[精品]2019届高考数学二轮复习寒假作业二十六小题限时保分练__广州调研试题节选注意命题点分布理40
- 格式:doc
- 大小:181.56 KB
- 文档页数:7
小题标准练(六)(40分钟80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数满足i(z-1)=1+i(i为虚数单位),则z= ( )A.2-iB.2+iC.1-2iD.1+2i【解析】选A.由已知得iz=1+2i,所以z==2-i.2.若复数z满足z(4-i)=5+3i(i为虚数单位),则为( )A.1-iB.-1+iC.1+iD.-1-i【解析】选A.z====1+i,=1-i.3.下列函数中,既是偶函数又在(-∞,0)上单调递增的是( )A.y=x2B.y=2|x|C.y=log2D.y=sin x【解析】选 C.函数y=x2在(-∞,0)上是减函数;函数y=2|x|在(-∞,0)上是减函数;函数y=log2=-log2|x|是偶函数,且在(-∞,0)上是增函数;函数y=sin x不是偶函数.综上所述,选C.4.在△ABC中,“cos A=2sin Bsin C”是“△ABC为钝角三角形”的( )A.必要不充分条件B.充要条件C.充分不必要条件D.既不充分也不必要条件【解析】选C.在△ABC中,A=π-(B+C),所以cos A=-cos(B+C).又因为cos A=2sin Bsin C,即-cos Bcos C+sin Bsin C=2sin Bsin C.所以cos(B-C)=0,所以B-C=,所以B为钝角.即△ABC为钝角三角形.若△ABC为钝角三角形,当A为钝角时,条件不成立.5.函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.与x有关,不确定【解析】选A.由f(x+1)=f(1-x)知:函数f(x)的图象关于直线x=1对称,所以b=2,由f(0)=3知c=3,所以f(b x)=f(2x),f(c x)=f(3x).当x>0时,3x>2x>1,又函数f(x)在[1,+∞)上单调递增,所以f(3x)>f(2x),即f(b x)<f(c x);当x=0时,3x=2x=1,所以f(3x)=f(2x),即f(b x)=f(c x);当x<0时,0<3x<2x<1,又函数f(x)在(-∞,1)上单调递减,所以f(3x)>f(2x),即f(b x)<f(c x).综上知:f(b x)≤f(c x).6.如图,在长方体ABCD-A1B1C1D1中,点P是线段CD中点,则三棱锥P-A1B1A的侧视图为( )【解析】选D.由长方体可知B1A1⊥AA1,所以侧视图的左上角应是直角,排除选项A,B;且侧视图中,A1B1,AB1,AA1,AP,B1P均为实线,只有A1P为虚线,排除选项C.7.一个空间几何体的三视图如图,则该几何体的体积为 ( )A. B.+8C.4π+D.4π+8【解析】选 A.由三视图可知该几何体是一个半圆锥和一个三棱锥组合而成的,其体积为:V=Sh=×2=.8.设数列{a n }的前n 项和为S n ,若2,S n ,3a n 成等差数列,则S 5的值是 ( ) A.-243B.-242C.-162D.243【解析】选 B.方法一:由题意得2S n =3a n +2,所以2=3a n+1+2两式相减a n+1=3a n ,即=3,又2S 1=3a 1+2,所以a 1=-2,所以{a n }是首项为-2,公比为3的等比数列.所以S 5==-242.方法二:由题意得2S n =3a n +2,所以2S n+1=3a n+1+2=3S n+1-3S n +2,所以S n+1=3S n -2,即S n+1-1=3(S n -1),又2S 1=3a 1+2,所以a 1=-2,所以{S n -1}是首项为-3公比为3的等比数列,所以S n -1=-3n,即S n =1-3n,所以S 5=1-35=-242.9.如图所示,平行四边形ABCD 中,AB=2AD=2,∠BAD=60°,E 为DC 的中点,那么与所成角的余弦值为 ( )A. B.- C. D.-【解析】 选 C.=+,||2=|+|2=7;=-=-,||2=|-|2=1.故·=(+)·(-)=,cos<,>==.10.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )A.2 017×22 015B.2 017×2 2 014C.2 016×22 015D.2 016×22 014【解析】选B.如图,当第一行3个数时,最后一行仅一个数,为8=23-2×(3+1);当第一行4个数时,最后一行仅一个数,为20=24-2×(4+1);当第一行5个数时,最后一行仅一个数,为48=25-2×(5+1);当第一行6个数时,最后一行仅一个数,为112=26-2×(6+1).归纳推理,得当第一行2 016个数时,最后一行仅一个数,为22 016-2×(2 016+1).11.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0) 上任意一点,M是线段PF上的点,且=2|MF|,则直线OM的斜率的最大值为( )A. B. C. D.1【解析】选 C.设P(2pt2,2pt),M(x,y)(不妨设t>0),则=(2pt2-,2pt).由已知得=,所以所以所以k O M==≤=,所以(k O M)max=.12.若x,y满足且z=y-x的最小值为-4,则k的值为 ( )A.2B.-2C.D.-【解析】选D.作出线性约束条件的可行域.当k>0时,如图①所示,此时可行域为y轴上方、直线x+y-2=0的右上方、直线kx-y+2=0的右下方的区域,显然此时z=y-x无最小值.当k<-1时,z=y-x取得最小值2;当k=-1时,z=y-x取得最小值-2,均不符合题意.当-1<k<0时,如图②所示,此时可行域为点A(2,0),B,C(0,2)所围成的三角形区域,当直线z=y-x经过点B时有最小值,即-=-4⇒k=-.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.200名职工年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1~200编号为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为____________.若采用分层抽样,40岁以下年龄段应抽取____________人.【解析】将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中抽取x人,则=,解得x=20.答案:37 2014.若不等式2y2-x2≥c(x2-xy)对任意满足x>y>0的实数x,y恒成立,则实数c的最大值为____________.【解析】因为不等式2y2-x2≥c(x2-xy)对任意满足x>y>0的实数x,y恒成立,所以c≤=,令=t>1,所以c≤,令f(t)=,则f′(t)= =,当t>2+时,f′(t)>0,函数f(t)单调递增;当1<t<2+时,f′(t)<0,函数f(t)单调递减;所以当t=2+时,f(t)取得最小值,f(2+)=2-4.所以实数c的最大值为2-4.答案:2-415.在边长为1的正方形ABCD中,M为BC的中点,点E在线段AB上运动,则·的取值范围是____________.【解析】将正方形放入如图所示的平面直角坐标系中,设E(x,0),0≤x≤1.又M,C(1,1),所以=,=(1-x,1),所以·=·(1-x,1)=(1-x)2+.因为0≤x≤1,所以≤(1-x)2+≤,即·的取值范围是.答案:16.已知P(x,y)是抛物线y2=4x上的点,则-x的最大值是____________.【解析】由题意得抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,所以|PF|=x+1,则x=|PF|-1.设点A(3,2),则-x=|PA|-(|PF|-1)=|PA|-|PF|+1,由图结合三角形的性质易得当P,F,A三点自下而上依次共线时,|PA|-|PF|取得最大值|AF|==2,所以-x的最大值为2+1.答案:2+1。
.精品文档 .2019 届高三理科数学二模试卷高三第二轮复习质量检测数学试题 ( 理科 )2019.4一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A.(1 ,2]B. (1,]. [0, 1)D. (1, +∞)2.已知i为虚数单位,若复数的实部与虚部相等,则的值为A.2B..D.3.设等差数列的前n项和为,若A.8B.9.10D.114.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:A.①③B.①④.②③D.②④5.根据如下样本数据:得到的回归方程为,则每增加一个单位,y 就A.增加 1.4个单位B.减少 1.4个单位.增加 1.2个单位D.减少 1.2 个单位6.已知 x , y 满足约束条件则的取值范围是A.[2 ,4] B . [4 , 6].[2 ,6]D .( -∞, 2]7.执行如图所示的程序框图,若输入的S=12,则输出的S=A.B.8.已知数列.5D.6的奇数项依次成等差数列,偶数项依次成等比数列,且A. B .19 9.设双曲线.20 D .23的左、右焦点分别为,P 是双曲线上一点,点 P 到坐标原点的距离等于双曲线焦距的一半,且,则双曲线的离心率是A.B..D.10.已知函数恰有1 个零点,则的取值范围是A.B..D.11.如图,在下列四个正方体中,P, R, Q,,N, G, H为所在棱的中点,则在这四个正方体中,阴影平面与 PRQ所在平面平行的是12.若函数上单调递增,则实数的取值范围为A.B..D.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.如图,已知正方体ABD—的棱长为1,点 P 为棱上任意一点,则四棱锥P—的体积为▲ .14.某外商计划在4 个候选城市中投资 3 个不同的项目,且在同一个城市投资的项目不超过 2 个,则该外商不同的投资方案有▲ 种.15.抛物线的焦点为F,动点 P 在抛物线上,点取得最小值时,直线AP的方程为▲ .16.如图,在△ AB中,为 D 上一点,且满足的面积为,则的最小值为▲ .三、解答题:共70 分,解答应写出字说明,证明过程或演算步骤.第17 题~第21 题为必考题,每个试题考生都必须作答 . 第 22 题 ~第 23 题为选考题,考生根据要求作答.17.( 本小题满分12 分 )3 / 6已知函数 .(1)求函数的单调递增区间;(2) 在△ AB中,内角A, B,的对边分别为,求的值.18.( 本小题满分12 分 )如图,正方形ABD边长为,平面平面ED,.(1)证明:;(2)求二面角的余弦值.19.(本小题满分12 分)某社区为了解居民参加体育锻炼情况,随机抽取18男性居民, 12 名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成 3 类:甲类 (参加体育锻炼 ) ,乙类 ( 参加体育锻炼,但平均每周参加体育名不锻炼的时间不超过 5 个小时 ) ,丙类 ( 参加体育锻炼,且平均每周参加体育锻炼的时间超过 5 个小时 ) ,调查结果如下表:(1)根据表中的统计数据,完成下面列联表,并判断是否有 90%的把握认为参加体育锻炼与否与性别有关?(2)从抽出的女性居民中再随机抽取 3 人进一步了解情况,记 X 为抽取的这 3 名女性居民中甲类和丙类人数差的绝对值,求X 的数学期望.附:20. ( 本小题满分12 分)已知椭圆的右顶点为A,左焦点为,离心率,过点A 的直线与椭圆交于另一个点B,且点 B 在 x 轴上的射影恰好为点,若.(1)求椭圆的标准方程;(2)过圆上任意一点 P 作圆 E 的切线与椭圆交于, N 两点,以 N 为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.21.( 本小题满分12 分 )已知函数.(1)若函数存在极小值点,求的取值范围;(2)证明:.请考生在第22~23 题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.( 本小题满分10 分 )在平面直角坐标系xy 中,直线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程;(2)过点 P(1 ,0) 作直线的垂线交曲线于, N 两点,求的值.23.( 本小题满分10 分 )已知函数.(1)当时,解不等式;(2)若不等式有解,求的取值范围.。
寒假作业(二十九) 小题限时保分练——贵阳质检试题节选(注意命题点分布)(时间:40分钟 满分:80分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,1)D .(-∞,1)∪(3,+∞)解析:选B ∵A ∩B 有4个子集,∴A ∩B 中有2个不同的元素,∴a ∈A ,∴a 2-3a <0,解得0<a <3且a ≠1,即实数a 的取值范围是(0,1)∪(1,3).2.已知i 为虚数单位,a ∈R ,若2-ia +i 为纯虚数,则复数z =2a +2i 的模等于( )A. 2B.11C. 3D. 6解析:选C 由题意,设2-ia +i=t i(t ≠0),则2-i =-t +ta i ,∴⎩⎪⎨⎪⎧-t =2,ta =-1,解得⎩⎪⎨⎪⎧t =-2,a =12,∴z =1+2i ,|z |= 3.3.若1a <1b<0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A 、B 、C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D. 4.已知不共线的两个向量a ,b 满足|a -b |=2且a ⊥(a -2b ),则|b |=( ) A. 2 B .2 C .2 2D .4解析:选B 由a ⊥(a -2b )得,a ·(a -2b )=|a |2-2a ·b =0,则|a -b |= a -b2= |a |2-2a ·b +|b |2=|b |=2,选项B 正确.5.已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( ) A.114B.32C.72D .1解析:选A 设{a n }的公差为d , 则S n =na 1+n n -2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,∴⎩⎪⎨⎪⎧d = d2,a 1-d 2=0,解得⎩⎪⎨⎪⎧d =12,a 1=14,∴a 6=a 1+5d =14+52=114.6.实数x ,y 满足⎩⎪⎨⎪⎧xy ≥0,|x +y |≤1,使z =ax +y 取得最大值的最优解有2个,则z 1=ax +y +1的最小值为( ) A .0 B .-2 C .1D .-1解析:选A 画出不等式组所表示的可行域如图中阴影部分所示,∵z =ax +y 取得最大值的最优解有2个,∴-a =1,a =-1,∴当x =1,y =0或x =0,y =-1时,z =ax +y =-x +y 有最小值-1,∴ax +y +1的最小值是0.7.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A.433B.533C .2 3 D.833解析:选B 由题意得,该几何体为如图所示的五棱锥P ABCDE , 所以体积V =13×⎝ ⎛⎭⎪⎫12×2×1+22×3=533.8.如图所示的程序框图,若结束时输出的结果不小于3,则t 的取值范围为( )A.⎣⎢⎡⎭⎪⎫14,+∞ B.⎣⎢⎡⎭⎪⎫18,+∞C.⎝⎛⎦⎥⎤-∞,14D.⎝⎛⎦⎥⎤-∞,18解析:选B 依次运行程序框图中的语句可得,n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x =38t≥3,则8t ≥1,即t ≥18.9.已知点F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则双曲线的离心率为( )A .2B .4 C.13D.15解析:选C 由题意,设|AB |=3k ,|BF 2|=4k ,|AF 2|=5k ,则BF 1⊥BF 2,|AF 1|=|AF 2|-2a =5k -2a ,又|BF 1|-|BF 2|=5k -2a +3k -4k =4k -2a =2a ,∴a =k ,∴|BF 1|=6a ,|BF 2|=4a ,又|BF 1|2+|BF 2|2=|F 1F 2|2,即13a 2=c 2,∴e =c a=13.10.三棱锥P ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为( ) A.25π3 B.25π2C.83π3D.83π2解析:选D 由题可知,△ABC 中AC 边上的高为15-9=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,∴x 2=32+(6-x )2,解得x =564,∴R 2=x 2+⎝ ⎛⎭⎪⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),∴外接球的表面积S =4πR 2=83π2.11.一矩形的一边在x 轴上,另两个顶点在函数y =2x1+x2(x >0)的图象上,如图,则此矩形绕x 轴旋转而成的几何体的体积的最大值是( )A .π B.π3 C.π4D.π2解析:选A ∵y =2x 1+x2(x >0),∴yx 2-2x +y =0,将其视为关于x 的一元二次方程,设x 1,x 2是其两根,∴绕x 轴旋转而成的几何体的体积V =πy 2|x 1-x 2|=πy 2·4-4y2y=2π14-⎝ ⎛⎭⎪⎫y 2-122≤π,当且仅当y 2=12,即y =22时等号成立.12.已知函数f (x )=x x,关于x 的不等式f 2(x )+af (x )>0只有2个整数解,则实数a 的取值范围是( )A.⎝ ⎛⎦⎥⎤13,ln 2B.⎝ ⎛⎭⎪⎫-ln 2,-13ln 6C.⎝ ⎛⎦⎥⎤-ln 2,-13ln 6D.⎝ ⎛⎭⎪⎫13ln 6,ln 2解析:选 C f ′(x )=12x·2·x -xx2=1-x x 2(x >0),令f ′(x )=0,得x =e 2,则f (x )在⎝ ⎛⎭⎪⎫0,e 2上单调递增,在⎝ ⎛⎭⎪⎫e 2,+∞上单调递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫e 2=2e,∵f ⎝ ⎛⎭⎪⎫12=0,1<e 2<2,不等式f 2(x )+af (x )>0只有2个整数解,∴⎩⎪⎨⎪⎧-a <f ,-a <f ,-a ≥f,解得-ln 2<a ≤-13ln 6,∴实数a 的取值范围是⎝ ⎛⎦⎥⎤-ln 2,-13ln 6. 二、填空题(本题共4小题,每小题5分)13.欧阳修《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为2 cm 的圆,中间有边长为0.5 cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为________.解析:由题意得,所求概率为P =⎝ ⎛⎭⎪⎫122π=14π. 答案:14π14.若⎝⎛⎭⎪⎫x 2+1x2-2n展开式中的常数项是70,则n =________.解析:∵⎝⎛⎭⎪⎫x 2+1x 2-2n =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -1x 2n =⎝ ⎛⎭⎪⎫x -1x2n,∴T r +1=C r2n (-1)r x 2n -2r,令2n -2r =0,即n =r ,∴C n2n =70,又C 48=70,∴n =4. 答案:415.已知点A (0,2),抛物线C 1:y 2=ax (a >0)的焦点为F ,射线FA 与抛物线C 1相交于点M ,与其准线相交于点N ,若|FM |∶|MN |=1∶5,则a 的值等于________.解析:过点M 作准线的垂线,垂足为H , 则|FM |=|MH |, ∵|FM ||MN |=|MH ||MN |=15, ∴tan ∠NMH =2,即k MF =-2, ∴2-00-a 4=-2,解得a =4. 答案:4 16.已知函数f (x )=⎩⎪⎨⎪⎧-nsin πx2+2n ,x ∈[2n ,2n +,-n +1sin πx2+2n +2,x ∈[2n +1,2n +(n ∈N),若数列{a m }满足a m =f (m )(m ∈N *),数列{a m }的前m 项和为S m ,则S 105-S 96=________.解析:∵S 105=a 1+a 2+a 3+…+a 105,S 96=a 1+a 2+a 3+…+a 96,∴S 105-S 96=a 97+a 98+a 99+a 100+a 101+a 102+a 103+a 104+a 105=f (97)+f (98)+f (99)+f (100)+f (101)+f (102)+f (103)+f (104)+f (105)=(-1)49×sin97π2+2×48+2+(-1)49×sin 98π2+2×49+(-1)50×sin 99π2+2×49+2+(-1)50×sin 100π2+2×50+(-1)51×sin 101π2+2×50+2+(-1)51×sin 102π2+2×51+(-1)52×sin 103π2+2×51+2+(-1)52×sin 104π2+2×52+(-1)53×sin 105π2+2×52+2=97+98+99+100+101+102+103+104+105=909. 答案:909。
2019年广东省高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.设i为虚数单位,则复数z=i(2-i)的共轭复数=()A. B. C. D.2.已知集合A={x|-1<x<6},集合B={x|x2<4},则A∩(∁R B)=()A. B. C. D.3.在样本的频率直方图中,共有9个小长方形,若中间一个长方形的面积等于其他8个小长方形面积的和的,且样本容量为200,则中间一组的频数为()A. B. C. 40 D. 504.设向量与向量垂直,且=(2,k),=(6,4),则下列下列与向量+共线的是()A. B. C. D.5.设S n为等差数列{a n}的前n项和,若公差d=1,S9-S4=10,则S17=()A. 34B. 36C. 68D. 726.某几何体的三视图如图所示,三个视图都是半径相等的扇形,若该几何体的表面积为,则其体积为()A.B.C.D.7.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆的离心率为,面积为12π,则椭圆C的方程为()A. B. C. D.8.函数f(x)在(-∞,+∞)单调递增,且为奇函数.已知f(1)=2,f(2)=3,则满足-3<f(x-3)<2的x的取值范围是()A. B. C. D.9.某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行质检,若从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195±3内,则称这批轮胎基本合格.已知这批轮胎的宽度分别为195,196,190,194,200,则这批轮胎基本合格的概率为()A. B. C. D.10.函数的部分图象不可能为()A. B.C. D.11.若函数f(x)=x3-ke x在(0,+∞)上单调递减,则k的取值范围为()A. B. C. D.12.已知直线x=2a与双曲线C:(a>0,b>0)的一条渐近线交于点P,双曲线C的左、右焦点分别为F1,F2,且cos∠PF2F1=-,则双曲线C的离心率为()A. B. C. 或 D. 或二、填空题(本大题共4小题,共20.0分)13.若函数f(x)=log2(x+a)的零点为-2,则a=______.14.若x,y满足约束条件,则的最大值为______.15.在四棱锥P-ABCD中,PA与矩形ABCD所在平面垂直,AB=3,AD=,PA=,则直线PC与平面PAD所成角的正切值为______.16.在数列{a n}中,a n+1=2(a n-n+3),a1=-1,若数列{a n-pn+q)为等比数列,其中p,q为常数,则a p+q=______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,AC=3,C=120°.(1)若AB=7,求BC边的长;(2)若cos A=sin B,求△ABC的面积.18.《最强大脑》是江苏卫视推出的大型科学竞技真人秀节目.节目筹备组透露挑选选手的方式:不但要对选手的空间感知、照相式记忆能力进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于120分为“未入围学生”.已知男生入围24人,女生未入围80人.(1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关.(2)用分层抽样的方法从“入围学生”中随机抽取11名学生.(ⅰ)求这11名学生中女生的人数;(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这11名学生中女生测试分数的平均分的最小值.附:K2=,其中n=a+b+c+d.19.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,AC⊥AB,AC=AB=4,AA1=6,点E,F分别为CA1与AB的中点.(1)证明:EF∥平面BCC1B1.(2)求三棱锥B1-AEF的体积.20.在平面直角坐标系xOy中,直线y=kx+1与抛物线C:x2=4y交于A,B两点.(1)证明:△AOB为钝角三角形.(2)若直线l与直线AB平行,直线l与抛物线C相切,切点为P,且△PAB的面积为16,求直线l的方程.21.已知函数f(x)=x2-(a+1)x+a ln x.(1)当a=-4时,求f(x)的单调区间;(2)已知a∈(1,2],b∈R,函数g(x)=x3+bx2-(2b+4)x+ln x.若f(x)的极小值点与g(x)的极小值点相等,证明:g(x)的极大值不大于.22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴为正半轴建立极坐标系,已知曲线C的极坐标方程为ρ2-4ρcosθ-6ρsinθ+12=0.(1)求曲线C的直角坐标方程;(2)过曲线C上一动点P分别作极轴、直线ρcosθ=-1的垂线,垂足分别为M,N,求|PM|+|PN|的最大值.23.设函数f(x)=|x+1|+|2-x|-k.(1)当k=4时,求不等式f(x)<0的解集;(2)若不等式对x∈R恒成立,求k的取值范围.答案和解析1.【答案】D【解析】解:∵z=i(2-i)=1+2i,∴.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.【答案】C【解析】解:B={x|x2<4}={x|-2<x<2},则∁R B={x|x≥2或x≤-2},则A∩(∁R B)={x|2≤x<6},故选:C.求出集合B的等价条件,结合补集交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件以及利用交集补集的定义是解决本题的关键.3.【答案】D【解析】解:在样本的频率直方图中,共有9个小长方形,中间一个长方形的面积等于其他8个小长方形面积的和的,且样本容量为200,设其他8组的频率数和为m,则由题意得:m+m=200,解得m=150,∴中间一组的频数为=50.故选:D.设其他8组的频率数和为m,则由题意得:m+m=200,由此能求出中间一组的频数.本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∵;∴;∴k=-3;∴;∴;∴(-16,-2)与共线.故选:B.根据即可得出,从而得出k=-3,从而可求出,从而可找出与共线的向量.考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】C【解析】解:因为数列{a n}是等差数列,且S9-S4=10,所以10=5a1+(36d-6d)=5(a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4,S17===17a9=17×4=68.故选:C.数列{a n}是等差数列,S9-S4=10=5a1+(36d-6d)=5(a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4,S17= ==17a9,将a9代入可得S17.本题考查了等差数列的前n项和公式,通项公式,属于基础题.6.【答案】A【解析】解:将三视图还原可知该几何体为球体的,S=3×+=,r=,几何体的体积为:=.故选:A.首先把几何体的三视图进行转换,进一步利用表面积公式的应用求出结果.本题考查的知识要点:三视图和几何体的转换,几何体的体积公式和面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】A【解析】解:由题意可得:,解得a=4,b=3,因为椭圆的焦点坐标在y轴上,所以椭圆方程为:.故选:A.利用已知条件列出方程组,求出a,b,即可得到椭圆方程.本题考查椭圆飞简单性质的应用,考查转化思想以及计算能力.8.【答案】A【解析】解:∵f(x)是奇函数,且(1)=2,f(2)=3,∴f(-2)=-3,则不等式-3<f(x-3)<2等价为f(-2)<f(x-3)<f(1),∵f(x)是增函数,∴-2<x-3<1得1<x<4,即x的取值范围是(1,4),故选:A.根据函数奇偶性和单调性的性质将不等式进行转化求解即可.本题主要考查不等式的求解,结合函数奇偶性和单调性的性质进行转化是解决本题的关键.9.【答案】C【解析】解:某轮胎公司的质检部要对一批轮胎的宽度(单位:mm)进行质检,从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195±3内,则称这批轮胎基本合格.这批轮胎的宽度分别为195,196,190,194,200,基本事件总数n==10,至少有2个轮胎的宽度在195±3内包含的基本事件个数m==7,∴这批轮胎基本合格的概率为p==.故选:C.基本事件总数n==10,至少有2个轮胎的宽度在195±3内包含的基本事件个数m=C=7,由此能求出这批轮胎基本合格的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.【答案】B【解析】解:A.由图象知函数的周期T=2π,则=2π得ω=1,此时f(x)=2sin(x-)=-2cosx为偶函数,对应图象为A,故A图象可能B.由图象知函数的周期T=-(-)==,即=,得ω=±3,当ω=3时,此时f(x)=2sin(3x-),f()=2sin(3×-)=2sin≠-2,即B图象不可能,当ω=-3时,此时f(x)=2sin(-3x+),f()=2sin(-3×+)=-2sin≠-2,即B图象不可能,C.由图象知函数的周期T=4π,则=4π得ω=±,当ω=时,此时f(x)=2sin(x-π)=-2sin x,f(π)=-2sin=-1,即此时C图象不可能,当ω=-时,此时f(x)=2sin(-x-π)=2sin x,f(π)=2sin=-1,即此时C图象可能,D.由图象知函数的周期=-=,即t=π,则=π得ω=2,此时f(x)=2sin(2x-),f()=2sin(2×-)=2sin=2,即D图象可能,综上不可能的图象是B,故选:B.根据三角函数的图象判断周期性性以及对称轴是否对应即可得到结论.本题主要考查三角函数图象的识别和判断,利用周期性求出ω以及利用特殊值进行验证是解决本题的关键.注意本题的ω有可能是复数.11.【答案】C【解析】解:∵函数f(x)=x3-ke x在(0,+∞)上单调递减,∴f′(x)=3x2-ke x≤0在(0,+∞)上恒成立,∴k在(0,+∞)上恒成立,令g(x)=,x>0,则,当0<x<2时,g′(x)>0,此时g(x)单调递增,x>2时,g′(x)<0,g(x)单调递减故当x=2时,g(x)取得最大值g(2)=,则k,故选:C.令f′(x)≤0在(0,+∞)上恒成立得k在(0,+∞)上恒成立,求出右侧函数的最大值即可得出k的范围.本题考查了导数与函数单调性的关系,函数恒成立问题,属于中档题.12.【答案】B【解析】解:双曲线C的左、右焦点分别为F1(-c,0),F2(c,0),cos∠PF2F1=-,可得sin∠PF2F1==,即有直线PF2的斜率为tan∠PF2F1=,由直线x=2a与双曲线C:(a>0,b>0)的一条渐近线y=x交于点P,可得P(2a,2b),可得=,即有4b2=15(4a2-4ac+c2)=4(c2-a2),化为11c2-60ac+64a2=0,由e=可得11e2-60e+64=0,解得e=或e=4,由2a-c>0,可得c<2a,即e<2,可得e=4舍去.故选:B.设出双曲线的焦点,求得一条渐近线方程可得P的坐标,求得直线PF2的斜率,由两点的斜率公式和离心率公式,可得所求值.本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题.13.【答案】3【解析】解:根据题意,若函数f(x)=log2(x+a)的零点为-2,则f(-2)=log2(a-2)=0,即a-2=1,解可得a=3,故答案为:3根据题意,由函数零点的定义可得f(-2)=log2(a-2)=0,解可得a的值,即可得答案.本题考查函数的零点,关键是掌握函数零点的定义,属于基础题.14.【答案】【解析】解:设z=,则k得几何意义为过原点得直线得斜率,作出不等式组对应得平面区域如图:则由图象可知OA的斜率最大,由,解得A(3,4),则OA得斜率k=,则的最大值为.故答案为:.设z=,作出不等式组对应得平面区域,利用z得几何意义即可得到结论.本题主要考查直线斜率的计算,以及线性规划得应用,根据z的几何意义,利用数形结合是解决本题的关键.15.【答案】【解析】解:∵在四棱锥P-ABCD中,PA与矩形ABCD所在平面垂直,∴CD⊥AD,CD⊥PA,∵AD∩PA=A,∴CD⊥平面PAD,∴∠CPD是直线PC与平面PAD所成角,∵AB=3,AD=,PA=,∴直线PC与平面PAD所成角的正切值:tan∠CPD===.故答案为:.推导出CD⊥AD,CD⊥PA,从而CD⊥平面PAD,进而∠CPD是直线PC与平面PAD所成角,由此能求出直线PC与平面PAD所成角的正切值.本题考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题.16.【答案】-2【解析】解:数列{a n}中,a n+1=2(a n-n+3),a1=-1,若数列{a n-pn+q)为等比数列,则:,所以:a n+1-p(n+1)+q=2(a n-pn+q)解得:p=2,q=2,故:数列{a n-pn+q}是以-1+2-2=-1为首项,2为公比的等比数列.所以:,整理得:.故:a p+q=a4=-8+8-2=-2,故答案为:-2首先求出数列的通项公式,进一步求出结果.本题考查的知识要点:数列的通项公式的求法及应用,主要考察学生的运算能力和转换能力,属于基础题型.17.【答案】解:(1)由余弦定理得AB2=BC2+AC2-2BC×AC×cos C,代入数据整理得BC2+3BC-40=0,解得BC=5(BC=-8舍去).(2)由cos A=sin B及C=120°,得cos(60°-B)=sin B,展开得cos B+sin B-sin B=0,即sin B=cos B,tan B==,所以B=30°.从而A=60°-B=30°,即A=B=30°,所以BC=AC=3.故△ABC的面积为×3×3×sin120°=.【解析】(1)直接利用余弦定理和一元二次方程的解的应用求出结果.(2)利用三角函数关系式的变换和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算能力和转换能力,属于基础题型.1…(4分)因为K2的观测值k==<2.706,…(6分)所以没有90%以上的把握认为脑力测试后是否为“入围学生”与性别有关…(7分)(2)(ⅰ)这11名学生中,被抽到的女生人数为20×=5…(9分)(ⅱ)因为入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数,所以这11名学生中女生的平均分的最小值为×(120+121+122+123+124)=122…(12分)【解析】(1)由题意填写列联表,计算观测值,对照临界值得出结论;(2)(ⅰ)根据分层抽样原理计算被抽到的女生人数;(ⅱ)由题意计算所求平均分的最小值.本题考查了列联表与独立性检验的应用问题,也考查了分层抽样原理与平均数的计算问题,是基础题.19.【答案】(1)证明:如图,连接BC1.(1分)在三棱柱ABC-A1B1C1中,E为AC1的中点.(2分)又因为F为AB的中点,所以EF∥BC1.(3分)又EF⊄平面BCC1B1,BC1⊂平面BCC1B1,所以EF∥平面BCC1B1.(5分)(或先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.)(2)解:因为AC⊥AB,AA1⊥AC,AA1∩AB=A,所以AC⊥平面ABB1A1,(7分)又AC=4,E为A1C的中点,所以E到平面ABB1A1的距离为:×4=2.(9分)因为△AB1F的面积为:×2×6=6,(10分)所以==×2×6=4.(12分)【解析】(1)连接BC1.证明EF∥BC1,然后证明EF∥平面BCC1B1.(2)说明AC⊥平面ABB1A1,求出E到平面ABB1A1的距离,通过=求解体积即可.本题考查直线与平面平行的判断定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.20.【答案】(1)证明:设A(x1,y1),B(x2,y2),联立,得x2-4kx-4=0,(1分)则x1x2=-4,(2分)所以y1y 2==1,(3分)从而•=x1x2+y1y2=-3<0,(4分)则∠AOB为钝角,故△AOB为钝角三角形.(5分)(得到x1x2,y1y2的值分别给(1分);若只是得到其中一个,且得到•=-3<0,可以共给(3分)).(2)解:由(1)知,x1+x2=4k,y1+y2=k(x1+x2)+2=4k2+2,(6分)则|AB|=y1+y2+p=4k2+4.(7分)由x2=4y,得y=,y'=,设P(x0,y0),则x0=2k,y0=k2,则点P到直线y=kx+1的距离d==.(9分)从而△PAB的面积S=d|AB|=2(k2+1)=16,(10分)解得k=±,(11分)故直线l的方程为y=±x-3.(12分)【解析】(1)设A(x1,y1),B(x2,y2),联立,得x2-4kx-4=0,利用韦达定理以及向量的数量积证明△AOB为钝角三角形.(2)求出|AB|=y1+y2+p=4k2+4,结合函数的导数,利用斜率关系,求出点P到直线y=kx+1的距离,写出|AB|,利用△PAB的面积,转化求解即可.本题考查直线与抛物线的位置关系的综合应用,函数的导数的应用,考查转化思想以及计算能力.21.【答案】(1)解:当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞).f'(x)=x+3-=.当x>1时,f'(x)>0,f(x)单调递增,则f(x)的单调递增区间为(1,+∞);当0<x<1时,f'(x)<0,f(x)单调递减,则f(x)的单调递减区间为(0,1).(2)证明:f'(x)==,g'(x )=3x2+2bx-(2b +4)+=.令p(x)=3x2+(2b+3)x-1.因为a∈(1,2],所以f(x)的极小值点为a,则g(x)的极小值点为a,所以p(a)=0,即3a2+(2b+3)a-1=0,即b=,此时g(x)的极大值为g(1)=1+b-(2b+4)=-3-b=-3-=a--.因为a∈(1,2],所以a-≤3-=.故g(x)的极大值不大于.【解析】(1)当a=-4时,f(x)=x2+3x-4ln x,定义域为(0,+∞).f'(x)=x+3-=.即可得出单调区间.(2)f'(x)=,g'(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.由a∈(1,2],可得f(x)的极小值点为a,则g(x)的极小值点为a,可得p(a)=0,b=,此时g(x)的极大值为g(1)=1+b-(2b+4)代入利用函数的单调性即可得出.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力与计算能力,属于难题.22.【答案】解:(1)由ρ2-4ρcosθ-6ρsinθ+12=0,得x2+y2-4x-6y+12=0,即(x-2)2+(y-3)2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosα,3+sinα),0≤α<2π,则|PM|=3+sinα,又直线ρcosθ=-1的直角坐标方程为x=-1,所以|PN|=2+cosα+1=3+cosα,所以|PM|+|PN|=6+sin(α+),故当α=时,|PM|+|PN|取得最大值为6+.【解析】(1)由ρ2-4ρcosθ-6ρsinθ+12=0,得x2+y2-4x-6y+12=0,即(x-2)2+(y-3)2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosα,3+sinα),0≤α<2π,求出|PM|和|PN|后相加,用三角函数的性质求得最大值.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)k=4时,函数f(x)=|x+1|+|2-x|-4,不等式f(x)<0化为|x+1|+|2-x|<4,当x<-1时,不等式化为-x-1+2-x<4,解得-<x<-1,当-1≤x≤2时,不等式化为x+1+2-x=3<4恒成立,则-1≤x≤2,当x>2时,不等式化为x+1+x-2<4,解得2<x<,综上所述,不等式f(x)<0的解集为(-,);(2)因为f(x)=|x+1|+|2-x|-k≥|x+1+2-x|-k=3-k,所以f(x)的最小值为3-k;又不等式对x∈R恒成立,所以3-k≥,所以,解得k≤1,所以k的取值范围是(-∞,1].【解析】(1)k=4时,利用分类讨论思想求出不等式f(x)<0的解集,再求它们的并集;(2)利用绝对值不等式的性质求出f(x)的最小值,再把不等式化为3-k≥,求出不等式的解集即可.本题考查了不等式恒成立应用问题,也考查了含有绝对值的不等式解法与应用问题,是中档题.。
专题能力提升练一集合、复数与平面向量(45分钟80分)一、选择题(每小题5分,共60分)1.若集合A={-1,2},B={0,1},则集合{z|z=x+y,x∈A,y∈B}的子集共有( )A.2个B.4个C.8个D.16个【解析】选D.当x=-1,y=0时,z=-1;当x=-1,y=1时,z=0;当x=2,y=0时,z=2;当x=2,y=1时,z=3.故z的值为-1,0,2,3,即求集合{-1,0,2,3}的子集个数,根据规律得子集共有24=16个.2.已知复数z1,z2在复平面内对应的点分别为(1,-1),(3,1),则等于 ( )A.1-2iB.1+2iC.-iD.-i【解析】选B.因为z1=1-i,z2=3+i,所以==1+2i.3.已知复数z为纯虚数,且=1,则z= ()A.±2iB.±iC.iD.i【解析】选 B.因为z是纯虚数,所以可设z=ai(a∈R),===1,可得=2,a=±,所以z=±i.4.已知集合A={x∈Z|log2k<x<2},若集合A中至少有3个元素,则实数k的取值范围为( )A.(1,2)B.(0,1)C. D.【解析】选C.因为由题意可知log2k<-1,所以解得0<k<.5.在四边形ABCD中,=,且·=0,则四边形ABCD为( )A.矩形B.菱形C.直角梯形D.等腰梯形【解析】选B.因为=即一组对边平行且相等,·=0即对角线互相垂直;所以该四边形ABCD为菱形.6.(2018·菏泽一模)已知集合A={x|x2-4x+3≥0},B={x∈N|-1≤x≤5},则A∩B=( ) A.{1,3,4,5} B.{0,1,4,5}C.{0,1,3,4,5}D.{3,4,5}【解析】选C.因为集合A={x|x2-4x+3≥0}={x|x≤1或x≥3},B={x∈N|-1≤x≤5}={0,1,2,3,4,5},所以A∩B={0,1,3,4,5}.7.已知R为实数集,A={x|y=lg(x+3)},B={x|x≥2},则R(A∪B)=( )A.{x|x>-3}B.{x|x<-3}C.{x|2≤x<3}D.{x|x≤-3}【解析】选D.因为R为实数集,A={x|y=lg(x+3)}={x|x>-3},B={x|x≥2}, 所以A∪B={x|x>-3},所以R(A∪B)={x|x≤-3}.8.图中网格纸的小正方形的边长是1,复平面内点Z所表示的复数z 满足(z1-i)·z=1,则复数z1= ( )A.-+iB.+iC.-iD.--i【解析】选B.由图得z=2+i,则(z1-i)(2+i)=1,所以z1=i+=+i.9.(2018·北京高考)在复平面内,复数的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选D.复数z=====+i,所以z的共轭复数=-i,对应的点为,位于第四象限.10.若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=( )A.⌀B.{-1,-4}C.{0}D.{1,4}【解析】选 A.因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)(x-1)=0}={1,4},所以M∩N=⌀.11.已知复数z= -2i (其中i为虚数单位),则|z|=)A.3B.3C.2D.2【解析】选 B.z=-2i=-2i=3-i-2i=3-3i,则|z|=3.12.(2018·天津高考)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则·的最小值为( )A. B. C. D.3【解析】选 A.由已知DB=且△BCD为等边三角形,因为=++,所以·=(++)·=,设=λ(0≤λ≤1),则·=·(-)=(-)·(--)=(-)2-(-)·=3λ2-λ+.所以,当λ=时,·有最小值.二、填空题(每小题5分,共20分)13.在△ABC中,==,则sin A∶sin B∶sin C=________.。
2019年高考现场模拟名师教你最后一招——考场应试技巧1.“穿”“带”双齐进考场穿着整齐进考场,不要穿拖鞋、背心等。
带齐考试用品:数、理、化可带规定的计算器,2B铅笔、准考证,万一忘带准考证,及时找带队老师,考后一定要把准考证交回。
2.掌握时间心不慌掌握考试时间,迟到15分钟不得进场,一般要提早20分钟。
充分利用开考前的五分钟,认真倾听监考老师宣读有关规则和注意事项,以免事后惹麻烦。
接过考卷,先认真填写姓名、学校、准考证号、座号等,只须检查一下有没有漏项、白页即可,无须把题目从头到尾地详细看一遍,只须看清解题的要求,试卷页数,大致了解一下试题份量、难度等。
然后对每一题要仔细审题,准确解题。
题目读两遍,慢审快解(题目看仔细,想清楚再解题),最好能做到一次性准确。
先从容易的做起,因为一开始就感觉顺利,可使自己心情放松,利用有利的感觉推向“下一题”,能引起“自信”的连锁反应,有利于情绪的稳定。
3.打响高考第一枪进入考场,调整一下姿势,舒适地坐在位子上;摆好文具,带眼镜的同学把眼镜摘下擦一擦,尽快进入角色;此时心中想着的只是考试的注意事项,不要再多虑考试的结果、成败、得失。
开考前不宜过早地在教室外等待考试,可以在操场等场所有意识地放松。
做到镇定自如,不慌张。
如果出现心律加快,手脚发抖等紧张现象,也属于正常现象,可以适当进行调节,如深呼吸,同时告诫自己别紧张,不害怕,也可以在嘴里放块口香糖以分散紧张情绪。
4.先易后难不慌忙先易后难:按照题号顺序审题,会一道就做一道,一时不会做的就先跳过(有疑问的、不会的在草稿纸上做记录),这样做的好处是:(1)使自己很快进入答题状态,(2)随着答题数的增加,心中越来越有数,信心不断增强,智力操作效率将越来越高,难题或许不会再难了。
第Ⅰ卷选择题(共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={x∈N*|x2-9x+8≤0},A={1,2,3},B={5,6,7},则(∁U A)∩(∁U B)=()A.{4,8} B.{2,4,6,8} C.{1,3,5,7} D.{1,2,3,5,6,7}答案:A解析:因为U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,3,4,8},所以(∁U A)∩(∁U B)={4,8},故选A.2.在复平面内,复数z满足i z=(1+2i)2,则|z|=()A.5 B.25 C. 5 D.2 5答案:A解析:由i z=(1+2i)2得z=(1+2i)2i=-3+4ii=(-3+4i)(-i)=4+3i,所以|z|=42+32=5,故选A.3.在某次联考数学测试中,学生成绩ξ服从正态分布(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.2答案:B解析:由题意可得P(0<ξ<80)=P(ξ>120)=12×(1-0.8)=0.1,故选B.做题时:整体安排有序,依序答题,先易后难,先简后繁.选择题一般30分钟左右完成,对于较容易的题目可直接在第Ⅰ卷原题空隙附近计算,认真读准题目的每一个字,一定要抓住关键词、关键句,提取有效信息,明白出题人的真正意图何在,千万不要想当然,没读完就开始做.最好认真看清已知条件.即使时间再紧张,看清题目也是至关重要的.否则必定造成不应有的失误.如:选择题题干常常这样问“下列叙述,不正确的是”,“不”字的存在与否使答案完全相反.这样丢分、失分很是可惜.1.先确定集合U中的元素,再进行集合运算,送分题,选A.2.复数的运算法则是高频考点,细心计算,选A.3.注意正态分布的对称性,借助图象解答,选B.2017年高考现场模拟4.定义在R上的函数f(x)满足:f(x-1)=-1f(x+1)成立,且f(x)在[-2,0]上单调递增,设a=f(6),b=f(22),c=f(4),则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b<c<a D.c>b>a答案:D解析:由f(x-1)=-1f(x+1),得f(x)=-1f(x+2),所以f(x+2)=-1f(x+4),所以f(x)=f(x+4),则函数f(x)的周期T=4,a=f(6)=f(-2),b=f(22)=f(22-4),c=f(4)=f(0).因为-2<22-4<0,且f(x)在[-2,0]上单调递增,所以f(-2)<f(22-4)<f(0),即c>b>a,故选D.5.如图是一个算法框图,若输出的a的值为365,则输入的最小整数t的值为()A.121 B.122 C.123 D.124答案:B解析:第一次循环,a=3×1-1=2;第二次循环,a=3×2-1=5;第三次循环,a=3×5-1=14;第四次循环,a=3×14-1=41;第五次循环,a=3×41-1=122;第六次循环,a=3×122-1=365,此时循环结束,所以输入的最小整数t的值为122,故选B.6.如图所示是某个几何体的三视图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.163 cm 3B.24-2π3 cm 3C.20-π3 cm 3D.20+π3 cm 3答案:C解析:由三视图知几何体为一个正方体中挖去一个底面半径为1、高为1的圆锥与一个底面是边长为2的正方形、高为1的四棱锥后余下部分组成的几何体,其体积为V =23-13×π×12×1-13×2×2×1=20-π3(cm 3),故选C. 7.已知点P (2,t ),Q (2,-t )(t >0),若圆C :(x +2)2+(y -3)2=1上存在点M ,使得∠PMQ =90°,则实数t 的取值范围是( )A .[4,6]B .(4,6)C .(0,4]∪[6,+∞)D .(0,4)∪(6,+∞) 答案:A解析:因为圆C 上存在点M ,使得∠PMQ =90°,则以PQ 的中点(2,0)为圆心、t 为半径的圆(x -2)2+y 2=t 2与已知圆C :(x +2)2+(y-3)2=1有公共点,则|t -1|≤(2+2)2+(0-3)2≤|t +1|,解得4≤t ≤6,故选A.8.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.问日益几何?”意思是:女子从第2天开始,每天比前一天多织相同数量的布,第1天织5尺布,现在一月(按30天计)共织390尺布,则该女子第5天所织的布的尺数为( )A .7 B.10715 C.21931 D.20929答案:D解析:设从第2天起每天比前一天多织d 尺布,则由题意知30×5+30×292d =390,解得d =1629,所以第5天所织的布的尺数为5+(5-1)×1629=20929,故选D.9.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,且f (α)=1,α∈⎝ ⎛⎭⎪⎫0,π3,则cos ⎝ ⎛⎭⎪⎫2α+5π6=( )A .-223 B.223 C .±223 D.13答案:A解析:由三角函数的图象可得A =3,T 4=7π12-π3=π4,所以T =π=2πω,所以ω=2.又f ⎝ ⎛⎭⎪⎫π3=3sin ⎝ ⎛⎭⎪⎫2π3+φ=-3,0<φ<π,则φ=5π6. 因为f (α)=3sin ⎝ ⎛⎭⎪⎫2α+5π6=1,所以sin ⎝ ⎛⎭⎪⎫2α+5π6=13. 又α∈⎝ ⎛⎭⎪⎫0,π3,所以⎝ ⎛⎭⎪⎫2α+5π6∈⎝ ⎛⎭⎪⎫5π6,3π2, 则cos ⎝ ⎛⎭⎪⎫2α+5π6=-223,故选A.4.从f (x -1)=-1f (x +1)入手,可得f (x )为周期函数,然后把a ,b ,c 转化为求在[-2,0]上的函数值,选D.常用结论:若f (x +a )=-f (x ),则T =2a ;若f (x +a )=1f (x ),则T =2a ;若f (x +a )=-1f (x ),则T =2a .5.逐次把循环结束的结果准确计算出来是解答此类问题的关键,易出现错误判断循环体结束的条件,导致出错,选B.6.根据三视图的规则,还原该几何体为一个正方体中挖去一个圆锥与一个正四棱锥余下的部分组成的几何体.还原空间几何体的实际形状时一般以正视图和俯视图为主,选C.7.根据P ,Q 两点坐标及∠PMQ =90°,可得点M 在以PQ 的中点为圆心、t 为半径的圆上,利用两圆相交的条件列不等式求出t 的取值范围.解决圆与圆位置关系问题要以圆心距d 与两圆半径和、差的关系入手,选A.8.将问题转化为等差数列问题解决,确定首项、项数、公差、和分别是多少,再根据通项公式计算,选D.9.由图象易得A =3,ω=2,代入f (x )的解析式中,利用点⎝ ⎛⎭⎪⎫π3,-3求φ,注意φ∈(0,π),可得到f (x )=3sin ⎝ ⎛⎭⎪⎫2x +5π6,最后利用同角三角函数的平方关系,求cos ⎝ ⎛⎭⎪⎫2α+5π6的值,要关注2α+5π6的范围,确定cos ⎝ ⎛⎭⎪⎫2α+5π6的符号,选A.10.四面体ABCD 的四个顶点都在球O 的表面上,AB ⊥平面BCD ,△BCD 是边长为3的等边三角形,若AB =2,则球O 的表面积为( )A.32π3 B .12π C .16π D .32π答案:C解析:设球心O 在平面BCD 上的投影为O 1,则OO 1=AB 2=1,因为△BCD 为等边三角形,故DO 1=23×332= 3.又因为△OO 1D 为直角三角形,所以球的半径R =OD =OO 21+O 1D 2=2,所以球O 的表面积S =4πR 2=16π,故选C.11.已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过F 的直线与抛物线C 交于A ,B 两点,如果OA →·OB →=-12,那么抛物线C 的方程为( )A .x 2=8yB .x 2=4yC .y 2=8xD .y 2=4x答案:C解析:设抛物线C 的方程为y 2=2px ,p >0,经过焦点⎝ ⎛⎭⎪⎫p 2,0的直线方程为x =my +p 2,代入抛物线C 的方程整理得y 2-2pmy -p 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-p 2,x 1x 2=p 44p 2=p 24,所以OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-34p 2=-12,解得p =4,则抛物线C 的方程为y 2=8x ,故选C.12.定义在实数集R 上的函数y =f (x )的图象是连续不断的,若对任意实数x ,存在实常数t ,使得f (t +x )=-tf (x )恒成立,则称f (x )是一个“关于t 函数”.有下列“关于t 函数”的结论:①f (x )=0是常数函数中唯一一个“关于t 函数”;②“关于12函数”至少有一个零点;③f (x )=x 2是一个“关于t 函数”.其中正确结论的个数是( )A .1B .2C .3D .0答案:A解析:若f (x )=c ≠0,取t =-1,则f (x -1)-f (x )=c -c =0,即f (x )=c ≠0是一个“t 函数”,①不正确.若f (x )是“关于12函数”,则f ⎝ ⎛⎭⎪⎫x +12+12f (x )=0,取x =0,则f ⎝ ⎛⎭⎪⎫12+12f (0)=0,若f (0),f ⎝ ⎛⎭⎪⎫12任意一个为0,则函数f (x )有零点;若f (0),f ⎝ ⎛⎭⎪⎫12均不为0,则f (0),f ⎝ ⎛⎭⎪⎫12异号,由零点存在定理知在⎝ ⎛⎭⎪⎫0,12内存在零点,②正确.若f (x )=x 2是一个“关于t 函数”,则(x +t )2+tx 2=0对任意x ∈R 恒成立,令x =1,求得t =0且t =-1,矛盾,③不正确.∴正确的结论的个数是1,故选A.10.画出组合体的图形解决本题,确定球心O 与其在平面BCD 上的投影O 1的位置是关键,在Rt △OO 1D 中,球的半径R =OD =OO 21+O 1D 2=2.也可将该四面体还原为球内接正三棱柱(底边长为3,高为2)解决,选C.11.解决直线与圆锥曲线的问题,常规方法是联立方程,利用根与系数的关系解决,本题抛物线方程设为y 2=2px (p >0),将直线方程设为x =my +p 2(p >0)较为简便.选C.12.本题属于创新型问题,理解“关于t 函数”这一定义是关键,用反例可说明结论①不正确;可结合零点存在性定理说明②正确;用举例法说明③不正确.选A.本题难度较大,若感到困难,可跳过做后面的填空题,避免耽误较多时间.完成选择题后,及时将答案涂在答题卡指定位置.选择题的作答,要求用2B 铅笔把答题卡上对应题目的答案标号涂黑,忌用钢笔、圆珠笔、假2B 铅笔填涂;填涂时要做到“满、深、匀”,忌没有填满、填实、填涂过轻、没有填成小方块或在选项中涂一个很小的点或打一个“√”;如需改动,用橡皮擦干净后,再涂其他答案标号,忌填错后修改时没有擦干净.否则,机器不能正确读出,会造成丢分.第Ⅱ卷 非选择题(共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.请在答题卡指定区域内作答.13.某校高一年级招收的新生中有男生480人,女生360人.为了解该年级学生的视力情况,用分层抽样的方法从新生中抽取一个容量为42的样本进行调查,则样本中女生人数为________.答案:18解析:样本中女生人数为42×360480+360=18. 14.若⎝⎛⎭⎪⎪⎫3x -13x 2n 的二项式系数和为64,则展开式中含有x 的项为________.答案:-540x解析:由二项式系数和为64得2n =64,n =6,二项式⎝⎛⎭⎪⎪⎫3x -13x 2n 展开式的第k +1项为T k +1=C k 6·(3x )6-k ⎝⎛⎭⎪⎪⎫-13x 2k =C k 6·36-k (-1)k x 6-5k 3 ,由6-5k 3=1得k =3,所以展开式中含有x 的项为T 3+1=C 36·33(-1)3x =-540x .15.若点(1,2)在椭圆x 2a 2+y 2b 2=1(a >0,b >0)上,则以a ,b 为直角边的直角三角形的斜边长度的最小值是________.答案:3解析:由题意可得1a 2+4b 2=1(a >0,b >0),以a ,b 为直角边的直角三角形的斜边长为a 2+b 2=(a 2+b 2)⎝ ⎛⎭⎪⎫1a 2+4b 2=5+b 2a 2+4a 2b 2≥5+2b 2a 2·4a 2b 2=3,当且仅当b 2a2=4a 2b2,即a 2=3,b 2=6时等号成立,所以斜边长度的最小值是3.16.如图,为了测量河对岸A ,B 两点之间的距离,观察者找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ,并测量得到一些数据:CD =2,CE =23,∠D =45°,∠ACD =105°,∠ACB =48.19°,∠BCE =75°,∠E =60°,则A ,B 两点之间的距离为________.⎝ ⎛⎭⎪⎫其中cos 48.19°取近似值23 答案:10解析:在△ADC 中,由正弦定理得|AC |=|DC |sin D sin ∠DAC=2×2212=2 2.在△BCE 中,由正弦定理得|BC |=|EC |sin E sin ∠CBE =23×3222=3 2.在△ACB 中,由余弦定理可得|AB |2=(22)2+(32)2-2×22×32×23=10,所以|AB |=10.,填空题用时可在20分钟左右,注意书写答案时要求清楚、规范.13.分层抽样是按比例抽样,抽样比为360480×360=37,故样本中女生的人数为42×37=18,本题较易,送分题.14.由二项式系数和为64可得n =6,求含有x 的项可根据二项式的通项解决,注意此处运算易出错.另外注意所求结果为含有x 的项应填-540x ,不是含有x 的项的系数,不要错填-540.15.本题条件中有两个变量a ,b ,且易得1a 2+4b 2=1,故可想到利用基本不等式求解最小值,关键是巧用“1”的代换:a 2+b 2=(a 2+b 2)⎝ ⎛⎭⎪⎫1a 2+4b 2 =5+b 2a 2+4a 2b 2 ≥5+2b 2a 2·4a 2b 2=3.利用基本不等式求最值要满足“一正、二定、三相等”三个条件.16.要求得AB 的长度,在△ABC 中,已知∠ACB =48.19°,只需求AC ,BC 的长,再利用余弦定理可得AB 的长,故应分别在△ADC ,△BCE中,根据正弦定理求解AC,BC的长度,本题已知条件较多,解答时可将已知数据分别标注在题中图形的相应位置上,帮助分析问题,灵活运用正、余弦定理是解答本题的关键.完成填空题后将题目答案及时填写在答题卡相应位置,并检查一遍,然后开始做解答题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知正项数列{a n},{b n},{c n}满足b n=a2n-1,c n=a2n,n∈N*,数列{b n}的前n项和为S n,(b n+1)2=4S n.数列{c n}的前n项和T n=3n-1.(1)求数列{a n}的通项公式;(2)求数列{a n}的前2n项和A2n.解:(1)由(b n+1)2=4S n得(b1+1)2=4b1,解得b1=1.又(b n-1+1)2=4S n-1,n≥2,则(b n+1)2-(b n-1+1)2=4S n-4S n-1=4b n,n≥2,化简得b2n-b2n-1=2(b n+b n+1),n≥2.又b n>0,所以b n-b n-1=2,n≥2,则数列{b n}是首项为1,公差为2的等差数列,所以b n=1+2(n-1)=2n-1=a2n-1,所以当n为奇数时,a n=n.由T n=3n-1得c1=2,T n-1=3n-1-1,n≥2,则c n=3n-3n-1=2×3n-1,n≥2,当n=1时,上式也成立,所以c n=2×3n-1=a2n,所以当n 为偶数时,a n =2×3n -22 ,综上知,a n =⎩⎪⎨⎪⎧ n ,n 为奇数,2×3n -22 ,n 为偶数.(2)因为前2n 项中有n 个奇数项,n 个偶数项,奇数项的和为n (1+2n -1)2=n 2, 偶数项的和为2(1-3n )1-3=3n -1, 所以A 2n =n 2+3n -1.18.(本小题满分12分)交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T ,其范围为[0,10],分别有5个级别:T ∈[0,2)畅通;T ∈[2,4)基本畅通;T ∈[4,6)轻度拥堵;T ∈[6,8)中度拥堵;T ∈[8,10]严重拥堵.早高峰时段(T ≥3),从郑州市交通指挥中心随机选取了三环以内5个交通路段,依据交通指数数据绘制的频率分布直方图如图所示:(1)据此频率分布直方图估算交通指数T ∈[3,9]时的中位数和平均数;(2)据此频率分布直方图求出该市早高峰三环以内的3个路段中至少有2个严重拥堵的概率是多少?(3)某人上班路上所用时间若畅通为25分钟,基本畅通为35分钟,轻度拥堵为40分钟,中度拥堵为50分钟,严重拥堵为60分钟.求此人所用时间的数学期望.解:(1)由直方图知,当T ∈[3,9]时,交通指数的中位数为5+1×0.20.24=356,当T ∈[3,9]时,交通指数的平均数为 3.5×0.1+4.5×0.2+5.5×0.24+6.5×0.2+7.5×0.16+8.5×0.1=5.92.(2)设事件A 为“一条路段严重拥堵”,则P (A )=0.1,则3条路段中至少有2条路段严重拥堵的概率为P =C 23×⎝ ⎛⎭⎪⎫1102×⎝ ⎛⎭⎪⎫1-110+C 33×⎝ ⎛⎭⎪⎫1103=7250.故3条路段中至少有两条路段严重拥堵的概率为7250.(3)由题意,所用时间X 的分布列如下表:则E (X )=35×0.1=45.1, 故此人经过该路段所用时间的数学期望是45.1分钟.19.(本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1的侧面AA 1C 1C 为矩形,BC =CC 1=1,AC =2,∠ABC =90°.(1)求证:平面ABC1⊥平面A1B1C;(2)设D为AC的中点,求平面ABC1与平面C1BD所成锐角的余弦值.(1)证明:∵∠ABC=90°,∴AB⊥BC.又由条件知BB1⊥平面ABC,AB⊂平面ABC,∴BB1⊥AB.又∵BB1∩BC=B,∴AB⊥平面BB1C1C,∴AB⊥B1C.由BC=CC1=1知四边形BB1C1C为正方形,∴B1C⊥BC1.又∵AB∩BC1=B,∴B1C⊥平面ABC1.又∵B1C⊂平面A1B1C,∴平面ABC1⊥平面A1B1C.(2)解:以A为原点,以过点A垂直于AC的直线为x轴,以AC,AA1分别为y轴、z轴建立如图所示的空间直角坐标系,则由题意知B ⎝ ⎛⎭⎪⎫32,32,0,C (0,2,0),D (0,1,0),C 1(0,2,1),B 1⎝ ⎛⎭⎪⎫32,32,1,则DB →=⎝ ⎛⎭⎪⎫32,12,0,DC 1→=(0,1,1).由(1)知B 1C →为平面ABC 1的一个法向量,易得B 1C →=⎝ ⎛⎭⎪⎫-32,12,-1.设n =(x ,y ,z )为平面C 1BD 的法向量,则由⎩⎨⎧ n ·DB →=0,n ·DC 1→=0得⎩⎨⎧32x +12y =0,y +z =0. 取x =1,得n =(1,-3,3),∴cos 〈n ,B 1C →〉=n ·B 1C →|n ||B 1C →|=-237×2=-427,故平面ABC 1与平面C 1BD 所成锐角的余弦值为427.解答题答卷中要做到先易后难,稳扎稳打,答题步骤完整、规范,字字有据,步步准确,尽量一次成功(直接将步骤写在答题卡题号规定的区域,不能超出答题框),保持卷面整洁.17.本题考查数列由递推公式求通项及数列求和.根据条件:b n =a 2n -1与c n =a 2n ,可知{a n }的通项公式应分n 为偶数和奇数两种情形,故先分别由(b n +1)2=4S n 求b n ,由T n =3n -1求c n .第(2)问A 2n 可根据奇数项与偶数项的和求得.解答此类问题通常以递推关系出发,灵活变形,注意解答步骤规范,步步为赢.18.第(1)问求中位数与平均数是频率分布直方图考点的基本题型,要求考生准确利用直方图中的数据解决.第(2)问为概率问题,先确定为独立重复试验模型,再代入计算公式求解.第(3)问由频率分布直方图和指数T 的划分,可列出此人所用时间的分布列,再计算数学期望.19.(1)证明面面垂直需先证线面垂直,因为BC =CC 1,故四边形BB 1C 1C 为正方形,从而B 1C ⊥BC 1,所以只需证明B 1C ⊥AB 即可得到B 1C ⊥平面ABC 1.而由条件不难证明AB ⊥平面BB 1C 1C ,从而B 1C ⊥AB 成立.注意证明过程步骤完整.(2)求二面角的大小,通常是先求出两平面的法向量坐标,再利用夹角公式求解,考虑到平面ABC 1的一个法向量为B 1C →,故只需求出平面C 1BD 的法向量即可.20.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与抛物线C 的交点为Q ,且|QF |=2|PQ |,过F 的直线l 与抛物线C 相交于A ,B 两点.(1)求C 的方程;(2)设AB 的垂直平分线l ′与C 相交于M ,N 两点,试判断A ,M ,B ,N 四点是否在同一圆上?若在,求出l 的方程;若不在,请说明理由.解:(1)设Q (x 0,4),代入y 2=2px 得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p .由题设得p 2+8p =2×8p ,解得p =-4(舍去)或p =4,所以C 的方程为y 2=8x .(2)由题设知,l 与坐标轴不垂直,且过焦点F (2,0),故可设l 的方程为x =my +2(m ≠0),代入y 2=8x 得y 2-8my -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-16.故AB 的中点为D (4m 2+2,4m ),|AB |=m 2+1|y 1-y 2|=m 2+1·(8m )2+64=8(m 2+1).又l ′⊥l ,所以l ′的斜率为-m ,所以l ′的方程为x =-1m y +4m 2+6.将上式代入y 2=8x ,并整理得y 2+8m y -8(4m 2+6)=0, 设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-8m ,y 3y 4=-8(4m 2+6).故MN 的中点为E ⎝ ⎛⎭⎪⎫4m 2+4m 2+6,-4m , |MN |=1+1m 2|y 3-y 4|=1+1m 2·64m 2+64(2m 2+3) =8(m 2+1)2m 2+1m 2. 由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,又在Rt △ADE 中,AD 2+DE 2=AE 2,从而14|AB |2+|DE |2=14|MN |2,即16(m 2+1)2+⎝ ⎛⎭⎪⎫4m +4m 2+⎝ ⎛⎭⎪⎫4m 2+42=16(m 2+1)2(2m 2+1)m 4, 化简得m 2-1=0,m =±1,所以当A ,M ,B ,N 四点在同一圆上时,l 的方程为x =±y +2,即x ±y -2=0.,20.(1)设Q (x 0,4),根据抛物线定义,可得|QF |=x 0+p 2,把Q 点代入y 2=2px 中,可得x 0=8p ,然后由|QF |=2|PQ |,求得p 的值,得出抛物线方程.(2)设AB 中点为D ,MN 中点为E ,由于MN 垂直平分线段AB ,故A ,M ,B ,N 四点共圆等价于|AE |=|BE |=12|MN |.又在Rt △ADE 中,|AD |2+|DE |2=|AE |2,故分别将直线l 与直线l ′与抛物线方程联立,求出弦长|AB |与|MN |,代入|AD |2+|DE |2=|AE |2中求解m 的值,本题运算量较大,计算时要细心.21.(本小题满分12分)已知函数f (x )=e x +m -x 3,g (x )=ln(x +1)+2.(1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值;(2)当m ≥1时,证明:f (x )>g (x )-x 3.(1)解:因为f (x )=e x +m -x 3,所以f ′(x )=e x +m -3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1,所以f ′(0)=e m =1,解得m =0.(2)证明:因为f (x )=e x +m -x 3,g (x )=ln(x +1)+2,所以f (x )>g (x )-x 3等价于e x +m -ln(x +1)-2>0.当m ≥1时,e x +m -ln(x +1)-2≥e x +1-ln(x +1)-2.要证e x +m -ln(x +1)-2>0,只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2(x >-1),则h ′(x )=e x +1-1x +1. 设p (x )=e x +1-1x +1,则p ′(x )=e x +1+1(x +1)>0, 所以函数p (x )=h ′(x )=ex +1-1x +1在(-1,+∞)上单调递增. 因为h ′⎝ ⎛⎭⎪⎫-12=e 12 -2<0,h ′(0)=e -1>0,所以函数h ′(x )=ex +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫-12,0. 因为h ′(x 0)=0,所以e x 0+1=1x 0+1,即ln(x 0+1)=-(x 0+1).当x ∈(-1,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以当x =x 0时,h (x )取得最小值h (x 0),所以h (x )≥h (x 0)=e x 0+1-ln(x 0+1)-2=1x 0+1+(x 0+1)-2>0. 综上可知,当m ≥1时,f (x )>g (x )-x 3.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =sin α+cos α,y =1+sin 2α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2,曲线C 2的极坐标方程为ρ=22a cos ⎝ ⎛⎭⎪⎫θ-3π4(a >0). (1)求直线l 与曲线C 1的交点的极坐标(ρ,θ)(ρ≥0,0≤θ<2π);(2)若直线l 与C 2相切,求a 的值.解:(1)曲线C 1的普通方程为y =x 2,x ∈[-2, 2 ],直线l 的直角坐标方程为x +y =2,联立⎩⎪⎨⎪⎧ y =x 2,x +y =2,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-2,y =4(舍去), 故直线l 与曲线C 1的交点的直角坐标为(1,1),其极坐标为⎝ ⎛⎭⎪⎫2,π4.(2)曲线C 2的直角坐标方程为x 2+y 2+2ax -2ay =0,即(x +a )2+(y -a )2=2a 2(a >0).由直线l 与C 2相切,得|-a +a -2|2=2a ,故a =1.21.(1)利用导数的几何意义求解即可.第(1)问较容易.(2)可转化为证明e x +1-ln(x +1)-2>0.此时一般需要构造函数证明其最小值大于0,故设h (x )=e x +1-ln(x +1)-2.为了研究h (x )的单调性,需对h (x )求导,得h ′(x )=e x +1-1x +1,不能判断h ′(x )的符号,继续求导,设p (x )=e x +1-1x +1,求得p ′(x )=e x +1+1(x +1)2>0. 所以p (x )=h ′(x )在(-1,+∞)上单调递增,下面只要证明存在x 0满足h ′(x 0)=0,且h (x )在(-1,x 0)上单调递减,(x 0,+∞)上单调递增,且h (x 0)>0即可.其中存在x 0满足h ′(x 0)=0可根据函数的零点定理证明.可取h ′⎝ ⎛⎭⎪⎫-12<0,h ′(0)>0验证,此处若验证感到困难,可实施跳步解答,写出“证实存在h (x 0)=0之后,继续有……”后面的解题步骤,当想出来后,可将步骤补在后面,如“事实上,存在x 0满足h ′(x 0)=0可证明如下:……”选修4系列题型基本固定,难度不大,选择自己最拿手的题目解答.22.本题主要考查参数方程、极坐标方程与普通方程的互化.(1)将曲线C 1与直线l 的方程化为直角坐标方程,联立即可求出交点坐标.(2)根据圆的切线性质列方程求解a 的值.23.(本小题满分10分)选修4-5:不等式选讲设函数f (x )=|x -a |,a ∈R .(1)若a =1,解不等式f (x )≥12(x +1);(2)记函数g (x )=f (x )-|x -2|的值域为A ,若A ⊆[-1,3],求a 的取值范围.解:(1)由于a =1,故f (x )=⎩⎪⎨⎪⎧1-x ,x <1,x -1,x ≥1. 当x <1时,由f (x )≥12(x +1),得1-x ≥12(x +1),解得x ≤13;当x ≥1时,f (x )≥12(x +1),得x -1≥12(x +1),解得x ≥3.综上,不等式f (x )≥12(x +1)的解集为⎝ ⎛⎦⎥⎤-∞,13∪[3,+∞). (2)当a <2时,g (x )=⎩⎪⎨⎪⎧ a -2,x ≤a ,2x -2-a ,a <x <2,2-a ,x ≥2,g (x )的值域A =[a -2,2-a ],由A ⊆[-1,3],得⎩⎪⎨⎪⎧a -2≥-1,2-a ≤3,解得a ≥1,又a <2,故1≤a <2; 当a ≥2时,g (x )=⎩⎪⎨⎪⎧ a -2,x ≤2,-2x +2+a ,2<x <a ,2-a ,x ≥a ,g (x )的值域A =[2-a ,a -2], 由A ⊆[-1,3],得⎩⎪⎨⎪⎧2-a ≥-1,a -2≤3,解得a ≤3, 又a ≥2,故2≤a ≤3.综上,a 的取值范围为[1,3].,23.(1)分x <1和x ≥1两种情况讨论求解.(2)对a 分a <2与a ≥2两种情况,分别求得g (x )的值域,再根据A ⊆[-1,3]求a 的取值范围.解答题全部完成后做最后的检查:看是否有空题,答卷是否准确,格式是否规范,尤其是要审查字母、符号是否抄错,对解题结果采用特值法,估算法等方法进行检验.模拟2017高考单科考试胜利结束考后立即离开考场,不要在考场外校对答案,不要“看别人脸上的天气预报”,因为太多不准.做到考完一门,忘掉一门,不回忆,不细想,不追究答案,不在已考的科目上浪费时间,集中精力对付下一门.做到胜不骄败不馁.当某一科考试失败或不理想时,要学会安慰自己:每一位同学不可能没有失败,总会有一两科不理想,只不过他们不说,没有表现出来而已,因为我难别人也难,我考不出来,他也未必考得出来.关键是要总结经验教训,调整考试方法,以争取在下面几门考试中加以弥补,把损失夺回来.当某一科考得特别好,自我感觉飘飘然时,要告诫自己:我浅别人也浅,我考得好,要特别谨慎,因为一不小心,就会在下一场考试中失败.因为成功往往存在于再努力一下之中,所以一定要做到胜不骄败不馁,及时调整心态,分分必争,充分发挥水平,考出满意成绩.。
侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2018.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i2.若函数()y f x =是函数3xy =的反函数,则12f ⎛⎫⎪⎝⎭的值为 A .2log 3- B .3log 2- C .19D3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x >C .存在0x ∈R ,使得3200x x ≤D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A .16 B .13 C .12 D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为A .16B .13CDCB A7.一个几何体的三视图如图1,则该几何体 的体积为A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,BD =. (1) 求cos A 的值; (2)求sin C 的值.图2FE D CBA a 图3重量/克0.0320.02452515O 17.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45, 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值.图4 19.(本小题满分14分) 已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+.2019年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分 (2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A==. ……………6分∵D 是边AC的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分 解得BC =……………10分由正弦定理得,sin sin BC ABA C=, ……………11分 ∴1sin sin 33AB A C BC ⋅===……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为M O H F E D CB A 0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭.……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM =……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,. ……………8分∴FH AB∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE. ……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH == 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,nAE⋅=n AE n AE=. ……………11分∴cos 3θ==,sin tan cos θθ==……………13分 ∴直线AE 与平面BDE . ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列. ∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=.……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,2422k x k ±==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST =()()()2221212122221614k x x x x x x kkk+-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=-⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=. 当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分 解法2:由(1)得()ln 2x f x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x k x x-+<恒成立. ……………4分 令()ln 2x k g x x x=-+,则()222112222k x x k g x x x x -+'=--=-. 方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<, 故函数()g x 在()1,+∞上单调递减. 由于()()110,2ln 21022k g k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x k x x -+>,与题设矛盾. …………5分 (ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<. 故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减,从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x k g x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分 (3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分 111121n n =+--+……………13分 223222n n n n --=+.……………14分。
侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2018.4 本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式是13V Sh=,其中S是锥体的底面积,h是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z满足 i2z=,其中i为虚数单位,则z的虚部为A.2- B.2 C.2-i D.2i2.若函数()y f x=是函数3xy=的反函数,则12f⎛⎫⎪⎝⎭的值为A.2log3- B.3log2- C.19D3.命题“对任意x∈R,都有32x x>”的否定是A.存在x∈R,使得3200x x> B.不存在x∈R,使得3200x x>C.存在x∈R,使得3200x x≤ D.对任意x∈R,都有32x x≤4. 将函数()2cos2(f x x x x=+∈R)的图象向左平移6π个单位长度后得到函数()y g x=,则函数()y g x=A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A.16B.13C.12D.386.设12,F F分别是椭圆()2222:10x yC a ba b+=>>的左、右焦点,点P在椭圆C上,线段1PF的中点在y轴上,若1230PF F︒∠=,则椭圆C的离心率为A.16B.13C7.一个几何体的三视图如图1,则该几何体的体积为A.6π4+ B.12π4+D CB AC .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图217.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45,由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内FE D CBA 的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分)如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.图4 19.(本小题满分14分) 已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+. 2019年广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分(2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A ==. ……………6分∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分解得BC =……………10分由正弦定理得,sin sin BC ABA C=, ……………11分∴1sin sin 33AB A C BC ⨯⋅===……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭.……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分M O H F E D CBA ∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分 ∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE. ……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH ==由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,nAE⋅=n AE n AE=. ……………11分∴cos 3θ==,sin tan cos θθθ==……………13分 ∴直线AE 与平面BDE . ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列. ∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=.……………13分∴()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n n n n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=, 解得1,22x k ==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x kkk+-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k+=.……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k kk k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-. 方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<,故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<.故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<,得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得, 11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分111121n n =+--+ ……………13分 223222n n n n--=+. ……………14分。
寒假作业(二十六) 小题限时保分练——广州调研试题节选(注意命题点分布)(时间:40分钟 满分:80分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |y = 2x -x 2},集合B ={y |y =lg(x 2+1),y ∈Z},则A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选C ∵集合A 满足2x -x 2≥0,∴A ={x |0≤x ≤2};集合B 中的元素满足y =lg(x2+1)≥0,且y ∈Z ,∴集合B ={0,1,2,3,…},∴A ∩B ={0,1,2},可知集合A ∩B 中元素的个数为3.2.已知i 为虚数单位,且满足z =2+a i 2+i (a ∈R),若z 为实数,则实数a 的值为( )A .4B .3C .2D .1 解析:选D z =2+a i2+i =+a -+-=a +4+a -5=a +45+a -5,∵z 为实数,∴a -5=0,∴a =1.3.已知函数f (x )为定义在[2b,1-b ]上的偶函数,且在[0,1-b ]上单调递增,则f (x )≤f (1)的解集为( )A .[1,2]B .[3,5]C .[-1,1] D.⎣⎢⎡⎦⎥⎤12,32 解析:选C ∵函数f (x )为定义在[2b,1-b ]上的偶函数, ∴-2b =1-b ,∴b =-1,∴函数f (x )的定义域为[-2,2],且在[0,2]上单调递增,由f (x )≤f (1)得f (|x |)≤f (1),∴|x |≤1,∴-1≤x ≤1.4.将函数f (x )=2sin ⎝⎛⎭⎪⎫x -π6的图象上各点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得函数图象向右平移π4个单位,得到函数g (x )的图象,则函数g (x )图象的一条对称轴的方程为( )A .x =π4B .x =19π12C .x =13π12D .x =π6解析:选B 将函数f (x )=2sin ⎝⎛⎭⎪⎫x -π6的图象上各点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得函数图象向右平移π4个单位,得到函数g (x )=2sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x -π4-π6=2sin ⎝ ⎛⎭⎪⎫12x -7π24的图象,令12x -7π24=k π+π2(k ∈Z),得x =2k π+19π12(k ∈Z),即g (x )图象的对称轴的方程为x =2k π+19π12(k ∈Z).当k =0时,函数g (x )图象的一条对称轴的方程为x =19π12.5.已知焦点在x 轴上,渐近线方程为y =±34x 的双曲线的离心率和曲线x 24+y2b 2=1(b >0)的离心率之积为1,则b 的值为( )A.65 B.103C .3或4D.65或103解析:选D 焦点在x 轴上,渐近线方程为y =±34x 的双曲线的方程可以设为x 216λ-y29λ=1(λ>0),可知双曲线的离心率为54.曲线x 24+y2b 2=1(b >0)为椭圆,焦点可能在x 轴上,也可能在y 轴上,当焦点在x 轴上时,离心率为4-b 22;当焦点在y 轴上时,离心率为b 2-4b ,所以4-b 22×54=1或b 2-4b ×54=1,解得b =65或b =103.6.运行如图所示的程序框图,输出的S 值为( )A .0B .12C .-1D .-32解析:选B 开始时,S =0,i =1, 第一次循环,S =0+cos π3=12,i =2;第二次循环,S =12+cos 2π3=0,i =3;第三次循环,S =0+cos π=-1,i =4; 第四次循环,S =-1+cos 4π3=-32,i =5;第五次循环,S =-32+cos 5π3=-1,i =6;第六次循环,S =-1+cos 6π3=0,i =7.所以S 值的变化周期为6,又2 017=6×336+1,所以输出的S =12.7.下列说法正确的个数为( )①对于不重合的两条直线,“两条直线的斜率相等”是“两条直线平行”的必要不充分条件;②命题“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”; ③“p 且q 为真”是“p 或q 为真”的充分不必要条件; ④已知直线a ,b 和平面α,若a ⊥α,b ∥α,则a ⊥b . A .1 B .2 C .3D .4解析:选C ①对于不重合的两条直线,“两条直线的斜率相等”可以推出“两条直线平行”,但是“两条直线平行”不能推出“两条直线斜率相等”,因为有斜率不存在的情况,故为充分不必要条件,故①错误;②全称命题的否定为特称命题,显然②正确;③由“p 且q 为真”可知p ,q 均为真命题,可以推出“p 或q 为真”,但是由“p 或q 为真”可知p ,q都为真命题或p ,q 中一个为真命题,一个为假命题,所以不能推出“p 且q 为真”,故③正确;④由a ⊥α可知a 垂直于平面α内的任意一条直线,由b ∥α可知b 一定与平面α内的某条直线平行,故a ⊥b ,故④正确.综上知说法正确的个数为3.8.已知直线ax +by +1=0与圆x 2+y 2=1相切,则a +b +ab 的最大值为( ) A .1 B .-1 C.2+12D .1+ 2解析:选C 由直线ax +by +1=0与圆x 2+y 2=1相切,可得1a 2+b2=1,即a 2+b 2=1.设⎩⎪⎨⎪⎧a =sin α,b =cos α,则a +b +ab =sin α+cos α+sin αcos α,令sin α+cos α=t ,则-2≤t ≤2,sin αcos α=t 2-12,∴a +b +ab =t +t 2-12=12(t +1)2-1,∴-1≤a +b +ab ≤2+12.∴a +b +ab 的最大值为2+12.9.已知等比数列{a n }的前n 项和为S n =2n -1+k ,则f (x )=x 3-kx 2-2x +1的极大值为( )A .2B .3C.72D.52解析:选D 由题意得a 1=S 1=21-1+k =1+k , 当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2,所以等比数列{a n }的公比q 为2,且a 2=20=1, 即q =11+k =2,解得k =-12, 所以f (x )=x 3+12x 2-2x +1,所以f ′(x )=3x 2+x -2,令f ′(x )=0,得x =23或x =-1,当x <-1或x >23时,f ′(x )>0,当-1<x <23时,f ′(x )<0,所以f (x )在(-∞,-1),⎝ ⎛⎭⎪⎫23,+∞上单调递增,在⎝⎛⎭⎪⎫-1,23上单调递减,所以函数f (x )的极大值为f (-1)=52. 10.“今有垣厚七尺八寸七有五,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚7.875尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”则两鼠相逢需要的天数为( )A .2B .3C .4D .5解析:选B 设需要n 天才可以相逢,则1+2+22+…+2n -1+12+14+…+⎝ ⎛⎭⎪⎫12n =638,可得2n -⎝ ⎛⎭⎪⎫12n =638,即(8×2n +1)(2n -8)=0,∴2n=8(负值舍去),∴n =3.11.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为()A.123π5 B.124π3 C.153π4D.161π5解析:选D 根据几何体的三视图可知,该几何体为一个三棱锥,如图,PC ⊥平面ABC ,PC =AB =4,AC =BC =3.设三棱锥外接球的球心为O ,△ABC 外接圆的圆心为D ,连接OD ,OC ,CD ,则OD ⊥平面ABC ,且OD =12PC =2.∵AB =4,AC =BC =3,根据余弦定理可得42=32+32-2×3×3cos∠ACB , ∴cos ∠ACB =19,∴sin ∠ACB =459,设△ABC 的外接圆半径为r , 则由正弦定理得ABsin ∠ACB =2r , ∴4459=2r ,∴r =9510,设三棱锥P ABC 的外接球半径为R , 则R 2=OD 2+r 2=4+⎝⎛⎭⎪⎫95102=16120, 故三棱锥外接球的表面积S =4πR 2=4π×16120=161π5.12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,110≤x ≤10,-x 2-2x ,x ≤0,若⎩⎪⎨⎪⎧-1≤a ≤1,-1≤b ≤1,则方程[f (x )]2-af (x )+b =0有五个不同根的概率为( ) A.13 B.38 C.25 D.112解析:选B 作出函数f (x )的图象如图1,结合图象可知,若方程[f (x )]2-af (x )+b =0有五个不同根,则f (x )的值在(-∞,0)与(0,1)内各有一个.图1设f (x )=t ,令h (t )=t 2-at +b , 则⎩⎪⎨⎪⎧h ,h⇒⎩⎪⎨⎪⎧1-a +b >0,b <0,图2如图2,阴影部分的面积为1×2-12×1×1=32,正方形ABCD 的面积为2×2=4,故所求概率 P =S 阴影S 正方形ABCD =324=38. 二、填空题(本题共4小题,每小题5分)13.已知直线y =x 与抛物线y =x 2围成的区域的面积为1n,则(x +1)⎝ ⎛⎭⎪⎫2x +1x n 的展开式的常数项为________.解析:作出直线y =x 与抛物线y =x 2的图象,围成区域的面积如图阴影部分所示,由⎩⎪⎨⎪⎧y =x ,y =x 2得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,∴1n =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3| 10=16,∴n=6,∴(x+1)⎝ ⎛⎭⎪⎫2x +1x n =(x +1)⎝⎛⎭⎪⎫2x +1x 6. ⎝ ⎛⎭⎪⎫2x +1x 6的通项T r +1=C r 6(2x)6-r ⎝ ⎛⎭⎪⎫1x r =C r 626-r ·x 6-2r (r =0,1,2,3,…,6),令6-2r =0,得r =3,∴所求常数项为1×C 3623=160. 答案:16014.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥0,x +2y≥0,2x -y -2≤0,且目标函数z =ax +by(a>0,b>0)的最大值为4,则4a +2b的最小值为________.解析:作出可行域如图所示, 易知目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧x -y =0,2x -y -2=0,解得⎩⎪⎨⎪⎧x =2,y =2,所以2a +2b =4,即a +b =2, 所以4a +2b=a +a+a +b b =2+2b a +a b +1=3+2b a +ab≥3+22b a ·ab=3+22,当且仅当2b a =a b ,即a =2b 时,取等号.故4a +2b的最小值为3+2 2.答案:3+2 215.已知直线y =2x -2与抛物线y 2=8x 交于A ,B 两点,抛物线的焦点为F ,则FA uu u r ·FBuuu r 的值为________.解析:设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),易知F(2,0),由⎩⎪⎨⎪⎧y 2=8x ,y =2x -2消去y ,得x 2-4x +1=0,则x 1+x 2=4,x 1x 2=1,所以FA uu u r ·FB uuu r=(x 1-2,2x 1-2)·(x 2-2,2x 2-2)=(x 1-2)(x 2-2)+4(x 1-1)(x 2-1) =5x 1x 2-6(x 1+x 2)+8=5-6×4+8=-11. 答案:-1116.已知数列{a n }中,a 1=2,n(a n +1-a n )=a n +1,n ∈N *,若对于任意的a ∈[-2,2],不等式a n +1n +1<2t 2+at -1恒成立,则t 的取值范围为________. 解析:由n (a n +1-a n )=a n +1, 可得na n +1=(n +1)a n +1, ∴a n +1n +1-a n n =1n n +=1n -1n +1, ∴a 22-a 11=1-12,a 33-a 22=12-13,…,a n +1n +1-a n n =1n -1n +1,上述等式相加可得a n +1n +1-a 11=1-1n +1, ∴a n +1n +1=3-1n +1, ∴3-1n +1<2t 2+at -1,即2t 2+at -1≥3, ∴2t 2+at -4≥0,a ∈[-2,2],易得⎩⎪⎨⎪⎧2t +2t 2-4≥0,-2t +2t 2-4≥0.解得t ≤-2或t ≥2.答案:(-∞,-2]∪[2,+∞)。
客观题限时满分练(一)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U =R ,集合A ={x |y =lg x },集合B ={y |y =x +1},那么A ∩(∁U B )=( ) A .∅ B .(0,1] C .(0,1)D .(1,+∞)解析:A ={x |x >0}=(0,+∞),又因为y =x +1≥1,所以B ={y |y ≥1}=[1,+∞),所以A ∩(∁U B )=(0,1).答案:C2.(2018·福州五校联考)若复数1-b i 2+i (b ∈R)的实部与虚部相等,则b 的值为( )A .-6B .-3C .3D .6解析:1-b i 2+i =(1-b i )(2-i )(2+i )(2-i )=2-b -(2b +1)i 5.依题意得,2-b 5=-(2b +1)5,解得b =-3.答案:B3.函数y =cos 2⎝⎛⎭⎪⎫x +π4是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数解析:y =cos 2⎝ ⎛⎭⎪⎫x +π4=cos(2x +π2)=-sin 2x ,是周期为π的奇函数. 答案:A4.(2018·日照模拟)设a =20.1,b =lg 52,c =log 3910,则a ,b ,c 的大小关系是( )A .b >c >aB .a >c >bC .b >a >cD .a >b >c解析:因为a =20.1∈(1,2),b =lg 52∈(0,1),c =log 3 910<0,所以a >b >c . 答案:D5.已知向量a ,b 满足|a |=2,|b |=3,(a -b )·a =7,则a 与b 的夹角为( )A.π6 B.π3 C.2π3 D.5π6解析:向量a ,b 满足|a |=2,|b |=3,(a -b )·a =7. 可得a 2-a·b =4-a·b =7,可得a·b =-3,cos 〈a ,b 〉=a·b |a |·|b |=-32×3=-12,由0≤〈a ,b 〉≤π,得〈a ,b 〉=2π3.答案:C6.“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:由f (x )=m +log 2x =0(x ≥1), 得m =-log 2x ≤0,所以“m <0”是“函数f (x )(x ≥1)存在零点”的充分不必要条件. 答案:A7.(2018·武昌调研)中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:由三视图知,商鞅铜方升为一圆柱和一长方体的组合体,依题意,得(5.4-x )×3×1+π⎝ ⎛⎭⎪⎫122x =12.6,解得x =1.6.答案:B8.已知在递增的等差数列{a n }中,a 1=3,a 2-4,a 3-2,a 7成等比数列,则S 10=( ) A .180 B .190 C .200 D .210 解析:设等差数列{a n }的公差为d (d >0),因为a 2-4,a 3-2,a 7成等比数列,所以(a 3-2)2=(a 2-4)a 7,即(2d +1)2=(d -1)(3+6d ),解得d =-12(舍去)或d =4.所以S 10=3×10+10×92×4=210.答案:D9.(2018·青岛调研)已知A ,B 是圆O :x 2+y 2=4的两个动点,|AB →|=2,OC →=13OA →+23OB →,若M 是线段AB 的中点,则OC →·OM →的值为( )A. 3 B .2 3 C .2 D .3解析:由OC →=13OA →+23OB →,又OM →=12(OA →+OB →),所以OC →·OM →=⎝ ⎛⎭⎪⎫13OA →+23OB →·12(OA →+OB →)=16(OA →2+2OB →2+3OA →·OB →),又△OAB 为等边三角形, 所以OA →·OB →=2×2cos 60°=2. 因此OC →·OM →=16(22+2×22+3×2)=3.答案:D10.下列命题,其中说法错误的是( ) A .双曲线x 22-y 23=1的焦点到其渐近线距离为 3B .若命题p :∃x ∈R ,使得sin x +cos x ≥2,则¬p :∀x ∈R ,都有sin x +cos x <2C .若p ∧q 是假命题,则p ,q 都是假命题D .设a ,b 是互不垂直的两条异面直线,则存在平面α,使得a ⊂α,且b ∥α 解析:双曲线x 22-y 23=1的焦点(5,0)到其渐近线3x -2y =0的距离为d =|3·5-0|3+2=3,故A 正确.若命题p :∃x ∈R ,使得sin x +cos x ≥2,则¬p :∀x ∈R ,都有sin x +cos x <2,B 正确.若p ∧q 是假命题,则p ,q 中至少有一个为假命题,故C 不正确.设a ,b 是互不垂直的两条异面直线,由a ,b 是互不垂直的两条异面直线,把它放入正方体中,如图,则存在平面α,使得a ⊂α,且b ∥α,故D 正确.答案:C11.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点与抛物线y 2=8x 的焦点重合,且其离心率e =32,则该双曲线的方程为( )A.x 24-y 25=1B.x 25-y 24=1C.y 24-x 25=1 D.y 25-x 24=1 解析:易知抛物线y 2=8x 的焦点为(2,0),所以双曲线的右顶点是(2,0),所以a =2.又双曲线的离心率e =32,所以c =3,b 2=c 2-a 2=5,所以该双曲线的方程为x 24-y 25=1.答案:A12.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=6,则不等式f (lg x )<1lg x+5的解集为( ) A .(10,10) B .(0,10) C .(10,+∞)D .(1,10)解析:设g (x )=f (x )-1x -5,则g ′(x )=f ′(x )+1x 2=x 2f ′(x )+1x2>0,故函数g (x )在(0,+∞)上单调递增,又g (1)=0,故g (x )<0的解集为(0,1),即f (x )<1x+5的解集为(0,1).由0<lg x <1,得1<x <10,则所求不等式的解集为(1,10). 答案:D二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.)13.不等式组⎩⎪⎨⎪⎧2x -y +6≥0,x +y ≥0,x ≤2表示的平面区域的面积为________.解析:作出满足约束条件的可行域如图中阴影所示,则点A (-2,2),B (2,-2),C (2,10),所以平面区域面积为S △ABC =12|BC |·h =12×(10+2)×(2+2)=24.答案:2414.若二项式⎝ ⎛⎭⎪⎫55x 2+1x 6的展开式中的常数项为m ,则∫m 1x 2d x =________.解析:依题意m =T 5=C 46⎝ ⎛⎭⎪⎫552=3,则∫m 1x 2d x =∫31x 2d x =x 33|31=263.答案:26315.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________. 解析:抛物线y 2=2px (p >0)的准线方程是x =-p2,双曲线x 2-y 2=1的一个焦点F 1(-2,0).因为抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,所以-p2=-2,解得p =2 2.答案:2 216.(2018·全国大联考)2017年吴京执导的动作、军事电影《战狼2》上映三个月,以56.8亿震撼世界的票房成绩圆满收官,该片也是首部跻身全球票房TOP100的中国电影.小明想约甲、乙、丙、丁四位好朋友一同去看《战狼2》,并把标识分别为A 、B 、C 、D 的四张电影票放在编号分别为1、2、3、4的四个不同盒子里,让四位好朋友进行猜测:甲说:第1个盒子里面放的是B ,第3个盒子里面放的是C ; 乙说:第2个盒子里面放的是B ,第3个盒子里面放的是D ; 丙说:第4个盒子里面放的是D ,第2个盒子里面放的是C ; 丁说:第4个盒子里面放的是A ,第3个盒子里面放的是C . 小明说:“四位朋友,你们都只说对了一半.” 可以推测,第4个盒子里面放的电影票为________.解析:甲说:“第1个盒子里放的是B ,第3个盒子里放C ”,(1)若第1个盒子里放的是B 正确,则第3个盒子里放C 错误,由乙知,第3个盒子放D 正确,结合丙知第2个盒子里放C ,结合丁,第4个盒子里面放的是A 正确.(2)若第1个盒子放的是B 错,则第3个盒子里放C 正确.同理判断第4个盒子里面放的是D .故可以推测,第4个盒子里放的电影票为A或D. 答案:A或D。
小题提速练(二)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知i 是虚数单位,则2i 1-i=( ) A .-1+iB .1+iC .1-iD .-1-i解析:选A.2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,故选A. 2.已知集合A ={y |y =e x ,x ∈R },B ={x ∈R |x 2-x -6≤0},则A ∩B =( )A .(0,2)B .(0,3]C .[-2,3]D .[2,3] 解析:选B.由已知得A =(0,+∞),B =[-2,3],所以A ∩B =(0,3],故选B.3.执行如图所示的程序框图,则输出的S 的值为( )A .9B .19C .33D .51解析:选C.m =1,S =1,满足条件,S =1+2×1=3,m =1+2=3;满足条件,S =3+2×3=9,m =3+2=5;满足条件,S =9+2×5=19,m =5+2=7;满足条件,S =19+2×7=33,m =7+2=9,不满足条件,输出的S 的值为33,故选C.4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与直线x +2y -1=0垂直,则双曲线的离心率为( ) A.52B . 5 C.3+12 D .3+1 解析:选B.由已知得b a =2,所以e = 1+⎝ ⎛⎭⎪⎫b a 2=1+22= 5,故选B. 5.如图所示的是一个几何体的三视图,则该几何体的体积是( )A .72B .144C .216D .105+3 145解析:选A.由三视图知,该几何体是一个三棱锥,底面直角三角形的面积为12×6×8=24,设三棱锥的高为9,所以该几何体的体积为13×24×9=72,故选A. 6.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,C =60°,a =4b ,c = 13,则△ABC 的面积为( ) A. 3B .132C .2 3D . 13解析:选A.由余弦定理知( 13)2=a 2+b 2-2ab cos 60°,因为a =4b ,所以13=16b 2+b 2-2×4b ×b ×12,解得b =1,所以a =4,所以S △ABC =12ab sin C = 3,故选A. 7.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =3x -2y 的最大值是( )A .-6B .-3C .3D .6解析:选D.作出不等式组表示的平面区域,如图中阴影部分所示,平移直线3x -2y =0,易知当直线经过点A 时,z =3x -2y 取得最大值.由⎩⎪⎨⎪⎧x =1,x +2y +2=0,可得⎩⎪⎨⎪⎧x =1,y =-32,即A ⎝ ⎛⎭⎪⎫1,-32,所以z max =3×1-2×⎝ ⎛⎭⎪⎫-32=6,故选D.8.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的图象向右平移π3个单位长度后,所得的图象关于y 轴对称,则ω的最小正值为( )A .1B .2C .3D .4 解析:选 B.将函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的图象向右平移π3个单位长度后得到函数g (x )=sin ⎝⎛⎭⎪⎫ωx -ωπ3+π6的图象,因为函数g (x )的图象关于y 轴对称,所以-ωπ3+π6=k π+π2(k ∈Z ),易知当k =-1时,ω取最小正值2,故选B.9.“a >1”是“3a >2a”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析:选A.因为y =⎝ ⎛⎭⎪⎫32x 是增函数,又a >1,所以⎝ ⎛⎭⎪⎫32a >1,所以3a >2a ;若3a >2a ,则⎝ ⎛⎭⎪⎫32a >1=⎝ ⎛⎭⎪⎫320,所以a >0,所以“a >1”是“3a >2a”的充分不必要条件,故选A.10.若函数f (x )=2x 2+ln x -ax 在定义域上单调递增,则实数a 的取值范围为( )A .(4,+∞)B .[4,+∞)C .(-∞,4)D .(-∞,4] 解析:选D.由已知得f ′(x )=4x +1x-a (x >0),因为函数f (x )是定义域上的单调递增函数,所以当x >0时,4x +1x -a ≥0恒成立.因为当x >0时,函数g (x )=4x +1x ≥4,当且仅当x =12时取等号,所以g (x )∈[4,+∞),所以a ≤4,即实数a 的取值范围是(-∞,4],故选D.11.已知数列{a n }满足a 1=2,4a 3=a 6,数列{a n n }是等差数列,则数列{(-1)na n }的前10项和S 10=( )A .220B .110C .99D .55 解析:选B.设数列{a n n }的公差为d ,则⎩⎪⎨⎪⎧a 33=2+2d ,a 66=2+5d ,4a 3=a 6,解得d =2,所以a n n =2+2(n -1)=2n ,即a n =2n 2,所以数列{(-1)n a n }的前10项和S 10=-2×1+2×22-2×32+…+2×102=2×(3+7+11+15+19)=110,故选B.12.定义在R 上的奇函数y =f (x )满足f (3)=0,且不等式f (x )>-xf ′(x )在(0,+∞)上恒成立,则函数g (x )=xf (x )+lg|x +1|的零点的个数为( )A .4B .3C .2D .1解析:选B.g (x )=0即xf (x )=-lg|x +1|,[xf (x )]′=f (x )+xf ′(x ),由已知得xf (x )在(0,+∞)上单调递增,又f (x )为奇函数,所以xf (x )为偶函数且零点为3,-3,0,在同一坐标系中作出函数y =xf (x )和y =-lg|x +1|的图象,易知交点有3个,故g (x )的零点个数为3.二、填空题(本题共4小题,每小题5分,共20分.)13.命题p :∃x 0>1,使得x 20-2x 0<1,则¬p 是________.解析:根据特称命题的否定是全称命题得,¬p :∀x >1,x 2-2x ≥1.答案:∀x >1,x 2-2x ≥114.已知向量a =(2,5t -1),b =(t +1,-1),若a ⊥b ,则t =________.解析:因为a =(2,5t -1),b =(t +1,-1),a ⊥b ,所以(2,5t -1)·(t +1,-1)=0,所以2(t +1)-(5t -1)=0,解得t =1.答案:115.设θ为第二象限角,若tan ⎝⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________. 通解:由tan ⎝⎛⎭⎪⎫θ+π4=1+tan θ1-tan θ=12,解得tan θ=-13,即sin θcos θ=-13 ①,又sin 2 θ+cos 2 θ=1 ②,所以由①②解得sin θ=1010,cos θ=-3 1010, 所以sin θ+cos θ=1010-3 1010=-105. 优解:由θ为第二象限角且tan ⎝ ⎛⎭⎪⎫θ+π4=12,得θ+π4为第三象限角,于是sin ⎝⎛⎭⎪⎫θ+π4=-55,所以sin θ+cos θ=2sin ⎝⎛⎭⎪⎫θ+π4=-105. 答案:-10516.已知A ,B ,C ,D 是半径为5的球面上的点,且BC =CD =DB =3 3,当四面体ABCD 的体积最大时,AB =________.解析:由已知可得,△BCD 是边长为3 3的等边三角形,设△BCD 的中心为O 1,则BO 1=23×3 3×sin 60°=3,要使四面体ABCD 的体积最大,则有四面体ABCD 的高为5+ 52-32=9,此时AB = 92+32=3 10.答案:3 10。
2009届高考数学二轮直通车夯实训练(26)1.=++-ii i 1)21)(1(2 已知单位向量,a b 它们的夹角为3π,则-2=3.(),()f x g x 都是奇函数且()()()2F x af x bg x =++在[)0,+∞上有最大值8,则在(,0)-∞上()F x 有最小值4. 如果直线y = x+a 与圆x 2+y 2=1有公共点,则实数a 的取值范围是 。
5.已知6. F 1、F 2是双曲线1201622=-y x 的焦点,点P 在双曲线上,若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 。
7.等差数列{}n a 中,1570,3.a a a >=它的前n 项和为n S ,若n S 取得最大值,则n= .8 、已知向量(46)(35)OA OB ==,,,,且OC OA AC OB ⊥,∥,则向量OC =___。
9、若直线1y kx =+与圆221x y +=相交于P Q ,两点,且120POQ ∠=(其中O 为原点),则k 的值为_____.10、一动圆圆心在抛物线x y 42=上,过点(0,1)且恒与定直线L 相切,则相线L 的方程为 11.已知向量,a b 满足||1a b ==,且||3||(0)ka b a kb k +=->,令()f k a b =⋅, (Ⅰ)求()f k a b =⋅(用k 表示);(Ⅱ)当0k >时,21()22f k x tx ≥--对任意的[1,1]t ∈-恒成立,求实数x 的取值范围。
12.如图,在直四棱柱1111ABCD A BC D -中, 已知122DC DD AD AB ===,AD DC AB DC ⊥,∥. (1)求证:11DC AC ⊥;(2)设E 是DC 上一点,试确定E 的位置,使1D E ∥平面1A BD ,并说明理由.夯实训练(26)参考答案 1、2-i 2、3 3、-4 4、[5、[)2,16、177、7或88、24721⎛⎫- ⎪⎝⎭,9、10、1y =- 11、[]12,21);0(41)(2--∈>+=x k kk k f12、(1)证明:在直四棱柱1111ABCD A BC D -中,连结1C D , 1DC DD =,∴四边形11DCC D 是正方形. 11DC D C ∴⊥.又AD DC ⊥,11AD DD DC DD D =⊥,⊥,AD ∴⊥平面11DCC D ,而1D C ⊂平面11DCC D ,1AD DC ∴⊥.1AD DC ⊂,平面1ADC ,且AD DC D =⊥,1D C ∴⊥平面1ADC , 又1AC ⊂平面1ADC ,1DC AC ∴1⊥.BCDA1A1D1C 1BBCD A1A 1D 1C 1B 1A 1D 1C 1B M(2)连结1AD ,连结AE , 设11AD A D M =,BDAE N =,连结MN ,平面1AD E 平面1A BD MN =,要使1D E ∥平面1A BD ,须使1MN D E ∥, 又M 是1AD 的中点. N ∴是AE 的中点. 又易知ABN EDN △≌△, AB DE ∴=.即E 是DC 的中点.综上所述,当E 是DC 的中点时,可使1D E ∥平面1A BD .。
寒假作业(二十七) 小题限时保分练——大连一模试题节选(注意命题点分布)(时间:40分钟 满分:80分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.i7+3i =( ) A.316-716i B.316+716i C .-316+716iD .-316-716i解析:选Bi7+3i=7-7+7-=316+716i.2.已知集合A ={x |(2x -5)(x +3)>0},B ={1,2,3,4,5},则(∁R A )∩B =( ) A .{1,2,3} B .{2,3} C .{1,2}D .{1}解析:选 C 根据题意,由(2x -5)(x +3)>0,得x <-3或x >52,即A ={x |(2x -5)(x +3)>0}=⎩⎨⎧⎭⎬⎫xx <-3或x >52,则∁R A =⎩⎨⎧⎭⎬⎫x -3≤x ≤52,又由B ={1,2,3,4,5},得(∁R A )∩B ={1,2}.3.某公司为了解该公司800名员工参加运动的情况,对公司员工半年来的运动时间进行统计得到如图所示的频率分布直方图,则运动时间超过100小时的员工有( )A .360人B .480人C .600人D .240人解析:选B 根据频率分布直方图,运动时间超过100小时的频率是(0.016+0.008)×25=0.6,所求的频数为800×0.6=480(人).4.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其主体部分的三视图如图所示,则该量器的容积为( )A .252B .189C .126D .63解析:选A 由三视图,可得直观图为长、宽、高分别为12,7,3的长方体,体积为12×7×3=252,故选A. 5.函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象的一条对称轴方程是( ) A .x =-11π24B .x =π8C .x =π4D .x =11π24解析:选D 对于函数y =sin ⎝ ⎛⎭⎪⎫4x -π3,令4x -π3=k π+π2,k ∈Z ,求得x =k π4+5π24,k ∈Z ,故函数y =sin ⎝⎛⎭⎪⎫4x -π3的图象的对称轴方程为x =k π4+5π24,k ∈Z ,令k =1,可得函数的一条对称轴方程为x =11π24.6.已知单位向量a 与b 的夹角为120°,则|a -3b |=( ) A. 3B .2 3C.13D.15解析:选C 由题得,a ·b =1×1×cos 120°=-12,∴(a -3b )2=a 2-6a ·b +9b 2=1+3+9=13,∴|a -3b |=13.7.已知等比数列{a n }的前n 项积为T n ,若log 2a 3+log 2a 7=2,则T 9的值为( ) A .±512 B .512 C .±1 024D .1 024 解析:选B 由log 2a 3+log 2a 7=2,可得log 2(a 3a 7)=2,即a 3a 7=4,则a 5=2或a 5=-2(负值舍去),所以等比数列{a n }的前9项积T 9=a 1a 2·…·a 8a 9=(a 5)9=512. 8.运行如图所示的程序框图,若输出的k 的值为13,则判断框中可以填( )A .m >7?B .m ≥7?C .m >8?D .m >9?解析:选A 由程序框图知n =2m ,k =2m -1,∵输出的k 的值为13,∴k =2m -1=13,解得m =7,∴判断框中可以填“m >7?”,故选A.9.已知过原点的直线l 1与直线l 2:x +3y +1=0垂直,圆C 的方程为x 2+y 2-2ax -2ay =1-2a 2(a >0),若直线l 1与圆C 交于M ,N 两点,则当△CMN 的面积最大时,圆心C 的坐标为( )C.⎝ ⎛⎭⎪⎫12,12D .(1,1)解析:选A 由题意,直线l 1的方程为3x -y =0,圆C 的标准方程为(x -a )2+(y -a )2=1,圆心坐标为(a ,a ),半径为1,而S △CMN =12×CM ×CN ×sin∠MCN =12sin ∠MCN ,则当∠MCN =90°,即CM ⊥CN 时,△CMN 的面积最大,此时圆心C 到直线l 1的距离为|3a -a |9+1=22,∵a >0,∴a =52,∴圆心C 的坐标为⎝ ⎛⎭⎪⎫52,52.10.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,-2≤x ≤0,f x -+1,0<x ≤2,则关于x 的方程x -f (x )=0在[-2,2]上的根的个数为( )A .3B .4C .5D .6解析:选B ①当-2≤x ≤0时,令f (x )=x 得x 2+2x =x ,解得x =0或x =-1.②当x ∈(0,1]时,f (x )=f (x -1)+1=(x -1)2+2(x -1)+1=x 2,令f (x )=x 得x 2=x ,解得x =0(舍)或x =1.③当x ∈(1,2]时,f (x )=f (x -1)+1=f (x -2)+2=(x -2)2+2(x -2)+2=x 2-2x +2,令f (x )=x 得x 2-2x +2=x ,解得x =1(舍)或x =2.综上,方程x -f (x )=0在[-2,2]上有4个根.11.已知F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,l 1,l 2为C 的两条渐近线,点A 在l 1上,且FA ⊥l 1,点B 在l 2上,且FB ∥l 1,若|FA |=45|FB |,则双曲线C 的离心率为( )A.52或 5 B.52或352 C.52D. 5 解析:选A 由题意,l 1:y =b a x ,l 2:y =-b ax ,F (c,0).∴|FA |=bc a b 2a 2+1=b .FB 的方程为y =ba (x -c ),与l 2:y =-ba x 联立,可得B ⎝ ⎛⎭⎪⎫c2,-bc2a ,∴|FB |=⎝ ⎛⎭⎪⎫c 2-c 2+b 2c 24a 2=c 22a ,∵|FA |=45|FB |,∴b =45·c 22a ,∴2c 2=5ab ,∴4c 4=25a 2(c 2-a 2),∴4e 4-25e 2+25=0, 解得e =52或 5. 12.已知函数f (x )=x e x-m2x 2-mx (m >0),则函数f (x )在[1,2]上的最小值不可能为( )A .e -32mB .-12m ln 2mC .2e 2-4mD .e 2-2m解析:选D f ′(x )=e x+x e x-m (x +1)=(x +1)(e x-m ),令f ′(x )=0得x =-1或x =ln m .①当ln m ≤-1,即m ≤1e 时,由x ∈[1,2]可得f ′(x )>0,此时f (x )单调递增,∴当x =1时,函数f (x )取得最小值f (1)=e -32m ;②当-1<ln m ≤1,即1e <m ≤e 时,由x ∈[1,2]可得f ′(x )>0,此时f (x )单调递增,∴当x =1时,函数f (x )取得最小值f (1)=e -32m ;③当1<ln m <2,即e<m <e 2时,由x ∈[1,2]可知,当1≤x <ln m 时,f ′(x )<0,当ln m <x ≤ 2时,f ′(x )>0,即函数f (x )在[1,ln m )上递减,在(ln m,2]上递增,∴当x =ln m 时,函数f (x )取得极小值(即最小值)f (ln m )=-m2ln 2m ;④当ln m ≥2,即m ≥e 2时,由x ∈[1,2]可知f ′(x )≤0,此时函数f (x )单调递减,∴当x =2时,函数f (x )取得最小值f (2)=2e 2-4m .综上所述,函数f (x )在[1,2]上的最小值不可能为e 2-2m ,故选D. 二、填空题(本题共4小题,每小题5分)13.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≥3,x +2y ≥6,x ≤8,则z =x -2y 的最小值为________.解析:作出不等式组对应的平面区域如图中阴影部分所示.由z =x -2y 得y =12x -12z ,平移直线y =12x -12z ,可知当直线y =12x -12z 过点B 时,直线y =12x -12z 在y 轴上的截距最大,此时z 最小.由⎩⎪⎨⎪⎧x -y =3,x =8,解得⎩⎪⎨⎪⎧x =8,y =5,即B (8,5),代入目标函数得z =8-2×5=-2,即z =x -2y 的最小值为-2. 答案:-214.已知等差数列{a n }的前n 项和为S n ,若3,a 7,a 5也成等差数列,则S 17=________.解析:∵3,a 7,a 5成等差数列,∴2a 7=3+a 5,即2(a 1+6d )=3+(a 1+4d ),a 1+8d =3.则S 17=17a 1+17×162d=17(a 1+8d )=51.答案:5115.从1,2,3,4,5这5个数字中随机抽取3个,则所抽取的数字中有且仅有1个数能被2整除的概率为________. 解析:从1,2,3,4,5这5个数字中随机抽取3个,基本事件总数n =10,所抽取的数字中有且仅有1个数能被2整除包含的基本事件有:123,125,134,145,235,345,共6个,∴所抽取的数字中有且仅有1个数能被2整除的概率为P =610=35.答案:3516.如图所示,三棱锥P ABC 中,△ABC 是边长为3的等边三角形,D 是线段AB 的中点,DE ∩PB =E ,且DE ⊥AB ,若∠EDC =120°,PA =32,PB =332,则三棱锥P ABC 的外接球的表面积为________.解析:∵△ABC 为等边三角形,D 为AB 中点,∴CD ⊥AB .由⎩⎪⎨⎪⎧AB ⊥DE ,AB ⊥DC ,DE ∩DC =D ,知AD ⊥平面DEC ,∵AD ⊂平面PAB ,AD ⊂平面ABC ,∴平面PAB ⊥平面DEC ,平面ABC ⊥平面DEC , 在CD 上取点O 1,使O 1为等边三角形ABC 的中心,由题可得,PA 2+PB 2=AB 2,则AP ⊥BP ,△PAB 为直角三角形,∵D 为Rt △PAB 的斜边中点,∴在△DEC 中,过D 作直线与DE 垂直,过O 1作直线与DC 垂直,两条垂线交于点O ,则O 为球心.∵∠EDO =90°,∴∠ODO 1=30°,∵DO 1=13CD =32,∴OO 1=12,又CO 1=23CD =3,∴三棱锥P ABC 的外接球的半径R =OO 21+CO 21=132,则三棱锥P ABC 的外接球的表面积为4πR 2=13π. 答案:13π。
侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2018.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i2.若函数()y f x =是函数3xy =的反函数,则12f ⎛⎫⎪⎝⎭的值为 A .2log 3- B .3log 2- C .19D3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x >C .存在0x ∈R ,使得3200x x ≤D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A .16 B .13 C .12 D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为A .16B .13C7.一个几何体的三视图如图1,则该几何体D CB A 的体积为A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t=-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图217.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45,FE D CBA a 图3重量/克0.0320.02452515O 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值.图4 19.(本小题满分14分) 已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+. 2019年广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,3BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分 (2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A==. ……………6分∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分 解得3BC =. ……………10分由正弦定理得,sin sin BC ABA C=, ……………11分 ∴1sin sin AB A C BC ⨯⋅===……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分M O H F E D CB A (3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫ ⎪⎝⎭. ……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM =……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE. ……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH == 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,nAE⋅=n AE n AE=. ……………11分∴cos 3θ==,sin tan cos θθθ==……………13分 ∴直线AE 与平面BDE . ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列.∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n n n T n --=++++-⋅14414nnn -=-⋅-()13413n n -⋅-=.……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,22x k ==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x k k k +-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<,故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<.故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分专业资料word 完美格式 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分 (3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分111121n n =+--+ ……………13分223222n n n n --=+. ……………14分。
寒假作业(二十六) 小题限时保分练——广州调研试题节选(注意命题点分布)(时间:40分钟 满分:80分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A ={x |y = 2x -x 2},集合B ={y |y =lg(x 2+1),y ∈Z},则A ∩B 中元素的个数为( ) A .1 B .2 C .3D .4解析:选C ∵集合A 满足2x -x 2≥0,∴A ={x |0≤x ≤2};集合B 中的元素满足y =lg(x 2+1)≥0,且y ∈Z ,∴集合B ={0,1,2,3,…},∴A ∩B ={0,1,2},可知集合A ∩B 中元素的个数为3.2.已知i 为虚数单位,且满足z =2+a i2+i (a ∈R),若z 为实数,则实数a 的值为( )A .4B .3C .2D .1 解析:选D z =2+a i2+i =+a -+-=a +4+a -5=a +45+a -5,∵z 为实数,∴a -5=0,∴a =1.3.已知函数f (x )为定义在[2b,1-b ]上的偶函数,且在[0,1-b ]上单调递增,则f (x )≤f (1)的解集为( ) A .[1,2]B .[3,5]C .[-1,1] D.⎣⎢⎡⎦⎥⎤12,32解析:选C ∵函数f (x )为定义在[2b,1-b ]上的偶函数, ∴-2b =1-b ,∴b =-1,∴函数f (x )的定义域为[-2,2],且在[0,2]上单调递增,由f (x )≤f (1)得f (|x |)≤f (1), ∴|x |≤1,∴-1≤x ≤1.4.将函数f (x )=2sin ⎝⎛⎭⎪⎫x -π6的图象上各点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得函数图象向右平移π4个单位,得到函数g (x )的图象,则函数g (x )图象的一条对称轴的方程为( )A .x =π4B .x =19π12C .x =13π12D .x =π6解析:选B 将函数f (x )=2sin ⎝⎛⎭⎪⎫x -π6的图象上各点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得函数图象向右平移π4个单位,得到函数g (x )=2sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x -π4-π6=2sin ⎝ ⎛⎭⎪⎫12x -7π24的图象,令12x -7π24=k π+π2(k ∈Z),得x =2k π+19π12(k ∈Z),即g (x )图象的对称轴的方程为x =2k π+19π12(k ∈Z).当k =0时,函数g (x )图象的一条对称轴的方程为x =19π12.5.已知焦点在x 轴上,渐近线方程为y =±34x 的双曲线的离心率和曲线x 24+y2b2=1(b >0)的离心率之积为1,则b 的值为( )A.65 B.103 C .3或4D.65或103解析:选D 焦点在x 轴上,渐近线方程为y =±34x 的双曲线的方程可以设为x 216λ-y29λ=1(λ>0),可知双曲线的离心率为54.曲线x 24+y2b 2=1(b >0)为椭圆,焦点可能在x 轴上,也可能在y 轴上,当焦点在x 轴上时,离心率为4-b 22;当焦点在y 轴上时,离心率为b 2-4b ,所以4-b 22×54=1或b 2-4b ×54=1,解得b =65或b =103. 6.运行如图所示的程序框图,输出的S 值为( )A .0B .12 C .-1D .-32解析:选B 开始时,S =0,i =1, 第一次循环,S =0+cos π3=12,i =2;第二次循环,S =12+cos 2π3=0,i =3;第三次循环,S =0+cos π=-1,i =4; 第四次循环,S =-1+cos 4π3=-32,i =5;第五次循环,S =-32+cos 5π3=-1,i =6;第六次循环,S =-1+cos 6π3=0,i =7.所以S 值的变化周期为6,又2 017=6×336+1,所以输出的S =12.7.下列说法正确的个数为( )①对于不重合的两条直线,“两条直线的斜率相等”是“两条直线平行”的必要不充分条件; ②命题“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”; ③“p 且q 为真”是“p 或q 为真”的充分不必要条件; ④已知直线a ,b 和平面α,若a ⊥α,b ∥α,则a ⊥b . A .1 B .2 C .3D .4解析:选C ①对于不重合的两条直线,“两条直线的斜率相等”可以推出“两条直线平行”,但是“两条直线平行”不能推出“两条直线斜率相等”,因为有斜率不存在的情况,故为充分不必要条件,故①错误;②全称命题的否定为特称命题,显然②正确;③由“p 且q 为真”可知p ,q 均为真命题,可以推出“p 或q 为真”,但是由“p 或q 为真”可知p ,q 都为真命题或p ,q 中一个为真命题,一个为假命题,所以不能推出“p 且q 为真”,故③正确;④由a ⊥α可知a 垂直于平面α内的任意一条直线,由b ∥α可知b 一定与平面α内的某条直线平行,故a ⊥b ,故④正确.综上知说法正确的个数为3.8.已知直线ax +by +1=0与圆x 2+y 2=1相切,则a +b +ab 的最大值为( ) A .1 B .-1 C.2+12D .1+ 2解析:选C 由直线ax +by +1=0与圆x 2+y 2=1相切,可得1a 2+b2=1,即a 2+b 2=1.设⎩⎪⎨⎪⎧a =sin α,b =cos α,则a +b +ab =sin α+cos α+sin αcos α,令sin α+cos α=t ,则-2≤t ≤2,sin αcos α=t 2-12,∴a +b +ab =t +t 2-12=12(t +1)2-1,∴-1≤a +b +ab ≤2+12.∴a +b +ab 的最大值为2+12.9.已知等比数列{a n }的前n 项和为S n =2n -1+k ,则f (x )=x 3-kx 2-2x +1的极大值为( )A .2B .3C.72D.52解析:选D 由题意得a 1=S 1=21-1+k =1+k , 当n ≥2时,a n =S n -S n -1=2n -1-2n -2=2n -2,所以等比数列{a n }的公比q 为2,且a 2=20=1,即q =11+k =2,解得k =-12, 所以f (x )=x 3+12x 2-2x +1,所以f ′(x )=3x 2+x -2,令f ′(x )=0,得x =23或x =-1,当x <-1或x >23时,f ′(x )>0,当-1<x <23时,f ′(x )<0,所以f (x )在(-∞,-1),⎝ ⎛⎭⎪⎫23,+∞上单调递增,在⎝ ⎛⎭⎪⎫-1,23上单调递减,所以函数f (x )的极大值为f (-1)=52.10.“今有垣厚七尺八寸七有五,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚7.875尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”则两鼠相逢需要的天数为( )A .2B .3C .4D .5解析:选B 设需要n 天才可以相逢,则1+2+22+…+2n -1+12+14+…+⎝ ⎛⎭⎪⎫12n =638,可得2n -⎝ ⎛⎭⎪⎫12n =638,即(8×2n+1)(2n-8)=0,∴2n=8(负值舍去),∴n =3.11.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.123π5 B.124π3C.153π4D.161π5解析:选D 根据几何体的三视图可知,该几何体为一个三棱锥,如图,PC ⊥平面ABC ,PC =AB =4,AC =BC =3.设三棱锥外接球的球心为O ,△ABC 外接圆的圆心为D ,连接OD ,OC ,CD ,则OD ⊥平面ABC ,且OD =12PC =2.∵AB =4,AC =BC =3,根据余弦定理可得42=32+32-2×3×3cos∠ACB , ∴cos ∠ACB =19,∴sin ∠ACB =459,设△ABC 的外接圆半径为r , 则由正弦定理得ABsin ∠ACB=2r ,∴4459=2r ,∴r =9510,设三棱锥P ABC 的外接球半径为R , 则R 2=OD 2+r 2=4+⎝⎛⎭⎪⎫95102=16120, 故三棱锥外接球的表面积S =4πR 2=4π×16120=161π5.12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,110≤x ≤10,-x 2-2x ,x ≤0,若⎩⎪⎨⎪⎧-1≤a ≤1,-1≤b ≤1,则方程[f (x )]2-af (x )+b =0有五个不同根的概率为( ) A.13 B.38 C.25 D.112解析:选B 作出函数f (x )的图象如图1,结合图象可知,若方程[f (x )]2-af (x )+b =0有五个不同根,则f(x )的值在(-∞,0)与(0,1)内各有一个.图1设f (x )=t ,令h (t )=t 2-at +b ,则⎩⎪⎨⎪⎧h ,h ⇒⎩⎪⎨⎪⎧1-a +b >0,b <0,图2如图2,阴影部分的面积为1×2-12×1×1=32,正方形ABCD 的面积为2×2=4,故所求概率P =S 阴影S 正方形ABCD =324=38. 二、填空题(本题共4小题,每小题5分)13.已知直线y =x 与抛物线y =x 2围成的区域的面积为1n,则(x +1)⎝ ⎛⎭⎪⎫2x +1x n 的展开式的常数项为________.解析:作出直线y =x 与抛物线y =x 2的图象,围成区域的面积如图阴影部分所示,由⎩⎪⎨⎪⎧y =x ,y =x 2得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,∴1n =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3| 10=16,∴n=6,∴(x+1)⎝ ⎛⎭⎪⎫2x +1x n =(x +1)⎝⎛⎭⎪⎫2x +1x 6.⎝ ⎛⎭⎪⎫2x +1x 6的通项T r +1=C r 6(2x)6-r ⎝ ⎛⎭⎪⎫1x r =C r 626-r ·x 6-2r (r =0,1,2,3,…,6),令6-2r =0,得r =3,∴所求常数项为1×C 3623=160. 答案:16014.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥0,x +2y≥0,2x -y -2≤0,且目标函数z =ax +by(a>0,b>0)的最大值为4,则4a +2b的最小值为________.解析:作出可行域如图所示, 易知目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧x -y =0,2x -y -2=0,解得⎩⎪⎨⎪⎧x =2,y =2,所以2a +2b =4,即a +b =2, 所以4a +2b=a +a+a +b b =2+2b a +a b +1=3+2b a +ab≥3+22b a ·a b =3+22,当且仅当2b a =ab,即a =2b 时,取等号.故4a +2b的最小值为3+2 2.答案:3+2 215.已知直线y =2x -2与抛物线y 2=8x 交于A ,B 两点,抛物线的焦点为F ,则FA uu u r ·FB uuu r的值为________.解析:设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),易知F(2,0),由⎩⎪⎨⎪⎧y 2=8x ,y =2x -2消去y ,得x 2-4x +1=0,则x 1+x 2=4,x1x 2=1,精 品 试 卷所以FA uu u r ·FB uuu r=(x 1-2,2x 1-2)·(x 2-2,2x 2-2)=(x 1-2)(x 2-2)+4(x 1-1)(x 2-1) =5x 1x 2-6(x 1+x 2)+8=5-6×4+8=-11. 答案:-1116.已知数列{a n }中,a 1=2,n(a n +1-a n )=a n +1,n ∈N *,若对于任意的a ∈[-2,2],不等式a n +1n +1<2t 2+at -1恒成立,则t 的取值范围为________.解析:由n (a n +1-a n )=a n +1, 可得na n +1=(n +1)a n +1, ∴a n +1n +1-a n n =1n n +=1n -1n +1, ∴a 22-a 11=1-12,a 33-a 22=12-13,…,a n +1n +1-a n n =1n -1n +1,上述等式相加可得a n +1n +1-a 11=1-1n +1, ∴a n +1n +1=3-1n +1, ∴3-1n +1<2t 2+at -1,即2t 2+at -1≥3, ∴2t 2+at -4≥0,a ∈[-2,2],易得⎩⎪⎨⎪⎧2t +2t 2-4≥0,-2t +2t 2-4≥0.解得t ≤-2或t ≥2.答案:(-∞,-2]∪[2,+∞)。