第三章 误差
- 格式:pdf
- 大小:840.21 KB
- 文档页数:60
教材第三章 误差和分析数据的处理习题一、指出在下列情况下,各会引起哪种误差?如果是系统误差,应该采用什么方法减免?(1)砝码被腐蚀;(2)天平的两臂不等长;(3)容量瓶和移液管不配套;(4)试剂中的含有微量的被测组分; (5)天平的零点有微小变动;(6)读取滴定体积时最后一位数字估计不准; (7)滴定时不慎从锥形瓶中溅出一滴溶液;(8)标定HCL 溶液用的NaOH 标准溶液中吸收了CO2。
习题二、如果分析天平的称量误差为±0.2mg ,拟分别称取试样0.1g 和1g 左右,称量的相对误差各为多少?这些结果说明了什么问题?答:Ea=±0.2mg m 1=0.1g m 2=1.0g则 Er 1=%2.0%1001.0102.03=⨯⨯-g gEr 2=%02.0%1000.1102.03=⨯⨯-g g说明在绝对误差相同时,称量质量越多,相对误差越小。
习题三、滴定管的读数误差为±0.02mL 。
如果滴定中用去标准溶液的体积分别为2mL 和20mL 左右,读数的相对误差各是多少?从相对误差的大小说明了什么问题?解:Ea=±0.02mL V 1=2mL V 2=20mL则 Er 1=mL mL202.0×100%=1%Er 2=mL mL2002.0×100%=0.1%说明在Ea 相同时,用去体积越大,相对误差越小。
习题四、下列数据包括了几位有效数字?(1)0.0330 (2)10.030 (3) 0.01020 (4) 8.7×10 ¯5 (5) pKa =4.74 (6)pH =10.00答:习题五、将0.089 g Mg2P2O7沉淀换算为MgO 的质量,问计算时在下列换算因数(2MMgO/MMg2P2O7)中取哪个数值较为合适: 0.3623, 0.362, 0.36 ? 计算结果应以几位有效数字报出?答:取0.36较为合适,结果应有2位有效数字。
第三章误差分析理论测量的目的是确定被测量的量值,然而由于下列因素的存在:1.测量设备的不完善;2.测量方法的不完善;3.测量环境的影响;4.测量人员的能力有限;使得测量值与被测量的真值之间,不可避免地存在差异,这种差异的数值表现即为误差。
一、误差概述测量是将被测的物理量与所规定的参考标准进行比较的过程。
例如,测量某一起重机械的外形尺寸大小,就是用米尺与其比较。
至于测量的标定就是为了提供进行比较的参考标准。
实验测定某一机械量,目的在于测出该机械量的真值。
但是在实测中,只能得到在一定程度上接近于真值的测量值,因此测量结果必然产生失真,这种失真则称为误差,即误差=测量值-真值用符号表示为第一节误差的分类μ-=∆i x x真值:与给定的特定量的定义一致的值。
理论真值:已知的,如三角形内角和为180°约定真值:不确定的,根据多次测量给出,如平均值误差必然存在:误差产生的必然性已被大量实践所证实,也就是说,一切实验结果都会产生误差。
随着科技的发展,测量误差控制得越来越小,但不论小到什么程度误差总是存在的。
在实际测量中,对给定的测量任务只需达到规定的精度要求就行了,决不是精度愈高愈好,否则将导致浪费。
因此,在实际测量中,必须根据测量目的,全面考虑测量的可靠性、精度、经济性和使用简便性。
(一)按误差本身因次分类1.绝对误差某被测量的绝对误差定义为该量的测量值与真值之差,即:绝对误差=测量值-真值绝对误差可为正或负。
例1:某一标准长度,其约定真值为X =100.02mm ,现有A 、B 两台仪器对其进行测量,测量结果如下:X A =100.05mm ,X B =100.00mm ,试比较两台仪器绝对误差的大小。
解:A仪器的测量误差为:V A =X A -X =100.05-100.02=0.03mmB仪器的测量误差为:V B =X B -X =100.00-100.02=-0.02mm由于|V A |>|V B |,所以B仪器的绝对误差小。
误差原理第三章误差的传递与合成误差的传递是指在实验过程中,由于不同的测量步骤和计算过程引入误差,这些误差会通过物理关系或者数学计算传递到最终结果中。
在实验中,每一个测量仪器都有其特定的精确度和不确定度。
当我们进行复杂的测量或计算时,这些误差会相互作用并积累,从而影响到最终结果的精确度。
为了定量描述误差的传递,我们需要引入误差传递公式。
对于其中一个物理量x,假设它是由一系列测量结果a、b、c等通过其中一种物理关系或者数学计算得到的,则误差传递公式可以写为:Δx=√((∂x/∂a)²Δa²+(∂x/∂b)²Δb²+(∂x/∂c)²Δc²+...)其中Δx表示x的不确定度,∂x/∂a、∂x/∂b等表示物理关系或者计算公式对于变量a、b的导数,Δa、Δb等表示变量a、b的不确定度。
这个公式表明了误差是通过导数的平方和来传递的。
最大值法是指将每个测量结果的不确定度取最大值,作为最终结果的不确定度。
这种方法适用于误差独立且不相关的情况。
例如,在实验中测量一些物理量时,我们使用了不同型号的仪器进行多次测量,那么每个测量结果的不确定度可以认为是不相关的,这时可以采用最大值法。
平方和法是指将每个测量结果的不确定度的平方相加并开方,作为最终结果的不确定度。
这种方法适用于误差相互关联的情况。
例如,在实验中测量一些物理量时,多个测量结果的不确定度具有一定的相关性,这时可以采用平方和法。
实际应用中,误差的传递和合成在实验设计和数据处理中起着关键的作用。
在实验设计中,我们可以通过分析物理关系和计算过程,确定哪些因素会对实验结果产生较大的影响,从而优化实验方案以降低不确定度。
在数据处理中,我们可以根据误差的传递公式和合成方法,对实验结果进行误差分析,得到对最终结果的不确定度的估计,以提高实验结果的可靠性和可信度。
总之,误差的传递和合成是误差原理的核心内容,它描述了实验结果的不确定性和误差如何从测量仪器传递到最终的物理量中。
第三章 错误!未定义书签。
错误!未定义书签。
错误!未定义书签。
误差分析与处理任何试验总是不可避免地存在误差,为提高测量精度,必须尽可能消除或减小误差,因此有必要对多种误差的性质、出现规律、产生原因,发现与消除或减小它们的主要方法以及测量结果的评定等方面作研究。
误差的定义:绝对误差=实测值-真值相对误差=绝对误差/真值≈绝对误差/实测值 误差的来源:测量装置误差(如标准量具、仪器、附件等)环境误差(如温度、湿度、气压、振动、照明、重力场、电磁场等) 方法误差 人员误差 误差分类: 系统误差 随机误差 粗大误差§3—1。
随机误差同一测量值在等精度情况下的多次重复,有可能会得一系列不同的测量值,每个值均有一定的误差,且无规律(但有一定的统计规律),这样的误差称为随机误差. 产生原因:测量装置(精度、器件性能不稳定等)环境方面(湿度、温度、电压、光照、磁场等) 人为因素:(素质、技能)随机误差一般不能消除,但通过统计平均可以减小,大多情况认为随机误差符合正态分布情况,即:221()exp()(2)2f――标准差(均方根误差),越小,精度就越高的大小只说明在一定条件下,等精 度测量值的随机误差的概率分布情况。
经n 次等精度测量后的均方差为:222212()/()/n i n nσδδδδ=++⋅⋅⋅⋅⋅⋅+=∑ (3-1)i δ是第i 次测量的误差。
0i i l L δ=- i l 是第i 次测量值,0L 是真值.当真值为未知时,应该说上式不能求得标准差。
在有限次测量情况下,可用残余误差iv 代替真值误差。
i i v l x =-, x 是测量平均值,()/i x l n=∑。
i v 是i l 的残余误差。
我们将0iil L 作一些变形替换,并令,展开: 100i n n l x x L l x x Lδδ=-+-⋅⋅=-+-⎧⎪⎨⎪⎩令0x x L δ=-为算术平均值的误差=0i i v l nx =-∑∑(当il x n =∑代入时)上式又为 11xn n xv v δδδδ=+⎧⎪⋅⎨⎪=+⎩ (3-2)所有项相加:i i xv n δδ=+∑∑11x ii v n n δδ⇒=-∑∑其中:=0iv ∑ /0iiiiv l nx l n ln =-=-=∑∑∑∑,()∴1x i n δδ=∑ 即算术平均值的误差将(3-2)式平方后相加(2222i i ixxv v )222222ii x x i i x v n v v n δδδδ=++=+∑∑∑∑ (3-3)将式1x i n δδ=∑ 的 两边平方2222111()(2)x i i i j i jn n δδδδδ≤≤==+∑∑∑当n 足够大时,ijδδ∑认为趋于零,将2221x i n δδ=∑,代入(3-3)式2221i i i v n δδ=+∑∑∑由(3-1)式可知 22in δσ=∑∴222i n v σσ=+∑ 2()(1)i v n σ⇒=-∑ (3-4)式(3-4)称为Bessel 公式,由残余误差求得单次测量的标准差的估计值。