.已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈,则( ) A .A B ⊆B .B A ⊆C .A B =D .A B =∅I【分析】利用集合的基本关系可判断集合的关系.【解答】解:已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈, 若x 属于B ,则:233*(2)2*(2)x a b a b a =-=-+-; 2a b -、2a -均为整数,x 也属于A ,所以B 是A 的子集;若x 属于A ,则:322*(3)3*x a b a b =+=+-(a ); 3a b +、a 均为整数,x 也属于B ,所以A 是B 的子集;所以:A B =, 故选:ABC .25.已知集合2{|10}A x x =-=,则下列式子表示正确的有( ) A .{1}A ∈B .1A -⊆C .A ∅⊆D .{1,1}A -⊆【分析】利用集合与集合基本运算求出A 集合,再由集合与集合的关系,元素与集合的关系判断可得答案, 【解答】解:已知集合2{|10}{1A x x =-==-,1},由集合与集合的关系,元素与集合的关系判断可得:以上式子表示正确的有:A ∅⊆,{1,1}A -⊆. 故选:CD .26.已知集合{|13}A x x =-<…,集合{|||2}B x x =…,则下列关系式正确的是( )A .AB =∅IB .{|23}A B x x =-U 剟C .{|1R A B x x =-U …ð或2}x >D .{|23}R A B x x =<I …ð【分析】求解绝对值不等式化简集合B ,再利用交、并、补集的运算性质逐一分析四个选项得答案.【解答】解:{|13}A x x =-<Q …,{|||2}{|22}B x x x x ==-剟?,{|13}{|22}{|12}A B x x x x x x ∴=-<-=-<I I 剟剟,故A 不正确;{|13}{|22}{|23}A B x x x x x x =-<-=-U U 剟剟?,故B 正确;{|2R B x x =<-Q ð或2}x >,{|13}{|2R A B x x x x ∴=-<<-U U …ð或2}{|2x x x >=<-或1}x >-,故C 不正确;{|13}{|2R A B x x x x =-<<-I I …ð或2}{|23}x x x >=<…,故D 正确.∴正确的是B ,D .故选:BD .27.下列命题正确的是( )A .“26x <<”是“24120x x --<”的必要不充分条件B .函数()tan 2f x x =的对称中心是(2k π,0)()k Z ∈C .“x R ∀∈,3210x x -+…”的否定是“x R ∃∈,3210x x -+>”D .设常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x 则12373x x x π++=【分析】A 由24120x x --<,解得26x -<<,可得“26x <<”是“24120x x --<”的充分不必要条件; B 由tan20x =,解得2x k π=,即2k x π=,()k Z ∈,即可得出函数()tan 2f x x =的对称中心; C 取1x =-,则32110x x -+=-<,即可判断出;:sin D x x a =化为sin()32a x π+=,由于常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x ,则2a =,解得即可. 【解答】解:由24120x x --<,解得26x -<<,因此“26x <<”是“24120x x --<”的充分不必要条件,A 不正确;由tan20x =,解得2x k π=,即2k x π=,()k Z ∈因此函数()tan 2f x x =的对称中心是(2k π,0)()k Z ∈,B 正确;取1x =-,则32110x x -+=-<,因此“x R ∀∈,3210x x -+>” C 不正确;sin x x a =化为sin()32a x π+=,由于常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x ,则2a =33x ππ+=,3ππ-,23ππ+,12373x x x π∴++=,D 正确. 故选:BD .28.有限集合S 中元素的个数记做()card S ,设A ,B 都为有限集合,下列命题中真命题是( )A .AB =∅I 的充要条件是()card A B card =U (A )card +(B )B .A B ⊆的必要条件是card (A )card …(B )C .A B à的充要条件是card (A )card …(B )D .A B =的充要条件是card (A )card =(B )【分析】分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,比如第四个句子元素个数相等,元素不一定相同.【解答】解:?A B =∅I 集合A 与集合B 没有公共元素,A 正确 A B ⊆集合A 中的元素都是集合B 中的元素,B 正确A B à集合A 中至少有一个元素不是集合B 中的元素,因此A 中元素的个数有可能多于B 中元素的个数,C 错误A B =集合A 中的元素与集合B 中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,D 错误故选:AB .29.使“a b <”成立的必要不充分条件是“( )”A .0x ∀>,a b x +…B .0x ∃…,a x b +< C .0x ∀…,a b x <+ D .0x ∃>,a x b +… 【分析】根据不等式的关系结合必要不充分条件分别进行判断即可.【解答】解:若a b <,0x ∀>,则a x b x +<+,a a x <+Q ,a a xb x ∴<+<+,即a b x <+,则a b x +…不一定成立;故A 错误,若a b <,当2a =,4b =,10x ∃=…,有a x b +<成立,反之不一定成立;故B 满足条件.0x ∀…,由a b <得a x b x +<+,0x Q …,a x a ∴+…,即a a x b x +<+…则a b x <+成立,故C 满足条件,若a b <,当2a =,3b =,10x ∃=>,有a x b +…成立,反之不一定成立;故D 满足条件. 故选:BCD .30.在下列结论中正确的是( )A .“p q ∧”为真是“p q ∨”为真的充分不必要条件B .“p q ∧”为假是“p q ∨”为真的充分不必要条件C .“p q ∧”为真是“p ⌝”为假的充分不必要条件D .“p ⌝”为真是“p q ∧”为假的充分不必要条件【分析】利用复合命题真假的判定方法即可判断出结论.【解答】解:“p q ∧”为真是“p q ∨”为真的充分不必要条件,A 正确;“p q ∧”为假是“p q ∨”为真的充分不必要条件,B 不正确;“p q ∧”为真是“p ⌝”为假的充分不必要条件,C 正确;“p ⌝”为真,p 为假⇒ “p q ∧”为假,反之不成立,可能q 为假,p 为真,因此“p ⌝”为真是“p q ∧”为假的充分不必要条件,D 正确.故选:ACD .。
2020-2021学年高考数学精选新题专项汇编(全国通用)专题01 集合一.选择题1.(2021•六模拟)已知集合A={x|﹣1≤x≤3},集合B={x|1﹣m≤x≤1+m}.若B⊆A,则m的取值范围是()A.(﹣∞,2]B.[﹣1,3]C.[﹣3,1]D.[0,2]2.(2021•十模拟)已知集合A={x|kx﹣1>0},B={x|(x+2)(x﹣6)≤0},若A∩B=(2,6],则⊆R A =()A.(﹣∞,﹣2]B.(﹣∞,2)C.(﹣∞,2]D.(﹣∞,﹣2)3.(2021•十八模拟)设集合A={x|x2﹣x﹣6<0},B={1,m},且A∩B有4个子集,则实数m的取值范围是()A.(﹣2,1)B.(﹣2,1)∪(1,3)C.(﹣2,3)D.(﹣∞,1)∪(3,+∞)4.(2020•东城区模拟)某学校高三教师周一、周二、周三开车上班的人数分别是8,10,14,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A.8B.7C.6D.55.(2020•荆门模拟)设函数f(x)=sin(ωx+φ),A={(x0,f(x0))|f'(x0)=0},B={(B,B)|B232+B22≤1},若存在实数φ,使得集合A∩B中恰好有7个元素,则ω(ω>0)的取值范围是()A.[34B,54B)B.[34B,B)C.[B,54B)D.[B,32B)6.(2020•北碚区模拟)已知集合A={0,1},B={z|z=x+y,x⊆A,y⊆A},则B的子集个数为()A.3B.4C.7D.87.(2020•浦东新区二模)设集合S={1,2,3,…,2020},设集合A是集合S的非空子集,A中的最大元素和最小元素之差称为集合A的直径.那么集合S所有直径为71的子集的元素个数之和为()A.71•1949B.270•1949C.270•37•1949D.270•72•19498.(2016•浙江)已知集合P={x⊆R|1≤x≤3},Q={x⊆R|x2≥4},则P∪(⊆R Q)=()A.[2,3]B.(﹣2,3]C.[1,2)D.(﹣∞,﹣2]∪[1,+∞)二.填空题9.(2020•镇江三模)已知集合A={1,2},B={﹣1,a2},若A∩B={a},则实数a=.10.(2020•南开区二模)已知集合A={x|(x+1)(x﹣2)≤0},⊆R B={x|x≤0或x>3},则A∩B =.11.(2020•下城区校级模拟)已知a>0,若集合A={x⊆Z||2x2﹣x﹣a﹣2|+|2x2﹣x+a﹣2|=2a}中的元素有且仅有两个,则实数a的取值范围是.12.(2020•盐城四模)若集合P={(x,y)|x2+y2﹣4x=0},Q={(B,B)||B+2|B≥√15},则P∩Q表示的曲线的长度为.13.(2020•浙江模拟)已知函数f(x)=x2+ax+a,A={x⊆R|f(x)≤x},B={x⊆R|f[f(x)]≤f(x)},A ≠⊆,A⊆B,则实数a的取值范围是.14.(2020•安丘市模拟)设集合A={(m1,m2,m3)|m i⊆{﹣2,0,2},i⊆{1,2,3}},则集合A满足条件:“2≤|m1|+|m2|+|m3|≤5”的元素个数为.15.(2020•雨花区校级模拟)设集合A={(x,y)|y≥|x﹣1|},B={(x,y)|y≤﹣|x|+a},A∩B≠⊆.(Ⅰ)实数a的取值范围是;(Ⅱ)当a=3时,若(x,y)⊆A∩B,则2x+y的最大值是.16.(2019•上海)已知集合A=[t,t+1]∪[t+4,t+9],0⊆A,存在正数λ,使得对任意a⊆A,都有BB∈B,则t的值是.17.(2019•上海)已知集合A=(﹣∞,3),B=(2,+∞),则A∩B=.三.解答题18.(2019•南通模拟)已知对给定正整数n≥2,集合P n={p>0|p=B12+B222+⋯⋯+B B2B},其中a k⊆{﹣1,1},(1≤k≤n,n⊆N*),设Card(P n)表示集合P n中元素的个数.(1)求Card(P2),Card(P3)的值;(2)求Card(P n).<2B≤8},B={B|B≤B<1+3B},D={x|x⊆A,或19.(2019•西湖区校级模拟).已知集合B={B|12x⊆B}.(1)当m=1时,求集合D;(2)若B⊆⊆R A,求实数m的取值范围.20.(2019•西湖区校级模拟)已知集合A={x|2≤x≤8},集合B={x|1<x<6},集合C={x|m≤x<1+2m},全集U=R.(Ⅰ)求A∩B,(⊆U A)∪B;(Ⅱ)若A∩C=⊆,求实数m的取值范围.21.(2020•大兴区一模)已知数列a1,a2,…,a10满足:对任意的i,j⊆{1,2,3,4,5,6,7,8,9,10},若i≠j,则a i≠a j,且a i⊆{1,2,3,4,5,6,7,8,9,10},设集合A={a i+a i+1+a i+2|i=1,2,3,4,5,6,7,8},集合A中元素最小值记为m(A),集合A中元素最大值记为n(A).(Ⅰ)对于数列:10,6,1,2,7,8,3,9,5,4,写出集合A及m(A),n(A);(Ⅱ)求证:m(A)不可能为18;(Ⅲ)求m(A)的最大值以及n(A)的最小值.22.(2019•江苏一模)设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n⊆N*的子集.记B 中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.23.(2019•西湖区校级模拟)已知集合M={x|1<x<2},集合N={x|3<x<4}.(1)求⊆R N,M∩(⊆R N);(2)设集合A={x|a<x<a+2},若N⊆A,求实数a的取值范围.24.(2020•海淀区校级一模)对于非负整数集合S(非空),若对任意x,y⊆S,或者x+y⊆S,或者|x﹣y|⊆S,则称S为一个好集合,以下记|S|为S的元素个数.(1)给出所有的元素均小于3的好集合,(给出结论即可)(2)求出所有满足|S|=4的好集合.(同时说明理由)(3)若好集合S满足|S|=2019,求证:S中存在元素m,使得S中所有元素均为m的整数倍.25.(2019•西湖区校级模拟)已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)•(x﹣3a)<0}.(1)若a=1,求A∩B;(2)若A∩B=⊆,求a的取值范围.。
2019年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:24πS R =,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:()(1)(012)k kn k n nP k C p p k n -=-=L ,,,,. 如果事件A B ,互斥,那么()()()P A B P A P B +=+. 如果事件A B ,相互独立,那么()()()P AB P A P B =g .一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =I ,,,的集合M 的个数是( ) A .1B .2C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z =g ,则zz等于( ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )xxA .B .C .D .解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos 1lncos 0x x ≤⇒≤排除C,选A.4.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为( ) A .3B .2C .1D .1-解:1x +、x a -在数轴上表示点x 到点1-、a 的距离,他们的和()1f x x x a =++-关于1x = 对称,因此点1-、a 关于1x =对称,所以3a =(直接去绝对值化成分段函数求解比较麻烦,如取特殊值解也可以) 5.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .45解::3cos()sin sin 62παααα-+=+=14cos 25αα=,714sin()sin()sin cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭6.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=7.在某地的奥运火炬传递活动中,有编号为12318L ,,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( ) A .151B .168C .1306D .1408解:古典概型问题,基本事件总数为31817163C =⨯⨯。
1.(2019·山东)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A ∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)2.(2019·陕西)设集合M={x|x2=x},N={x|lg x≤0},则M∪N =()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]3.(2019·天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=() A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}4.(2019·新课标全国Ⅱ)已知集合A={-2,-1,0,1,2},B ={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}5.(2019·四川)设集合A={x|(x+1)(x-2)<0},集合B={x|1<x <3},则A∪B=()A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}6.(2019·浙江)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]7.(2019·广东)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x -1)=0},则M∩N=()A.∅B.{-1,-4}C.{0} D.{1,4}8.(2019·重庆)已知集合A={1,2,3},B={2,3},则() A.A=B B.A∩B=∅C.A B D.B A9.(2018·湖北)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}10.(2018·湖北)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件11.(2018·浙江)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5} D.{2,5}12.(2018·北京)若集合A={0,1,2,4},B={1,2,3},则A ∩B=()A.{0,1,2,3,4} B.{0,4}C.{1,2} D.{3}13.(2018·广东)已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{0,1} B.{-1,0,2}C.{-1,0,1,2} D.{-1,0,1}14.(2018·重庆)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.15.(2018·福建)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.16.(2018·福建)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c 等于________.1.(2019·广州惠州模拟)若集合A ={x |||x ≤1,x ∈R },B ={x |y =x },则A ∩B =( )A .{x |0≤x ≤1}B .{x |x ≥0}C .{x |-1≤x ≤1}D .∅2.(2019·山东日照一模)设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则∁U (A ∩B )等于( )A .{2,3}B .{1,4,5}C .{4,5}D .{1,5}3.(2019·福建泉州五校模拟)已知集合A ={cos 0°,sin 270°},B ={x |x 2+x =0},则A ∩B 为( )A .{0,-1}B .{-1,1}C .{-1}D .{0}4.(2019·浙江嘉兴模拟)设集合A ={x |x 2+2x -3>0},R 为实数,Z 为整数集,则(∁R A )∩Z =( )A .{x |-3<x <1}B .{x |-3≤x ≤1}C .{-2,-1,0}D .{-3,-2,-1,0,1}5.(2019·辽宁五校模拟)设集合M ={x |x 2+3x +2<0},集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎝ ⎛⎭⎪⎫12x ≤4,则M ∪N =( ) A .{x |x ≥-2} B .{x |x >-1}C .{x |x <-1}D .{x |x ≤-2}6.(2019·黑龙江大庆模拟)已知集合A ={x |x 2-3x +2=0},集合B ={x |log x 4=2},则A ∪B =( )A .{-2,1,2}B .{1,2}C .{-2,2}D .{2}7.(2019·湖南三市模拟)已知集合A ={0,1,2,3},B ={x |x =2a ,a ∈A },则A ∩B 中元素的个数为( )A .0B .1C .2D .38.(2019·河北邯郸模拟)已知集合A ={x |x 2-16<0},B ={-5,0,1},则( )A .A ∩B =∅ B .B ⊆AC .A ∩B ={0,1}D .A ⊆B9.(2019·湖北荆门模拟)集合A ={x ∈N |x ≤6},B ={x ∈R |x 2-3x >0},则A ∩B =( )A .{3,4,5}B .{4,5,6}C .{x |3<x ≤6}D .{x |3≤x <6}10.(2019·山东日照模拟) 设集合A ={x ∈R ||x -1|<2},B ={y ∈R |y =2x ,x ∈R },则A ∩B =( )A .∅B .(0,3)C .[0,3)D .(-1,3)11.(2019·福建厦门模拟)设集合A ={x |x +2>0},B =⎩⎨⎧⎭⎬⎫x |y =13-x ,则A ∩B =( ) A .{x |x >-2} B .{x |x <3}C .{x |x <-2或x >3}D .{x |-2<x <3}12.(2019·杭州七校模拟)已知集合A={x|x=x2-2,x∈R},B={1,m},若A⊆B,则m的值为()A.2 B.-1C.-1或2 D.2或 213.(2019·贵州七校模拟)已知集合A={0,1,2,3,4},B={x|x =n,n∈A},则A∩B的真子集个数为()A.5 B.6C.7 D.814.(2019·重庆模拟)设全集U是实数集R,M={x|x2>4},N={x|2x-1≥1},则(∁R M)∩N=________.15.(2019·湖北荆门模拟)已知:对于给定的q∈N*及映射f:A→B,B⊆N*,若集合C⊆A,且C中所有元素在B中对应的元素之和大于或等于q,则称C为集合A的好子集.①对于q=2,A={a,b,c},映射f:x→1,x∈A,那么集合A 的所有好子集的个数为________;②对于给定的q,A={1,2,3,4,5,6,π},映射f:A→B 的对应关系如下表:C中至少含有A中5个整数时,C为集合A的好子集,则所有满足条件的数组(q,y,z)为________.1.(2019·重庆)“x>1”是“log2(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件2.(2019·北京)设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(2019·安徽)设p:1<x<2,q:2x>1,则p是q成立的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(2019·湖北)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a21+a22+…+a2n-1)(a22+a23+…+a2n)=(a1a2+a2a3+…+a na n)2,则()-1A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件5.(2019·湖南)设A,B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(2019·新课标全国Ⅰ)设命题p:∃n∈N,n2>2n,则綈p为() A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n7.(2019·陕西)“sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2019·浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A中元素的个数,命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C),()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立9.(2018·湖南)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是()A.①③B.①④C.②③D.②④10.(2018·辽宁)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )11.(2018·重庆)已知命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A .p ∧綈qB .綈p ∧qC .綈p ∧綈qD .p ∧q12.(2018·重庆)已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q13.(2018·陕西)原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假14.(2018·陕西)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假15.(2018·新课标全国Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件1.(2019·福建厦门模拟)已知命题p :∃x 0∈R ,sin x 0≥12,则綈p是( )A .∃x 0∈R ,sin x 0≤12B .∃x 0∈R ,sin x 0<12C .∀x ∈R ,sin x ≤12D .∀x ∈R ,sin x <122.(2019·四川成都模拟)已知命题p :“若x ≥a 2+b 2,则x ≥2ab ”,则下列说法正确的是( )A .命题p 的逆命题是“若x <a 2+b 2,则x <2ab ”B .命题p 的逆命题是“若x <2ab ,则x <a 2+b 2”C .命题p 的否命题是“若x <a 2+b 2,则x <2ab ”D .命题p 的否命题是“若x ≥a 2+b 2”,则x <2ab3.(2019·广东惠州模拟)“a >b >0”是“a 2>b 2”成立的条件( )A .必要不充分B .充分不必要C .充要D .既不充分也不必要4.(2019·广东揭阳模拟)已知命题p :四边形确定一个平面;命题q :两两相交的三条直线确定一个平面.则下列命题为真命题的是( )A .p ∧qB .p ∨qC .(綈p )∨qD .p ∧(綈q )5.(2019·河北邯郸模拟)设a ,b 是两个非零向量,则“a ·b <0”是“a ,b 夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.(2019·四川乐山模拟)设x ∈R ,则“x >23”是“3x 2+x -2>0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2019·安徽淮北模拟)已知X =log m n ,则mn >1是X >1的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.(2019·北京西城模拟)设函数f (x )=3x +b cos x ,x ∈R ,则“b =0”是“函数f (x )为奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2019·陕西安康模拟)函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是( )A .b ≥0B .b >0C .b <0D .b ≤010.(2019·山东德州模拟)已知命题p :∀x >0,x +4x ≥4:命题q :∃x 0∈(0,+∞),2x 0=12.则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题11.(2019·山东潍坊模拟)下列有关命题的说法正确的是( )A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题为真命题D.若命题p:∃x0∈R,x20-x0+1<0,则綈p:∀x∈R,x2-x+1>012.(2019·福建福州模拟)已知A B,则“x∈A”是“x∈B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.(2019·湖北八校模拟)“a≠5且b≠-5”是“a+b≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分条件也不必要条件14.(2019·四川成都模拟)已知定义在R上的奇函数f(x),当x≥0时,f(x)=log3(x+1).若关于x的不等式f[x2+a(a+2)]≤f(2ax+2x)的解集为A,函数f(x)在[-8,8]上的值域为B,若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是________.15.(2019·山东菏泽模拟)下列4个命题:①“如果x+y=0,则x、y互为相反数”的逆命题②“如果x2+x-6≥0,则x>2”的否命题③在△ABC中,“A>30°”是“sin A>12”的充分不必要条件④“函数f(x)=tan (x+φ)为奇函数”的充要条件是“φ=kπ(k∈Z)”其中真命题的序号是________.参考答案第一章集合与常用逻辑用语考点1集合【两年高考真题演练】1.C[∵A={x|x2-4x+3<0}={x|(x-1)(x-3)}={x|1<x<3},B={x|2<x<4},∴A∩B={x|2<x<3}=(2,3).]2.A[由题意得M={0,1},N=(0,1],故M∪N=[0,1],故选A.]3.A[由题意知,∁U B={2,5,8},则A∩∁U B={2,5},选A.]4.A[由A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0}={x|-2<x<1},得A∩B={-1,0},故选A.]5.A[∵A={x|-1<x<2},B={x|1<x<3},∴A∪B={x|-1<x<3}.]6.C[∵P={x|x≥2或x≤0},∁R P={x|0<x<2},∴(∁R P)∩Q={x|1<x<2},故选C.7.A[因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)·(x-1)=0}={1,4},所以M∩N=∅,故选A.]8.D[由于2∈A,2∈B,3∈A,3∈B,1∈A,1∉B,故A,B,C均错,D是正确的,选D.]9.C[由题意知∁U A={2,4,7},选C.]10.C[“存在集合C使得A⊆C,B⊆∁U C”⇔“A∩B=∅”,选C.]11.B12.C[因为集合A,B中的公共元素为1,2,所以A∩B={1,2},应选C.]13.C[M∪N表示属于M或属于N的元素构成的集合,故M∪N ={-1,0,1,2},选C.]14.{7,9}[依题意得U={1,2,3,4,5,6,7,8,9,10},∁U A={4,6,7,9,10},(∁U A)∩B={7,9}.]15.6[根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,其中a=1与b=1矛盾,条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,则a=3符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.]16.201 [可分下列三种情形:(1)若只有①正确,则a ≠2,b ≠2,c =0,所以a =b =1或b =c =0或a =c =0与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b =2,a =2,c =0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c ≠0,a =2,b ≠2,所以b =0,c =1,所以100a +10b +c =100×2+10×0+1=201.]【一年模拟试题精练】1.A [由|x |≤1得-1≤x ≤1,∴A ={x |-1≤x ≤1};由y =x 得x ≥0,∴B ={x |x ≥0}.∴A ∩B ={x |0≤x ≤1}.故选A.]2.B [A ={1,2,3},B ={2,3,4},∴A ∩B ={2,3},又∵U ={1,2,3,4,5},∴∁U (A ∩B )={1,4,5}.]3.C [∵A ={1,-1},B ={0,-1},∴A ∩B ={-1},选C.]4.D [集合A ={x |x <-3或x >1},所以∁R A ={x |-3≤x ≤1}, 所以(∁R A )∩Z ={-3,-2,-1,0,1},故选D.]5.A [M ={x |x 2+3x +2<0}={x |-2<x <-1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎝ ⎛⎭⎪⎫12x ≤4={x |x ≥-2},则M ∪N ={x |x ≥-2},故选A.]6.B [A ={x |x 2-3x +2=0}={1,2},B ={x |log x 4=2}={2},则A ∪B ={1,2},故选B.]7.C [B ={x |x =2a ,a ∈A }={0,2,4,6} ,则A ∩B ={0,2},故选C.]8.C [A ={x |x 2-16<0}={x |-4<x <4},所以A ∩B ={0,1}故选C.]9.B [A ={x ∈N |x ≤6}={0,1,2,3,4,5,6},B ={x ∈R |x 2-3x >0}={x |x >3或x <0},则A ∩B ={4,5,6},故选B.]10.C [A ={x ∈R ||x -1|<2}={x |-1<x <3},B ={y |y ≥0},则A ∩B =[0,3),故选C.]11.D [A ={x |x >-2},B ={x |x <3},则A ∩B ={x |-2<x <3},故选D.]12.A [因为A ={x |x =x 2-2,x ∈R }={2}且A ⊆B ,故m =2,故选A.]13.C [B ={x |x =n ,n ∈A }={0,1,2,3,2},则A ∩B ={0,1,2}故其真子集的个数为7个,故选C.]14.{x |1<x ≤2} [由M 中不等式解得:x <-2或x >2,即M ={x |x <-2或x >2},∴∁R M ={x |-2≤x ≤2},由N 中不等式变形得:x -3x -1≤0,解得:1<x ≤3,即N ={x |1<x ≤3},则(∁R M )∩N ={x |1<x ≤2}.故答案为:{x |1<x ≤2}.]15.①4 ②(5,1,3)考点2 常用逻辑用语【两年高考真题演练】1.B [由x >1⇒x +2>3⇒log 12(x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“log 12(x +2)<0”成立的充分不必要条件.因此选B. ]2.B [m ⊂α,m ∥β⇒/α∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件.]3.A [当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q ⇒/p ,故选A.]4.A [柯西不等式“(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )≥(a 1a 2+a 2a 3+…+a n -1a n )2”等号成立的条件是“a 1a 2=a 2a 3=…=a n -1a n (即a 1,a 2,…,a n ,成等比数列)”或“a 2=a 3=…=a n =0”,故p 是q 的充分条件,但不是q 的必要条件.故选A.]5.C [由A ∩B =A 可知,A ⊆B ;反过来A ⊆B ,则A ∩B =A ,故选C.]6.C [将命题p 的量词“∃”改为“∀”,“n 2>2n ”改为“n 2≤2n ”.]7.A [∵sin α=cos α⇒cos 2α=cos 2α-sin 2α=0;cos 2α=0⇔cos α=±sin α⇒/ sin α=cos α,故选A.]8.A [∵A ≠B ⇒card(A ∪B )>card(A ∩B ),即d (A ,B )>0,若A =B ⇒d (A ,B )=0,则由d (A ,B )≠0⇒A ≠B ,即d (A ,B )>0⇒A ≠B ,∴命题①成立;由韦恩图知,命题②也成立,故选A.]9.C [由题易知命题p 为真,命题q 为假,则綈p 为假,綈q 为真.故p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假.故选C.]10.A11.A [命题p 为真命题,命题q 为假命题,所以命题綈q 为真命题,所以p ∧綈q 为真命题,选A.]12.D [依题意,命题p 是真命题.由x >2⇒x >1,而x >1D /⇒x >2,因此“x >1”是“x >2”的必要不充分条件,故命题q 是假命题,则綈q 是真命题,p ∧綈q 是真命题,选D.]13.A [从原命题的真假入手,由于a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,逆命题与否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.]14.B [因为原命题为真,所以它的逆否命题为真;若|z 1|=|z 2|,当z 1=1,z 2=-1时,这两个复数不是共轭复数,所以原命题的逆命题是假的,故否命题也是假的.故选B.]15.C [设f (x )=x 3,f ′(0)=0,但是f (x )是单调增函数,在x =0处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题.故选C.]【一年模拟试题精练】1.D [特称命题的否定是全称命题故选D.]2.C [原命题为若綈p 则綈q 的形式,则否命题为若綈p 则綈q 的形式,故选C.]3.B [由不等式的性质知,当a >b >0时,a 2>b 2成立;反之,例如取a =-3,b =1,显然a 2>b 2,而a >b >0不成立.故选B.]4.C [命题p ,q 均为假命题,则綈p 为真命题,所以(綈p )∨q 为真命题,故选C.]5.B [a ·b <0得到a ,b 夹角为钝角或π,反之成立,故选B.]6.A [由3x 2+x -2>0得x >23或x <-1,故由“x >23”能推出“3x 2+x -2>0”,反之则不能,故选A.]7.D [mn >1时X >1不一定成立,反之也不一定成立,故选D.]8.C [当b =0时,函数f (x )为奇函数,反之也成立,故选C.]9.A [函数y =x 2+bx +c (x ∈[0,+∞))是单调函数需满足-b 2≤0,则b ≥0,故选A.]10.C [命题p 为真命题,命题q 为假命题,则p ∧(綈q )是真命题,故选C.]11.C [根据原命题与其逆否命题等价,具有共同的真假性,故选C.]12.A [因为A B ,则集合A 中的元素是集合B 中的元素,而集合B 中的元素不一定是集合A 中的元素,则“x ∈A ”是“x ∈B ”的充分不必要条件.]13.D [a ≠5,b ≠-5推不出a +b ≠0,例如a =2,b =-2时,a +b =0,a +b ≠0也推不出a ≠5且b ≠-5,所以“a ≠5且b ≠-5”是“a +b ≠0”既不充分条件也不必要条件,所以选D.]14.[-2,0] [∵f (x )是奇函数,且当x ≥0时,f (x )=log 3(x +1)为增函数,∴f (x )在[-8,8]上也为增函数,且f (8)=log 3(8+1)=log 3 9=2,即函数f (x )在[-8,8]上的值域为B =[-2,2],由f [x 2+a (a +2)]≤f (2ax +2x )得x 2+a (a +2)≤2ax +2x ,即x 2-2(a +1)x +a (a +2)≤0,则(x -a )[x -(a +2)]≤0,即a ≤x ≤a +2,即A =[a ,a +2],∵“x ∈A ”是“x ∈B ”的充分不必要条件,∴A B ,即⎩⎨⎧a ≥-2,a +2≤2,解得-2≤a ≤0,故答案为:[-2,0].] 15.①② [③“A >30°”是“sin A >12”的既不充分也不必要条件,不正确;④φ=kπ(k∈Z)是函数f(x)=tan(x+φ)为奇函数的充分不必要条件,不正确.]。
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题目时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题目时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题目:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz ,则z =A .2B C D .12.已知集合 1,2,3,4,5,6,72,3,4,52,3,6,7U A B ,,,则U B A ∩ðA .1,6B .1,7C .6,7D .1,6,73.已知0.20.32log 0.2,2,0.2a b c ,则A .a b cB .a c bC .c a bD .b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(512≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .190cm5.函数f (x )=2sin cos x xx x在[—π,π]的图像大致为A .B.C.D .6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生7.tan255°=A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b ) b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π69.如图是求112122的程序框图,图中空白框中应填入A .A =12AB .A =12AC .A =112AD .A =112A10.双曲线C :22221(0,0)x y a b a b的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50D .1cos5011.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F ,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B ,1||||AB BF ,则C 的方程为A .2212x y B .22132x y C .22143x y D .22154x y 二、填空题目:本题共4小题,每小题5分,共20分。
2019山东各地高考数学联考分类篇:01集合
注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!
2.(山东省威海市2018年3月高三第一次模拟文理科〕设集合{}{}32,2,,1,
B p A =-=,那么“p=3”是“B B A =⋂”的(C)
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
2.(山东省淄博市2018年3月高三第一次模拟文科〕不等式x 2-x ≤0的解集为M ,且集合N={x|-1<x <1},那么M ∩N 为(A)
A.[0,1)
B.(0,1)
C.[0,1]
D.(-1,0]
1、(山东省济南市2018年2月高三定时练习文科)全集U ={0,1,2,3,4},M ={2,4},N ={0,4},那么C u (M ⋃N )=(C)
A.{1,4}
B.{3}
C.{1,3}
D.{0,1,3,4}
2.(山东省济南市2018年2月高三定时练习理科)全集U R =,集合A={|23}x x x <->或,B=2{|340}x x x --≤,那么集合B A ⋂=〔B 〕
A 、{|2}x x -≤≤4
B 、{|4}x x <≤3
C 、{|2}x x -≤≤-1
D 、{|1}x x -≤≤3
1、(山东省潍坊市2018年3月高三一轮模拟文理科)集合
,集合N=( B)
A 、(0、+∞)
B 、(1,+∞)
C 、(0,1)
D 、(0,1)∪(i ,+∞)
1.(山东省实验中学2018
年3月高三第四次诊断文科)集合2{0,},{|250,}P m Q x x x x Z ==-<∈,假设P Q ≠∅,那么m 等于(D)
A.1
B.2
C.1或
52
D.1或2 1、(山东省烟台市2018年高三诊断性检测理)设全集U ={1,2,3,4,5},A ={1,2},B ={2,3},那么A ∩∁U B =(B)
A 、{4,5}B.{1}C.{2,3}D.{2} 1.〔山东省济南一中2018届高三上学期期末文科〕设集合{}A x x x =<->1或1,2{log 0}
B x x =>,那么A B =〔
C 〕
A 、 {}|x x <-1
B 、{}|x x >0
C 、{}|x x >1
D 、 {}|x x x <->1或1
2.〔山东省泰安市2018届高三上学期期末文科〕全集R U =,集合{}{}3|,5,4,3,2,1≥∈==x R x B A ,右图中阴影部分所表示的集合为(B)
A.{}1
B.{}2,1
C.{}32,1,
D.{}21,0,
1、(山东省烟台市2018届高三上学期期末文科)设全集{}1,2,3,4,5U =,集合{1,2,4}A =,{4,5}B =,那么图中的阴影部分表示的集合为
A 、{}5
B 、{}4
C 、{}1,2
D 、{}3,5。