2020年浙江省嘉兴市中考数学试卷(解析版)
- 格式:doc
- 大小:910.07 KB
- 文档页数:30
2020年浙江省嘉兴市南湖区中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是()A.B.﹣C.3 D.﹣32.如图,该简单几何体的主视图是()A.B.C.D.3.据统计,2020年到嘉兴市图书馆借阅图书的人约有322万人次.数322万用科学记数法表示为()A.3.22×106 B.3.22×105 C.322×104D.3.22×1024.要反映2020年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图5.当x分别取﹣3,﹣1,0,2时,使二次根式的值为有理数的是()A.﹣3 B.﹣1 C.0 D.26.如图,点A,B,C在⊙O上.若⊙O的半径为3,∠C=30°,则的长为()A.B.πC.D.7.实数a,b在数轴上的位置如图所示,下列式子错误的是()A.a>b B.﹣a<﹣b C.ab>0 D.a+b>08.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°9.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A.﹣1 B.0.5 C.1 D.10.如图,在平面直角坐标系中,点A(2,2),分别以点O,A为圆心,大于OA长为半径作弧,两弧交于点P.若点P的坐标为(m,n+1)(m≠1,n≠0),则n关于m的函数表达式为()A.n=﹣m+1 B.n=﹣m+2 C.n=m+1 D.n=m+2二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣a=______.12.在平面直角坐标系中,以点(2,1)为圆心,半径为1的圆与x轴的位置关系是______.(填“相切”、“相离”或“相交”)13.抛物线y=﹣(x﹣1)2+4的顶点坐标为______.14.已知▱ABCD中,AB=4,∠ABC与∠DCB的角平分线交AD边于点E,F,且EF=3,则边AD的长为______.15.当﹣2≤x≤2时,函数y=kx﹣k+1(k为常数且k<0)有最大值3,则k的值为______.16.如图,矩形ABCD中,tan∠BAC=,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是菱形,且EH∥BC,则AG:GH:HC=______.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(1)计算:(﹣1)0﹣|﹣3|+cos60°.(2)化简:(a﹣2)2﹣a(a+2).18.先化简:,然后从0≤x≤2的范围内选取一个合适的整数作为x的值代入求值.19.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.20.数学复习课上,老师出示5张背面完全相同的卡片,卡片正面分别写有下列方程:(1)若把这5张卡片的背面朝上且搅匀,从中随机抽取一张卡片,则抽到卡片上有一元二次方程的概率是多少?(2)请按一定的规则把这5个方程分成两类,写出你的分类规则,并把分类结果分别填在下列两个大括号内(只需填方程的序号).{______};{______}.21.某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的.(1)求第4天B款运动鞋的销售量.(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).22.某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:第1天第2天第3天第4天第5天第6天售价x(元/千克)20 18 15 12 10 9销售量y(千克)45 50 60 75 90 100由表中数据可知,试销期间这批水蜜桃的每天销售量y(千克)与售价x(元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y(千克)与售价x(元/千克)之间都满足这一函数关系.(1)你认为y与x之间满足什么函数关系?并求y关于x的函数表达式.(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.①若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?②该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?23.如图,动直线x=m(m>0)分别交x轴,抛物线y=x2﹣3x和y=x2﹣4x于点P,E,F,设点A,B为抛物线y=x2﹣3x,y=x2﹣4x与x轴的一个交点,连结AE,BF.(1)求点A,B的坐标.(2)当m<3时,判断直线AE与BF的位置关系,并说明理由.(3)连结BE,当时,求△BEF的面积.24.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.(2)探究:小明对“垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即AB2+CD2=AD2+BC2.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(0<t<1),连结CP,BQ,PQ.当四边形BCQP 是“垂直四边形”时,求t的值.②如图3,在△ABC中,∠ACB=90°,AB=3AC,分别以AB,AC为边向外作正方形ABDE 和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.2020年浙江省嘉兴市南湖区中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是()A.B.﹣C.3 D.﹣3【考点】倒数.【分析】根据倒数的概念:乘积是1的两数互为倒数可得答案.【解答】解:﹣3的倒数是﹣,故选:B.2.如图,该简单几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,第一层是三个小正方形,第二层右边一个小正方形,故选:D.3.据统计,2020年到嘉兴市图书馆借阅图书的人约有322万人次.数322万用科学记数法表示为()A.3.22×106 B.3.22×105 C.322×104D.3.22×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:322万用科学记数法表示3.22×106,故选:A.4.要反映2020年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图【考点】统计图的选择.【分析】根据统计图的特点,可得答案.【解答】解:反映2020年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用扇形统计图,故选:C.5.当x分别取﹣3,﹣1,0,2时,使二次根式的值为有理数的是()A.﹣3 B.﹣1 C.0 D.2【考点】二次根式的定义.【分析】分别将已知数据代入求出二次根式的值,进而得出答案.【解答】解:当x=﹣3时,=,故此数据不合题意;当x=﹣1时,=,故此数据不合题意;当x=0时,=,故此数据不合题意;当x=2时,=0,故此数据符合题意;故选:D.6.如图,点A,B,C在⊙O上.若⊙O的半径为3,∠C=30°,则的长为()A.B.πC.D.【考点】弧长的计算;圆周角定理.【分析】先根据同弧所对的圆周角和圆心角的关系,确定出∠AOB,最后用弧长公式直接求解.【解答】解:∵∠C=30°,∴∠AOB=60°,∴的长为=π,故选B7.实数a,b在数轴上的位置如图所示,下列式子错误的是()A.a>b B.﹣a<﹣b C.ab>0 D.a+b>0【考点】实数与数轴.【分析】观察数轴得到b<0,a>0,|a|>b,即可解答.【解答】解:由数轴可得:b<0,a>0,|a|>b,∴a>b,﹣a<﹣b,ab<0,a+b>0,故选:C.8.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°【考点】三角形内角和定理.【分析】如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选B.9.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A.﹣1 B.0.5 C.1 D.【考点】旋转的性质;正方形的性质.【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC==.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1.故选:A.10.如图,在平面直角坐标系中,点A(2,2),分别以点O,A为圆心,大于OA长为半径作弧,两弧交于点P.若点P的坐标为(m,n+1)(m≠1,n≠0),则n关于m的函数表达式为()A.n=﹣m+1 B.n=﹣m+2 C.n=m+1 D.n=m+2【考点】作图—基本作图;线段垂直平分线的性质.【分析】利用基本作图得到点P在线段OA的垂直平分线上,则PO=PA,然后根据两点间的距离公式得到m2+(n+1)2=(m﹣2)2+(n+1﹣2)2,再整理即可得到n关于m的函数表达式.【解答】解:由作法得PO=PA,则m2+(n+1)2=(m﹣2)2+(n+1﹣2)2,整理得n=﹣m+1,即n关于m的函数表达式为n=﹣m+1.故选A.二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【分析】直接提取公因式a,进而分解因式得出即可.【解答】解:a2﹣a=a(a﹣1).故答案为:a(a﹣1).12.在平面直角坐标系中,以点(2,1)为圆心,半径为1的圆与x轴的位置关系是相切.(填“相切”、“相离”或“相交”)【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题可先求出圆心到x轴的距离,再根据半径比较,若圆心到x轴的距离大于圆心距,x轴与圆相离;小于圆心距,x轴与圆相交;等于圆心距,x轴与圆相切.【解答】解:依题意得:圆心到x轴的距离为:1=半径1,所以圆与x轴相切;故答案为:相切.13.抛物线y=﹣(x﹣1)2+4的顶点坐标为(1,4).【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:∵y=﹣(x﹣1)2+4为抛物线的顶点式,∴根据顶点式的坐标特点可知,抛物线的顶点坐标为(1,4).故答案为:(1,4).14.已知▱ABCD中,AB=4,∠ABC与∠DCB的角平分线交AD边于点E,F,且EF=3,则边AD的长为11或5.【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线的定义证出∠ABE=∠AEB,得出AE=AB=4,同理:DF=CD=4,再分两种情况计算即可.【解答】解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴AD∥CB,CD=AB=4,∴∠AEB=∠CBE∴∠ABE=∠AEB,∴AE=AB=4,同理:DF=CD=4,分两种情况:①如图1所示:∵EF=3,∴AD=AE+EF+DF=4+3+4=11;②如图2所示:∵EF=4,AE=DF=4,∴AF=1,∴AD=AF+DF=1+4=5;综上所述:AD的长为11或5;故答案为:11或5.15.当﹣2≤x≤2时,函数y=kx﹣k+1(k为常数且k<0)有最大值3,则k的值为﹣.【考点】一次函数的性质.【分析】先根据k<0判断出函数的增减性,再由x的取值范围得出x=﹣2时,y=3,代入函数解析式得出k的值即可.【解答】解:∵k<0,∴函数y=kx﹣k+1是减函数.∵当﹣2≤x≤2时,函数y=kx﹣k+1(k为常数且k<0)有最大值3,∴当x=﹣2时,y=3,∴﹣2k﹣k+1=3,解得k=﹣.故答案为:﹣.16.如图,矩形ABCD中,tan∠BAC=,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是菱形,且EH∥BC,则AG:GH:HC=3:2:3.【考点】相似三角形的判定与性质;菱形的性质;矩形的性质.【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,OG=OH,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∴AG=CH,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴=,∵HE∥BC,∴∠AEH=90°,∴∠HEO=∠GEO=∠BAC,∴,∴AO=4OG,∴AG═CH=3OG,∵CH=2OG,∴AG:GH:HC=3:2:3,故答案为:3:2:3.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(1)计算:(﹣1)0﹣|﹣3|+cos60°.(2)化简:(a﹣2)2﹣a(a+2).【考点】实数的运算;整式的混合运算;零指数幂;特殊角的三角函数值.【分析】(1)原式利用零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=1﹣3+=﹣;(2)原式=a2﹣4a+4﹣a2﹣2a=﹣6a+4.18.先化简:,然后从0≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值.【分析】先通分,再把分子相加减,选取合适的x的值代入进行计算即可.【解答】解:原式=﹣===x+1,当x=0时,原式=1.19.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAQ=60°,∴△APQ是等边三角形.20.数学复习课上,老师出示5张背面完全相同的卡片,卡片正面分别写有下列方程:(1)若把这5张卡片的背面朝上且搅匀,从中随机抽取一张卡片,则抽到卡片上有一元二次方程的概率是多少?(2)请按一定的规则把这5个方程分成两类,写出你的分类规则,并把分类结果分别填在下列两个大括号内(只需填方程的序号).{ ①②③⑤};{ ④}.【考点】概率公式.【分析】(1)先根据一元二次方程的定义找出一元二次方程,再根据概率公式即可得出结论;(2)根据整式方程与分式方程的定义即可得出结论.【解答】解:(1)∵共有5个方程,一元二次方程有2个,∴抽到卡片上有一元二次方程的概率=.故答案为:;(2)∵一元二次方程和一元一次方程是整式方程,∴可以把方程分为整式方程和分式方程,即①②③⑤;④.故答案为:①②③⑤,④.21.某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的.(1)求第4天B款运动鞋的销售量.(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).【考点】折线统计图;条形统计图;算术平均数;中位数.【分析】(1)由统计图可知第4天A款运动鞋销量是6双且B款运动鞋的销售量是A款的可得;(2)根据平均数与中位数定义求解可得;(3)设A款运动鞋的销售单价为x元/双,B款运动鞋的销售单价为x元/双,根据第1天和第5天的总销售额列方程组求出A、B款运动鞋单价,即可得解.【解答】解:(1)6×=4(双).答:第4天B款运动鞋的销售量是4双;(2)B款运动鞋每天销售量的平均数为:=5.8(双),销售量从小到大排列为:3,4,6,7,9,故中位数为6(双);(3)根据题意,设A款运动鞋的销售单价为x元/双,B款运动鞋的销售单价为x元/双,则:,解得:.故第3天的总销售额为11×100+9×200=2900(元).22.某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:第1天第2天第3天第4天第5天第6天售价x(元/千克)20 18 15 12 10 9销售量y(千克)45 50 60 75 90 100由表中数据可知,试销期间这批水蜜桃的每天销售量y(千克)与售价x(元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y(千克)与售价x(元/千克)之间都满足这一函数关系.(1)你认为y与x之间满足什么函数关系?并求y关于x的函数表达式.(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.①若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?②该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?【考点】反比例函数的应用.【分析】(1)观察表格不难发现x与y的积是定值,由此即可解决问题.(2)①根据销售天数=即可解决问题.②由题意可知每天必须至少销售150千克,把y=150代入y=即可解决问题.【解答】解:(1)y与x之间满足反比例函数关系,y=.(2)①试销6天共销售水蜜桃45+50+60=75+90+100=420千克.水蜜桃的销售价定为15元/千克时,每天的销售量为60千克,由题意,=25天,所以余下的水蜜桃预计还要销售25天.②农户按15元/千克的售价销售20天后,还剩下水蜜桃1500﹣60×20=300千克,∵必须在不超过2天内全部售完,∴每天必须至少销售150千克,把y=150代入y=解得x=6,∴新的销售价最高定为6元/千克.23.如图,动直线x=m(m>0)分别交x轴,抛物线y=x2﹣3x和y=x2﹣4x于点P,E,F,设点A,B为抛物线y=x2﹣3x,y=x2﹣4x与x轴的一个交点,连结AE,BF.(1)求点A,B的坐标.(2)当m<3时,判断直线AE与BF的位置关系,并说明理由.(3)连结BE,当时,求△BEF的面积.【考点】二次函数综合题.【分析】(1)把y=0分别代入y=x2﹣3x和y=x2﹣4x中,进而得出A,B点坐标;(2)利用锐角三角函数关系得出∠PAE=∠PBF,进而得出直线AE与BF的位置关系;(3)利用AE∥BF,得出△PAE∽△PBF,进而求出m的值,即可得出△BEF的面积.【解答】解:(1)把y=0分别代入y=x2﹣3x和y=x2﹣4x中,得x2﹣3x=0,解得:x1=0,x2=3,x2﹣4x=0,解得:x1=0,x2=4,∴点A的坐标为(3,0),点B的坐标为(4,0);(2)直线AE和BF的位置关系是AE∥BF,理由如下:由题意得,点E的坐标为(m,m2﹣3m),点F的坐标为(m,m2﹣4m),∴tan∠PAE===m,∴tan∠PBF===m,∴∠PAE=∠PBF,∴AE∥BF;(3)如图1,∵AE∥BF,∴△PAE∽△PBF,∴==,即=,解得:m=2,∴S△BEF=EF•PB=2×2=2;如图2,∵AE∥BF,∴△PAE∽△PBF,∴==,即=,解得:m=,∴S△BEF=EF•PB=×=.24.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.(2)探究:小明对“垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即AB2+CD2=AD2+BC2.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(0<t<1),连结CP,BQ,PQ.当四边形BCQP 是“垂直四边形”时,求t的值.②如图3,在△ABC中,∠ACB=90°,AB=3AC,分别以AB,AC为边向外作正方形ABDE 和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.【考点】四边形综合题.【分析】(1)根据三角形的面积公式计算;(2)根据勾股定理列出算式,比较即可;(3)①作PD⊥AC于D,根据勾股定理求出AB,根据相似三角形的性质用t表示出AP、CQ、AD、PD,根据垂直四边形的性质列出方程,解方程即可;②作CP⊥AB于P,GH⊥EA交EA的延长线于H,证明△CAP≌△GAH,得到PC=GH,设CA=x,根据勾股定理分别用x表示出BC和EG,计算即可.【解答】解:(1)理解:四边形ABCD的面积=×BD×AO BD×OC=BD×AC=28;(2)探究:∵AC⊥BD,∴AB2=OA2+OB2,CD2=OD2+OC2,AD2=OA2+OD2,BC2=OC2+OB2,∴AB2+CD2=OA2+OB2+OD2+OC2,AD2+BC2=OA2+OB2+OD2+OC2,∴AB2+CD2=AD2+BC2;(3)应用:①如图2,作PD⊥AC于D,∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PD∥BC,∴==,由题意得,AP=5t,CQ=6t,则==,解得,AD=3t,PD=4t,∵四边形BCQP是“垂直四边形”,∴BP2+CQ2=PQ2+BC2,即(10﹣5t)2+(6t)2=(4t)2+(6﹣9t)2+82,解得,t=,当t=时,四边形BCQP是“垂直四边形”;②如图3,作CP⊥AB于P,GH⊥EA交EA的延长线于H,∵∠EAG+∠BAC=360°﹣90°﹣90°=180°,∠EAG+∠GAH=180°,∴∠BAC=∠GAH,在△CAP和△GAH中,,∴△CAP≌△GAH,∴PC=GH,设CA=x,则AB=3x,由勾股定理得BC=2x,则PC==x,∴AH=x,由勾股定理得,EG==2x,∴==,∴EG=BC.2020年9月21日第21页(共21页)。
2023年嘉兴市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则P到AB的距离是()A.56m B.67m C.65m D.103m2.已知两个等腰直角三角形斜边的比是 1:2,那么它们的面积比是()A.1 : 1 B.1 :2C.1:2 D.1:43.正方形 ABCD 的边长为 1,对角线 AC、BD相交于点O,若以 O为圆心作圆,要使点A在⊙O外,则所选取的半径可能是()A.12B.22C.32D.24.为了了解本校初三年级学生的体能情况,随机抽查了其中30名学生,测试1分钟仰卧起坐的次数,并将其绘制成如图所示的频数分布直方图.那么仰卧起坐次数在25~30次的频率是()A.0.4 B.0.3 C.0.2 D.0.15.如图是由一些相同的小正方体构成的几何体的三视图.这些相同的小正方体的个数是()A.4个B.5个C.6个D.7个6.已知正比例函数y kx的图象经过点(2,4),k的值是()A . 1B .2C . -1D .-27.下列函数中,是二次函数的是( )A .1y x =-B .y x =-C .1y x =-+D .21y x =-+ 8. 已知 x ,y 满足等式11x y x -=+,则用x 的代数式表示得( ) A .11x y x -=+ B . 11x y x -=+ C .11x y x +=- D .11x y x +=- 9.()2a b --等于( )A .22a b +B .22a b -C .222a ab b ++D .222a ab b -+ 10.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤ 11.若448n =,则n 等于( )A .2B . 4C . 6D . 8 12.222(3)()(6)3a ab b -⋅⋅的计算结果为( ) A . 2472a b - B . 2412a b - C . 2412a b D . 2434a b13.为了做一个试管架,在长为cm(6cm)a a >的木板上钻3个小孔(如图),每个小孔的直径为2cm ,则x 等于( )A .34a -cmB .34a +cmC .64a -cmD .64a +cm二、填空题14.⊙O 的半径为 r ,⊙O 的弦2, 则以02为半径的圆与 AB 的位置关系是 .15.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______.16.如图,梯形ABCD 中,AB ∥CD ,E 是AB 边上的点,给出下面三个论断:①AD=BC ;②DE= CE ;③AE=BE .请你以其中的二个论断作为条件,另一个作为结论,使之成为一个正确的命题,则该命题可以是 .(用符号“⇒”连接).17.如图所示,把一张长方形纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,点D ,C 分别落在D ′,C ′位置,若∠EFG=55°,则∠l= , ∠2= .18.把命题“三角形的内角和等于l80°”改写成“如果……,那么……”的形式.如果 ,那么 ;并找出结论 .19.如图,△ABC 经过旋转变换得到△AB ′C ′,若∠CAC ′=32°,则∠BAB ′= .20.在下列各式从左到右的变形中,有三种情况:(A)整式乘法,(B)分解因式,(C)既非整式乘法又非分解因式;在括号里填上所属的情况代号.(1)224(23)(23)49a a a +-=- ( )(2)25(2)(1)3m m m m --=-+- ( )(3)4422()()()x y x y x y x y -=+-+ ( ) (4)22211()2()x x x x+=++ ( )(5)22()a a b ab a a ab b --+=-+- ( )21.如图.(1)用刻度尺量出下列线段的长度.AB= cmAC= cmBC= cmAD= cmDC= cmBD= cm(2)用“>”、“<”或“=”号填空. AB BC BC AC BC AD AD+BD AB AB+BC AC22.写出一个一无一次方程,使它的解为12x =-,这个方程是 . 三、解答题23.投两个分别标有 1、2、3、4、5、6 的均匀的骰子.(1)所有可能的结果有几种?(2)同时出现两个一点的概率是多少?(3)同时出现两个六点的概率是多少?(4)同时出现相同点的概率是多少?(5)出现不同点的概率是多少?24.如图,在Rt ABC △中,90C ∠=,30A ∠=,BD 是ABC ∠平分线,20AD =.求BC 的长.25.如图,在矩形ABCD 中,AB=4 cm,BC=8 cm ,将图形折叠,使点C 与点A 重合,折痕为EF .判断四边形AECF 的形状,并说明理由.26.如图,已知从△ABC到△DEF是一个相似变换,OD与OA的长度之长为1:3.(1)DE与AB的长度之比是多少?(2)已知△ABC的周长是24cm,面积是36cm2,分别求△DEF的周长和面积.27.计算:(1)(3)(3)a b b a-;(2)1111()()3232a b a b-+--;(3)(53)(35)ab x x ab---;(4)111(2)(2)(8) 224x x x x-+-+28.检验括号中的数是否为方程的解:(1)5m-3=7(m=3,m=2)(2)4y+3=6y-7(y=4,y=5)29.求下列各式中的x:(1)30.008x=(2) 32160x+=的平方根之和30.小林用七巧板拼一只飞翔的鸽子,现在还剩一块有一个锐角是45°的直角三角形ABC (左下角)应该放在黑色的三角形这个位置上.你能帮助小林通过变换直角三角形ABC放到黑色的三角形这个位置上吗?请说明你是通过怎样的变换实现你的目标的.B AC BA B【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.C2.D3.A4.A5.B6.B7.D8.C9.C10.C11.C12.A13.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题14.15.16.17.18.19.20.21.22.三、解答题23.24.25.26.27.28.29.30.【参考答案及解析】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.C解析:C2.D解析:D3.A解析:A4.A解析:A5.B解析:B6.B解析:B7.D解析:D8.C解析:C9.C解析:C10.C11.C解析: C12.A解析: A13.C第II卷(非选择题)请点击修改第II卷的文字说明二、填空题14.相切.15.60度16.如①②⇒③17.70°,ll0°18.三个角是三角形的内角,它们的和等于180°,它们的和等于l80°19.32°20.(1)A;(2);(3)B;(4)C;(5)B21.(1)略 (2)>,<,>,>,>22.答案不唯一,如12x+=,210x+=23.由下表可知:(1)共有 36 种;(2)136P =;(3)136P =;(4)61366P ==;(5)305366P ==. 24.310.25.四边形AECF 是菱形26.(1)1:3;(2)8cm ,4cm 227.(1)223a b -;(2)221194a b -;(3)222925x a b -;(4)24x --28.(1)m=2是方程的解,m=3不是 (2)y=5 是方程的解,y=4不是29.(1)x=0.2 (2)x=-630.向右平移10个单位,再向上平移7个单位,最后绕着点A 逆时针方向旋转45度得到黑色的三角形.【题目及参考答案、解析】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则P到AB的距离是()A.56m B.67m C.65m D.103m答案:C解析:C2.已知两个等腰直角三角形斜边的比是 1:2,那么它们的面积比是()A.1 : 1 B.2C.1:2 D.1:4答案:D解析:D3.正方形 ABCD 的边长为 1,对角线 AC、BD相交于点O,若以 O为圆心作圆,要使点A在⊙O外,则所选取的半径可能是()A.12B2C3D.2答案:A解析:A4.为了了解本校初三年级学生的体能情况,随机抽查了其中30名学生,测试1分钟仰卧起坐的次数,并将其绘制成如图所示的频数分布直方图.那么仰卧起坐次数在25~30次的频率是( )A.0.4 B.0.3 C.0.2 D.0.1答案:A解析:A5.如图是由一些相同的小正方体构成的几何体的三视图.这些相同的小正方体的个数是 ( ) A .4个B .5个C .6个D .7个答案:B解析:B6.已知正比例函数y kx =的图象经过点(2,4),k 的值是( ) A . 1B .2C . -1D .-2答案:B解析:B7.下列函数中,是二次函数的是( ) A .1y x=-B .y x =-C .1y x =-+D .21y x =-+答案:D解析:D8. 已知 x ,y 满足等式11x y x -=+,则用x 的代数式表示得( ) A .11x y x -=+ B . 11x y x -=+ C .11x y x +=- D .11x y x +=-答案:C解析:C9.()2a b --等于( ) A .22a b +B .22a b -C .222a ab b ++D .222a ab b -+答案:C解析:C10.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤答案:C解析: C11.若448n =,则n 等于( ) A .2B . 4C . 6D . 8答案:C解析: C12.222(3)()(6)3a ab b -⋅⋅的计算结果为( )A . 2472a b -B . 2412a b -C . 2412a bD . 2434a b答案:A解析: A13.为了做一个试管架,在长为cm(6cm)a a >的木板上钻3个小孔(如图),每个小孔的直径为2cm ,则x 等于( ) A .34a -cm B .34a +cm C .64a -cm D .64a +cm解析:C二、填空题14.⊙O 的半径为 r ,⊙O 的弦AB=2r , 则以0为圆心,22r 为半径的圆与 AB 的位置关系是 . 解析:相切.15.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______. 解析:60度16.如图,梯形ABCD 中,AB ∥CD ,E 是AB 边上的点,给出下面三个论断:①AD=BC ;②DE= CE ;③AE=BE .请你以其中的二个论断作为条件,另一个作为结论,使之成为一个正确的命题,则该命题可以是 .(用符号“⇒”连接).解析:如①②⇒③17.如图所示,把一张长方形纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,点D ,C 分别落在D ′,C ′位置,若∠EFG=55°,则∠l= , ∠2= .解析:70°,ll0°18.把命题“三角形的内角和等于l80°”改写成“如果……,那么……”的形式. 如果 ,那么 ; 并找出结论 .解析:三个角是三角形的内角,它们的和等于180°,它们的和等于l80°19.如图,△ABC 经过旋转变换得到△AB ′C ′,若∠CAC ′=32°,则∠BAB ′= .解析:32°20.在下列各式从左到右的变形中,有三种情况:(A)整式乘法,(B)分解因式,(C)既非整式乘法又非分解因式;在括号里填上所属的情况代号. (1)224(23)(23)49a a a +-=- ( ) (2)25(2)(1)3m m m m --=-+- ( ) (3)4422()()()x y x y x y x y -=+-+ ( ) (4)22211()2()x x x x+=++ ( )(5)22()a a b ab a a ab b --+=-+- ( ) 解析: (1)A ;(2);(3)B ;(4)C ;(5)B 21.如图.(1)用刻度尺量出下列线段的长度. AB= cm AC= cm BC= cm AD= cmDC= cm BD= cm(2)用“>”、“<”或“=”号填空. AB BC BC ACBC AD AD+BD AB AB+BC AC 解析:(1)略 (2)>,<,>,>,>22.写出一个一无一次方程,使它的解为12x =-,这个方程是 . 解析:答案不唯一,如102x +=,210x += 三、解答题23.投两个分别标有 1、2、3、4、5、6 的均匀的骰子. (1)所有可能的结果有几种? (2)同时出现两个一点的概率是多少? (3)同时出现两个六点的概率是多少? (4)同时出现相同点的概率是多少? (5)出现不同点的概率是多少?解析:由下表可知:(1)共有 36 种;(2)136P =;(3)136P =;(4)61366P ==;(5)305366P ==. 24.如图,在Rt ABC △中,90C ∠=,30A ∠=,BD 是ABC ∠平分线,20AD =.求BC 的长.1 2 3 4 5 6 1 11 12 13 14 15 16 2 21 2 23 24 25 26 3 31 32 33 34 35 36 4 41 42 43 44 45 46 5 51 52 53 54 55 56 6 616263646566解析:310.25.如图,在矩形ABCD中,AB=4 cm,BC=8 cm,将图形折叠,使点C与点A重合,折痕为EF.判断四边形AECF的形状,并说明理由.解析:四边形AECF是菱形26.如图,已知从△ABC到△DEF是一个相似变换,OD与OA的长度之长为1:3.(1)DE与AB的长度之比是多少?(2)已知△ABC的周长是24cm,面积是36cm2,分别求△DEF的周长和面积.解析:(1)1:3;(2)8cm,4cm227.计算:(1)(3)(3)a b b a-;(2)1111()()3232a b a b-+--;(3)(53)(35)ab x x ab---;(4)111(2)(2)(8) 224x x x x-+-+解析:(1)223a b -;(2)221194a b -;(3)222925x a b -;(4)24x --28.检验括号中的数是否为方程的解: (1)5m-3=7(m=3,m=2) (2)4y+3=6y-7(y=4,y=5)解析:(1)m=2是方程的解,m=3不是 (2)y=5 是方程的解,y=4不是 29.求下列各式中的x : (1)30.008x = (2) 32160x += 的平方根之和解析:(1)x=0.2 (2)x=-630.小林用七巧板拼一只飞翔的鸽子,现在还剩一块有一个锐角是45°的直角三角形ABC (左下角)应该放在黑色的三角形这个位置上.你能帮助小林通过变换直角三角形ABC 放到黑色的三角形这个位置上吗?请说明你是通过怎样的变换实现你的目标的.解析:向右平移10个单位,再向上平移7个单位,最后绕着点A 逆时针方向旋转45度得BCA到黑色的三角形.。
2019、2020年浙江中考数学试题分类(5)——三角形与四边形一.三角形三边关系(共3小题)1.(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4 B.5 C.6 D.72.(2019•台州)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,113.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8二.三角形内角和定理(共2小题)4.(2019•绍兴)如图,墙上钉着三根木条a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°5.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°三.全等三角形的判定与性质(共4小题)6.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=√2DT C.BD=BO D.2OC=5AC7.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长8.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.9.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.四.角平分线的性质(共1小题)10.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.42五.等腰三角形的性质(共2小题)11.(2019•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C 点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°12.(2020•绍兴)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.六.等边三角形的判定与性质(共1小题)13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 .七.勾股定理(共2小题)14.(2019•宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和15.(2020•绍兴)如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连结BD .若BD 的长为2√3,则m 的值为 .八.勾股定理的证明(共1小题)16.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形SSSSS 正方形SSSS 的值是( )A .1+√2B .2+√2C .5−√2D .154 九.勾股定理的应用(共3小题)17.(2019•绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A .245B .325C .12√3417D .20√341718.(2019•衢州)一块圆形宣传标志牌如图所示,点A ,B ,C 在⊙O 上,CD 垂直平分AB 于点D .现测得AB =8dm ,DC =2dm ,则圆形标志牌的半径为( )A .6dmB .5dmC .4dmD .3dm19.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O ,P 两点固定,连杆P A =PC =140cm ,AB =BC =CQ =QA =60cm ,OQ =50cm ,O ,P 两点间距与OQ 长度相等.当OQ 绕点O 转动时,点A ,B ,C 的位置随之改变,点B 恰好在线段MN 上来回运动.当点B 运动至点M 或N 时,点A ,C 重合,点P ,Q ,A ,B 在同一直线上(如图3).(1)点P 到MN 的距离为 cm .(2)当点P ,O ,A 在同一直线上时,点Q 到MN 的距离为 cm .一十.等腰直角三角形(共1小题)20.(2019•宁波)已知直线m ∥n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若∠1=25°,则∠2的度数为( )A .60°B .65°C .70°D .75°一十一.三角形中位线定理(共1小题)21.(2020•宁波)如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为( )A .2B .2.5C .3D .4一十二.三角形综合题(共1小题)22.(2020•金华)如图,在△ABC 中,AB =4√2,∠B =45°,∠C =60°.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF .①如图2,当点P 落在BC 上时,求∠AEP 的度数.②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.一十三.多边形(共2小题)23.(2020•湖州)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角,正方形ABCD 变为菱形ABC ′D ′.若∠D ′AB =30°,则菱形ABC ′D ′的面积与正方形ABCD 的面积之比是( )A .1B .12C .√22 D .√3224.(2019•衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为( )A.1 B.√2C.√3D.2一十四.平面镶嵌(密铺)(共1小题)25.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F 分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.一十五.平行四边形的性质(共2小题)26.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°27.(2020•绍兴)如图,点E是▱ABCD的边CD的中点,连接AE并延长,交BC的延长线于点F.(1)若AD的长为2,求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.一十六.平行四边形的判定与性质(共1小题)28.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.一十七.菱形的性质(共1小题)29.(2019•温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.一十八.菱形的判定(共1小题)30.(2020•嘉兴)如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: ,使▱ABCD 是菱形.一十九.矩形的性质(共6小题)31.(2019•台州)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角α最小时,tan α等于( ) A .14 B .12 C .817 D .815 32.(2019•金华)如图,矩形ABCD 的对角线交于点O .已知AB =m ,∠BAC =∠α,则下列结论错误的是( )A .∠BDC =∠αB .BC =m •tan α C .AO =S 2SSSSD .BD =S SSSS 33.(2020•绍兴)将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号).①√2,②1,③√2−1,④√32,⑤√3. 34.(2019•绍兴)有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°,要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.35.(2019•舟山)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.36.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.二十.正方形的性质(共5小题)37.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和238.(2019•绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E 从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变39.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.40.(2019•绍兴)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为.41.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.二十一.正方形的判定与性质(共1小题)42.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②二十二.四边形综合题(共8小题)43.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2=13时,求SSSS的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.44.(2020•嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF =4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.45.(2020•绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.46.(2020•温州)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=24 5.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.47.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.48.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.49.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.50.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()2019、2020年浙江中考数学试题分类(5)——三角形与四边形参考答案与试题解析一.三角形三边关系(共3小题)1.【解答】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;④长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.2.【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.3.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.二.三角形内角和定理(共2小题)4.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.5.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.三.全等三角形的判定与性质(共4小题)6.【解答】解:如图,连接OD.∵OT是半径,OT⊥AB,∴DT是⊙O的切线,∵DC是⊙O的切线,∴DC=DT,故选项A正确,∵OA=OB,∠AOB=90°,∴∠A=∠B=45°,∵DC是切线,∴CD⊥OC,∴∠ACD=90°,∴∠A=∠ADC=45°,∴AC=CD=DT,∴AC=√2CD=√2DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∴△DOC≌△DOT(SSS),∴∠DOC=∠DOT,∵OA=OB,OT⊥AB,∠AOB=90°,∴∠AOT=∠BOT=45°,∴∠DOT=∠DOC=22.5°,∴∠BOD=∠ODB=67.5°,∴BO=BD,故选项C正确,根据筛选法,故选:D.7.【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.8.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.9.【解答】证明:(1)∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE,∴CE=BC=5,∵∠ACE=90°,∴AE=√SS2+SS2=√25+144=13.四.角平分线的性质(共1小题)10.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=12AB•DH+12BC•CD=12×6×4+12×9×4=30,故选:B.五.等腰三角形的性质(共2小题)11.【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.12.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=12(180°﹣∠B)=12[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=12(180°﹣m°)=90°−12m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+12m°,∵EA=EC,∴∠CAE=12S AEB=90°−12n°−12m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+12m°+90°−12n°−12m°=12n°.六.等边三角形的判定与性质(共1小题)13.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.七.勾股定理(共2小题)14.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.15.【解答】解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=√3,当点D、B在AC的两侧时,如图,∵BD=2√3,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2√3,∴D′E=3√3,∴AD′=√(3√3)2+12=2√7,∴m=2√7,综上所述,m的值为2或2√7,故答案为:2或2√7.八.勾股定理的证明(共1小题)16.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG =22.5°, 又∵∠DBC =45°, ∴∠GBC =22.5°, ∴∠PBG =∠GBC ,∵∠BGP =∠BGC =90°,BG =BG , ∴△BPG ≌△BCG (ASA ), ∴PG =CG .设OG =PG =CG =x , ∵O 为EG ,BD 的交点, ∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”, ∴BF =CG =x , ∴BG =x +√2x ,∴BC 2=BG 2+CG 2=S 2(√2+1)2+S 2=(4+2√2)S 2, ∴S 正方形SSSS S 正方形SSSS=(4+2√2)S 22S 2=2+√2.故选:B .九.勾股定理的应用(共3小题) 17.【解答】解:过点C 作CF ⊥BG 于F ,如图所示:设DE =x ,则AD =8﹣x ,根据题意得:12(8﹣x +8)×3×3=3×3×6, 解得:x =4, ∴DE =4, ∵∠E =90°,由勾股定理得:CD =√SS 2+SS 2=√42+32=5, ∵∠BCE =∠DCF =90°, ∴∠DCE =∠BCF ,∵∠DEC =∠BFC =90°, ∴△CDE ∽△CBF , ∴SS SS =SS SS ,即3SS=58,∴CF =245.故选:A .18.【解答】解:连接OA ,OD ,∵点A ,B ,C 在⊙O 上,CD 垂直平分AB 于点D .AB =8dm ,DC =2dm , ∴AD =4dm ,设圆形标志牌的半径为r ,可得:r 2=42+(r ﹣2)2, 解得:r =5, 故选:B . 19.【解答】解:(1)如图3中,延长PO 交MN 于T ,过点O 作OH ⊥PQ 于H .由题意:OP =OQ =50cm ,PQ =P A ﹣AQ =140﹣60=80(cm ),PM =P A +BC =140+60=200(cm ),PT ⊥MN ,∵OH ⊥PQ ,∴PH =HQ =40(cm ), ∵cos ∠P =SSSS =SSSS , ∴4050=SS 200,∴PT =160(cm ),∴点P 到MN 的距离为160cm , 故答案为160.(2)如图4中,当O ,P ,A 共线时,过Q 作QH ⊥PT 于H .设HA =xcm .由题意AT =PT ﹣P A =160﹣140=20(cm ),OA =P A ﹣OP =140﹣50=90(cm ),OQ =50cm ,AQ =60cm , ∵QH ⊥OA ,∴QH 2=AQ 2﹣AH 2=OQ 2﹣OH 2, ∴602﹣x 2=502﹣(90﹣x )2, 解得x =4609,∴HT =AH +AT =6409(cm ), ∴点Q 到MN 的距离为6409cm .故答案为6409.一十.等腰直角三角形(共1小题) 20.【解答】解:设AB 与直线n 交于点E , 则∠AED =∠1+∠B =25°+45°=70°. 又直线m ∥n ,∴∠2=∠AED =70°.故选:C .一十一.三角形中位线定理(共1小题) 21.【解答】解:∵在Rt △ABC 中,∠ACB =90°,AC =8,BC =6, ∴AB =√SS 2+SS 2=√82+62=10. 又∵CD 为中线, ∴CD =12AB =5.∵F 为DE 中点,BE =BC 即点B 是EC 的中点, ∴BF 是△CDE 的中位线,则BF =12CD =2.5. 故选:B .一十二.三角形综合题(共1小题) 22.【解答】解:(1)如图1中,过点A 作AD ⊥BC 于D .在Rt △ABD 中,AD =AB •sin45°=4√2×√22=4.(2)①如图2中,∵△AEF ≌△PEF ,∴AE =EP ,∵AE =EB ,∴BE =EP ,∴∠EPB =∠B =45°,∴∠PEB =90°,∴∠AEP =180°﹣90°=90°.②如图3中,由(1)可知:AC =SS SSS60°=8√33, ∵PF ⊥AC ,∴∠PF A =90°,∵△AEF ≌△PEF ,∴∠AFE =∠PFE =45°,∴∠AFE =∠B ,∵∠EAF =∠CAB ,∴△AEF ∽△ACB ,∴SS SS =SS SS ,即4√2=√28√33,∴AF =2√3,在Rt △AFP ,AF =FP ,∴AP =√2AF =2√6.方法二:AE =BE =PE 可得直角三角形ABP ,由PF ⊥AC ,可得∠AFE =45°,可得∠F AP =45°,即∠P AB =30°. AP =AB cos30°=2√6.一十三.多边形(共2小题)23.【解答】解:根据题意可知菱形ABC ′D ′的高等于AB 的一半,∴菱形ABC ′D ′的面积为12SS 2,正方形ABCD 的面积为AB 2. ∴菱形ABC ′D ′的面积与正方形ABCD 的面积之比是12.故选:B .24.【解答】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=√32×2=√3.故选:C .一十四.平面镶嵌(密铺)(共1小题)25.【解答】解:如图所示:图1的周长为1+2+3+2√2=6+2√2;图2的周长为1+4+1+4=10;图3的周长为3+5+√2+√2=8+2√2.故四边形MNPQ 的周长是6+2√2或10或8+2√2.故答案为:6+2√2或10或8+2√2.一十五.平行四边形的性质(共2小题)26.【解答】解:∵在△ABC 中,∠A =40°,AB =AC ,∴∠C =(180°﹣40°)÷2=70°,∵四边形BCDE 是平行四边形,∴∠E =70°.故选:D .27.【解答】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥CF ,∴∠DAE =∠CFE ,∠ADE =∠FCE ,∵点E 是CD 的中点,∴DE =CE ,在△ADE 和△FCE 中,{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△ADE ≌△FCE (AAS ),∴CF =AD =2;(2)∵∠BAF =90°,添加一个条件:当∠B =60°时,∠F =90°﹣60°=30°(答案不唯一).一十六.平行四边形的判定与性质(共1小题)28.【解答】(1)证明:∵D ,E ,F 分别是AB ,BC ,AC 的中点,∴DF ∥BC ,EF ∥AB ,∴DF ∥BE ,EF ∥BD ,∴四边形BEFD 是平行四边形;(2)解:∵∠AFB =90°,D 是AB 的中点,AB =6,∴DF =DB =DA =12AB =3,∵四边形BEFD 是平行四边形,∴四边形BEFD 是菱形,∵DB =3,∴四边形BEFD 的周长为12.一十七.菱形的性质(共1小题)29.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=√2x,IK=√2x﹣x,∵Rt△CIK中,(√2x﹣x)2+x2=22,解得x2=2+√2,又∵S菱形BCOI=IO×CK=12IC×BO,∴√2x2=12×2×BO,∴BO=2√2+2,∴BE=2BO=4√2+4,AB=AE=√2BO=4+2√2,∴△ABE的周长=4√2+4+2(4+2√2)=12+8√2,故答案为:12+8√2.一十八.菱形的判定(共1小题)30.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD=DC,▱ABCD为菱形;故答案为:AD=DC(答案不唯一).一十九.矩形的性质(共6小题)31.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=SS SS∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a 2=4+(8﹣a )2,∴a =174 ∴CM =154 ∴tan α=tan ∠DMC =SS SS =815 故选:D .32.【解答】解:A 、∵四边形ABCD 是矩形,∴∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,∴AO =OB =CO =DO ,∴∠DBC =∠ACB ,∴由三角形内角和定理得:∠BAC =∠BDC =∠α,故本选项不符合题意;B 、在Rt △ABC 中,tan α=SS S ,即BC =m •tan α,故本选项不符合题意;C 、在Rt △ABC 中,AC =S SSSS ,即AO =S 2SSSS ,故本选项符合题意; D 、∵四边形ABCD 是矩形,∴DC =AB =m ,∵∠BAC =∠BDC =α,∴在Rt △DCB 中,BD =S SSSS,故本选项不符合题意; 故选:C .33.【解答】解:如图所示:则其中一个等腰三角形的腰长可以是①√2,②1,③√2−1,④√32,不可以是√3. 故答案为:①②③④.34.【解答】解:(1)①若所截矩形材料的一条边是BC ,如图1所示:过点C 作CF ⊥AE 于F ,S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF ∥AB 交CD 于F ,FG ⊥AB 于G ,过点C 作CH ⊥FG 于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,∵∠C =135°,∴∠FCH =45°,∴△CHF 为等腰直角三角形,∴AE =FG =6,HG =BC =5,BG =CH =FH ,∴BG =CH =FH =FG ﹣HG =6﹣5=1,∴AG =AB ﹣BG =6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,即:AM=5.5时,FM=11﹣5.5=5.5,S的最大值为30.25.35.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.36.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.二十.正方形的性质(共5小题)37.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.38.【解答】解:连接DE,∵S△SSS=12S四边形SSSS,S △SSS =12S 正方形SSSS ,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D .39.【解答】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:√32−22=√5,故阴影部分的面积是:2×√52×4=4√5,故答案为:4√5.40.【解答】解:∵四边形ABCD 是正方形,∴AD =AE ,∠DAE =90°,∴∠BAM =180°﹣90°﹣30°=60°,AD =AB ,当点E 与正方形ABCD 的直线AP 的同侧时,由题意得,点E 与点B 重合, ∴∠ADE =45°,当点E 与正方形ABCD 的直线AP 的两侧时,由题意得,E ′A =E ′M , ∴△AE ′M 为等边三角形,∴∠E ′AM =60°,∴∠DAE ′=360°﹣120°﹣90°=150°,∵AD =AE ′,∴∠ADE ′=15°,故答案为:15°或45°.41.【解答】解:(1)设正方形CEFG 的边长为a ,∵正方形ABCD 的边长为1,∴DE =1﹣a ,∵S 1=S 2,∴a 2=1×(1﹣a ),解得,S 1=−√52−12(舍去),S 2=√52−12,即线段CE 的长是√52−12; (2)证明:∵点H 为BC 边的中点,BC =1,∴CH =0.5,∴DH =√12+0.52=√52,∵CH =0.5,CG =√52−12, ∴HG =√52, ∴HD =HG .二十一.正方形的判定与性质(共1小题)42.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B ,C ,D 错误,故选:A .二十二.四边形综合题(共8小题)43.【解答】(1)解:如图1中,△AFG 是等腰三角形.理由:∵AE 平分∠BAC ,∴∠1=∠2,∵DF ⊥AE ,∴∠AHF =∠AHG =90°,∵AH =AH ,∴△AHF ≌△AHG (ASA ),∴AF =AG ,∴△AFG 是等腰三角形.(2)证明:如图2中,过点O 作OL ∥AB 交DF 于L ,则∠AFG =∠OLG .∵AF =AG ,∴∠AFG =∠AGF ,∵∠AGF =∠OGL ,∴∠OGL =∠OLG ,∴OG =OL ,∵OL ∥AB ,∴△DLO ∽△DFB ,∴SS SS =SS SS ,∵四边形ABCD 是矩形,∴BD =2OD ,∴BF =2OL ,∴BF =2OG .(3)解:如图3中,过点D 作DK ⊥AC 于K ,则∠DKA =∠CDA =90°,∵∠DAK =∠CAD ,∴△ADK ∽△ACD ,∴SS SS =SS SS ,∵S 1=12•OG •DK ,S 2=12•BF •AD , 又∵BF =2OG ,S 1S 2=13, ∴SS SS=23=SS SS ,设CD =2x ,AC =3x ,则AD =√5x , ∴SS SS =SS SS =√52.(4)解:设OG =a ,AG =k .①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k +2a ,AC =2(k +a ),∴AD 2=AC 2﹣CD 2=[2(k +a )]2﹣(k +2a )2=3k 2+4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴SS SS =SS SS ,即SS SS =SS SS ,∴SS S +2S =S SS ,∴BE =S (S +2S )SS ,由题意:10×12×2a ×S (S +2S )SS =AD •(k +2a ), ∴AD 2=10ka ,即10ka =3k 2+4ka ,∴k =2a ,∴AD =2√5a ,∴BE =S (S +2S )SS =4√55a ,AB =4a , ∴tan ∠BAE =SS SS =√55.②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k ﹣2a ,AC =2(k ﹣a ),∴AD 2=AC 2﹣CD 2=[2(k ﹣a )]2﹣(k ﹣2a )2=3k 2﹣4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴SS SS =SS SS ,即SS SS =SS SS ,∴SS S −2S =S SS , ∴BE =S (S −2S )SS , 由题意:10×12×2a ×S (S −2S )SS =AD •(k ﹣2a ), ∴AD 2=10ka ,即10ka =3k 2﹣4ka ,∴k =143a ,∴AD =2√1053a , ∴BE =S (S −2S )SS =8√10545a ,AB =83a , ∴tan ∠BAE =SS SS =√10515, 综上所述,tan ∠BAE 的值为√55或√10515.44.【解答】解:【思考】四边形ABDE 是平行四边形.证明:∵△ABC ≌△DEF ,∴AB =DE ,∠BAC =∠EDF ,∴AB ∥DE ,∴四边形ABDE 是平行四边形;【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∴OA =OD =OB =OE ,设AF =x (cm ),则OA =OE =12(x +4),∴OF =OA ﹣AF =2−12x ,在Rt △OFE 中,∵OF 2+EF 2=OE 2,∴(2−12S )2+32=14(S +4)2,解得:x =94,∴AF =94cm .【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,由矩形的性质及旋转的性质知:OA =OB =OE =OD ,∴∠OAB =∠OBA =∠ODE =∠OED ,∴∠OBD =∠ODB ,∠OAE =∠OEA ,∴∠BDE +∠DEA =∠ABD +∠EAB ,∵∠ABD +∠BDE +∠DEA +∠EAB =360°,∴∠ABD +∠BAE =180°,∴AE ∥BD ,∴∠OHE =∠ODB ,∵EF 平分∠OEH ,∴∠OEF =∠HEF ,∵∠EFO =∠EFH =90°,EF =EF ,∴△EFO ≌△EFH (ASA ),∴EO =EH ,FO =FH ,∴∠EHO =∠EOH =∠OBD =∠ODB ,∴△EOH ≌△OBD (AAS ),∴BD =OH =2OF .45.【解答】解:(1)如图1中,过点C′作C′H⊥OF于H.∵∠HC′O=∠C'OC=α=30°,∴C′H=C′O•cos30°=2√3,∴点C′到直线OF的距离为2√3.(2)①如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,∴C′M=2√2,∴点C′到直线DE的距离为2√2−2.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴C′N=2√2,∴点C′到直线DE的距离为2√2+2.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OA′=2√5,OM=2,∠OMA′=90°,∴A′M=√S′S2−SS2=√(2√5)2−22=4,∴A′D=2,即d=2,如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.。
2022年浙江省嘉兴市中考数学试题考试时间:120分钟一、选择题(本题有10小题)1. 若收入3元记为+3,则支出2元记为( )A. 1B. -1C. 2D. -2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数. 2. 如图是由四个相同小立方体搭成的几何体,它的主视图是( )A. B. C. D.【答案】B【解析】【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是: .故选:B .【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键. 3. 计算a 2·a ( )A. aB. 3aC. 2a 2D. a 3为的【答案】D【解析】【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:23,a a a =g故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.4. 如图,在⊙O 中,∠BOC =130°,点A 在 BAC上,则∠BAC 的度数为( )A. 55°B. 65°C. 75°D. 130°【答案】B【解析】 【分析】利用圆周角直接可得答案.【详解】解: ∠BOC =130°,点A 在 BAC上, 165,2BAC BOC \Ð=Ð=° 故选B【点睛】本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.5. 不等式3x +1<2x 的解在数轴上表示正确的是( )A. B.C. D.【答案】B【解析】【分析】先解不等式,得到不等式的解集,再在数轴上表示即可.【详解】解:3x +1<2x解得:1,x <-在数轴上表示其解集如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“小于向左拐”是解本题的关键.6. “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B ′之间的距离为( )A. 1cmB. 2cmC. -1)cmD. -1)cm【答案】D【解析】 【分析】先求出BD ,再根据平移性质求得BB '=1cm ,然后由BD BB -′求解即可.【详解】解:由题意,BD =cm ,由平移性质得BB '=1cm ,∴点D ,B ′之间的距离为DB '=BD BB -′=(1)cm ,故选:D .【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.7. A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A. A B x x >且22A B S S >.B. A B x x >且22B A S S <. C. A B x x <且22A B S S >D. A B x x <且22B A S S <. 【答案】B【解析】【分析】根据平均数、方差的定义,平均数越高成绩越好,方差越小成绩越稳定解答即可.【详解】根据平均数越高成绩越好,方差越小成绩越稳定.故选:B .【点睛】此题考查平均数、方差的定义,解答的关键是理解平均数、方差的定义,熟知方差是衡量一组数据波动大小的量,方差越小表明该组数据分布比较集中,即波动越小数据越稳定.8. “市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A. 7317x y x y +=⎧⎨+=⎩B. 9317x y x y +=⎧⎨+=⎩C. 7317x y x y +=⎧⎨+=⎩D.9317x y x y +=⎧⎨+=⎩【答案】A【解析】 【分析】由题意知:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分等量关系:胜场+平场+负场9=,得分总和为17.【详解】解:设该队胜了x 场,平了y 场,根据题意,可列方程组为:29317x y x y ++=⎧⎨+=⎩, 7317x y x y +=⎧∴⎨+=⎩ 故选:A .【点睛】根据实际问题中的条件列方程组时,解题的关键是要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9. 如图,在ABC 中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,EF AC ∥,GF AB ∥,则四边形AEFG 的周长是( )A. 32B. 24C. 16D. 8【答案】C【解析】 【分析】根据EF AC ∥,GF AB ∥,可得四边形AEFG 是平行四边形,从而得到FG =AE ,AG =EF ,再由EF AC ∥,可得∠BFE =∠C ,从而得到∠B =∠BFE ,进而得到BE =EF ,再根据四边形AEFG 的周长是2(AE +EF ),即可求解.详解】解∶∵EF AC ∥,GF AB ∥,∴四边形AEFG 是平行四边形,∴FG =AE ,AG =EF ,∵EF AC ∥,∴∠BFE =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF ,∴四边形AEFG 的周长是2(AE +EF )=2(AE +BE )=2AB =2×8=16.故选:C【点睛】本题主要考查了平行四边形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的判定和性质,等腰三角形的性质是解题的关键.10. 已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A. 52 B. 2 C. 32 D. 1【答案】B【解析】【分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+【∴2239(3)3(24ab a ka ka a k a k k =+=+=+- ∵ab 的最大值为9∴0k <,且当32a k =-时,ab 有最大值,此时994ab k =-= 解得14k =- ∴直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B . 【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值.二、填空题(本题有6小题)11. 分解因式:m 2-1=_____.【答案】()()11m m +-【解析】【分析】利用平方差公式进行因式分解即可.【详解】解:m 2-1=()()11,m m +- 故答案为:()()11m m +-【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.12. 不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是_____. 【答案】25 【解析】【分析】直接根据概率公式求解.【详解】解:∵盒子中装有3个红球,2个黑球,共有5个球, ∴从中随机摸出一个小球,恰好是黑球的概率是25; 故答案为:25.【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.13. 小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.【答案】60A ∠=︒(答案不唯一)【解析】【分析】利用等边三角形的判定定理即可求解.【详解】解:添加60A ∠=︒,理由如下:ABC 为等腰三角形,180602A B C ︒-∠∴∠=∠==︒, ABC ∴ 为等边三角形,故答案为:60A ∠=︒(答案不唯一).【点睛】本题考查了等边三角形的判断,解题的关键是掌握三角形的判断定理. 14. 如图,在 ABC 中,∠ABC =90°,∠A =60°,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为_________.【解析】【分析】先求解AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC ==-=30,90,A ABC Ð=°Ð=°Qtan 60BC AB \=°同理:tan 60DE AD =°BD AB AD \=-=【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.15. 某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).【答案】k n【解析】 【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:k PB x nPB ⋅=⋅ 解得k x n= 故答案为:k n . 【点睛】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.16. 如图,在廓形AOB 中,点C ,D 在 AB 上,将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则 E F 的度数为_______;折痕CD 的长为_______.【答案】①. 60°##60度 ②.【解析】 【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将 CD沿弦CD 折叠 ∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . ∴ME ⊥OA ,MF ⊥OB∴90MEO MFO ∠=∠=︒∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即 E F 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∴MEO MFO ≅ (HL ) ∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN=∵MO⊥DC∴12DN CD====∴CD=故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.三、解答题(本题有8小题)17. (1)计算:(1--(2)解方程:3121xx-=-.【答案】(1)1-;(2)2x=-【解析】【分析】(1)先计算零次幂与算术平方根,再合并即可;(2)先去分母,化为整式方程,再解整式方程并检验即可.【详解】解:(1)(1--121=-=-(2)3121xx-=-,去分母:321,x x-=-整理得:2,x=-经检验:2x=-是原方程的根,所以原方程的根为: 2.x=-【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,分式方程的解法,掌握“以上基础运算”是解本题的关键.18. 小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,小洁:这个题目还缺少条件,需要补充一个条件才能证明.∴四边形ABCD 是菱形.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【答案】赞成小洁的说法,补充,OA OC =证明见解析【解析】【分析】先由OB =OD ,,OA OC =证明四边形ABCD 是平行四边形,再利用对角线互相垂直,从而可得结论.【详解】解:赞成小洁的说法,补充.OA OC =证明:∵OB =OD ,,OA OC =∴ 四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形.【点睛】本题考查的是平行四边形的判定,菱形的判定,掌握“菱形的判定方法”是解本题的关键.19. 设5a 是一个两位数,其中a 是十位上的数字(1≤a ≤9).例如,当a =4时,5a 表示的两位数是45.(1)尝试:①当a =1时,152=225=1×2×100+25;②当a =2时,252=625=2×3×100+25;③当a =3时,352=1225=; ……(2)归纳:25a 与100a (a +1)+25有怎样的大小关系?试说明理由.(3)运用:若25a 与100a 的差为2525,求a 的值.【答案】(1)③34100+25´´;(2)相等,证明见解析; (3)5a =【解析】【分析】(1)③仔细观察①②的提示,再用含有相同规律的代数式表示即可;(2)由()222510510010025,a a a a =+=++再计算100a (a +1)+25,从而可得答案; (3)由25a 与100a 的差为2525,列方程,整理可得225,a =再利用平方根的含义解方程即可.【小问1详解】解:①当a =1时,152=225=1×2×100+25;②当a =2时,252=625=2×3×100+25;③当a =3时,352=1225=34100+25´´;【小问2详解】解:相等,理由如下:()222510510010025,a a a a =+=++ 100a (a +1)+25=210010025,a a ++()5100125.a a a \=++【小问3详解】5a 与100a 的差为2525, 2100100251002525,a a a \++-=整理得:21002500,a = 即225,a =解得:5,a =±1≤a ≤9,5.a ∴=【点睛】本题考查的是数字的规律探究,完全平方公式的应用,单项式乘以多项式,利用平方根的含义解方程,理解题意,列出运算式或方程是解本题的关键.20. 6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下: x (h ) … 11 12 13 14 15 16 17 18 … y (cm ) … 189 137 103 80 101 133 202 260 … (数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【答案】(1)①见解析;②200y =,21x =(2)①当27x ……时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x <<【解析】【分析】(1)①根据表格数据在函数图像上描点连线即可;②根据函数图像估计即可;(2)从增减性、最值等方面说明即可;(3)根据图像找到y =260时所有的x 值,再结合图像判断即可.【小问1详解】①②观察函数图象:当4x =时,200y =;当y 的值最大时,21x =;21x =.【小问2详解】答案不唯一.①当27x ……时,y 随x 的增大而增大;②当14x =时,y 有最小值80.【小问3详解】根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<,关键.21. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长.(2)求点A ,B 之间的距离.【答案】(1)3.4cm(2)22.2cm【解析】【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得DF EF =, 20DCF ECF ∠=∠=︒,再利用锐角三角函数,即可求解;(2)连结AB .设纸飞机机尾的横截面的对称轴为直线l ,可得对称轴l 经过点C .从而得到四边形DGCE 是矩形,进而得到DE =CG ,然后过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,可得1202GDC CEH DCE ∠=∠=∠=︒,从而得到2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,再利用锐角三角函数,即可求解.【小问1详解】解:如图2,过点C 作CF DE ⊥于点F ,∵CD CE =,∴DF EF =,CF 平分DCE ∠.∴20DCF ECF ∠=∠=︒,∴sin 2050.34 1.7DF CD ︒=⋅≈⨯=,∴2 3.4cm DE DF ==.【小问2详解】解:如图3,连结AB .设纸飞机机尾的横截面的对称轴为直线l ,∵纸飞机机尾的横截面示意图是一个轴对称图形,∴对称轴l 经过点C .∴AB l ⊥,DE l ⊥,∴AB ∥DE .过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,∵DG ⊥AB ,HE ⊥AB ,∴∠EDG =∠DGH =∠EHG =90°,∴四边形DGCE 是矩形,∴DE =HG ,∴DG ∥l , EH ∥l , ∴1202GDC CEH DCE ∠=∠=∠=︒, ∵AD CD ⊥,BE ⊥CE ,∴2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,∴cos 20100.949.4,cos 20100.949.4AG AD BH BE =⋅︒≈⨯==⋅︒≈⨯=,∴22.2cm AB BH AG DE =++=.【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.22. 某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:中小学生每周参加家庭劳动时间x (h )分为5组:第一组(0≤x <0.5),第二组(0.5≤x <1),第三组(1≤x <1.5),第四组(1.5≤x <2),第五组(x ≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【答案】(1)第三组 (2)175人的(3)该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一)【解析】【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【小问1详解】解:由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第三组;【小问2详解】解:(1200200)(18.7%43.2%30.6%)175-⨯---=(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;【小问3详解】解:由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).【点睛】本题考查的是频数分布直方图和扇形统计图的知识,解题的关键是读懂频数分布直方图和利用统计图获取信息.23. 已知抛物线L 1:y =a (x +1)2-4(a ≠0)经过点A (1,0).(1)求抛物线L 1的函数表达式.(2)将抛物线L 1向上平移m (m )个单位得到抛物线L 2.若抛物线L 2的顶点关于坐标原点O 的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.【答案】(1)223y x x =+-(2)m 的值为4(3)3n >【解析】【分析】(1)把(1,0)A 代入2(1)4y a x =+-即可解得抛物线1L 的函数表达式为223y x x =+-;(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,顶点为(1,4)m --+,关于原点的对称点为(1,4)m -,代入223y x x =+-可解得m 的值为4;(3)把抛物线1L 向右平移(0)n n >个单位得抛物线3L 为2(1)4y x n =-+-,根据点B (1,y 1),C (3,y 2)都在抛物线3L 上,当y 1>y 2时,可得22(2)4(4)4n n -->--,即可解得n 的取值范围是3n >.【小问1详解】解:把(1,0)A 代入2(1)4y a x =+-得:2(11)40a +-=,解得1a =,22(1)423y x x x ∴=+-=+-;答:抛物线1L 的函数表达式为223y x x =+-;【小问2详解】解:抛物线21:(1)4L y x =+-的顶点为(1,4)--,将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,则抛物线2L 的顶点为(1,4)m --+, 而(1,4)m --+关于原点的对称点为(1,4)m -,把(1,4)m -代入223y x x =+-得:212134m +⨯-=-,解得4m =,答:m 的值为4;【小问3详解】解:把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,抛物线3L 解析式为2(1)4y x n =-+-,点1(1,)B y ,2(3,)C y 都抛物线3L 上,221(11)4(2)4y n n ∴=-+-=--,222(31)4(4)4y n n =-+-=--,y 1>y 2,22(2)4(4)4n n ∴-->--,整理变形得:22(2)(4)0n n --->,(24)(24)0n n n n -+---+>2(62)0n -⨯->,620n -<解得3n >,n ∴的取值范围是3n >.【点睛】本题考查二次函数综合应用,涉及待定系数法,对称及平移变换等知识,解题的在关键是能得出含字母的式子表达抛物线平移后的解析式.24. 小东在做九上课本123页习题:“1也是一个很有趣的比.已知线段AB (如图1),用直尺和圆规作AB 上的一点P ,使AP :AB =1.”小东的作法是:如图2,以AB 为斜边作等腰直角三角形ABC ,再以点A 为圆心,AC 长为半径作弧,交线段AB 于点P ,点P 即为所求作的点.小东称点P 为线段AB 的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP ,点D 为线段AC 上的动点,点E 在AB 的上方,构造 DPE ,使得 DPE ∽ CPB .①如图3,当点D 运动到点A 时,求∠CPE 的度数.②如图4,DE 分别交CP ,CB 于点M ,N ,当点D 为线段AC 的“趣点”时(CD <AD ),猜想:点N 是否为线段ME 的“趣点”?并说明理由.【答案】(1)赞同,理由见解析,(2)①45 ,②点N 是线段ME 的“趣点”,理由见解析【解析】【分析】(1)利用等腰三角形的性质证明AC AB = 再利用,AC AP = 从而可得结论; (2)①由题意可得:45,90,,CAB B ACB AC AP BC Ð=Ð=°Ð=°== 再求解67.5,ACP APC Ð=Ð=° 112.5,CPB Ð=° 证明112.5,DPE CPB Ð=Ð=° 从而可得答案;②先证明,ADP ACB V V ∽可得 45,,APD DP CB Ð=°∥ 再证明,MP MD MC MN ===45,90,EMP MPE Ð=°Ð=° 从而可得结论.【小问1详解】证明:赞同,理由如下:等腰直角三角形ABC ,,45,AC BC A B \=Ð=Ð=°cos 45AC AB \°===,AC AP =QAP AB \ ∴点P 为线段AB 的“趣点”.【小问2详解】①由题意可得:45,90,,CAB B ACB AC AP BC Ð=Ð=°Ð=°== ()11804567.5,2ACP APC \Ð=Ð=°-°=° 9067.522.5,BCP \Ð=°-°=°1804522.5112.5,CPB \Ð=°-°-°=° DPE ∽ CPB ,D ,A 重合, 112.5,DPE CPB \Ð=Ð=°18045.CPE DPE CPB \Ð=Ð+Ð-°=° ②点N 是线段ME 的“趣点”,理由如下: 当点D 为线段AC 的“趣点”时(CD <AD ),AD AC \而,AC AP =AD AP \,AC A A AB Ð=ÐQ ,ADP ACB \V V ∽90,ADP ACB \Ð=Ð=°45,,APD DP CB \Ð=°∥22.5,DPC PCB PDE \Ð=Ð=°=Ð ,DM PM \=9022.567.5,MDC MCD \Ð=Ð=°-°=° ,MD MC \=同理可得:,MC MN =,MP MD MC MN \===22.5,45,MDP MPD E B Ð=Ð=°Ð=Ð=°Q 45,90,EMP MPE \Ð=°Ð=°,MP MN ME ME\= 点N 是线段ME 的“趣点”.【点睛】本题考查的是等腰直角三角形的性质,锐角三角函数的应用,相似三角形的判定与性质,三角形的外角的性质,等腰三角形的判定与性质,理解新定义的含义,掌握特殊的几何图形的性质是解本题的关键。
新人教部编版初中数学“活力课堂”精编试题专题55 几何图形中多线段之间的数量关系(15题)1.(2020·安徽中考真题)如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥; ()2若1AB =,求AE 的长;()3如图2,连接AG,求证:EG DG -=.【答案】(1)见解析;(2)12+;(3)见解析 【提示】(1)由矩形的形及已知证得△EAF ≌△DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论; (2)设AE=x ,利用矩形性质知AF ∥BC ,则有EA AFEB BC=,进而得到x 的方程,解之即可; (3)在EF 上截取EH=DG ,进而证明△EHA ≌△DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得△HAG 为等腰直角三角形,即可得证结论. 【详解】(1)∵四边形ABCD 是矩形,∴∠BAD=∠EAD=90º,AO=BC ,AD ∥BC , 在△EAF 和△DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩, ∴△EAF ≌△DAB(SAS),新人教部编版初中数学“活力课堂”精编试题∴∠E=∠BDA , ∵∠BDA+∠ABD=90º, ∴∠E+∠ABD=90º, ∴∠EGB=90º, ∴BG ⊥EC ;(2)设AE=x ,则EB=1+x ,BC=AD=AE=x , ∵AF ∥BC ,∠E=∠E , ∴△EAF ∽△EBC , ∴EA AFEB BC=,又AF=AB=1, ∴11x x x=+即210x x --=,解得:12x +=,12x =(舍去) 即; (3)在EG 上截取EH=DG ,连接AH , 在△EAH 和△DAG ,AE AD HEA GDA EH DG =⎧⎪∠=∠⎨⎪=⎩, ∴△EAH ≌△DAG(SAS), ∴∠EAH=∠DAG ,AH=AG , ∵∠EAH+∠DAH=90º, ∴∠DAG+∠DAH=90º, ∴∠HAG=90º,∴△GAH 是等腰直角三角形, ∴222AH AG GH +=即222AG GH =, ∴, ∵GH=EG-EH=EG-DG ,∴EG DG -=.【名师点拨】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算.2.(2020·重庆中考真题)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:CF =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.【答案】(1)证明见解析;(2)BC =;(3)CE = 【提示】(1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)连接AF ,由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCE BCA ACE ∠=∠+∠=︒+︒=︒,然后根据现有条件说明在Rt DCE中,DE ,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC中,推出AG =,即可得出答案; (3)在△ABC 内取一点P ,连接AP 、BP 、CP ,将三角形ABP 绕点B 逆时针旋转60°得到△EBD ,证明点P 位于线段CE 上,同理得到点P 位于线段BF 上,证明∠BPC=120°,进而得到120APB BPC CPA ∠=∠=∠=︒,设PD 为a ,得出BD =,AD BD =,得出a m +,解出a ,根据BD CE =即可得出答案. 【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒, ∴BAD CAE ∠=∠, ∵AB AC =,AD AE =,∴在ABD △和ACE △中BAD CAEAB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩, ∴ABD ACE ∆≅∆, ∴45ABD ACE ∠=∠=︒, ∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE △中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒, ∴AF DE ⊥,即Rt ADF 为等腰直角三角形,∴2AF DF AD ==, ∵CF DF =,∴CF AD =; (2)连接AF ,由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=, ∴454590DCE BCA ACE ∠=∠+∠=︒+︒=︒,在Rt DCE中,DE , ∵F 为DE 中点,∴12DF EF DE ===,在四边形ADCE 中,有90DAE DCE ∠=∠=︒,180DAE DCE ∠+∠=︒, ∴点A ,D ,C ,E 四点共圆, ∵F 为DE 中点,∴F 为圆心,则CF AF =, 在Rt AGC 中, ∵CF AF =,∴F 为CG 中点,即CG 2CF ==,∴AG =,即BC =;(3)如图1,在△ABC 内取一点P ,连接AP 、BP 、CP ,将三角形ABP 绕点B 逆时针旋转60°得到△EBD ,得到△BPD 为等边三角形,所以PD=BP , ∴AP+BP+CP=DE+DP+CP ,∴当PA PB PC ++的值取得最小值时,点P 位于线段CE 上;如图2,将三角形ACP 绕点C 顺时针旋转60°得到△FCG ,得到△PCG 为等边三角形,所以PC=GP , ∴AP+BP+CP=GF+GP+BP ,∴当PA PB PC ++的值取得最小值时,点P 位于线段BF 上;综上所述:如图3,以AB 、AC 为边向外做等边三角形ABE 和等边三角形ACF ,连接CE 、BF ,则交点P 为求作的点, ∴△AEC ≌△ABF , ∴∠AEC=∠ABF , ∴∠EPB=EAB=60°, ∴∠BPC=120°,如图4,同理可得,120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒, 设PD 为a ,∴BD =,又AD BD ==,∴a m +=,1)m a =a =又BD CE =∴CE . 【名师点拨】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,灵活运用所学知识是解本题的关键. 3.(2020·江苏南通市真题)(了解概念)有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.(理解运用)(1)如图①,对余四边形ABCD 中,AB =5,BC =6,CD =4,连接AC .若AC =AB ,求sin ∠CAD 的值; (2)如图②,凸四边形ABCD 中,AD =BD ,AD ⊥BD ,当2CD 2+CB 2=CA 2时,判断四边形ABCD 是否为对余四边形.证明你的结论; (拓展提升)(3)在平面直角坐标系中,点A (﹣1,0),B (3,0),C (1,2),四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于△ABC 内部,∠AEC =90°+∠ABC .设AEBE=u ,点D 的纵坐标为t ,请直接写出u 关于t 的函数解析式.【答案】(1)1225;(2)四边形ABCD 是对余四边形,证明见解析;(3)u (0<t <4). 【提示】(1)先构造直角三角形,然后利用对余四边形的性质和相似三角形的性质,求出sin ∠CAD 的值. (2)通过构造手拉手模型,即构造等腰直角三角形,通过证明三角形全等,利用勾股定理来证明四边形ABCD为对余四边形.(3)过点D作DH⊥x轴于点H,先证明△ABE∽△DBA,得出u与AD的关系,设D(x,t),再利用(2)中结论,求出AD与t的关系即可解决问题.【详解】解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE4==,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴EB AB CF CD=,∴354 CF=,∴CF=125,∴sin∠CAD=12125525 CFAC==.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),新人教部编版初中数学“活力课堂”精编试题∴OA =1,OB =3,AB =4,AC =BC = ∴AC 2+BC 2=AB 2, ∴∠ACB =90°,∴∠CBA =∠CAB =45°, ∵四边形ABCD 是对余四边形, ∴∠ADC+∠ABC =90°, ∴∠ADC =45°,∵∠AEC =90°+∠ABC =135°, ∴∠ADC+∠AEC =180°, ∴A ,D ,C ,E 四点共圆, ∴∠ACE =∠ADE ,∵∠CAE+∠ACE =∠CAE+∠EAB =45°, ∴∠EAB =∠ACE , ∴∠EAB =∠ADB , ∵∠ABE =∠DBA , ∴△ABE ∽△DBA , ∴BE AEAB AD =, ∴AE ADBE AB= ∴u =4AD, 设D (x ,t ),由(2)可知,BD 2=2CD 2+AD 2,∴(x ﹣3)2+t 2=2[(x ﹣1)2+(t ﹣2)2]+(x+1)2+t 2, 整理得(x+1)2=4t ﹣t 2,在Rt △ADH 中,AD ==∴u =4AD =2(0<t <4),即u(0<t<4).【名师点拨】本题属于四边形综合题,考查了对余四边形的定义,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.4.(2020·山东烟台市·中考真题)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC 上一动点,以DE为一边作等边三角形DEF,连接CF.(问题解决)(1)如图1,若点D在边BC上,求证:CE+CF=CD;(类比探究)(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【答案】(1)见解析;(2)FC=CD+CE,见解析【提示】(1)在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;(2)过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD 为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.【详解】(1)证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF 是等边三角形, ∴DE =FE ,∠DEF =60°,∴∠DEH+∠HEF =∠FEC+∠HEF =60°, ∴∠DEH =∠FEC , 在△DEH 和△FEC 中,DE FE DEH FEC EH EC =⎧⎪∠=∠⎨⎪=⎩, ∴△DEH ≌△FEC (SAS ), ∴DH =CF ,∴CD =CH+DH =CE+CF , ∴CE+CF =CD ;(2)解:线段CE ,CF 与CD 之间的等量关系是FC =CD+CE ;理由如下: ∵△ABC 是等边三角形, ∴∠A =∠B =60°,过D 作DG ∥AB ,交AC 的延长线于点G ,如图2所示: ∵GD ∥AB ,∴∠GDC =∠B =60°,∠DGC =∠A =60°, ∴∠GDC =∠DGC =60°, ∴△GCD 为等边三角形, ∴DG =CD =CG ,∠GDC =60°, ∵△EDF 为等边三角形,∴ED =DF ,∠EDF =∠GDC =60°, ∴∠EDG =∠FDC , 在△EGD 和△FCD 中,ED DF EDG FDC DG CD =⎧⎪∠=∠⎨⎪=⎩, ∴△EGD ≌△FCD (SAS ), ∴EG =FC ,∴FC =EG =CG+CE =CD+CE .【名师点拨】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.5.(2020·四川达州市·中考真题)(1)(阅读与证明)如图1,在正ABC 的外角CAH ∠内引射线AM ,作点C 关于AM 的对称点E (点E 在CAH ∠内),连接BE ,BE 、CE 分别交AM 于点F 、G . ①完成证明:点E 是点C 关于AM 的对称点,90AGE ︒∴∠=,AE AC =,12∠=∠.正ABC 中,60BAC ︒∠=,AB AC =,AE AB ∴=,得34∠=∠.在ABE △中,126034180︒︒∠+∠++∠+∠=,13∴∠+∠=______︒. 在AEG △中,3190FEG ︒∠+∠+∠=,FEG ∴∠=______︒. ②求证:2BF AF FG =+. (2)(类比与探究)把(1)中的“正ABC ”改为“正方形ABDC ”,其余条件不变,如图2.类比探究,可得: ①FEG ∠=______︒;②线段BF 、AF 、FG 之间存在数量关系___________. (3)(归纳与拓展)如图3,点A 在射线BH 上,AB AC =,()0180BAC αα︒︒∠=<<,在CAH ∠内引射线AM ,作点C关于AM 的对称点E (点E 在CAH ∠内),连接BE ,BE 、CE 分别交AM 于点F 、G .则线段BF 、AF 、GF 之间的数量关系为__________.【答案】(1)①60°,30°;②证明见解析;(2)①45°;②;(3)2sin2sin2FG BF αα=+.【提示】(1)①根据等量代换和直角三角形的性质即可确定答案;②在FB 上取AN=AF ,连接AN .先证明△AFN 是等边三角形,得到 ∠BAN=∠2=∠1,然后再证明△ABN ≌△AEF ,然后利用全等三角形的性质以及线段的和差即可证明;(2)类比(1)的方法即可作答;(3)根据(1)(2)的结论,即可总结出答案. 【详解】解:(1)①∵12∠=∠,34∠=∠,126034180︒︒∠+∠++∠+∠= ∴()213120︒∠+∠=,即13∠+∠=60°;∵3190FEG ︒∠+∠+∠= ∴()903130FEG ︒︒∠=∠+∠=-故答案为60°,30°;②在FB 上取FN=AF ,连接AN ∵∠AFN=∠EFG=60° ∴△AFN 是等边三角形 ∴AF=FN=AN ∵FN=AF新人教部编版初中数学“活力课堂”精编试题∴∠BAC=∠NAF=60° ∴∠BAN+∠NAC=∠NAC+∠2 ∴∠BAN=∠2∵点C 关于AM 的对称点E ∴∠2=∠1,AC=AE ∴∠BAN=∠2=∠1 ∵AB=AC ∴AB=AE 在△ABN 和△AEF FN=AF,∠BAN=∠1,AB=AE ∴△ABN ≌△AEF ∴BN=EF∵AG ⊥CE ,∠FEG=30° ∴EF=2FG ∴BN=EF=2FG ∵BF=BN+NF ∴BF=2FG+AF(2)①点E 是点C 关于AM 的对称点,90AGE ︒∴∠=,AE AC =,12∠=∠.正方形ABCD 中,90BAC ︒∠=,AB AC =,AE AB ∴=,得34∠=∠.在ABE △中,129034180︒︒∠+∠++∠+∠=,13∴∠+∠=45︒.在AEG △中,3190FEG ︒∠+∠+∠=,新人教部编版初中数学“活力课堂”精编试题∴∠=45︒.FEG故答案为45°;②在FB上取FN=AF,连接AN∵∠AFN=∠EFG=45°∴△AFN是等腰直角三角形∴∠NAF=90°,AF=AN∴∠BAN+∠NAC=∠NAC+∠2=90°∴∠BAN=∠2∵点C关于AM的对称点E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=45°∴∴∵BF=BN+NF∴(3)由(1)得:当∠BAC=60°时BF=AF+2FG=602sin302sin60sin302sin2FG FGAF AF+=+2sin2sin2FGBF AFαα=+;由(2)得:当∠BAC=90°时BF=902sin452sin90sin452sin2FG FGAF AF+=+;以此类推,当当∠BAC=α60°时,2sin2sin2FGBF AFαα=+.【名师点拨】本题考查了轴对称的性质、全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质以及三角函数的应用,灵活应用所学知识是解答本题的关键.6.(2020·浙江嘉兴市·中考真题)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF 拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.(思考)图2中的四边形ABDE是平行四边形吗?请说明理由.(发现)当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE (如图4).(探究)当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.【答案】【思考】是,理由见解析;【发现】94;【探究】BD=2OF,理由见解析;【提示】【思考】由全等三角形的性质得出AB=DE,∠BAC=∠EDF,则AB∥DE,可得出结论;【发现】连接BE 交AD 于点O ,设AF =x (cm ),则OA =OE =12(x +4),得出OF =OA ﹣AF =2﹣12x ,由勾股定理可得()2221123424x x ⎛⎫-+=+ ⎪⎝⎭,解方程求出x ,则AF 可求出; 【探究】如图2,延长OF 交AE 于点H ,证明△EFO ≌△EFH (ASA ),得出EO =EH ,FO =FH ,则∠EHO =∠EOH =∠OBD =∠ODB ,可证得△EOH ≌△OBD (AAS ),得出BD =OH ,则结论得证. 【详解】解:【思考】四边形ABDE 是平行四边形. 证明:如图,∵△ABC ≌△DEF , ∴AB =DE ,∠BAC =∠EDF , ∴AB ∥DE ,∴四边形ABDE 是平行四边形; 【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形, ∴OA =OD =OB =OE , 设AF =x (cm ),则OA =OE =12(x +4), ∴OF =OA ﹣AF =2﹣12x , 在Rt △OFE 中,∵OF 2+EF 2=OE 2,∴()2221123424x x ⎛⎫-+=+ ⎪⎝⎭,解得:x =94, ∴AF =94cm . 【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,∵四边形ABDE 为矩形,∴∠OAB =∠OBA =∠ODE =∠OED ,OA =OB =OE =OD , ∴∠OBD =∠ODB ,∠OAE =∠OEA , ∴∠ABD +∠BDE +∠DEA +∠EAB =360°, ∴∠ABD +∠BAE =180°, ∴AE ∥BD , ∴∠OHE =∠ODB , ∵EF 平分∠OEH , ∴∠OEF =∠HEF ,∵∠EFO =∠EFH =90°,EF =EF , ∴△EFO ≌△EFH (ASA ), ∴EO =EH ,FO =FH ,∴∠EHO =∠EOH =∠OBD =∠ODB , ∴△EOH ≌△OBD (AAS ), ∴BD =OH =2OF . 【名师点拨】本题考查了图形的综合变换,涉及了三角形全等的判定与性质、平行四边形的判定与性质等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.7.(2020·北京中考真题)在△ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,AE a BF b ==,求EF 的长(用含,a b 的式子表示); (2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(1(2)图见解析,222EF AE BF =+,证明见解析. 【提示】(1)先根据中位线定理和线段中点定义可得//DE BC ,12DE BC =,CE AE a ==,再根据平行四边形的性质、矩形的判定与性质可得DE CF =,从而可得CF BF b ==,然后利用勾股定理即可得; (2)如图(见解析),先根据平行线的性质可得EAD GBD ∠=∠,DEA DGB ∠=∠,再根据三角形全等的判定定理与性质可得ED GD =,AE BG =,然后根据垂直平分线的判定与性质可得EF FG =,最后在Rt BGF 中,利用勾股定理、等量代换即可得证. 【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点 ∴DE 为ABC 的中位线,且CE AE a == ∴//DE BC ,12DE BC = ∵90C ∠=︒∴18090DEC C ∠=︒-∠=︒ ∵DF DE ⊥ ∴90EDF ∠=︒ ∴四边形DECF 为矩形 ∴DE CF =11()22CF BC BF CF ∴==+ ∴CF BF b ==则在Rt CEF 中,EF == (2)过点B 作AC 的平行线交ED 的延长线于点G ,连接FG∵//BG AC∴EAD GBD ∠=∠,DEA DGB ∠=∠ ∵D 是AB 的中点 ∴AD BD =在EAD 和GBD △中,EAD GBD DEA DGB AD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EAD GBD AAS ≅ ∴ED GD =,AE BG = 又∵DF DE ⊥∴DF 是线段EG 的垂直平分线 ∴EF FG =∵90C ∠=︒,//BG AC ∴90GBF C ∠=∠=︒在Rt BGF 中,由勾股定理得:222FG BG BF =+ ∴222EF AE BF =+.【名师点拨】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键. 8.(2020·江苏淮安市·中考真题)(初步尝试)(1)如图①,在三角形纸片ABC 中,90ACB ∠=︒,将ABC 折叠,使点B 与点C 重合,折痕为MN,则AM 与BM 的数量关系为 ;(思考说理)(2)如图②,在三角形纸片ABC 中,6AC BC ==,10AB =,将ABC 折叠,使点B 与点C 重合,折痕为MN ,求AMBM的值.(拓展延伸)(3)如图③,在三角形纸片ABC 中,9AB =,6BC =,2ACB A ∠=∠,将ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B '处,折痕为CM . ①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB '上的一个动点,将APM △沿PM 折叠得到△A ′PM ,点A 的对应点为点A ',A M '与CP 交于点F ,求PFMF的取值范围.【答案】(1)AM BM =;(2)169;(3)①152;②33104PF MF ≤≤. 【提示】(1)先根据折叠的性质可得,90CN BN CNM BNM =∠=∠=︒,再根据平行线的判定可得//AC MN ,然后根据三角形中位线的判定与性质即可得;(2)先根据等腰三角形的性质可得B A ∠=∠,再根据折叠的性质可得B MCN ∠=∠,从而可得MCN A ∠=∠,然后根据相似三角形的判定与性质可得BM BCBC AB=,从而可求出BM 的长,最后根据线段的和差可得AM 的长,由此即可得出答案;(3)①先根据折叠的性质可得12BCM ACM ACB ∠=∠=∠,从而可得BCM A M A C ∠=∠=∠,再根据等腰三角形的定义可得AM CM =,然后根据相似三角形的判定与性质可得BM BC CMBC AB AC==,从而可得BM 、AM 、CM 的长,最后代入求解即可得;②先根据折叠的性质、线段的和差求出AB ',OB '的长,设B P x '=,从而可得32A P x '=+,再根据相似三角形的判定与性质可得31105PF A P x MF CM '==+,然后根据x 的取值范围即可得. 【详解】(1)AM BM =,理由如下:由折叠的性质得:,90CN BN CNM BNM =∠=∠=︒90ACB ∠=︒90ACB BNM ∴∠=∠=︒ //AC MN ∴MN ∴是ABC 的中位线∴点M 是AB 的中点新人教部编版初中数学“活力课堂”精编试题则AM BM =故答案为:AM BM =; (2)6AC BC ==B A ∴∠=∠由折叠的性质得:B MCN ∠=∠MCN A ∴∠=∠,即MCB A ∠=∠在BCM 和BAC 中,MCB AB B ∠=∠⎧⎨∠=∠⎩BCM BAC ∴~BM BC BC AB ∴=,即6610BM = 解得185BM = 18321055AM AB BM ∴=-=-=321651895AM BM ∴==; (3)①由折叠的性质得:12BCM ACM ACB ∠=∠=∠ 2ACB A ∠=∠,即12A ACB ∠=∠BCM ACM A ∠=∠=∠∴ AM CM ∴=在BCM 和BAC 中,BCM AB B ∠=∠⎧⎨∠=∠⎩BCM BAC ∴~ BM BC CM BC AB AC ∴==,即669BM CMAC== 解得4BM =945AM AB BM ∴=-=-= 5CM AM ∴== 659AC∴=解得152AC =; ②如图,由折叠的性质可知,6B C BC '==,A P AP '=,A A ∠'=∠153622AB AC B C ''∴=-=-= 点O 是边AC 的中点11524OA AC ∴== 1539424OB OA AB ''∴=-=-= 设B P x '=,则32A P AP AB B P x '''==+=+ 点P 为线段OB '上的一个动点0B P OB '∴≤'≤,其中当点P 与点B '重合时,0B P '=;当点P 与点O 重合时,B P OB ''= 904x ∴≤≤,A A ACM A '∠=∠∠=∠A ACM '∴∠=∠,即A FCM '∠=∠在A FP '和CFM △中,A FCMA FP CFM ∠=∠⎧⎨∠=∠''⎩A FP CFM '∴~33125105xPF A P x MF CM +'∴===+ 904x ≤≤3313101054x ∴≤+≤ 则33104PFMF ≤≤.【名师点拨】本题考查了折叠的性质、三角形的中位线定理、等腰三角形的定义、相似三角形的判定与性质等知识点,较难的是题(3)②,正确设立未知数,并找出两个相似三角形是解题关键.9.(2020·广东深圳市·中考真题)背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E ,A ,D 在同一条直线上),发现BE =DG 且BE ⊥DG .小组讨论后,提出了三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转,(如图1)还能得到BE =DG 吗?如果能,请给出证明.如若不能,请说明理由:(2)把背景中的正方形分别改为菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转,(如图2)试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由; (3)把背景中的正方形改成矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中, BG 2+DE 2是定值,请求出这个定值.【答案】(1)见解析;(2)当∠EAG =∠BAD 时,BE =DG 成立;理由见解析;(3)22260BG DE +=. 【提示】(1)根据四边形ABCD 和AEFG 是正方形的性质证明△EAB ≌△GAD 即可;(2)根据菱形AEFG 和菱形ABCD 的性质以及角的和差证明△EAB ≌△GAD 即可说明当∠EAG =∠BAD 时,BE =DG 成立;(3)如图:连接EB ,BD ,设BE 和GD 相交于点H ,先根据四边形AEFG 和ABCD 为矩形的性质说明△EAB ∽△GAD ,再根据相似的性质得到90GHE EAC ︒∠=∠=,最后运用勾股定理解答即可. 【详解】(1)证明:∵四边形ABCD 为正方形 ∴AB =AD ,90DAB ︒∠= ∵四边形AEFG 为正方形新人教部编版初中数学“活力课堂”精编试题∴AE =AG ,90EAG ︒∠= ∴EAB GAD ∠=∠ 在△EAB 和△GAD 中有:AE AG EAB GAD AB AD =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△GAD ∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG 成立。
2020年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)数1,0,−23,﹣2中最大的是( )A .1B .0C .−23D .﹣22.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为( )A .17×105B .1.7×106C .0.17×107D .1.7×1073.(4分)某物体如图所示,它的主视图是( )A .B .C .D .4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )A .47B .37C .27D .17 5.(4分)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm7.(4分)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.√2D.√38.(4分)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+150tanα)米C.(1.5+150sinα)米D.(1.5+150sinα)米9.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 10.(4分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ =15,则CR的长为()A.14B.15C.8√3D.6√5二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2﹣25=.12.(5分)不等式组{x−3<0,x+42≥1的解为.13.(5分)若扇形的圆心角为45°,半径为3,则该扇形的弧长为.14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有头.15.(5分)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.16.(5分)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为米,BC为米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:√4−|﹣2|+(√6)0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).18.(8分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.19.(8分)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.20.(8分)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=√5MN.21.(10分)已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值.(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12﹣y1,求m的值.22.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AĈ上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.23.(12分)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.24.(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M 在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=245.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.2020年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)数1,0,−23,﹣2中最大的是()A.1B.0C.−23D.﹣2【分析】根据有理数大小比较的方法即可得出答案.【解答】解:﹣2<−23<0<1,所以最大的是1.故选:A.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为()A.17×105B.1.7×106C.0.17×107D.1.7×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:1700000=1.7×106,故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.(4分)某物体如图所示,它的主视图是()A .B .C .D .【分析】根据主视图的意义和画法进行判断即可.【解答】解:根据主视图就是从正面看物体所得到的图形可知:选项A 所表示的图形符合题意,故选:A .【点评】考查简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )A .47B .37C .27D .17 【分析】根据概率公式求解.【解答】解:从布袋里任意摸出1个球,是红球的概率=27.故选:C .【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.5.(4分)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°【分析】根据等腰三角形的性质可求∠C ,再根据平行四边形的性质可求∠E .【解答】解:∵在△ABC 中,∠A =40°,AB =AC ,∴∠C =(180°﹣40°)÷2=70°,∵四边形BCDE 是平行四边形,∴∠E =70°.故选:D .【点评】考查了平行四边形的性质,等腰三角形的性质,关键是求出∠C的度数.6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm【分析】根据表格中的数据,可以得到这组数据的中位数,本题得以解决.【解答】解:由表格中的数据可得,这批“金心大红”花径的众数为6.7,故选:C.【点评】本题考查众数,解答本题的关键是明确众数的含义,会求一组数据的众数.7.(4分)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.√2D.√3【分析】连接OB,根据菱形的性质得到OA=AB,求得∠AOB=60°,根据切线的性质得到∠DBO=90°,解直角三角形即可得到结论.【解答】解:连接OB,∵四边形OABC是菱形,∴OA=AB,∵OA=OB,∴OA=AB=OB,∴∠AOB=60°,∵BD是⊙O的切线,∴∠DBO=90°,∵OB=1,∴BD=√3OB=√3,故选:D.【点评】本题考查了切线的性质,菱形的性质,等边三角形的判定和性质,解直角三角形,熟练正确切线的性质定理是解题的关键.8.(4分)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+150tanα)米C.(1.5+150sinα)米D.(1.5+150sinα)米【分析】过点A作AE⊥BC,E为垂足,再由锐角三角函数的定义求出BE的长,由BC =CE+BE即可得出结论.【解答】解:过点A作AE⊥BC,E为垂足,如图所示:则四边形ADCE为矩形,AE=150,∴CE=AD=1.5,在△ABE中,∵tanα=BEAE=BE150,∴BE=150tanα,∴BC=CE+BE=(1.5+150tanα)(m),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=−−122×(−3)=−2,∵a=﹣3<0,∴x=﹣2时,函数值最大,又∵﹣3到﹣2的距离比1到﹣2的距离小,∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.10.(4分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ =15,则CR的长为()A.14B.15C.8√3D.6√5【分析】如图,连接EC,CH.设AB交CR于J.证明△ECP∽△HCQ,推出PCCQ =CECH=EP HQ =12,由PQ=15,可得PC=5,CQ=10,由EC:CH=1:2,推出AC:BC=1:2,设AC=a,BC=2a,证明四边形ABQC是平行四边形,推出AB=CQ=10,根据AC2+BC2=AB2,构建方程求出a即可解决问题.【解答】解:如图,连接EC,CH.设AB交CR于J.∵四边形ACDE,四边形BCJHD都是正方形,∴∠ACE=∠BCH=45°,∵∠ACB=90°,∠BCI=90°,∴∠ACE+∠ACB+∠BCH=180°,∠ACB+∠BCI=90°∴B,C,H共线,A,C,I共线,∵DE∥AI∥BH,∴∠CEP=∠CHQ,∵∠ECP=∠QCH,∴△ECP∽△HCQ,∴PCCQ =CECH=EPHQ=12,∵PQ=15,∴PC=5,CQ=10,∵EC:CH=1:2,∴AC:BC=1:2,设AC=a,BC=2a,∵PQ⊥CRCR⊥AB,∴CQ∥AB,∵AC∥BQ,CQ∥AB,∴四边形ABQC是平行四边形,∴AB =CQ =10,∵AC 2+BC 2=AB 2,∴5a 2=100,∴a =2√2(负根已经舍弃),∴AC =2√5,BC =4√5,∵12•AC •BC =12•AB •CJ , ∴CJ =2√5×4√510=4, ∵JR =AF =AB =10,∴CR =CJ +JR =14,故选:A .【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会踢脚线有辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m 2﹣25= (m +5)(m ﹣5) .【分析】直接利用平方差进行分解即可.【解答】解:原式=(m ﹣5)(m +5),故答案为:(m ﹣5)(m +5).【点评】此题主要考查了运用公式法分解因式,关键是掌握平方差公式:a 2﹣b 2=(a +b )(a ﹣b ).12.(5分)不等式组{x −3<0,x+42≥1的解为 ﹣2≤x <3 . 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:{x −3<0①x+42≥1②, 解①得x <3;解②得x ≥﹣2.故不等式组的解集为﹣2≤x <3.故答案为:﹣2≤x <3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.13.(5分)若扇形的圆心角为45°,半径为3,则该扇形的弧长为34π . 【分析】根据弧长公式l =nπr 180,代入相应数值进行计算即可. 【解答】解:根据弧长公式:l =45⋅π×3180=34π, 故答案为:34π. 【点评】此题主要考查了弧长的计算,关键是掌握弧长公式.14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生猪有 140 头.【分析】根据题意和直方图中的数据可以求得质量在77.5kg 及以上的生猪数,本题得以解决.【解答】解:由直方图可得,质量在77.5kg 及以上的生猪:90+30+20=140(头),故答案为:140.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.15.(5分)点P ,Q ,R 在反比例函数y =k x (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 275 .【分析】设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ),推出CP =3k 3a ,DQ =k 2a ,ER =k a ,推出OG =AG ,OF =2FG ,OF =23GA ,推出S 1=23S 3=2S 2,根据S 1+S 3=27,求出S 1,S 3,S 2即可.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ), ∴CP =3k 3a ,DQ =k 2a ,ER =k a ,∴OG =AG ,OF =2FG ,OF =23GA ,∴S 1=23S 3=2S 2,∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.【点评】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.16.(5分)如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE ⊥l ,BF ⊥l ,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN 方向走到M 点,观测C 点发现∠1=∠2.测得EF =15米,FM =2米,MN =8米,∠ANE =45°,则场地的边AB 为 15√2 米,BC 为 20√2 米.【分析】根据已知条件得到△ANE和△BNF是等腰直角三角形,求得AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),于是得到AB=AN﹣BN=15√2(米);过C作CH ⊥l于H,过B作PQ∥l交AE于P,交CH于Q,根据矩形的性质得到PE=BF=QH=10,PB=EF=15,BQ=FH,根据相似三角形的性质即可得到结论.【解答】解:∵AE⊥l,BF⊥l,∵∠ANE=45°,∴△ANE和△BNF是等腰直角三角形,∴AE=EN,BF=FN,∴EF=15米,FM=2米,MN=8米,∴AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),∴AN=25√2,BN=10√2,∴AB=AN﹣BN=15√2(米);过C作CH⊥l于H,过B作PQ∥l交AE于P,交CH于Q,∴AE∥CH,∴四边形PEHQ和四边形PEFB是矩形,∴PE=BF=QH=10,PB=EF=15,BQ=FH,∵∠1=∠2,∠AEF=∠CHM=90°,∴△AEF∽△CHM,∴CHHM =AEEF=2515=53,∴设MH=3x,CH=5x,∴CQ=5x﹣10,BQ=FH=3x+2,∵∠APB=∠ABC=∠CQB=90°,∴∠ABP+∠P AB=∠ABP+∠CBQ=90°,∴∠P AB=∠CBQ,∴△APB∽△BQC,∴APBQ =PBCQ,∴153x+2=155x−10,∴x=6,∴BQ=CQ=20,∴BC=20√2,故答案为:15√2,20√2.【点评】本题考查了相似三角形的应用,矩形的性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:√4−|﹣2|+(√6)0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).【分析】(1)直接利用零指数幂的性质以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:(1)原式=2﹣2+1+1=2;(2)(x﹣1)2﹣x(x+7)=x2﹣2x+1﹣x2﹣7x=﹣9x+1.【点评】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.18.(8分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.【分析】(1)由“AAS”可证△ABC≌△DCE;(2)由全等三角形的性质可得CE=BC=5,由勾股定理可求解.【解答】证明:(1)∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE,∴CE=BC=5,∵∠ACE=90°,∴AE=√AC2+CE2=√25+144=13.【点评】本题考查了全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定方法是本题的关键.19.(8分)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.【分析】(1)由要评价两家酒店月盈利的平均水平,即可得选择两家酒店月盈利的平均值,然后利用求平均数的方法求解即可求得答案;(2)平均数,盈利的方差反映酒店的经营业绩,A酒店的经营状况较好.【解答】解:(1)选择两家酒店月盈利的平均值;=2.5,x A=1+1.6+2.2+2.7+3.5+46=2.3;x B=2+3+1.7+1.8+1.7+3.66(2)平均数,方差反映酒店的经营业绩,A酒店的经营状况较好.理由:A酒店盈利的平均数为2.5,B酒店盈利的平均数为2.3.A酒店盈利的方差为1.073,B酒店盈利的方差为0.54,无论是盈利的平均数还是盈利的方差,都是A酒店比较大,故A酒店的经营状况较好.【点评】此题考查了折线统计图的知识.此题难度适中,注意掌握折线统计图表达的实际意义是解此题的关键.20.(8分)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=√5MN.【分析】(1)根据题意画出线段即可;(2)根据题意画出线段即可.【解答】解:(1)如图1,线段EF 和线段GH 即为所求;(2)如图2,线段MN 和线段PQ 即为所求.【点评】本题考查了作图﹣应用与设计作图,熟练掌握勾股定理是解题的关键.21.(10分)已知抛物线y =ax 2+bx +1经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值.(2)若(5,y 1),(m ,y 2)是抛物线上不同的两点,且y 2=12﹣y 1,求m 的值.【分析】(1)把点(1,﹣2),(﹣2,13)代入y =ax 2+bx +1解方程组即可得到结论;(2)把x =5代入y =x 2﹣4x +1得到y 1=6,于是得到y 1=y 2,即可得到结论.【解答】解:(1)把点(1,﹣2),(﹣2,13)代入y =ax 2+bx +1得,{−2=a +b +113=4a −2b +1, 解得:{a =1b =−4; (2)由(1)得函数解析式为y =x 2﹣4x +1,把x =5代入y =x 2﹣4x +1得,y 1=6,∴y 2=12﹣y 1=6,∵y 1=y 2,∴对称轴为x =2,∴m =4﹣5=﹣1.【点评】本题考查了二次函数图象上点的坐标特征,解方程组,正确的理解题意是解题的关键.22.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AĈ上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.【分析】(1)根据圆周角定理和AB为⊙O的直径,即可证明∠1=∠2;(2)连接DF,根据垂径定理可得FD=FC=10,再根据对称性可得DC=DF,进而可得DE的长,再根据锐角三角函数即可求出⊙O的半径.【解答】解:(1)∵∠ADC=∠G,∴AĈ=AD̂,∵AB为⊙O的直径,∴BĈ=BD̂,∴∠1=∠2;(2)如图,连接DF,∵AĈ=AD̂,AB是⊙O的直径,∴AB⊥CD,CE=DE,∴FD=FC=10,∵点C,F关于DG对称,∴DC=DF=10,∴DE=5,∵tan ∠1=25,∴EB =DE •tan ∠1=2,∵∠1=∠2,∴tan ∠2=25,∴AE =DE tan∠2=252,∴AB =AE +EB =292,∴⊙O 的半径为294.【点评】本题考查了圆周角定理、轴对称的性质、解直角三角形,解决本题的关键是掌握轴对称的性质.23.(12分)某经销商3月份用18000元购进一批T 恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T 恤衫多少件?(2)4月份,经销商将这批T 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a 件,然后将b 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同. ①用含a 的代数式表示b .②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T 恤衫多少件;(2)①根据甲乙两店的利润相同,可以得到关于a 、b 的方程,然后化简,即可用含a 的代数式表示b ;②根据题意,可以得到利润与a 的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a 的取值范围,从而可以求得乙店利润的最大值.【解答】解:(1)设3月份购进x 件T 恤衫,18000x +10=390002x ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元),(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简,得b=150−a2;②设乙店的利润为w元,w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×150−a2−600=36a+2100,∵乙店按标价售出的数量不超过九折售出的数量,∴a≤b,即a≤150−a2,解得,a≤50,∴当a=50时,w取得最大值,此时w=3900,答:乙店利润的最大值是3900元.【点评】本题考查一次函数的应用、分式方程的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答,注意分式方程要检验.24.(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M 在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=245.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.【分析】(1)推出∠AED=∠ABF,即可得出DE∥BF;(2)求出DE=12,MN=10,把y=245代入y=−65x+12,解得x=6,即NQ=6,得出QM=4,由FQ=QB,BM=2FN,得出FN=2,BM=4,即可得出结果;(3)连接EM并延长交BC于点H,易证四边形DFME是平行四边形,得出DF=EM,求出∠DEA=∠FBE=∠FBC=30°,∠ADE=∠CDE=∠FME=60°,∠MEB=∠FBE =30°,得出∠EHB=90°,DF=EM=BM=4,MH=2,EH=6,由勾股定理得HB=2√3,BE=4√3,当DP=DF时,求出BQ=223,即可得出BQ>BE;②(Ⅰ)当PQ经过点D时,y=0,则x=10;(Ⅱ)当PQ经过点C时,由FQ∥DP,得出△CFQ∽△CDP,则FQDP =CFCD,即可求出x=10 3;(Ⅲ)当PQ经过点A时,由PE∥BQ,得出△APE∽△AQB,则PEBQ =AEAB,求出AE=6√3,AB=10√3,即可得出x=143,由图可知,PQ不可能过点B.【解答】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°﹣(∠A+∠C)=180°,∵DE、BF分别平分∠ADC、∠ABC,∴∠ADE=12∠ADC,∠ABF=12∠ABC,∴∠ADE+∠ABF=12×180°=90°,∵∠ADE+∠AED=90°,∴∠AED=∠ABF,∴DE∥BF;(2)令x=0,得y=12,∴DE=12,令y=0,得x=10,∴MN=10,把y=245代入y=−65x+12,解得:x=6,即NQ=6,∴QM=10﹣6=4,∵Q是BF中点,∴FQ=QB,∵BM=2FN,∴FN+6=4+2FN,解得:FN=2,∴BM=4,∴BF=FN+MN+MB=16;(3)①连接EM并延长交BC于点H,如图2所示:∵FM=2+10=12=DE,DE∥BF,∴四边形DFME是平行四边形,∴DF=EM,∵AD=6,DE=12,∠A=90°,∴∠DEA=30°,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°﹣120°﹣30°=30°,∴∠MEB=∠FBE=30°,∴∠EHB=180°﹣30°﹣30°﹣30°=90°,DF=EM=BM=4,∴MH=12BM=2,∴EH=4+2=6,由勾股定理得:HB =√BM 2−MH 2=√42−22=2√3,∴BE =√EH 2−HB 2=√62+(2√3)2=4√3,当DP =DF 时,−65x +12=4,解得:x =203,∴BQ =14﹣x =14−203=223, ∵223>4√3,∴BQ >BE ;②(Ⅰ)当PQ 经过点D 时,如图3所示:y =0,则x =10;(Ⅱ)当PQ 经过点C 时,如图4所示:∵BF =16,∠FCB =90°,∠CBF =30°,∴CF =12BF =8,∴CD =8+4=12,∵FQ ∥DP ,∴△CFQ ∽△CDP ,∴FQ DP =CF CD , ∴2+x−65x+12=812,解得:x =103;(Ⅲ)当PQ 经过点A 时,如图5所示:∵PE ∥BQ ,∴△APE ∽△AQB ,∴PE BQ =AE AB ,由勾股定理得:AE =√DE 2−AD 2=√122−62=6√3,∴AB =6√3+4√3=10√3,∴12−(−65x+12)14−x=√310√3, 解得:x =143,由图可知,PQ 不可能过点B ;综上所述,当x =10或x =103或x =143时,PQ 所在的直线经过四边形ABCD 的一个顶点.【点评】本题是四边形综合题,主要考查了平行四边形的的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,难度较大,熟练掌握平行四边形的判定与性质是解题的关键.。
2020年浙江省嘉兴市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m .数36000000用科学记数法表示为( ) A .0.36×108B .36×107C .3.6×108D .3.6×1072.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .3.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4B .众数是3C .中位数是5D .方差是3.24.(3分)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .5.(3分)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(−43,﹣1)C .(﹣1,−43)D .(﹣2,﹣1)6.(3分)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( ) A . B .C .D .7.(3分)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√38.(3分)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( ) A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×39.(3分)如图,在等腰△ABC 中,AB =AC =2√5,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2√5B.10C.4D.510.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:x2﹣9=.12.(4分)如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:,使▱ABCD是菱形.13.(4分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.14.(4分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为.15.(4分)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.16.(4分)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为cm.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2020)0−√4+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+12x;②当x=0时,x2+12x;③当x=﹣2时,x2+12x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明 点B ,C 在点A 的正东方向 点B ,D 在点A 的正东方向点B 在点A 的正东方向,点C 在点A 的正西方向.测量数据BC =60m , ∠ABH =70°, ∠ACH =35°.BD =20m , ∠ABH =70°, ∠BCD =35°.BC =101m , ∠ABH =70°, ∠ACH =35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m ).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC 和DEF 拼在一起,使点A 与点F 重合,点C 与点D 重合(如图1),其中∠ACB =∠DFE =90°,BC =EF =3cm ,AC =DF =4cm ,并进行如下研究活动.活动一:将图1中的纸片DEF 沿AC 方向平移,连结AE ,BD (如图2),当点F 与点C 重合时停止平移.【思考】图2中的四边形ABDE 是平行四边形吗?请说明理由.【发现】当纸片DEF 平移到某一位置时,小兵发现四边形ABDE 为矩形(如图3).求AF 的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.24.(12分)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).2020年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A.0.36×108B.36×107C.3.6×108D.3.6×107【解答】解:36 000 000=3.6×107,故选:D.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.3.(3分)已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.2【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=12+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.5[(2﹣4)故选:C.4.(3分)一次函数y=2x﹣1的图象大致是()A.B.C .D .【解答】解:由题意知,k =2>0,b =﹣1<0时,函数图象经过一、三、四象限. 故选:B .5.(3分)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(−43,﹣1)C .(﹣1,−43)D .(﹣2,﹣1)【解答】解:∵以点O 为位似中心,位似比为13, 而A (4,3),∴A 点的对应点C 的坐标为(−43,﹣1). 故选:B .6.(3分)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( ) A . B .C .D .【解答】解:去括号,得:3﹣3x >2﹣4x , 移项,得:﹣3x +4x >2﹣3, 合并,得:x >﹣1, 故选:A .7.(3分)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√3【解答】解:作AM ⊥BC 于M ,如图:重合部分是正六边形,连接O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形.∵△ABC 是等边三角形,AM ⊥BC ,∴AB =BC =3,BM =CM =12BC =32,∠BAM =30°,∴AM =√3BM =3√32,∴△ABC 的面积=12BC ×AM =12×3×3√32=9√34, ∴重叠部分的面积=69△ABC 的面积=69×9√34=3√32; 故选:C .8.(3分)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【解答】解:A 、①×2﹣②可以消元x ,不符合题意;B 、②×(﹣3)﹣①可以消元y ,不符合题意;C 、①×(﹣2)+②可以消元x ,不符合题意;D 、①﹣②×3无法消元,符合题意.故选:D .9.(3分)如图,在等腰△ABC 中,AB =AC =2√5,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ; ②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆.则⊙O 的半径为( )A .2√5B .10C .4D .5【解答】解:如图,设OA 交BC 于T .∵AB =AC =2√5,AO 平分∠BAC ,∴AO ⊥BC ,BT =TC =4,∴AT=√AC2−CT2=√(2√5)2−42=2,在Rt△OCT中,则有r2=(r﹣2)2+42,解得r=5,故选:D.10.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【解答】解:①当b﹣a=1时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADD=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC=ACBC=n﹣m,∵点A,B在抛物线y=x2上,∴0°≤∠ABC<90°,∴tan∠ABC≥0,∴n﹣m≥0,即n﹣m无最大值,有最小值,最小值为0,故选项C,D都错误;②当n﹣m=1时,如图2,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHQ中,tan∠MNH=MHNH=1b−a,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴1b−a≥1,∴b﹣a无最小值,有最大值,最大值为1,故选项A错误;故选:B.二、填空题(本题有6小题,每题4分,共24分)11.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x 2﹣9=(x +3)(x ﹣3).故答案为:(x +3)(x ﹣3).12.(4分)如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: AD =DC (答案不唯一) ,使▱ABCD 是菱形.【解答】解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:可以为:AD =DC ;故答案为:AD =DC (答案不唯一).13.(4分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是 13 .【解答】解:蚂蚁获得食物的概率=13.故答案为13. 14.(4分)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为 π ;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为 12 .【解答】解:连接BC ,由∠BAC =90°得BC 为⊙O 的直径,∴BC =2√2,在Rt △ABC 中,由勾股定理可得:AB =AC =2,∴S 扇形ABC =90π×4360=π; ∴扇形的弧长为:90π×2180=π,设底面半径为r ,则2πr =π,解得:r =12,故答案为:π,12.15.(4分)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程10x =40x+6 . 【解答】解:根据题意得,10x =40x+6, 故答案为:10x =40x+6.16.(4分)如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.当点B '恰好落在边CD 上时,线段BM 的长为 √5 cm ;在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为 (√5−32) cm .【解答】解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′=√B′C′2+NC′2=√22+12=√5(cm),∴BM=NB′=√5(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=5 2,∴DE=4−52=32(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1−√5=(4−√5)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2−32+2﹣(4−√5)=(√5−32)(cm).故答案为√5,(√5−3 2).三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2020)0−√4+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).【解答】解:(1)(2020)0−√4+|﹣3|=1﹣2+3=2;(2)(a+2)(a﹣2)﹣a(a+1)=a2﹣4﹣a2﹣a=﹣4﹣a.18.(6分)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.【解答】解:(1)①当x=1时,x2+1=2x;②当x=0时,x2+1>2x;③当x=﹣2时,x2+1>2x.(2)x2+1≥2x.证明:∵x2+1﹣2x=(x﹣1)2≥0,∴x2+1≥2x.故答案为:=;>;>.19.(6分)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.【解答】解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.20.(8分)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y6 2.92 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.【解答】解:(1)函数图象如图所示,设函数表达式为y=kx(k≠0),把x=1,y=6代入,得k=6,∴函数表达式为y=6x(x>0);(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.21.(8分)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是B品牌,月平均销售量最稳定的是C品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,收到广大顾客的青睐.22.(10分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器,皮尺等测量小组第一小组第二小组第三小组测量方案示意图说明 点B ,C 在点A 的正东方向 点B ,D 在点A 的正东方向点B 在点A 的正东方向,点C 在点A 的正西方向.测量数据BC =60m , ∠ABH =70°, ∠ACH =35°.BD =20m , ∠ABH =70°, ∠BCD =35°.BC =101m , ∠ABH =70°, ∠ACH =35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m ).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)【解答】解:(1)第二个小组的数据无法计算河宽.(2)第一个小组的解法:∵∠ABH =∠ACH +∠BHC ,∠ABH =70°,∠ACH =35°, ∴∠BHC =∠BCH =35°, ∴BC =BH =60m ,∴AH =BH •sin70°=60×0.94≈56.4(m ). 第二个小组的解法:设AH =xm , 则CA =AH tan35°,AB =AHtan70°, ∵CA +AB =CB , ∴x 0.70+x 2.75=101,解得x ≈56.4. 答:河宽为56.4m .23.(10分)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC 和DEF 拼在一起,使点A 与点F 重合,点C 与点D 重合(如图1),其中∠ACB =∠DFE =90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C 重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.【解答】解:【思考】四边形ABDE是平行四边形.证明:如图,∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB∥DE,∴四边形ABDE是平行四边形;【发现】如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=12(x+4),∴OF=OA﹣AF=2−12x,在Rt△OFE中,∵OF2+EF2=OE2,∴(2−12x)2+32=14(x+4)2,解得:x=9 4,∴AF=94cm.【探究】BD=2OF,证明:如图2,延长OF交AE于点H,∵四边形ABDE为矩形,∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE∥BD,∴∠OHE=∠ODB,∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.24.(12分)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).【解答】解:(1)设y=a(x﹣0.4)2+3.32(a≠0),把x=0,y=3代入,解得a=﹣2,∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.(2)①把y=2.6代入y=﹣2(x﹣0.4)2+3.32,化简得(x﹣0.4)2=0.36,解得x1=﹣0.2(舍去),x2=1,∴OD=1m.②东东的直线传球能越过小戴的拦截传到点E.由图1可得,当0≤t≤0.3时,h2=2.2.当0.3<t ≤1.3时,h 2=﹣2(t ﹣0.8)2+2.7. 当h 1﹣h 2=0时,t =0.65,东东在点D 跳起传球与小戴在点F 处拦截的示意图如图2, 设MD =h 1,NF =h 2,当点M ,N ,E 三点共线时,过点E 作EG ⊥MD 于点G ,交NF 于点H ,过点N 作NP ⊥MD 于点P ,∴MD ∥NF ,PN ∥EG ,∴∠M =∠HEN ,∠MNP =∠NEH , ∴△MPN ∽△NEH , ∴MP PN=NH HE,∵PN =0.5,HE =2.5, ∴NH =5MP .(Ⅰ)当0≤t ≤0.3时,MP =﹣2(t ﹣0.5)2+2.7﹣2.2=﹣2(t ﹣0.5)2+0.5, NH =2.2﹣1.3=0.9.∴5[﹣2(t ﹣0.5)2+0.5]=0.9, 整理得(t ﹣0.5)2=0.16,解得t1=910(舍去),t2=110,当0≤t≤0.3时,MP随t的增大而增大,∴110<t≤310.(Ⅱ)当0.3<t≤0.65时,MP=MD﹣NF=﹣2(t﹣0.5)2+2.7﹣[﹣2(t﹣0.8)2+2.7]=﹣1.2t+0.78,NH=NF﹣HF=﹣2(t﹣0.8)2+2.7﹣1.3=﹣2(t﹣0.8)2+1.4,∴﹣2(t﹣0.8)2+1.4=5×(﹣1.2t+0.78),整理得t2﹣4.6t+1.89=0,解得,t1=23+2√8510(舍去),t2=23−2√8510,当0.3<t≤0.65时,MP随t的增大而减小,∴310<t<23−2√8510.(Ⅲ)当0.65<t≤1时,h1<h2,不可能.给上所述,东东在起跳后传球的时间范围为110<t<23−2√8510.。
2020年浙江省嘉兴市南湖区中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是()A.B.﹣C.3 D.﹣32.如图,该简单几何体的主视图是()A.B.C.D.3.据统计,2020年到嘉兴市图书馆借阅图书的人约有322万人次.数322万用科学记数法表示为()A.3.22×106 B.3.22×105 C.322×104D.3.22×1024.要反映2020年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图5.当x分别取﹣3,﹣1,0,2时,使二次根式的值为有理数的是()A.﹣3 B.﹣1 C.0 D.26.如图,点A,B,C在⊙O上.若⊙O的半径为3,∠C=30°,则的长为()A.B.πC.D.7.实数a,b在数轴上的位置如图所示,下列式子错误的是()A.a>b B.﹣a<﹣b C.ab>0 D.a+b>08.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°9.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A.﹣1 B.0.5 C.1 D.10.如图,在平面直角坐标系中,点A(2,2),分别以点O,A为圆心,大于OA长为半径作弧,两弧交于点P.若点P的坐标为(m,n+1)(m≠1,n≠0),则n关于m的函数表达式为()A.n=﹣m+1 B.n=﹣m+2 C.n=m+1 D.n=m+2二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣a=______.12.在平面直角坐标系中,以点(2,1)为圆心,半径为1的圆与x轴的位置关系是______.(填“相切”、“相离”或“相交”)13.抛物线y=﹣(x﹣1)2+4的顶点坐标为______.14.已知▱ABCD中,AB=4,∠ABC与∠DCB的角平分线交AD边于点E,F,且EF=3,则边AD的长为______.15.当﹣2≤x≤2时,函数y=kx﹣k+1(k为常数且k<0)有最大值3,则k的值为______.16.如图,矩形ABCD中,tan∠BAC=,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是菱形,且EH∥BC,则AG:GH:HC=______.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(1)计算:(﹣1)0﹣|﹣3|+cos60°.(2)化简:(a﹣2)2﹣a(a+2).18.先化简:,然后从0≤x≤2的范围内选取一个合适的整数作为x的值代入求值.19.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.20.数学复习课上,老师出示5张背面完全相同的卡片,卡片正面分别写有下列方程:(1)若把这5张卡片的背面朝上且搅匀,从中随机抽取一张卡片,则抽到卡片上有一元二次方程的概率是多少?(2)请按一定的规则把这5个方程分成两类,写出你的分类规则,并把分类结果分别填在下列两个大括号内(只需填方程的序号).{______};{______}.21.某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的.(1)求第4天B款运动鞋的销售量.(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).22.某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:第1天第2天第3天第4天第5天第6天售价x(元/千克)20 18 15 12 10 9销售量y(千克)45 50 60 75 90 100由表中数据可知,试销期间这批水蜜桃的每天销售量y(千克)与售价x(元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y(千克)与售价x(元/千克)之间都满足这一函数关系.(1)你认为y与x之间满足什么函数关系?并求y关于x的函数表达式.(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.①若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?②该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?23.如图,动直线x=m(m>0)分别交x轴,抛物线y=x2﹣3x和y=x2﹣4x于点P,E,F,设点A,B为抛物线y=x2﹣3x,y=x2﹣4x与x轴的一个交点,连结AE,BF.(1)求点A,B的坐标.(2)当m<3时,判断直线AE与BF的位置关系,并说明理由.(3)连结BE,当时,求△BEF的面积.24.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.(2)探究:小明对“垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即AB2+CD2=AD2+BC2.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(0<t<1),连结CP,BQ,PQ.当四边形BCQP 是“垂直四边形”时,求t的值.②如图3,在△ABC中,∠ACB=90°,AB=3AC,分别以AB,AC为边向外作正方形ABDE 和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.2020年浙江省嘉兴市南湖区中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是()A.B.﹣C.3 D.﹣3【考点】倒数.【分析】根据倒数的概念:乘积是1的两数互为倒数可得答案.【解答】解:﹣3的倒数是﹣,故选:B.2.如图,该简单几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,第一层是三个小正方形,第二层右边一个小正方形,故选:D.3.据统计,2020年到嘉兴市图书馆借阅图书的人约有322万人次.数322万用科学记数法表示为()A.3.22×106 B.3.22×105 C.322×104D.3.22×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:322万用科学记数法表示3.22×106,故选:A.4.要反映2020年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图【考点】统计图的选择.【分析】根据统计图的特点,可得答案.【解答】解:反映2020年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用扇形统计图,故选:C.5.当x分别取﹣3,﹣1,0,2时,使二次根式的值为有理数的是()A.﹣3 B.﹣1 C.0 D.2【考点】二次根式的定义.【分析】分别将已知数据代入求出二次根式的值,进而得出答案.【解答】解:当x=﹣3时,=,故此数据不合题意;当x=﹣1时,=,故此数据不合题意;当x=0时,=,故此数据不合题意;当x=2时,=0,故此数据符合题意;故选:D.6.如图,点A,B,C在⊙O上.若⊙O的半径为3,∠C=30°,则的长为()A.B.πC.D.【考点】弧长的计算;圆周角定理.【分析】先根据同弧所对的圆周角和圆心角的关系,确定出∠AOB,最后用弧长公式直接求解.【解答】解:∵∠C=30°,∴∠AOB=60°,∴的长为=π,故选B7.实数a,b在数轴上的位置如图所示,下列式子错误的是()A.a>b B.﹣a<﹣b C.ab>0 D.a+b>0【考点】实数与数轴.【分析】观察数轴得到b<0,a>0,|a|>b,即可解答.【解答】解:由数轴可得:b<0,a>0,|a|>b,∴a>b,﹣a<﹣b,ab<0,a+b>0,故选:C.8.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°【考点】三角形内角和定理.【分析】如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选B.9.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A.﹣1 B.0.5 C.1 D.【考点】旋转的性质;正方形的性质.【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC==.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1.故选:A.10.如图,在平面直角坐标系中,点A(2,2),分别以点O,A为圆心,大于OA长为半径作弧,两弧交于点P.若点P的坐标为(m,n+1)(m≠1,n≠0),则n关于m的函数表达式为()A.n=﹣m+1 B.n=﹣m+2 C.n=m+1 D.n=m+2【考点】作图—基本作图;线段垂直平分线的性质.【分析】利用基本作图得到点P在线段OA的垂直平分线上,则PO=PA,然后根据两点间的距离公式得到m2+(n+1)2=(m﹣2)2+(n+1﹣2)2,再整理即可得到n关于m的函数表达式.【解答】解:由作法得PO=PA,则m2+(n+1)2=(m﹣2)2+(n+1﹣2)2,整理得n=﹣m+1,即n关于m的函数表达式为n=﹣m+1.故选A.二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【分析】直接提取公因式a,进而分解因式得出即可.【解答】解:a2﹣a=a(a﹣1).故答案为:a(a﹣1).12.在平面直角坐标系中,以点(2,1)为圆心,半径为1的圆与x轴的位置关系是相切.(填“相切”、“相离”或“相交”)【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题可先求出圆心到x轴的距离,再根据半径比较,若圆心到x轴的距离大于圆心距,x轴与圆相离;小于圆心距,x轴与圆相交;等于圆心距,x轴与圆相切.【解答】解:依题意得:圆心到x轴的距离为:1=半径1,所以圆与x轴相切;故答案为:相切.13.抛物线y=﹣(x﹣1)2+4的顶点坐标为(1,4).【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:∵y=﹣(x﹣1)2+4为抛物线的顶点式,∴根据顶点式的坐标特点可知,抛物线的顶点坐标为(1,4).故答案为:(1,4).14.已知▱ABCD中,AB=4,∠ABC与∠DCB的角平分线交AD边于点E,F,且EF=3,则边AD的长为11或5.【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线的定义证出∠ABE=∠AEB,得出AE=AB=4,同理:DF=CD=4,再分两种情况计算即可.【解答】解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴AD∥CB,CD=AB=4,∴∠AEB=∠CBE∴∠ABE=∠AEB,∴AE=AB=4,同理:DF=CD=4,分两种情况:①如图1所示:∵EF=3,∴AD=AE+EF+DF=4+3+4=11;②如图2所示:∵EF=4,AE=DF=4,∴AF=1,∴AD=AF+DF=1+4=5;综上所述:AD的长为11或5;故答案为:11或5.15.当﹣2≤x≤2时,函数y=kx﹣k+1(k为常数且k<0)有最大值3,则k的值为﹣.【考点】一次函数的性质.【分析】先根据k<0判断出函数的增减性,再由x的取值范围得出x=﹣2时,y=3,代入函数解析式得出k的值即可.【解答】解:∵k<0,∴函数y=kx﹣k+1是减函数.∵当﹣2≤x≤2时,函数y=kx﹣k+1(k为常数且k<0)有最大值3,∴当x=﹣2时,y=3,∴﹣2k﹣k+1=3,解得k=﹣.故答案为:﹣.16.如图,矩形ABCD中,tan∠BAC=,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是菱形,且EH∥BC,则AG:GH:HC=3:2:3.【考点】相似三角形的判定与性质;菱形的性质;矩形的性质.【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,OG=OH,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∴AG=CH,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴=,∵HE∥BC,∴∠AEH=90°,∴∠HEO=∠GEO=∠BAC,∴,∴AO=4OG,∴AG═CH=3OG,∵CH=2OG,∴AG:GH:HC=3:2:3,故答案为:3:2:3.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(1)计算:(﹣1)0﹣|﹣3|+cos60°.(2)化简:(a﹣2)2﹣a(a+2).【考点】实数的运算;整式的混合运算;零指数幂;特殊角的三角函数值.【分析】(1)原式利用零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=1﹣3+=﹣;(2)原式=a2﹣4a+4﹣a2﹣2a=﹣6a+4.18.先化简:,然后从0≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值.【分析】先通分,再把分子相加减,选取合适的x的值代入进行计算即可.【解答】解:原式=﹣===x+1,当x=0时,原式=1.19.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAQ=60°,∴△APQ是等边三角形.20.数学复习课上,老师出示5张背面完全相同的卡片,卡片正面分别写有下列方程:(1)若把这5张卡片的背面朝上且搅匀,从中随机抽取一张卡片,则抽到卡片上有一元二次方程的概率是多少?(2)请按一定的规则把这5个方程分成两类,写出你的分类规则,并把分类结果分别填在下列两个大括号内(只需填方程的序号).{ ①②③⑤};{ ④}.【考点】概率公式.【分析】(1)先根据一元二次方程的定义找出一元二次方程,再根据概率公式即可得出结论;(2)根据整式方程与分式方程的定义即可得出结论.【解答】解:(1)∵共有5个方程,一元二次方程有2个,∴抽到卡片上有一元二次方程的概率=.故答案为:;(2)∵一元二次方程和一元一次方程是整式方程,∴可以把方程分为整式方程和分式方程,即①②③⑤;④.故答案为:①②③⑤,④.21.某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的.(1)求第4天B款运动鞋的销售量.(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).【考点】折线统计图;条形统计图;算术平均数;中位数.【分析】(1)由统计图可知第4天A款运动鞋销量是6双且B款运动鞋的销售量是A款的可得;(2)根据平均数与中位数定义求解可得;(3)设A款运动鞋的销售单价为x元/双,B款运动鞋的销售单价为x元/双,根据第1天和第5天的总销售额列方程组求出A、B款运动鞋单价,即可得解.【解答】解:(1)6×=4(双).答:第4天B款运动鞋的销售量是4双;(2)B款运动鞋每天销售量的平均数为:=5.8(双),销售量从小到大排列为:3,4,6,7,9,故中位数为6(双);(3)根据题意,设A款运动鞋的销售单价为x元/双,B款运动鞋的销售单价为x元/双,则:,解得:.故第3天的总销售额为11×100+9×200=2900(元).22.某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:第1天第2天第3天第4天第5天第6天售价x(元/千克)20 18 15 12 10 9销售量y(千克)45 50 60 75 90 100由表中数据可知,试销期间这批水蜜桃的每天销售量y(千克)与售价x(元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y(千克)与售价x(元/千克)之间都满足这一函数关系.(1)你认为y与x之间满足什么函数关系?并求y关于x的函数表达式.(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.①若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?②该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?【考点】反比例函数的应用.【分析】(1)观察表格不难发现x与y的积是定值,由此即可解决问题.(2)①根据销售天数=即可解决问题.②由题意可知每天必须至少销售150千克,把y=150代入y=即可解决问题.【解答】解:(1)y与x之间满足反比例函数关系,y=.(2)①试销6天共销售水蜜桃45+50+60=75+90+100=420千克.水蜜桃的销售价定为15元/千克时,每天的销售量为60千克,由题意,=25天,所以余下的水蜜桃预计还要销售25天.②农户按15元/千克的售价销售20天后,还剩下水蜜桃1500﹣60×20=300千克,∵必须在不超过2天内全部售完,∴每天必须至少销售150千克,把y=150代入y=解得x=6,∴新的销售价最高定为6元/千克.23.如图,动直线x=m(m>0)分别交x轴,抛物线y=x2﹣3x和y=x2﹣4x于点P,E,F,设点A,B为抛物线y=x2﹣3x,y=x2﹣4x与x轴的一个交点,连结AE,BF.(1)求点A,B的坐标.(2)当m<3时,判断直线AE与BF的位置关系,并说明理由.(3)连结BE,当时,求△BEF的面积.【考点】二次函数综合题.【分析】(1)把y=0分别代入y=x2﹣3x和y=x2﹣4x中,进而得出A,B点坐标;(2)利用锐角三角函数关系得出∠PAE=∠PBF,进而得出直线AE与BF的位置关系;(3)利用AE∥BF,得出△PAE∽△PBF,进而求出m的值,即可得出△BEF的面积.【解答】解:(1)把y=0分别代入y=x2﹣3x和y=x2﹣4x中,得x2﹣3x=0,解得:x1=0,x2=3,x2﹣4x=0,解得:x1=0,x2=4,∴点A的坐标为(3,0),点B的坐标为(4,0);(2)直线AE和BF的位置关系是AE∥BF,理由如下:由题意得,点E的坐标为(m,m2﹣3m),点F的坐标为(m,m2﹣4m),∴tan∠PAE===m,∴tan∠PBF===m,∴∠PAE=∠PBF,∴AE∥BF;(3)如图1,∵AE∥BF,∴△PAE∽△PBF,∴==,即=,解得:m=2,∴S△BEF=EF•PB=2×2=2;如图2,∵AE∥BF,∴△PAE∽△PBF,∴==,即=,解得:m=,∴S△BEF=EF•PB=×=.24.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.(2)探究:小明对“垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即AB2+CD2=AD2+BC2.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(0<t<1),连结CP,BQ,PQ.当四边形BCQP 是“垂直四边形”时,求t的值.②如图3,在△ABC中,∠ACB=90°,AB=3AC,分别以AB,AC为边向外作正方形ABDE 和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.【考点】四边形综合题.【分析】(1)根据三角形的面积公式计算;(2)根据勾股定理列出算式,比较即可;(3)①作PD⊥AC于D,根据勾股定理求出AB,根据相似三角形的性质用t表示出AP、CQ、AD、PD,根据垂直四边形的性质列出方程,解方程即可;②作CP⊥AB于P,GH⊥EA交EA的延长线于H,证明△CAP≌△GAH,得到PC=GH,设CA=x,根据勾股定理分别用x表示出BC和EG,计算即可.【解答】解:(1)理解:四边形ABCD的面积=×BD×AO BD×OC=BD×AC=28;(2)探究:∵AC⊥BD,∴AB2=OA2+OB2,CD2=OD2+OC2,AD2=OA2+OD2,BC2=OC2+OB2,∴AB2+CD2=OA2+OB2+OD2+OC2,AD2+BC2=OA2+OB2+OD2+OC2,∴AB2+CD2=AD2+BC2;(3)应用:①如图2,作PD⊥AC于D,∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PD∥BC,∴==,由题意得,AP=5t,CQ=6t,则==,解得,AD=3t,PD=4t,∵四边形BCQP是“垂直四边形”,∴BP2+CQ2=PQ2+BC2,即(10﹣5t)2+(6t)2=(4t)2+(6﹣9t)2+82,解得,t=,当t=时,四边形BCQP是“垂直四边形”;②如图3,作CP⊥AB于P,GH⊥EA交EA的延长线于H,∵∠EAG+∠BAC=360°﹣90°﹣90°=180°,∠EAG+∠GAH=180°,∴∠BAC=∠GAH,在△CAP和△GAH中,,∴△CAP≌△GAH,∴PC=GH,设CA=x,则AB=3x,由勾股定理得BC=2x,则PC==x,∴AH=x,由勾股定理得,EG==2x,∴==,∴EG=BC.2020年9月21日第21页(共21页)。
2019、2020年浙江中考数学试题分类(8)——统计和概率一.频数(率)分布直方图(共7小题)1.(2020•温州)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有头.2.(2019•温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.3.(2020•宁波)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等级:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?4.(2020•杭州)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?5.(2019•舟山)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组的成绩如下75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.6.(2019•嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.7.(2019•宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<601060≤a<701570≤a<80m80≤a<904090≤a≤10015由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.二.扇形统计图(共5小题)8.(2019•温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人9.(2020•金华)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.10.(2020•绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?11.(2020•衢州)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?12.(2019•台州)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.三.条形统计图(共3小题)13.(2020•湖州)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?14.(2020•嘉兴)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.15.(2019•绍兴)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.四.折线统计图(共4小题)16.(2019•舟山)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%17.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)18.(2020•温州)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.19.(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.①甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.五.算术平均数(共2小题)20.(2020•湖州)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.221.(2020•杭州)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x六.加权平均数(共1小题)22.(2019•湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是分.七.中位数(共1小题)23.(2020•衢州)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.八.众数(共2小题)24.(2020•温州)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm25.(2019•湖州)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇)34567及以上人数(人)2028m1612请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.九.方差(共4小题) 26.(2020•嘉兴)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4 B .众数是3 C .中位数是5 D .方差是3.2 27.(2019•台州)方差是刻画数据波动程度的量.对于一组数据x 1,x 2,x 3,…,x n ,可用如下算式计算方差:s 2=1x [(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2],其中“5”是这组数据的( ) A .最小值 B .平均数 C .中位数 D .众数 28.(2019•宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 丁x24242320S 22.1 1.9 2 1.9 今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ) A .甲 B .乙 C .丙 D .丁 29.(2020•宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差s 2(单位:千克2)如表所示:甲 乙 丙x 45 45 42 s 21.82.3 1.8 明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是 . 一十.标准差(共1小题) 30.(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数 B .中位数 C .方差 D .标准差 一十一.统计量的选择(共1小题) 31.(2020•台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是( ) A .中位数 B .众数 C .平均数 D .方差 一十二.概率公式(共9小题) 32.(2020•衢州)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A .13B .14C .16D .1833.(2020•金华)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .1634.(2020•绍兴)如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12B .13C .14D .1635.(2020•温州)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( ) A .47B .37C .27D .1736.(2020•宁波)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( ) A .14B .13C .12D .2337.(2019•温州)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A .16B .13C .12D .2338.(2019•湖州)已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( ) A .110B .910C .15D .4539.(2019•衢州)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B .23C .13D .1240.(2019•金华)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为( ) A .12B .310C .15D .710一十三.列表法与树状图法(共4小题) 41.(2020•湖州)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.42.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.43.(2019•台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.44.(2019•舟山)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.一十四.利用频率估计概率(共2小题)45.(2019•绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.1546.(2020•台州)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.40.4~0.60.6~0.80.8~1参与度人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?2019、2020年浙江中考数学试题分类(8)——统计和概率参考答案与试题解析一.频数(率)分布直方图(共7小题)1.【解答】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故答案为:140.2.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.3.【解答】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×80200=144°.(3)这次测试成绩的中位数是80﹣90.这次测试成绩的中位数的等级是良好.(4)1500×40200=300(人),答:估计该校获得优秀的学生有300人.4.【解答】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1﹣98.4%)=160,∵100<160,∴估计4月份生产的产品中,不合格的件数多.5.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2450=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.6.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2450=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.7.【解答】解:(1)m=100﹣(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a<90中,但他们的中位数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×40+15100=660(人).二.扇形统计图(共5小题)8.【解答】解:调查总人数:40÷20%=200(人),选择黄鱼的人数:200×40%=80(人),故选:D.9.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.10.【解答】解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×4001000=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)4001000+5501000=9501000=95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.11.【解答】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×25500=18°,即组别A的圆心角度数是18°;(3)25000×25+115500=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.12.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:5101000×100%=51%;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%, (2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×1771000=5.31万(人), 答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人; (3)小明分析数据的方法不合理.宣传活动后骑电瓶车“都不戴”安全帽的百分比:178896+702+224+178×100%=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:1771000×100%=17.7%,8.9%<17.7%,因此交警部门开展的宣传活动有效果. 三.条形统计图(共3小题) 13.【解答】解:(1)抽查的学生数:20÷40%=50(人), 抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示: (2)360°×1550=108°, 答:扇形统计图中表示“满意”的扇形的圆心角度数为108°; (3)1000×(2050+1550)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.14.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B 品牌,是1746万台;由折线统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C 品牌,比较稳定,极差最小;故答案为:B ,C ;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%, ∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C 品牌,因为C 品牌2019年的市场占有率最高,且5年的月销售量最稳定; 建议购买B 品牌,因为B 品牌的销售总量最多,受到广大顾客的青睐. 15.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天), 小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒), 答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天. 四.折线统计图(共4小题)16.【解答】解:A 、错误.签约金额2017,2018年是下降的. B 、错误.与上年相比,2016年的签约金额的增长量最多. C 、正确. D 、错误.下降了:244.5−221.6244.5≈9.4%.故选:C . 17.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<. 18.【解答】解:(1)选择两家酒店月盈利的平均值;x x =1+1.6+2.2+2.7+3.5+46=2.5(万元), x x =2+3+1.7+1.8+1.7+3.66=2.3(万元);(2)平均数,方差反映酒店的经营业绩,A 酒店的经营状况较好.理由:A 酒店盈利的平均数为2.5万元,B 酒店盈利的平均数为2.3万元.A 酒店盈利的方差为1.073平方万元,B 酒店盈利的方差为0.54平方万元,无论是盈利的平均数还是盈利的方差,都是A 酒店比较大,且盈利折线A 是持续上升的,故A 酒店的经营状况较好. 19.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①x 甲=x 乙+50. ①S 甲2=S 乙2.理由:∵S 甲2=15[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8. S 乙2=15[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8, ∴S 甲2=S 乙2.五.算术平均数(共2小题) 20.【解答】解:x =−1+0+3+4+45=2,故选:D . 21.【解答】解:由题意可得, 若去掉一个最高分,平均分为x ,则此时的x 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 去掉一个最低分,平均分为y ,则此时的y 一定大于同时去掉一个最高分和一个最低分后的平均分为z , 故y >z >x , 故选:A .六.加权平均数(共1小题)22.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分). 故答案为:9.1.七.中位数(共1小题) 23.【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5, ∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6, ∴这组数据的中位数是5. 故答案为:5.八.众数(共2小题) 24.【解答】解:由表格中的数据可得, 这批“金心大红”花径的众数为6.7, 故选:C . 25.【解答】解:(1)被调查的总人数为16÷16%=100人, m =100﹣(20+28+16+12)=24;(2)由于共有100个数据,其中位数为第50、51个数据的平均数, 而第50、51个数据均为5篇, 所以中位数为5篇, 出现次数最多的是4篇, 所以众数为4篇; (3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224人.九.方差(共4小题)26.【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S 2=15[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2. 故选:C .27.【解答】解:方差s 2=1x[(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2]中“5”是这组数据的平均数,故选:B . 28.【解答】解:因为甲组、乙组的平均数丙组比丁组大, 而乙组的方差比甲组的小, 所以乙组的产量比较稳定, 所以乙组的产量既高又稳定, 故选:B . 29.【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高, 又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.一十.标准差(共1小题) 30.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .一十一.统计量的选择(共1小题) 31.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数, 半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数, 故选:A .一十二.概率公式(共9小题)32.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:120360=13.。
2020年数学中考试题(含答案)一、选择题1.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm2.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分3.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A .110B .19C .16D .154.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .235.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )A .7分B .8分C .9分D .10分 6.下列运算正确的是( ) A .23a a a += B .()2236a a = C .623a a a ÷=D .34a a a ⋅= 7.10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒9.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)10.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 11.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-12.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .16.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.17.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)19.分解因式:2x2﹣18=_____.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且3D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,7,求图中阴影部分的面积;(3)若43ABAC=,DF+BF=8,如图2,求BF的长.22.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt △ABC 三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出△ABC 关于原点O 的中心对称图形△A 1B 1C 1;(3)画出△ABC 绕原点O 顺时针旋转90°后得到的△A 2B 2C 2,并直接写出点C 旋转至C 2经过的路径长.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.25.修建隧道可以方便出行.如图:A ,B 两地被大山阻隔,由A 地到B 地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地i=,从B到C坡面的坡角到B地的路程.已知:从A到C坡面的坡度1:3∠=︒,4245CBABC=公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.012 1.414≈3 1.732)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.2.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.3.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.4.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.5.B解析:B【解析】【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8,故选B.【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.6.D解析:D【解析】【分析】【详解】解:A 、a+a 2不能再进行计算,故错误;B 、(3a )2=9a 2,故错误;C 、a 6÷a 2=a 4,故错误;D 、a·a 3=a 4,正确;故选:D .【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.7.B解析:B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.8.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】 解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.9.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.【详解】解:由已知中序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,A 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故A 不满足条件;B 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故B 不满足条件;C 、3有一个,即序列S 0:该位置的数出现了三次,按照变换规则,应为三个3,故C 不满足条件;D 、2有两个,即序列S 0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D .【点睛】本题考查规律型:数字的变化类.10.A解析:A【解析】【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF , ∴AD BC DF CE=. 故选A .【点睛】 本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.11.C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.12.A解析:A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1故选A.考点: 1.旋转;2.勾股定理.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.17.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.19.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.三、解答题21.(1)证明见解析(2)3﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=3BDF=∠DBP=30°,在Rt△DBP中得到3,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由BD CD=得到CD=BD=23△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12,在Rt△DEP中,∵,,∴=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1,∴,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5DF=,解得DF=12,在Rt△BDH中,BH=12S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=2216023604π⨯⨯+⨯=2π;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵BD CD=,∴CD=BD=∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD==xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.22.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)102π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C2经过的路径长=9010180π⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.23.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.24.(1)详见解析;(2)存在,;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.25.(1)隧道打通后从A 到B 的总路程是(434)+公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =, ∴4CD BD ==.在Rt ACD ∆中,∵1:3CD i AD==, ∴343AD CD ==,∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842AC CB +=+∵434AB =,∴842434 2.73AC CB AB +-=+≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.。
2021年中考数学一轮复习讲练测专题11一次函数的图像与性质1、知道一次函数与正比例函数的意义.2、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.3、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况).1.(2020·北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【答案】B【分析】hcm注水时间为t分钟,根据题意写出h与t的函数关系式,从而可得答案.设水面高度为,【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.2.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .2【答案】A【分析】由直线y =kx +2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k 值.【详解】解:∵直线y =kx +2过点(﹣1,4),∴4=﹣k +2,∴k =﹣2.故选:A .【点睛】本题考查的是一次函数图像上点的坐标特点,以及利用待定系数法求解一次函数的解析式,掌握一次函数图像上的点满足函数解析式是解题的关键.3.(2020·安徽中考真题)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.(2020·江苏泰州市·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( )A .5B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.(2020·浙江嘉兴市·中考真题)一次函数21y x =--的图象大致是( )A .B .C .D .【答案】D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式21y x =--,∵k 0<,∴直线斜向下,∵0b <,∴直线经过y 轴负半轴,图象经过二、三、四象限.故选:D .【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状. 6.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【点睛】本题考查的是一次函数的图像与性质,不等式的基本性质,掌握一次函数y kx b =+中的,k b 对函数图像的影响是解题的关键 .7.(2020·四川凉山彝族自治州·中考真题)已知一次函数y =(2m +1)x +m -3的图像不经过第二象限,则m 的取值范围( )A .m>-12B .m<3C .-12<m<3D .-12<m≤3 【答案】D【分析】一次函数的图象不经过第二象限,即可能经过第一,三,四象限,或第一,三象限,所以要分两种情况.【详解】当函数图象经过第一,三,四象限时,21030m m ⎧⎨-⎩+><,解得:-12<m <3. 当函数图象经过第一,三象限时,21030m m +>=⎧⎨-⎩,解得m =3. ∴-12<m≤3. 故选D.【点睛】一次函数的图象所在的象限由k ,b 的符号确定:①当k >0,b >0时,函数y =kx +b 的图象经过第一,二,三象限;②当k >0,b <0时,函数y =kx +b 的图象经过第一,三,四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一,二,四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二,三,四象限.注意当b =0的特殊情况.8.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x(单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A【分析】 根据题目中的函数解析式,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.【详解】解:设y 与x 的函数关系式为y =kx+b ,6910.5b k b =⎧⎨+=⎩, 解得,k 0.5b 6=⎧⎨=⎩, 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故选:A .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.(2019·浙江杭州市·中考真题)某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式_____.【答案】1y x =-+或21y x =-+或1y x =-等.【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是1y x =-+或21y x =-+或1y x =-等,(本题答案不唯一) 故答案为如1y x =-+或21y x =-+或1y x =-等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义. 10.(2020·贵州黔东南苗族侗族自治州·中考真题)把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.【答案】y =2x +3【分析】直接利用一次函数的平移规律进而得出答案.【详解】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1,再向上平移2个单位长度,得到y =2x +3.故答案为:y =2x +3.【点睛】本题考查了一次函数的平移,熟练掌握是解题的关键.11.(2020·天津中考真题)将直线2y x =-向上平移1个单位长度,平移后直线的解析式为________.【答案】21y x =-+【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:∵直线的平移规律是“上加下减”,∴将直线2y x =-向上平移1个单位长度所得到的的直线的解析式为:21y x =-+; 故答案为:21y x =-+.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键. 12.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.【答案】m <n【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.【详解】解:∵直线2y x b =+中,k=2>0,∴此函数y 随着x 的增大而增大, ∵12-<2, ∴m <n .故答案为:m <n .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键. 13.(2020·四川成都市·中考真题)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为_________. 【答案】12m >【分析】根据一次函数的性质得2m-1>0,然后解不等式即可.【详解】解:因为一次函数(21)2y m x =-+的值随x 值的增大而增大,所以2m-1>0. 解得12m >. 故答案为:12m >. 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.14.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限.【答案】三【分析】根据一次函数的性质,即可得到答案.【详解】解:在一次函数2y x b =-+中,∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限;故答案为:三【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.15.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).【答案】<【分析】由k =2>0,可得出y 随x 的增大而增大,结合1<3,即可得出x 1<x 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大.又∵1<3,∴x 1<x 2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小”.16.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.【答案】122y x =+ 【分析】 根据原一次函数与x,y 轴的交点坐标,并求出旋转后这两点对应的坐标,再由待定系数法求解一次方程的表达式即可.【详解】∵一次函数的解析式为24y x =-+,∴设与x 轴、y 轴的交点坐标为()2,0A 、()0,4B ,∵一次函数24y x =-+的图象绕原点O 逆时针旋转90,∴旋转后得到的图象与原图象垂直,旋转后的点为()10,2A 、()1-4,0B , 令y ax b =+,代入点得12a =,2b =, ∴旋转后一次函数解析式为122y x =+. 故答案为122y x =+. 【点睛】本题主要考查了一次函数图像与几何变换,正确把握互相垂直的两直线的位置关系是解题的关键.17.(2020·湖南中考真题)已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x (m ≠0)的图象只有一个交点,求交点坐标.【答案】(1)一次函数的解析式为y =2x +12;(2)(﹣3,6).【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y =kx +b 中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式可得2x 2+12x ﹣m =0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩, 解得212k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象只有一个交点,∴212y x my x =+⎧⎪⎨=⎪⎩只有一组解, 即2x 2+12x ﹣m =0有两个相等的实数根, ∴△=122﹣4×2×(﹣m )=0, ∴m =-18.把m =-18代入求得该方程的解为:x =-3, 把x =-3代入y =2x +12得:y =6, 即所求的交点坐标为(-3,6). 【点睛】本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.18.(2020·北京中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围. 【答案】(1)1y x =+;(2)2m ≥ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2), ∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥. 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.考点一一次函数图像与系数的关系例1.(2020·明光市明湖学校八年级月考)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A. B. C. D.【答案】D【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:∵一次函数y=kx+b过一、二、四象限,∴则函数值y随x的增大而减小,图象与y轴的正半轴相交∴k<0,b>0,∴一次函数y=bx+k的图象y随x的增大而增大,与y轴负半轴相交,∴一次函数y=bx+k的图象经过一三四象限.故选:D.【点睛】本题考查了一次函数的性质.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.【变式训练】=+的图象如图所示,则下列结论正确的1.(2020·湖南益阳市·中考真题)一次函数y kx b是()A .0k <B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<【答案】B 【分析】根据一次函数的图象与性质判断即可. 【详解】由图象知,k ﹥0,且y 随x 的增大而增大,故A 、C 选项错误; 图象与y 轴负半轴的交点坐标为(0,-1),所以b=﹣1,B 选项正确; 当x ﹥2时,图象位于x 轴的上方,则有y ﹥0即+kx b ﹥0,D 选项错误, 故选:B . 【点睛】本题考查一次函数的图象与性质,利用数形结合法熟练掌握一次函数的图象与性质是解答本题的关键.2.(2020·江苏镇江市·中考真题)一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,它的图象不经过的象限是( ) A .第一 B .第二C .第三D .第四【答案】D 【分析】根据一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,可以得到k >0,与y 轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题. 【详解】解:∵一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大, ∴k >0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质及一次函数的图象.解答本题的关键是明确题意,利用一次函数的性质解答.考点二 一次函数的性质例2. (2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y <【答案】D 【分析】根据一次函数的图像与性质即可求解. 【详解】A.图象经过点()1,3,正确;B.图象与x 轴交于点()2,0-,正确C.图象经过第一、二、三象限,故错误;D.当2x >时,y >4,故错误; 故选D . 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点. 【变式训练】1.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】B 【分析】根据一次函数的图象分析增减性即可. 【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小. 故选B . 【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.2.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限. 【答案】三 【分析】根据一次函数的性质,即可得到答案. 【详解】解:在一次函数2y x b =-+中, ∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限; 故答案为:三 【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.考点三 求一次函数的解析式例3(2020·湖南郴州市·中考真题)小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y=3x+37. 【分析】利用待定系数法即可求出该函数表达式.【详解】解:设该函数表达式为y=kx+b ,根据题意得:40243k b k b +⎧⎨+⎩==, 解得337k b ⎧⎨⎩==,∴该函数表达式为y=3x+37. 故答案为:y=3x+37. 【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键. 【变式训练】1.(2020·江西中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB 向右上方平移,得到Rt O A B '''△,且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A B ''的表达式为( ) A .y x = B .1y x =+C .12y x =+D .2y x =+【答案】B 【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,2230x x --=,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A (0,-3),B (3,0), 对称轴为直线12bx a=-=, 经过平移,A '落在抛物线的对称轴上,点B '落在抛物线上, ∴三角形Rt OAB 向右平移1个单位,即B′的横坐标为3+1=4, 当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形Rt OAB 向上平移5个单位, 此时A′(0+1,-3+5),∴A′(1,2), 设直线A B ''的表达式为y=kx+b , 代入A′(1,2),B′(4,5),可得254k bk b =+⎧⎨=+⎩ 解得:11k b =⎧⎨=⎩,故直线A B ''的表达式为1y x =+, 故选:B . 【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.2.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.【答案】y =-2x 【分析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解. 【详解】∵点P 到x 轴的距离为2, ∴点P 的纵坐标为2,∵点P 在一次函数y =-x +1上, ∴2=-x +1,解得x =-1, ∴点P 的坐标为(-1,2). 设正比例函数解析式为y =kx ,把P (-1,2)代入得2=-k ,解得k =-2, ∴正比例函数解析式为y =-2x , 故答案为:y =-2x . 【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.考点四 一次函数式图像的平移变换例4. (2020·山东日照市·中考真题)将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A 【分析】直接利用一次函数“上加下减”的平移规律即可得出答案. 【详解】解:∵将函数y =2x 的图象向上平移3个单位, ∴所得图象的函数表达式为:y =2x +3. 故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键. 【变式训练】1.(2020·四川内江市·中考真题)将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .25y x =-- B .23y x =--C .21y x =-+D .23y x =-+【答案】C【分析】向上平移时,k的值不变,只有b发生变化.【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故选:C.【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k和b的值发生变化.2.(2020·四川广安市·中考真题)一次函数y=2x+b的图象过点(0,2),将函数y=2x+b 的图象向上平移5个单位长度,所得函数的解析式为________.【答案】y=2x+7【分析】将点(0,2)代入一次函数解析式中,即可求出原一次函数解析式,然后根据平移方式即可求出结论.【详解】解:将点(0,2)代入y=2x+b中,得2=b∴原一次函数解析式为y=2x+2将函数y=2x+2的图象向上平移5个单位长度,所得函数的解析式为y=2x+2+5=2x+7 故答案为:y=2x+7.【点睛】此题考查的是求一次函数解析式和图象的平移,掌握利用待定系数法求一次函数解析式和一次函数的平移规律是解题关键.。
浙江省嘉兴市、舟山市2020年中考数学试卷一、选择题(本题有10小题,每题3分,共30分)(共10题;共30分)1.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m。
数36000000用科学记数法表示为( )A. 0.36×108B. 36×107C. 3.6×108D. 3.6×107【答案】 D【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:36000000=3.6×107.故答案为:D.【分析】根据科学记数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1。
2.下图是由四个相同的小正方体组成的立体图形,它的主视图为( )A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】解:从正面看有两列,第一列有两个小正方形只有A符合.故答案为:A【分析】主视图就是从几何体的正面所看到的平面图形,观察几何体可得答案。
3.已知样本数据2,3,5,3,7,下列说法不正确的是( )A. 平均数是4B. 众数是3C. 中位数是5D. 方差是3.2【答案】C【考点】平均数及其计算,中位数,方差,众数=4,故A不符合题意;【解析】【解答】解:样本数据的平均数为2+3+5+3+75这组数据的众数是3,故B不符合题意;从小到大排列为2,3,3,5,7,处于最中间的数是3,这组数据的中位数为3,故C不符合题意;=3.2,故D不符合题意;这组数据的方差为(2−4)2+(3−4)2+(5−4)2+(3−4)2+(7−4)25故答案为:C.【分析】利用平均数公式求出这组数据的平均数,可对A做出判断;利用众数是一组数据中出现次数最多的数,可对B做出判断,先将这组数据进行排序,可得到这组数据的中位数,可对C做出判断;利用方差公式求出这组数据的方差,可对D做出判断。
2019、2020年浙江中考数学试题分类(6)——圆一.垂径定理(共2小题)1.(2020•湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是.2.(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.二.圆周角定理(共4小题)3.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°4.(2020•杭州)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°5.(2019•湖州)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是.6.(2020•温州)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AÂ上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.三.圆内接四边形的性质(共2小题)7.(2020•湖州)如图,已知四边形ABCD 内接于⊙O ,∠ABC =70°,则∠ADC 的度数是( )A .70°B .110°C .130°D .140°8.(2019•台州)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE .若∠ABC =64°,则∠BAE 的度数为 .四.三角形的外接圆与外心(共4小题)9.(2020•嘉兴)如图,正三角形ABC 的边长为3,将△ABC 绕它的外心O 逆时针旋转60°得到△A 'B 'C ',则它们重叠部分的面积是( )A .2√3B .34√3C .32√3D .√310.(2019•绍兴)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°.若BC =2√2,则AA ̂的长为( )A .πB .√2πC .2πD .2√2π11.(2020•湖州)如图,已知△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,连结BD ,BC 平分∠ABD .(1)求证:∠CAD =∠ABC ;(2)若AD =6,求AÂ的长.12.(2019•温州)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .(1)求证:四边形DCFG 是平行四边形.(2)当BE =4,CD =38AB 时,求⊙O 的直径长. 五.切线的性质(共9小题)13.(2019•舟山)如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线P A 交OC 延长线于点P ,则P A 的长为( )A .2B .√3C .√2D .12 14.(2019•台州)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则⊙O 的半径为( )A .2√3B .3C .4D .4−√315.(2020•台州)如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE .若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为 .16.(2020•宁波)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为.17.(2020•杭州)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=1 3,则tan∠BOC=.18.(2019•温州)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧(AAÂ)上,若∠BAC =66°,则∠EPF等于度.19.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.21.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.̂的度数.(1)求AA(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.六.切线的判定与性质(共2小题)22.(2019•宁波)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.23.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.̂的长.(2)若DE=√3,∠C=30°,求AA七.切线长定理(共1小题)24.(2019•杭州)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2 B.3 C.4 D.5八.三角形的内切圆与内心(共1小题)̂上一25.(2020•金华)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是AA 点,则∠EPF的度数是()A .65°B .60°C .58°D .50°九.正多边形和圆(共1小题)26.(2019•湖州)如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,则∠ABD 的度数是( )A .60°B .70°C .72°D .144°一十.弧长的计算(共4小题)27.(2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .32πB .2πC .3πD .6π28.(2020•宁波)如图,折扇的骨柄长为27cm ,折扇张开的角度为120°,图中AÂ的长为 cm (结果保留π).29.(2020•温州)若扇形的圆心角为45°,半径为3,则该扇形的弧长为 . 30.(2020•金华)如图,AÂ的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°. (1)求弦AB 的长.(2)求AÂ的长.一十一.圆锥的计算(共5小题)31.(2019•宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm32.(2019•湖州)已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 233.(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .√3C .32D .√234.(2020•嘉兴)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为 ;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为 .35.(2019•杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位).一十二.圆的综合题(共6小题)36.(2020•台州)如图,在△ABC 中,∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD ,连接CD 交AB 于点M .E 是线段CM 上的点,连接BE .F 是△BDE 的外接圆与AD 的另一个交点,连接EF ,BF .(1)求证:△BEF 是直角三角形;(2)求证:△BEF ∽△BCA ;(3)当AB =6,BC =m 时,在线段CM 上存在点E ,使得EF 和AB 互相平分,求m 的值.37.(2020•宁波)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AÂ=AA ̂,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是⊙O 的直径.①求∠AED 的度数;②若AB =8,CD =5,求△DEF 的面积.38.(2020•杭州)如图,已知AC ,BD 为⊙O 的两条直径,连接AB ,BC ,OE ⊥AB 于点E ,点F 是半径OC 的中点,连接EF .(1)设⊙O 的半径为1,若∠BAC =30°,求线段EF 的长.(2)连接BF ,DF ,设OB 与EF 交于点P ,①求证:PE =PF .②若DF =EF ,求∠BAC 的度数.39.(2019•湖州)已知在平面直角坐标系xOy 中,直线l 1分别交x 轴和y 轴于点A (﹣3,0),B (0,3).(1)如图1,已知⊙P 经过点O ,且与直线l 1相切于点B ,求⊙P 的直径长;(2)如图2,已知直线l 2:y =3x ﹣3分别交x 轴和y 轴于点C 和点D ,点Q 是直线l 2上的一个动点,以Q 为圆心,2√2为半径画圆.①当点Q 与点C 重合时,求证:直线l 1与⊙Q 相切;②设⊙Q 与直线l 1相交于M ,N 两点,连结QM ,QN .问:是否存在这样的点Q ,使得△QMN 是等腰直角三角形,若存在,求出点Q 的坐标;若不存在,请说明理由.40.(2019•杭州)如图,已知锐角三角形ABC 内接于圆O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°,①求证:OD =12OA . ②当OA =1时,求△ABC 面积的最大值.(2)点E 在线段OA 上,OE =OD ,连接DE ,设∠ABC =m ∠OED ,∠ACB =n ∠OED (m ,n 是正数),若∠ABC <∠ACB ,求证:m ﹣n +2=0.41.(2019•宁波)如图1,⊙O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F .(1)求证:BD =BE .(2)当AF :EF =3:2,AC =6时,求AE 的长.(3)设AA AA =x ,tan ∠DAE =y .①求y 关于x 的函数表达式;②如图2,连结OF ,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值.2019、2020年浙江中考数学试题分类(6)——圆参考答案与试题解析一.垂径定理(共2小题)1.【解答】解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =12CD =4, 在Rt △OCH 中,OH =√52−42=3,所以CD 与AB 之间的距离是3.故答案为3.2.【解答】解:连接OD ,如图,∵CD ⊥OC ,∴∠DCO =90°,∴CD =√AA 2−AA 2=√A 2−AA 2,当OC 的值最小时,CD 的值最大,而OC ⊥AB 时,OC 最小,此时D 、B 两点重合,∴CD =CB =12AB =12×1=12,即CD 的最大值为12,故答案为:12.二.圆周角定理(共4小题)3.【解答】解:连接BE ,∵∠BEC =∠BAC =15°,∠CED =30°,∴∠BED =∠BEC +∠CED =45°,∴∠BOD =2∠BED =90°.故选:D .4.【解答】解:∵OA ⊥BC ,∴∠AOB =∠AOC =90°,∴∠DBC =90°﹣∠BEO =90°﹣∠AED =90°﹣α,∴∠COD =2∠DBC =180°﹣2α,∵∠AOD +∠COD =90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D .5.【解答】解:∵一条弧所对的圆周角的度数是15°,∴它所对的圆心角的度数为2×15°=30°.故答案为30°.6.【解答】解:(1)∵∠ADC =∠G , ∴AÂ=AA ̂, ∵AB 为⊙O 的直径,∴AÂ=AA ̂, ∴∠1=∠2;(2)如图,连接DF ,∵AA ̂=AA ̂,AB 是⊙O 的直径,∴AB ⊥CD ,CE =DE ,∴FD =FC =10,∵点C ,F 关于DG 对称,∴DC =DF =10,∴DE =5,∵tan ∠1=25,∴EB =DE •tan ∠1=2, ∵∠1=∠2, ∴tan ∠2=25,∴AE =AA AAAA2=252, ∴AB =AE +EB =292,∴⊙O 的半径为294. 三.圆内接四边形的性质(共2小题)7.【解答】解:∵四边形ABCD 内接于⊙O ,∠ABC =70°,∴∠ADC =180°﹣∠ABC =180°﹣70°=110°,故选:B .8.【解答】解:∵圆内接四边形ABCD ,∴∠D =180°﹣∠ABC =116°,∵点D 关于AC 的对称点E 在边BC 上,∴∠D =∠AEC =116°,∴∠BAE =116°﹣64°=52°.故答案为:52°.四.三角形的外接圆与外心(共4小题)9.【解答】解:作AM ⊥BC 于M ,如图:重合部分是正六边形,连接O 和正六边形的各个顶点,所得的三角形都是全等的等边三角形. ∵△ABC 是等边三角形,AM ⊥BC ,∴AB =BC =3,BM =CM =12BC =32,∠BAM =30°,∴AM =√3BM =3√32, ∴△ABC 的面积=12BC ×AM =12×3×3√32=9√34, ∴重叠部分的面积=69△ABC 的面积=69×9√34=3√32; 故选:C .10.【解答】解:连接OB ,OC .∵∠A =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣70°=45°,∴∠BOC =90°,∵BC =2√2,∴OB =OC =2,∴AA ̂的长为90⋅A ⋅2180=π,故选:A .11.【解答】解:(1)∵BC 平分∠ABD ,∴∠DBC =∠ABC ,∵∠CAD =∠DBC ,∴∠CAD =∠ABC ;(2)∵∠CAD =∠ABC ,∴AÂ=AA ̂, ∵AD 是⊙O 的直径,AD =6,∴AA ̂的长=12×12×π×6=32π. 12.【解答】(1)证明:连接AE ,∵∠BAC =90°,∴CF 是⊙O 的直径,∵AC =EC ,∴CF ⊥AE ,∵AD 是⊙O 的直径,∴∠AED =90°,即GD ⊥AE ,∴CF ∥DG ,∵AD 是⊙O 的直径,∴∠ACD =90°,∴∠ACD +∠BAC =180°,∴AB ∥CD ,∴四边形DCFG 是平行四边形;(2)解:由CD =38AB ,设CD =3x ,AB =8x ,∴CD =FG =3x ,∵∠AOF =∠COD ,∴AF =CD =3x ,∴BG =8x ﹣3x ﹣3x =2x ,∵GE ∥CF ,∴AA AA =AA AA =23, ∵BE =4,∴AC =CE =6,∴BC =6+4=10,∴AB =√102−62=8=8x ,∴x =1,在Rt △ACF 中,AF =3,AC =6,∴CF =√32+62=3√5,即⊙O 的直径长为3√5.五.切线的性质(共9小题)13.【解答】解:连接OA ,∵∠ABC =30°,∴∠AOC =2∠ABC =60°,∵过点A 作⊙O 的切线交OC 的延长线于点P ,∴∠OAP =90°,∵OA =OC =1,∴AP =OA tan60°=1×√3=√3,故选:B .14.【解答】解:设⊙O 与AC 的切点为E ,连接AO ,OE ,∵等边三角形ABC 的边长为8,∴AC =8,∠C =∠BAC =60°,∵圆分别与边AB ,AC 相切,∴∠BAO =∠CAO =12A BAC =30°,∴∠AOC=90°,∴OC=12AC=4,∵OE⊥AC,∴OE=√32OC=2√3,∴⊙O的半径为2√3,故选:A.15.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.16.【解答】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=√2OB=2√2,∴AC=√AA2+AA2=√22+(2√2)2=2√3;②当△OAC是直角三角形时,∠OAC=90°,连接OB,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°,∵BC=OA=OB,∴△OBC是等腰直角三角形,∴AA=2√2,故答案为:2√3或2√2.17.【解答】解:∵AB 是⊙O 的直径,BC 与⊙O 相切于点B ,∴AB ⊥BC ,∴∠ABC =90°,∵sin ∠BAC =AA AA =13, ∴设BC =x ,AC =3x , ∴AB =√AA 2−AA 2=√(3A )2−A 2=2√2x ,∴OB =12AB =√2x ,∴tan ∠BOC =AA AA =√2A =√22, 故答案为:√22. 18.【解答】解:连接OE ,OF∵⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F∴OE ⊥AB ,OF ⊥AC又∵∠BAC =66°∴∠EOF =114°∵∠EOF =2∠EPF∴∠EPF =57°故答案为:57°19.【解答】解:证法错误;证明:连结OC ,∵⊙O 与AB 相切于点C ,∴OC ⊥AB ,∵OA =OB ,∴AC =BC .20.【解答】解:(1)连接OC ,如图,∵CD 为切线,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =30°,∴OD =2OC =2,∴AD =AO +OD =1+2=3;(2)添加∠DCB =30°,求AC 的长, 解:∵AB 为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=12AB=1,∴AC=√3BC=√3.21.【解答】解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴AÂ的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=√2t,则HO=√AA2−AA2=√2A2−A2=t,∵OC=2OH,∴∠OCE=30°.六.切线的判定与性质(共2小题)22.【解答】解:∵在Rt △ABC 中,∠C =90°,AC =12,BD +CD =18, ∴AB =√122+182=6√13,在Rt △ADC 中,∠C =90°,AC =12,CD =5,∴AD =√AA 2+AA 2=13,当⊙P 于BC 相切时,点P 到BC 的距离=6,过P 作PH ⊥BC 于H ,则PH =6,∵∠C =90°,∴AC ⊥BC ,∴PH ∥AC ,∴△DPH ∽△DAC ,∴AA AA =AA AA , ∴AA 13=612,∴PD =6.5,∴AP =6.5;当⊙P 于AB 相切时,点P 到AB 的距离=6,过P 作PG ⊥AB 于G ,则PG =6,∵AD =BD =13,∴∠P AG =∠B ,∵∠AGP =∠C =90°,∴△AGP ∽△BCA ,∴AA AA =AA AA , ∴6√13=612, ∴AP =3√13,∵CD =5<6,∴半径为6的⊙P 不与△ABC 的AC 边相切,综上所述,AP 的长为6.5或3√13, 故答案为:6.5或3√13.23.【解答】(1)证明:连接OD ;∵OD =OC ,∴∠C =∠ODC ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠ODC ,∴OD ∥AB ,∴∠ODE =∠DEB ;∵DE ⊥AB ,∴∠DEB =90°, ∴∠ODE =90°,即DE ⊥OD ,∴DE 是⊙O 的切线.(2)解:连接AD ,∵AC 是直径,∴∠ADC =90°,∵AB =AC ,∠C =30°,∴∠B =∠C =30°,BD =CD ,∴∠OAD =60°,∵OA =OD ,∴△AOD 是等边三角形,∴∠AOD =60°,∵DE =√3,∠B =30°,∠BED =90°,∴CD =BD =2DE =2√3,∴OD =AD =tan30°•CD =√33×2√3=2, ∴AA ̂的长为:60A ⋅2180=2A 3.七.切线长定理(共1小题)24.【解答】解:∵P 为圆O 外一点,P A ,PB 分别切圆O 于A ,B 两点,若P A =3, ∴PB =P A =3,故选:B .八.三角形的内切圆与内心(共1小题)25.【解答】解:如图,连接OE ,OF .∵⊙O 是△ABC 的内切圆,E ,F 是切点,∴OE ⊥AB ,OF ⊥BC ,∴∠OEB =∠OFB =90°,∵△ABC 是等边三角形,∴∠B =60°,∴∠EOF =120°,∴∠EPF =12∠EOF =60°,故选:B .九.正多边形和圆(共1小题)26.【解答】解:∵五边形ABCDE 为正五边形,∴∠ABC =∠C =(5−2)×180°5=108°, ∵CD =CB ,∴∠CBD =180°−108°2=36°, ∴∠ABD =∠ABC ﹣∠CBD =72°,故选:C .一十.弧长的计算(共4小题)27.【解答】解:该扇形的弧长=90⋅A ⋅6180=3π.故选:C .28.【解答】解:∵折扇的骨柄长为27cm ,折扇张开的角度为120°,∴AÂ的长=120⋅A ×27180=18π(cm ), 故答案为:18π.29.【解答】解:根据弧长公式:l =45⋅A ×3180=34π, 故答案为:34π. 30.【解答】解:(1)∵AÂ的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°, ∴AC =OA •sin60°=2×√32=√3,∴AB =2AC =2√3;(2)∵OC ⊥AB ,∠AOC =60°,∴∠AOB =120°,∵OA =2,∴AA ̂的长是:120A ×2180=4A 3.一十一.圆锥的计算(共5小题)31.【解答】解:设AB =xcm ,则DE =(6﹣x )cm ,根据题意,得90AA 180=π(6﹣x ),解得x =4.故选:B . 32.【解答】解:这个圆锥的侧面积=12×2π×5×13=65π(cm 2).故选:B .33.【解答】解:∵∠A =90°,AB =AD ,∴△ABD 为等腰直角三角形,∴∠ABD =45°,BD =√2AB ,∵∠ABC =105°,∴∠CBD =60°,而CB =CD ,∴△CBD 为等边三角形,∴BC =BD =√2AB ,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,∴下面圆锥的侧面积=√2×1=√2.故选:D .34.【解答】解:连接BC ,由∠BAC =90°得BC 为⊙O 的直径,∴BC =2√2,在Rt △ABC 中,由勾股定理可得:AB =AC =2,∴S 扇形ABC =90A ×4360=π;∴扇形的弧长为:90A ×2180=π,设底面半径为r ,则2πr =π,解得:r =12,故答案为:π,12. 35.【解答】解:这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm 2).故答案为113.一十二.圆的综合题(共6小题)36.【解答】(1)证明:∵∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD , ∴∠ADB =∠ACB =90°,∵∠EFB =∠EDB ,∠EBF =∠EDF ,∴∠EFB +∠EBF =∠EDB +∠EDF =∠ADB =90°,∴∠BEF =90°,∴△BEF 是直角三角形.(2)证明:∵BC =BD ,∴∠BDC =∠BCD ,∵∠EFB =∠EDB ,∴∠EFB =∠BCD ,∵AC =AD ,BC =BD ,∴AB ⊥CD ,∴∠AMC =90°,∵∠BCD +∠ACD =∠ACD +∠CAB =90°,∴∠BCD =∠CAB ,∴∠BFE =∠CAB ,∵∠ACB =∠FEB =90°,∴△BEF ∽△BCA .(3)解:设EF 交AB 于J .连接AE .∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EF A =∠FEB =90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF ∥BD ,∵AJ =JB ,∴AF =DF ,∴FJ =12BD =A 2, ∴EF =m ,∵△ABC ∽△CBM ,∴BC :MB =AB :BC ,∴BM =A 26, ∵△BEJ ∽△BME ,∴BE :BM =BJ :BE ,∴BE =√2, ∵△BEF ∽△BCA , ∴AA AA =AA AA , 即√36−A 2A =A A √2,解得m =2√3(负根已经舍弃).37.【解答】解:(1)∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠E =∠ECD ﹣∠EBD =12(∠ACD ﹣∠ABC )=12AA =12α,(2)如图1,延长BC 到点T ,∵四边形FBCD 内接于⊙O ,∴∠FDC +∠FBC =180°,又∵∠FDE +∠FDC =180°,∴∠FDE =∠FBC ,∵DF 平分∠ADE ,∴∠ADF =∠FDE ,∵∠ADF =∠ABF ,∴∠ABF =∠FBC ,∴BE 是∠ABC 的平分线,∵AÂ=AA ̂, ∴∠ACD =∠BFD ,∵∠BFD +∠BCD =180°,∠DCT +∠BCD =180°,∴∠DCT =∠BFD ,∴∠ACD =∠DCT ,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A作AG⊥BE于点G,过点F作FM⊥CE于点M,∵AC是⊙O的直径,∴∠ABC=90°,∵BE平分∠ABC,∴∠F AC=∠EBC=12∠ABC=45°,∵∠AED=45°,∴∠AED=∠F AC,∵∠FED=∠F AD,∴∠AED﹣∠FED=∠F AC﹣∠F AD,∴∠AEG=∠CAD,∵∠EGA=∠ADC=90°,∴△EGA∽△ADC,∴AA AA =AA AA ,∵在Rt △ABG 中,AB =8,∠ABG =45°,∴AG =√22AA =4√2,在Rt △ADE 中,AE =√2AD ,∴√2AA AA =4√25, ∴AA AA =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53, ∴ED =AD =203, ∴CE =CD +DE =353, ∵∠BEC =∠FCE ,∴FC =FE ,∵FM ⊥CE ,∴EM =12CE =356,∴DM =DE ﹣EM =56,∵∠FDM =45°,∴FM =DM =56,∴S △DEF =12DE •FM =259.38.【解答】(1)解:∵OE ⊥AB ,∠BAC =30°,OA =1, ∴∠AOE =60°,OE =12OA =12,AE =EB =√3OE =√32,∵AC 是直径,∴∠ABC =90°,∴∠C =60°,∵OC =OB ,∴△OCB 是等边三角形,∵OF =FC ,∴BF ⊥AC ,∴∠AFB =90°,∵AE =EB ,∴EF =12AB =√32.(2)①证明:过点F 作FG ⊥AB 于G ,交OB 于H ,连接EH . ∵∠FGA =∠ABC =90°,∴FG ∥BC ,∴△OFH ∽△OCB ,∴AA AA =AA AA =12,同理AA AA =12, ∴FH =OE ,∵OE ⊥AB .FH ⊥AB ,∴OE ∥FH ,∴四边形OEHF 是平行四边形,∴PE =PF .②∵OE ∥FG ∥BC ,∴AA AA =AA AA =1,∴EG =GB ,∴EF =FB ,∵DF =EF ,∴DF =BF ,∵DO =OB ,∴FO ⊥BD ,∴∠AOB =90°,∵OA =OB ,∴△AOB 是等腰直角三角形,∴∠BAC =45°.39.【解答】解:(1)如图1,连接BC ,∵∠BOC =90°,∴点P 在BC 上,∵⊙P 与直线l 1相切于点B ,∴∠ABC =90°,而OA =OB ,∴△ABC 为等腰直角三角形,则⊙P 的直径长=BC =AB =3√2;(2)过点作CM ⊥AB ,由直线l 2:y =3x ﹣3得:点C (1,0),则CM=AC sin45°=4×√22=2√2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2√2,解得:m=3−√2;②当点M、N在两条直线交点的上方时,同理可得:m=3+√2;故点Q的坐标为(3−√2,6﹣3√2)或(3+√2,6+3√2).40.【解答】解:(1)①连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=3 2,△ABC面积的最大值=12×BC×AD=12×2OB sin60°×32=3√34;(2)如图2,连接OC,设:∠OED =x ,则∠ABC =mx ,∠ACB =nx ,则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx =12∠BOC =∠DOC , ∵∠AOC =2∠ABC =2mx ,∴∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx , ∵OE =OD ,∴∠AOD =180°﹣2x ,即:180°+mx ﹣nx =180°﹣2x ,化简得:m ﹣n +2=0.41.【解答】证明:(1)∵△ABC 是等边三角形,∴∠BAC =∠C =60°,∵∠DEB =∠BAC =60°,∠D =∠C =60°,∴∠DEB =∠D ,∴BD =BE ;(2)如图1,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC =6,∴BG =12AA =12AA =3,∴在Rt △ABG 中,AG =√3BG =3√3,∵BF ⊥EC ,∴BF ∥AG ,∴AA AA =AA AA , ∵AF :EF =3:2, ∴BE =23BG =2,∴EG =BE +BG =3+2=5,在Rt △AEG 中,AE =√AA 2+AA 2=√(3√3)2+52=2√13;(3)①如图1,过点E 作EH ⊥AD 于点H ,∵∠EBD =∠ABC =60°,∴在Rt △BEH 中,AA AA =AAA60°=√32, ∴EH =√32AA ,BH =12AA , ∵AA AA =AA AA =A , ∴BG =xBE ,∴AB =BC =2BG =2xBE ,∴AH =AB +BH =2xBE +12BE =(2x +12)BE ,∴在Rt △AHE 中,tan ∠EAD =AA AA =√32AA (2A +12)AA =√34A +1, ∴y =√34A +1; ②如图2,过点O 作OM ⊥BC 于点M ,设BE =a ,∵AA AA =AA AA =A , ∴CG =BG =xBE =ax ,∴EC =CG +BG +BE =a +2ax ,∴EM =12EC =12a +ax ,∴BM =EM ﹣BE =ax −12a , ∵BF ∥AG ,∴△EBF ∽△EGA ,∴AA AA =AA AA=A A +AA =11+A , ∵AG =√3AA =√3AA , ∴BF =1A +1AA =√3AA A +1,∴△OFB 的面积=AA ⋅AA 2=12×√3AA A +1(AA −12A ), ∴△AEC 的面积=AA ⋅AA 2=12×√3AA (A +2AA ), ∵△AEC 的面积是△OFB 的面积的10倍,∴12×√3AA (A +2AA )=10×12×√3AA A +1(AA −12A ), ∴2x 2﹣7x +6=0,解得:A 1=2,A 2=32,∴A =√39或√37,。
2022年浙江省嘉兴市中考数学试卷(真题)一、选择题(本题有10小题,每题3分,共30分.)1.(3分)(2022•嘉兴)若收入3元记为+3,则支出2元记为()A.﹣2 B.﹣1 C.1 D.22.(3分)(2022•嘉兴)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.3.(3分)(2022•嘉兴)计算a2•a()A.a B.3a C.2a2D.a34.(3分)(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°5.(3分)(2022•嘉兴)不等式3x+1<2x的解集在数轴上表示正确的是()A.B.C.D.6.(3分)(2022•嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm 7.(3分)(2022•嘉兴)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.<且S A2>S B2C.>且S A2<S B2D.<且S A2<S B28.(3分)(2022•嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y场,根据题意可列方程组为()A.B.C.D.9.(3分)(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是()A.8 B.16 C.24 D.3210.(3分)(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1 B.C.2 D.二、填空题(本题有6小题,每题4分,共24分)11.(4分)(2022•嘉兴)分解因式:m2﹣1=.12.(4分)(2022•舟山)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是.13.(4分)(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件.14.(4分)(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.15.(4分)(2022•舟山)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).16.(4分)(2022•舟山)如图,在扇形AOB中,点C,D 在上,将沿弦CD 折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为,折痕CD的长为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(2022•嘉兴)(1)计算:(1﹣)0﹣.(2)解方程:=1.18.(6分)(2022•舟山)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.19.(6分)(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.20.(8分)(2022•舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…11 12 13 14 15 16 17 18 …y(cm)…189 137 103 80 101 133 202 260 …(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?21.(8分)(2022•舟山)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE =5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)22.(10分)(2022•舟山)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x ≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.23.(10分)(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y)在抛物线L3上,且y1>y2,求n的取值范围.224.(12分)(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD <AD),猜想:点N是否为线段ME的“趣点”?并说明理由.2022年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.)1.(3分)(2022•嘉兴)若收入3元记为+3,则支出2元记为()A.﹣2 B.﹣1 C.1 D.2【分析】根据正负数的概念得出结论即可.【解答】解:由题意知,收入3元记为+3,则支出2元记为﹣2,故选:A.【点评】本题主要考查正负数的概念,熟练掌握正负数的概念是解题的关键.2.(3分)(2022•嘉兴)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【分析】根据主视方向判断出主视图即可.【解答】解:由图可知主视图为:故选:C.【点评】本题主要考查视图的知识,熟练掌握三视图的知识是解题的关键.3.(3分)(2022•嘉兴)计算a2•a()A.a B.3a C.2a2D.a3【分析】根据同底数幂相乘,底数不变,指数相加,即可解决问题.【解答】解:原式=a1+2=a3.故选:D.【点评】本题主要考查了同底数幂乘法,解决本题的关键是掌握同底数幂乘法法则.4.(3分)(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°【分析】根据同弧所对的圆周角等于圆心角的一半即可得出∠BAC的度数.【解答】解:∵∠BOC=130°,点A在上,∴∠BAC=∠BOC==65°,故选:B.【点评】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.5.(3分)(2022•嘉兴)不等式3x+1<2x的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法可以解答本题.【解答】解:3x+1<2x,移项,得:3x﹣2x<﹣1,合并同类项,得:x<﹣1,其解集在数轴上表示如下:,故选:B.【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.6.(3分)(2022•嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm 【分析】根据正方形的性质、勾股定理求出BD,根据平移的概念求出BB′,计算即可.【解答】解:∵四边形ABCD为边长为2cm的正方形,∴BD==2(cm),由平移的性质可知,BB′=1cm,∴B′D=(2﹣1)cm,故选:D.【点评】本题考查的是平移的性质、正方形的性质,根据平移的概念求出BB′是解题的关键.7.(3分)(2022•嘉兴)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.<且S A2>S B2C.>且S A2<S B2D.<且S A2<S B2【分析】根据平均数及方差的意义直接求解即可.【解答】解:A,B两名射击运动员进行了相同次数的射击,当A的平均数大于B,且方差比B小时,能说明A成绩较好且更稳定.故选:C.【点评】本题主要考查平均数及方差的意义,熟练掌握平均数及方差的意义是解答此题的关键.8.(3分)(2022•嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y场,根据题意可列方程组为()A.B.C.D.【分析】由题意:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.列出二元一次方程组即可.【解答】解:根据题意得:,即,故选:A.【点评】此题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是()A.8 B.16 C.24 D.32【分析】由EF∥AC,GF∥AB,得四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,再由AB=AC=8和等量代换,即可求得四边形AEFG的周长.【解答】解:∵EF∥AC,GF∥AB,∴四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,∵AB=AC,∴∠B=∠C,∴∠B=∠EFB,∠GFC=∠C,∴EB=EF,FG=GC,∵四边形AEFG的周长=AE+EF+FG+AG,∴四边形AEFG的周长=AE+EB+GC+AG=AB+AC,∵AB=AC=8,∴四边形AEFG的周长=AB+AC=8+8=16,故选:B.【点评】本题考查平行四边形的判定与性质、等腰三角形的性质、平行线的在等知识,熟练掌握平行四边形的判定与性质是解题的关键.10.(3分)(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1 B.C.2 D.【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a(ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k =﹣,即可求出c=2.【解答】解:∵点A(a,b),B(4,c)在直线y=kx+3上,∴,由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,∵ab的最大值为9,∴k<0,﹣=9,解得k=﹣,把k=﹣代入②得:4×(﹣)+3=c,∴c=2,故选:C.【点评】本题考查一次函数图象上点坐标的特征及二次函数的最值,解题的关键是掌握配方法求函数的最值.二、填空题(本题有6小题,每题4分,共24分)11.(4分)(2022•嘉兴)分解因式:m2﹣1=(m+1)(m﹣1).【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣1=(m+1)(m﹣1).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.12.(4分)(2022•舟山)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是.【分析】直接根据概率公式可求解.【解答】解:∵盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是;故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.13.(4分)(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件∠B=60°.【分析】根据等边三角形的判定定理填空即可.【解答】解:有一个角是60°的等腰三角形是等边三角形,故答案为:∠B=60°.【点评】本题考查等边三角形的判定,解题的关键是掌握等边三角形的定义及等边三角形与等腰三角形的关系.14.(4分)(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.【分析】根据正切的定义求出AB,证明△ADE∽△ABC,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】解:由题意得,DE=1,BC=3,在Rt△ABC中,∠A=60°,则AB===,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得:BD=,故答案为:.【点评】本题考查的是相似三角形的判定和性质、解直角三角形,掌握相似三角形的判定定理是解题的关键.15.(4分)(2022•舟山)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).【分析】根据“动力×动力臂=阻力×阻力臂”分别列式,从而代入计算.【解答】解:如图,设装有大象的铁笼重力为aN,将弹簧秤移动到B′的位置时,弹簧秤的度数为k′,由题意可得BP•k=PA•a,B′P•k′=PA•a,∴BP•k=B′P•k′,又∵B′P=nBP,∴k′==,故答案为:.【点评】本题考查列代数式,属于跨学科综合题目,理解题意,掌握杠杆原理(动力×动力臂=阻力×阻力臂)是解题关键.16.(4分)(2022•舟山)如图,在扇形AOB中,点C,D在上,将沿弦CD 折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为60°,折痕CD的长为4.【分析】设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD于点H,可得OO′⊥CD,CH=DH,O′C=OA=6,根据切线的性质开证明∠EOF=60°,则可得的度数;然后根据垂径定理和勾股定理即可解决问题.【解答】解:如图,设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD于点H,∴OO′⊥CD,CH=DH,O′C=OA=6,∵将沿弦CD折叠后恰好与OA,OB相切于点E,F.∴∠O′EO=∠O′FO=90°,∵∠AOB=120°,∴∠EO′F=60°,则的度数为60°;∵∠AOB=120°,∴∠O′OF=60°,∵O′F⊥OB,O′E=O′F=O′C=6,∴OO′===4,∴O′H=2,∴CH===2,∴CD=2CH=4.故答案为:60°,4.【点评】本题考查了翻折变换,切线的性质,解决本题的关键是掌握翻折的性质.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(2022•嘉兴)(1)计算:(1﹣)0﹣.(2)解方程:=1.【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解;(2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根.【解答】解:(1)原式=1﹣2=﹣1;(2)去分母得x﹣3=2x﹣1,∴﹣x=3﹣1,∴x=﹣2,经检验x=﹣2是分式方程的解,∴原方程的解为:x=﹣2.【点评】本题分别考查了实数的运算和解分式方程,实数的运算主要利用0指数幂及算术平方根的定义,解分式方程的基本方法时去分母.18.(6分)(2022•舟山)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理.【解答】解:赞成小洁的说法,补充条件:OA=OC,证明如下:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形.【点评】本题考查菱形的判定,掌握平行四边形的判定和菱形的判定方法(对角线互相垂直平分的四边形是菱形)是解题关键.19.(6分)(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=3×4×100+25 ;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.【分析】(1)根据规律直接得出结论即可;(2)根据=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25即可得出结论;(3)根据题意列出方程求解即可.【解答】解:(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;∴③当a=3时,352=1225=3×4×100+25,故答案为:3×4×100+25;(2)=100a(a+1)+25,理由如下:=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;(3)由题知,﹣100a=2525,即100a2+100a+25﹣100a=2525,解得a=5或﹣5(舍去),∴a的值为5.【点评】本题主要考查数字的变化规律,根据数字的变化规律得出=100a (a+1)+25的结论是解题的关键.20.(8分)(2022•舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…11 12 13 14 15 16 17 18 …y(cm)…189 137 103 80 101 133 202 260 …(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【分析】(1)①先描点,然后画出函数图象;②利用数形结合思想分析求解;(2)结合函数图象增减性及最值进行分析说明;(3)结合函数图象确定关键点,从而求得取值范围.【解答】解:(1)①如图:②通过观察函数图象,当x=4时,y=200,当y值最大时,x=21;(2)该函数的两条性质如下(答案不唯一):①当2≤x≤7时,y随x的增大而增大;②当x=14时,y有最小值为80;(3)由图象,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,货轮进出此港口.【点评】本题考查函数的图象,理解题意,准确识图,利用数形结合思想确定关键点是解题关键.21.(8分)(2022•舟山)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE =5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)(1)过点C作CF⊥DE于点F,根据等腰三角形的性质可得∠DCF=20°,【分析】利用锐角三角函数即可解决问题;(2)根据横截面是一个轴对称图形,延长CF交AD、BE延长线于点G,连接AB,所以DE∥AB,根据直角三角形两个锐角互余可得∠A=∠GDE=20°,然后利用锐角三角函数即可解决问题.【解答】解:(1)如图,过点C作CF⊥DE于点F,∵CD=CE=5cm,∠DCE=40°.∴∠DCF=20°,∴DF=CD•sin20°≈5×0.34≈1.7(cm),∴DE=2DF≈3.4cm,∴线段DE的长约为3.4cm;(2)∵横截面是一个轴对称图形,∴延长CF交AD、BE延长线于点G,连接AB,∴DE∥AB,∴∠A=∠GDE,∵AD⊥CD,BE⊥CE,∴∠GDF+∠FDC=90°,∵∠DCF+∠FDC=90°,∴∠GDF=∠DCF=20°,∴∠A=20°,∴DG=≈≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.【点评】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.22.(10分)(2022•舟山)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x ≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第三组;(2)(1200﹣200)×(1﹣8.7%﹣43.2%﹣30.6%)=175(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;(3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).【点评】本题考查的是频数分布直方图和扇形统计图的知识,读懂频数分布直方图和利用统计图获取信息是解题的关键.23.(10分)(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y)在抛物线L3上,且y1>y2,求n的取值范围.2【分析】(1)把(1,0)代入抛物线的解析式求出a即可;(2)求出平移后抛物线的顶点关于原点对称点的坐标,利用待定系数法求解即可;(3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x ﹣n+1)2﹣4,根据y1>y2,构建不等式求解即可.【解答】解:(1)∵y=a(x+1)2﹣4(a≠0)经过点A(1,0),∴4a﹣4=0,∴a=1,∴抛物线L1的函数表达式为y=x2+2x﹣3;(2)∵y=(x+1)2﹣4,∴抛物线的顶点(﹣1,﹣4),将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点(﹣1,﹣4+m),而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),把(1,4﹣m)代入y=x2+2x﹣3得到,1+2﹣3=4﹣m,∴m=4;(3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x ﹣n+1)2﹣4,∵点B(1,y1),C(3,y2)在抛物线L3上,∴y1=(2﹣n)2﹣4,y2=(4﹣n)2﹣4,∵y1>y2,∴(2﹣n)2﹣4>(4﹣n)2﹣4,解得n>3,∴n的取值范围为n>3.【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,平移变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.24.(12分)(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.【分析】(1)利用等腰三角形的性质证明,再利用AC=AP,即可得出结论;(2)①由题意可得:∠CAB=∠B=45°,∠ACB=90°,AC=AP=BC,再求解∠ACP=∠APC=67.5°,∠CPB=112.5°,证明∠DPE=∠CPB=112.5°,从而可得答案;②先证明△ADP∽△ACB,可得∠APD=45°,DP∥CB,再证明MP=MD=MC=MN,∠EMP=45°,∠MPE=90°,从而可得出结论.【解答】解:(1)赞同,理由如下:∵△ABC是等腰直角三角形,∴AC=BC,∠A=∠B=45°,∴cos45°=,∵AC=AP,∴,∴点P为线段AB的“趣点”.(2)①由题意得:∠CAB=∠B=45°,∠ACB=90°,AC=AP=BC,∴=67.5°,∴∠BCP=90°﹣67.5°=22.5°,∴∠CPB=180°﹣45°﹣22.5°=112.5°,∵△DPE∽△CPB,D,A重合,∴∠DPE=∠CPB=112.5°,∴∠CPE=∠DPE+∠CPB﹣180°=45°;②点N是线段ME的趣点,理由如下:当点D为线段AC的趣点时(CD<AD),∴,∵AC=AP,∴,∵,∠A=∠A,∴△ADP∽△ACB,∴∠ADP=∠ACB=90°,∴∠APD=45°,DP∥CB,∴∠DPC=∠PCB=22.5°=∠PDE,∴DM=PM,∴∠MDC=∠MCD=90°﹣22.5°=67.5°,∴MD=MC,同理可得MC=MN,∴MP=MD=MC=MN,∵∠MDP=∠MPD=22.5°,∠E=∠B=45°,∴∠EMP=45°,∠MPE=90°,∴=,∴点N是线段ME的“趣点”.【点评】本题考查了等腰直角三角形的性质,锐角三角形函数的应用,相似三角形的判定与性质,三角形的外角的性质,等腰三角形的判定与性质,理解新定义的含义,掌握特殊几何图形的性质是解题的关键.。
2022年浙江省嘉兴市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.)1.(3分)(2022•嘉兴)若收入3元记为+3,则支出2元记为()A.﹣2B.﹣1C.1D.22.(3分)(2022•嘉兴)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.3.(3分)(2022•嘉兴)计算a2•a()A.a B.3a C.2a2D.a34.(3分)(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°5.(3分)(2022•嘉兴)不等式3x+1<2x的解集在数轴上表示正确的是()A.B.C.D.6.(3分)(2022•嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm 7.(3分)(2022•嘉兴)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.<且S A2>S B2C.>且S A2<S B2D.<且S A2<S B28.(3分)(2022•嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为()A.B.C.D.9.(3分)(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是()A.8B.16C.24D.3210.(3分)(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1B.C.2D.二、填空题(本题有6小题,每题4分,共24分)11.(4分)(2022•嘉兴)分解因式:m2﹣1=.12.(4分)(2022•舟山)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是.13.(4分)(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件.14.(4分)(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.15.(4分)(2022•舟山)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).16.(4分)(2022•舟山)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为,折痕CD的长为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(2022•嘉兴)(1)计算:(1﹣)0﹣.(2)解方程:=1.18.(6分)(2022•舟山)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.19.(6分)(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.20.(8分)(2022•舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?21.(8分)(2022•舟山)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)22.(10分)(2022•舟山)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.23.(10分)(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.24.(12分)(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.2022年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.)1.(3分)(2022•嘉兴)若收入3元记为+3,则支出2元记为()A.﹣2B.﹣1C.1D.2【分析】根据正负数的概念得出结论即可.【解答】解:由题意知,收入3元记为+3,则支出2元记为﹣2,故选:A.【点评】本题主要考查正负数的概念,熟练掌握正负数的概念是解题的关键.2.(3分)(2022•嘉兴)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【分析】根据主视方向判断出主视图即可.【解答】解:由图可知主视图为:故选:C.【点评】本题主要考查视图的知识,熟练掌握三视图的知识是解题的关键.3.(3分)(2022•嘉兴)计算a2•a()A.a B.3a C.2a2D.a3【分析】根据同底数幂相乘,底数不变,指数相加,即可解决问题.【解答】解:原式=a1+2=a3.故选:D.【点评】本题主要考查了同底数幂乘法,解决本题的关键是掌握同底数幂乘法法则.4.(3分)(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°【分析】根据同弧所对的圆周角等于圆心角的一半即可得出∠BAC的度数.【解答】解:∵∠BOC=130°,点A在上,∴∠BAC=∠BOC==65°,故选:B.【点评】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.5.(3分)(2022•嘉兴)不等式3x+1<2x的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法可以解答本题.【解答】解:3x+1<2x,移项,得:3x﹣2x<﹣1,合并同类项,得:x<﹣1,其解集在数轴上表示如下:,故选:B.【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.6.(3分)(2022•嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm 【分析】根据正方形的性质、勾股定理求出BD,根据平移的概念求出BB′,计算即可.【解答】解:∵四边形ABCD为边长为2cm的正方形,∴BD==2(cm),由平移的性质可知,BB′=1cm,∴B′D=(2﹣1)cm,故选:D.【点评】本题考查的是平移的性质、正方形的性质,根据平移的概念求出BB′是解题的关键.7.(3分)(2022•嘉兴)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.<且S A2>S B2C.>且S A2<S B2D.<且S A2<S B2【分析】根据平均数及方差的意义直接求解即可.【解答】解:A,B两名射击运动员进行了相同次数的射击,当A的平均数大于B,且方差比B小时,能说明A成绩较好且更稳定.故选:C.【点评】本题主要考查平均数及方差的意义,熟练掌握平均数及方差的意义是解答此题的关键.8.(3分)(2022•嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为()A.B.C.D.【分析】由题意:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.列出二元一次方程组即可.【解答】解:根据题意得:,即,故选:A.【点评】此题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是()A.8B.16C.24D.32【分析】由EF∥AC,GF∥AB,得四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,再由AB=AC=8和等量代换,即可求得四边形AEFG的周长.【解答】解:∵EF∥AC,GF∥AB,∴四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,∵AB=AC,∴∠B=∠C,∴∠B=∠EFB,∠GFC=∠C,∴EB=EF,FG=GC,∵四边形AEFG的周长=AE+EF+FG+AG,∴四边形AEFG的周长=AE+EB+GC+AG=AB+AC,∵AB=AC=8,∴四边形AEFG的周长=AB+AC=8+8=16,故选:B.【点评】本题考查平行四边形的判定与性质、等腰三角形的性质、平行线的在等知识,熟练掌握平行四边形的判定与性质是解题的关键.10.(3分)(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1B.C.2D.【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a (ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k=﹣,即可求出c =2.【解答】解:∵点A(a,b),B(4,c)在直线y=kx+3上,∴,由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,∵ab的最大值为9,∴k<0,﹣=9,解得k=﹣,把k=﹣代入②得:4×(﹣)+3=c,∴c=2,故选:C.【点评】本题考查一次函数图象上点坐标的特征及二次函数的最值,解题的关键是掌握配方法求函数的最值.二、填空题(本题有6小题,每题4分,共24分)11.(4分)(2022•嘉兴)分解因式:m2﹣1=(m+1)(m﹣1).【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣1=(m+1)(m﹣1).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.12.(4分)(2022•舟山)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是.【分析】直接根据概率公式可求解.【解答】解:∵盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是;故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.13.(4分)(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件∠B=60°.【分析】根据等边三角形的判定定理填空即可.【解答】解:有一个角是60°的等腰三角形是等边三角形,故答案为:∠B=60°.【点评】本题考查等边三角形的判定,解题的关键是掌握等边三角形的定义及等边三角形与等腰三角形的关系.14.(4分)(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.【分析】根据正切的定义求出AB,证明△ADE∽△ABC,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】解:由题意得,DE=1,BC=3,在Rt△ABC中,∠A=60°,则AB===,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得:BD=,故答案为:.【点评】本题考查的是相似三角形的判定和性质、解直角三角形,掌握相似三角形的判定定理是解题的关键.15.(4分)(2022•舟山)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).【分析】根据“动力×动力臂=阻力×阻力臂”分别列式,从而代入计算.【解答】解:如图,设装有大象的铁笼重力为aN,将弹簧秤移动到B′的位置时,弹簧秤的度数为k′,由题意可得BP•k=P A•a,B′P•k′=P A•a,∴BP•k=B′P•k′,又∵B′P=nBP,∴k′==,故答案为:.【点评】本题考查列代数式,属于跨学科综合题目,理解题意,掌握杠杆原理(动力×动力臂=阻力×阻力臂)是解题关键.16.(4分)(2022•舟山)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为60°,折痕CD的长为4.【分析】设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD 于点H,可得OO′⊥CD,CH=DH,O′C=OA=6,根据切线的性质开证明∠EOF=60°,则可得的度数;然后根据垂径定理和勾股定理即可解决问题.【解答】解:如图,设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD于点H,∴OO′⊥CD,CH=DH,O′C=OA=6,∵将沿弦CD折叠后恰好与OA,OB相切于点E,F.∴∠O′EO=∠O′FO=90°,∵∠AOB=120°,∴∠EO′F=60°,则的度数为60°;∵∠AOB=120°,∴∠O′OF=60°,∵O′F⊥OB,O′E=O′F=O′C=6,∴OO′===4,∴O′H=2,∴CH===2,∴CD=2CH=4.故答案为:60°,4.【点评】本题考查了翻折变换,切线的性质,解决本题的关键是掌握翻折的性质.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(2022•嘉兴)(1)计算:(1﹣)0﹣.(2)解方程:=1.【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解;(2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根.【解答】解:(1)原式=1﹣2=﹣1;(2)去分母得x﹣3=2x﹣1,∴﹣x=3﹣1,∴x=﹣2,经检验x=﹣2是分式方程的解,∴原方程的解为:x=﹣2.【点评】本题分别考查了实数的运算和解分式方程,实数的运算主要利用0指数幂及算术平方根的定义,解分式方程的基本方法时去分母.18.(6分)(2022•舟山)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理.【解答】解:赞成小洁的说法,补充条件:OA=OC,证明如下:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形.【点评】本题考查菱形的判定,掌握平行四边形的判定和菱形的判定方法(对角线互相垂直平分的四边形是菱形)是解题关键.19.(6分)(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=3×4×100+25;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.【分析】(1)根据规律直接得出结论即可;(2)根据=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25即可得出结论;(3)根据题意列出方程求解即可.【解答】解:(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;∴③当a=3时,352=1225=3×4×100+25,故答案为:3×4×100+25;(2)=100a(a+1)+25,理由如下:=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;(3)由题知,﹣100a=2525,即100a2+100a+25﹣100a=2525,解得a=5或﹣5(舍去),∴a的值为5.【点评】本题主要考查数字的变化规律,根据数字的变化规律得出=100a(a+1)+25的结论是解题的关键.20.(8分)(2022•舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【分析】(1)①先描点,然后画出函数图象;②利用数形结合思想分析求解;(2)结合函数图象增减性及最值进行分析说明;(3)结合函数图象确定关键点,从而求得取值范围.【解答】解:(1)①如图:②通过观察函数图象,当x=4时,y=200,当y值最大时,x=21;(2)该函数的两条性质如下(答案不唯一):①当2≤x≤7时,y随x的增大而增大;②当x=14时,y有最小值为80;(3)由图象,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,货轮进出此港口.【点评】本题考查函数的图象,理解题意,准确识图,利用数形结合思想确定关键点是解题关键.21.(8分)(2022•舟山)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】(1)过点C作CF⊥DE于点F,根据等腰三角形的性质可得∠DCF=20°,利用锐角三角函数即可解决问题;(2)根据横截面是一个轴对称图形,延长CF交AD、BE延长线于点G,连接AB,所以DE∥AB,根据直角三角形两个锐角互余可得∠A=∠GDE=20°,然后利用锐角三角函数即可解决问题.【解答】解:(1)如图,过点C作CF⊥DE于点F,∵CD=CE=5cm,∠DCE=40°.∴∠DCF=20°,∴DF=CD•sin20°≈5×0.34≈1.7(cm),∴DE=2DF≈3.4cm,∴线段DE的长约为3.4cm;(2)∵横截面是一个轴对称图形,∴延长CF交AD、BE延长线于点G,连接AB,∴DE∥AB,∴∠A=∠GDE,∵AD⊥CD,BE⊥CE,∴∠GDF+∠FDC=90°,∵∠DCF+∠FDC=90°,∴∠GDF=∠DCF=20°,∴∠A=20°,∴DG=≈≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.【点评】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.22.(10分)(2022•舟山)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第三组;(2)(1200﹣200)×(1﹣8.7%﹣43.2%﹣30.6%)=175(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;(3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).【点评】本题考查的是频数分布直方图和扇形统计图的知识,读懂频数分布直方图和利用统计图获取信息是解题的关键.23.(10分)(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.【分析】(1)把(1,0)代入抛物线的解析式求出a即可;(2)求出平移后抛物线的顶点关于原点对称点的坐标,利用待定系数法求解即可;(3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x﹣n+1)2﹣4,根据y1>y2,构建不等式求解即可.【解答】解:(1)∵y=a(x+1)2﹣4(a≠0)经过点A(1,0),∴4a﹣4=0,∴a=1,∴抛物线L1的函数表达式为y=x2+2x﹣3;(2)∵y=(x+1)2﹣4,∴抛物线的顶点(﹣1,﹣4),将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点(﹣1,﹣4+m),而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),把(1,4﹣m)代入y=x2+2x﹣3得到,1+2﹣3=4﹣m,∴m=4;(3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x﹣n+1)2﹣4,∵点B(1,y1),C(3,y2)在抛物线L3上,∴y1=(2﹣n)2﹣4,y2=(4﹣n)2﹣4,∵y1>y2,∴(2﹣n)2﹣4>(4﹣n)2﹣4,解得n>3,∴n的取值范围为n>3.【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,平移变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.24.(12分)(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.【分析】(1)利用等腰三角形的性质证明,再利用AC=AP,即可得出结论;(2)①由题意可得:∠CAB=∠B=45°,∠ACB=90°,AC=AP=BC,再求解∠ACP =∠APC=67.5°,∠CPB=112.5°,证明∠DPE=∠CPB=112.5°,从而可得答案;②先证明△ADP∽△ACB,可得∠APD=45°,DP∥CB,再证明MP=MD=MC=MN,∠EMP=45°,∠MPE=90°,从而可得出结论.【解答】解:(1)赞同,理由如下:∵△ABC是等腰直角三角形,∴AC=BC,∠A=∠B=45°,∴cos45°=,∵AC=AP,∴,∴点P为线段AB的“趣点”.(2)①由题意得:∠CAB=∠B=45°,∠ACB=90°,AC=AP=BC,∴=67.5°,∴∠BCP=90°﹣67.5°=22.5°,∴∠CPB=180°﹣45°﹣22.5°=112.5°,∵△DPE∽△CPB,D,A重合,∴∠DPE=∠CPB=112.5°,∴∠CPE=∠DPE+∠CPB﹣180°=45°;②点N是线段ME的趣点,理由如下:当点D为线段AC的趣点时(CD<AD),∴,∵AC=AP,∴,∵,∠A=∠A,∴△ADP∽△ACB,∴∠ADP=∠ACB=90°,∴∠APD=45°,DP∥CB,∴∠DPC=∠PCB=22.5°=∠PDE,∴DM=PM,∴∠MDC=∠MCD=90°﹣22.5°=67.5°,∴MD=MC,同理可得MC=MN,∴MP=MD=MC=MN,∵∠MDP=∠MPD=22.5°,∠E=∠B=45°,∴∠EMP=45°,∠MPE=90°,∴=,∴点N是线段ME的“趣点”.【点评】本题考查了等腰直角三角形的性质,锐角三角形函数的应用,相似三角形的判定与性质,三角形的外角的性质,等腰三角形的判定与性质,理解新定义的含义,掌握特殊几何图形的性质是解题的关键.。
浙江省嘉兴市 2022年中考数学真题试题第一卷〔共30分〕一、选择题:本大题共10个小题,每题3分,共30分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.2-的绝对值为〔 〕 A .2 B .2-C .12D .12-【答案】A. 【解析】试题解析:-2的绝对值是2, 即|-2|=2. 应选A . 考点:绝对值.2. 长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是〔 〕 A .4 B .5C .6D .9【答案】C.考点:三角形的三边关系.3. 一组数据a ,b ,c 的平均数为5,方差为4,那么数据2a -,2b -,2c -的平均数和方差分别是〔 〕 A .3,2 B .3,4C .5,2D .5,4【答案】B . 【解析】试题解析:∵数据a ,b ,c 的平均数为5, ∴13〔a+b+c 〕=5,∴13〔a-2+b-2+c-2〕=13〔a+b+c〕-2=5-2=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[〔a-5〕2+〔b-5〕2+〔c-5〕2]=4,∴a-2,b-2,c-2的方差=13[〔a-2-3〕2+〔b-2-3〕2+〔c--2-3〕2]=13[〔a-5〕2+〔b-5〕2+〔c-5〕2]=4.应选B.考点:1.方差;2.算术平均数.4. 一个正方体的外表展开图如下图,将其折叠成立方体后,“你〞字对面的字是〔〕A.中B.考C.顺D.利【答案】C.考点:正方体展开图.5. 红红和娜娜按如下图的规那么玩一次“锤子、剪刀、布〞游戏,以下命题中错误的选项是〔〕A.红红不是胜就是输,所以红红胜的概率为1 2B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为1 3D.娜娜胜的概率和两人出相同手势的概率一样【答案】A.【解析】试题解析:红红和娜娜玩“石头、剪刀、布〞游戏,所有可能出现的结果列表如下:红红娜娜石头剪刀布石头〔石头,石头〕〔石头,剪刀〕〔石头,布〕剪刀〔剪刀,石头〕〔剪刀,剪刀〕〔剪刀,布〕布〔布,石头〕〔布,剪刀〕〔布,布〕由表格可知,共有9种等可能情况.其中平局的有3种:〔石头,石头〕、〔剪刀,剪刀〕、〔布,布〕.因此,红红和娜娜两人出相同手势的概率为13,两人获胜的概率都为13,红红不是胜就是输,所以红红胜的概率为12,错误,应选项A符合题意,应选项B,C,D不合题意;应选A.考点:1.列表法与树状图法;2.命题与定理.6. 假设二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩那么a b-=〔〕A.1B.3C.14-D.74【答案】D.考点:二元一次方程组的解.7.假设平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,那么正确的平移方法是〔〕A.向左平移1个单位,再向下平移1个单位B.向左平移(221)个单位,再向上平移1个单位C21个单位D.向右平移1个单位,再向上平移1个单位【答案】D.【解析】试题解析:过B 作射线BC∥OA,在BC 上截取BC=OA ,那么四边形OACB 是平行四边形, 过B 作DH⊥x 轴于H ,∵B〔1,1〕,∴OB=22121=+,∵A〔2,0〕, ∴C〔1+2,1〕 ∴OA=OB,∴那么四边形OACB 是菱形,∴平移点A 到点C ,向右平移1个单位,再向上平移1个单位而得到, 应选D .考点:1.菱形的性质;2.坐标与图形变化-平移.8. 用配方法解方程2210x x +-=时,配方结果正确的选项是〔 〕 A .2(2)2x += B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=【答案】B .考点:解一元二次方程-配方法.9. 一张矩形纸片ABCD ,3AB =,2AD =,小明按所给图步骤折叠纸片,那么线段DG 长为〔 〕A .2B .22C .1D .2【答案】A .考点:矩形的性质.10. 以下关于函数2610y x x =-+的四个命题:①当0x =时,y 有最小值10;②n 为任意实数,3x n =+时的函数值大于3x n =-时的函数值;③假设3n >,且n 是整数,当1n x n ≤≤+时,y 的整数值有(24)n -个;④假设函数图象过点0(,)a y 和0(,1)b y +,其中0a >,0b >,那么a b <.其中真命题的序号是〔 〕 A .① B .② C .③ D .④【答案】C . 【解析】试题解析:∵y=x 2-6x+10=〔x-3〕2+1, ∴当x=3时,y 有最小值1,故①错误; 当x=3+n 时,y=〔3+n 〕2-6〔3+n 〕+10, 当x=3-n 时,y=〔n-3〕2-6〔n-3〕+10,∵〔3+n 〕2-6〔3+n 〕+10-[〔n-3〕2-6〔n-3〕+10]=0,∴n 为任意实数,x=3+n 时的函数值等于x=3-n 时的函数值,故②错误; ∵抛物线y=x 2-6x+10的对称轴为x=3,a=1>0,∴当x >3时,y 随x 的增大而增大, 当x=n+1时,y=〔n+1〕2-6〔n+1〕+10, 当x=n 时,y=n 2-6n+10,〔n+1〕2-6〔n+1〕+10-[n 2-6n+10]=2n-4, ∵n 是整数,∴2n -4是整数,故③正确;∵抛物线y=x 2-6x+10的对称轴为x=3,1>0,∴当x >3时,y 随x 的增大而增大,x <0时,y 随x 的增大而减小,∵y 0+1>y 0,∴当0<a <3,0<b <3时,a >b ,当a >3,b >3时,a <b ,当0<a <3,b >3时,a ,b 的大小不确定,故④错误; 应选C .考点:二次函数的性质.第二卷〔共90分〕二、填空题〔每题4分,总分值24分,将答案填在答题纸上〕 11. 分解因式:2ab b -= . 【答案】b 〔a-b 〕 【解析】试题解析:原式=b 〔a-b 〕 考点:因式分解-提公因式法. 12. 假设分式241x x -+的值为0,那么x 的值为 . 【答案】2综上,得x=2,即x 的值为2.考点:分式值为0的条件.13. 如图,小明自制一块乒乓球拍,正面是半径为8cm的O,90ABm=︒,弓形ACB〔阴影局部〕粘贴胶皮,那么胶皮面积为.【答案】〔32+48π〕cm2【解析】试题解析:连接OA、OB,∵AB=90°,∴∠AOB=90°,∴S△AOB=12×8×8=32,扇形ACB〔阴影局部〕=22036078π⨯⨯=48π,那么弓形ACB胶皮面积为〔32+48π〕cm2考点:1.垂径定理的应用;2.扇形面积的计算.14. 七〔1〕班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,那么投进球数的众数是.【答案】3球.考点:1.扇形统计图;2.众数.15. 如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BAC ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠= ,……按此规律,写出tan n BA C ∠= 〔用含n 的代数式表示〕.【答案】113,211n n -+. 【解析】试题解析:作CH⊥BA 4于H ,由勾股定理得,BA 422471=1+A 410△BA 4C 的面积=4-2-32=12, ∴12×17×CH=12, 解得,CH=1717, 那么A 4H=223A C CH -=131717, ∴tan∠BA 4C=4CH A H =113, 1=12-1+1, 3=22-2+1, 7=32-3+1, ∴tan∠BA n C=211n n -+.考点:1.解直角三角形;2.勾股定理;3.正方形的性质.16. 一副含30︒和45︒角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,12BC EF cm ==〔如图1〕,点G 为边BC ()EF 的中点,边FD 与AB 相交于点H ,此时线段BH 的长是 .现将三角板DEF 绕点G 按顺时针方向旋转〔如图2〕,在CGF ∠从0︒到60︒的变化过程中,点H 相应移动的路径长共为 .〔结果保存根号〕【答案】3.3. 【解析】试题解析:如图1中,作HM⊥BC于M,HN⊥AC于N,那么四边形HMCN是正方形,设边长为a.在Rt△ABC中,∵∠ABC=30°,BC=12,∴AB=12=8332,如图2中,当DG∥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=33+3,∴HH 1=BH-BH 1=93-15,当旋转角为60°时,F 与H 2重合,易知BH 2=63,观察图象可知,在∠CGF 从0°到60°的变化过程中,点H 相应移动的路径长=2HH 1+HH 2=183-30+[63-〔123-12〕]=123-18. 考点:旋转的性质.三、解答题 〔本大题共6小题,共66分.解容许写出文字说明、证明过程或演算步骤.〕17. 〔1〕计算:21(3)2(4)--⨯-;〔2〕化简:(2)(2)33mm m m +--⨯. 【答案】〔1〕5;〔2〕-4.考点:1.平方差公式;2.实数的运算;3.单项式乘单项式;4.负整数指数幂. 18. 小明解不等式121123x x ++-≤的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.【答案】x≥-5. 【解析】试题分析:根据一元一次不等式的解法,找出错误的步骤,并写出正确的解答过程即可. 试题解析:错误的选项是①②⑤,正确解答过程如下:去分母,得3〔1+x 〕-2〔2x+1〕≤6, 去括号,得3+3x-4x-2≤6, 移项,得3x-4x≤6-3+2, 合并同类项,得-x≤5, 两边都除以-1,得x≥-5. 考点:解一元一次不等式. 19. 如图,ABC ∆,40B ∠=︒.〔1〕在图中,用尺规作出ABC ∆的内切圆O ,并标出O 与边AB ,BC ,AC 的切点D ,E ,F 〔保存痕迹,不必写作法〕;〔2〕连接EF ,DF ,求EFD ∠的度数. 【答案】〔1〕作图见解析;〔2〕70°.⊙O 即为所求. 〔2〕如图2,连接OD ,OE , ∴OD⊥AB,OE⊥BC, ∴∠ODB=∠OEB=90°, ∵∠B=40°, ∴∠DOE=140°, ∴∠EFD=70°.考点:1.作图—复杂作图;2.三角形的内切圆与内心. 20. 如图,一次函数1y k x b =+〔10k ≠〕与反比例函数2k y x=〔20k ≠〕的图象交于点(1,2)A -,(,1)B m -.〔1〕求这两个函数的表达式;〔2〕在x 轴上是否存在点(,0)P n (0)n >,使ABP ∆为等腰三角形?假设存在,求n 的值;假设不存在,说明理由.【答案】(1) 反比例函数的解析式为y=-2x.一次函数的解析式为y=-x+1.14或17 【解析】试题分析:〔1〕利用待定系数法即可解决问题;〔2〕分三种情形讨论①当PA=PB 时,可得〔n+1〕2+4=〔n-2〕2+1.②当AP=AB 时,可得22+〔n+1〕2=〔32〕2.③当BP=BA 时,可得12+〔n-2〕2=〔32〕2.分别解方程即可解决问题;试题解析:〔1〕把A 〔-1,2〕代入y=2k x,得到k 2=-2,∴反比例函数的解析式为y=-2x. ∵B〔m ,-1〕在y=-2x上, ∴m=2,由题意11221k b =k b =-++-⎧⎪⎨⎪⎩,解得111k =b =-⎧⎨⎩,∴一次函数的解析式为y=-x+1.②当AP=AB 时,22+〔n+1〕2=〔22,∵n>0, ∴n=14③当BP=BA 时,12+〔n-2〕2=〔22,∵n>0, 17综上所述,1417 考点:反比例函数综合题.21. 小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2. 根据统计表,答复以下问题:〔1〕当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少? 〔2〕请简单描述月用电量与气温之间的关系;〔3〕假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.【答案】(1) 月平均气温最高值为30.6℃,最低气温为5.8℃;相应月份的用电量分别为124千瓦时和110千瓦时.(2) 当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;(3) 能,因为中位数刻画了中间水平.考点:1.条形统计图;2.用样本估计总体;3.折线统计图;4.中位数.22. 如图是小强洗漱时的侧面示意图,洗漱台〔矩形ABCD 〕靠墙摆放,高80AD cm =,宽48AB cm =,小强身高166cm ,下半身100FG cm =,洗漱时下半身与地面成80︒〔80FGK ∠=︒〕,身体前倾成125︒〔125EFG ∠=︒〕,脚与洗漱台距离15GC cm =〔点D ,C ,G ,K 在同一直线上〕.〔1〕此时小强头部E 点与地面DK 相距多少?〔2〕小强希望他的头部E 恰好在洗漱盆AB 的中点O 的正上方,他应向前或后退多少? 〔sin800.98︒≈,cos800.18︒≈,2 1.41≈,结果精确到0.1〕【答案】(1) 小强头部E 点与地面DK 相距约为144.5cm .(2) 他应向前10.5cm .试题解析:〔1〕过点F 作FN⊥DK 于N ,过点E 作EM⊥F N 于M .∵EF+FG=166,FG=100, ∴EF=66, ∵∠FK=80°,∴FN=100•sin80°≈98, ∵∠EFG=125°,∴∠EFM=180°-125°-10°=45°,∴FM=66•cos45°=332≈46.53, ∴MN=FN+FM≈114.5,∴此时小强头部E 点与地面DK 相距约为144.5cm .考点:解直角三角形的应用.23. 如图,AM 是ABC ∆的中线,D 是线段AM 上一点〔不与点A 重合〕.//DE AB 交AC 于点F ,//CE AM ,连结AE .〔1〕如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形; 〔2〕如图2,当点D 不与M 重合时,〔1〕中的结论还成立吗?请说明理由. 〔3〕如图3,延长BD 交AC 于点H ,假设BH AC ⊥,且BH AM =. ①求CAM ∠的度数;②当3FH =4DM =时,求DH 的长.【答案】〔1〕证明见解析〔2〕成立,理由见解析;〔3〕①30°.②1+5.试题解析:〔1〕证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.〔2〕结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.〔3〕①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴∥BH,MI=12 BH,∵BH⊥AC,且BH=AM.∴MI=12AM,MI⊥AC,∴∠CAM=30°.解得x=1+5或1-5〔舍弃〕,∴DH=1+5.考点:四边形综合题.24. 如图,某日的钱塘江观潮信息如表:按上述信息,小红将“交叉潮〞形成后潮头与乙地之间的距离s 〔千米〕与时间t 〔分钟〕的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米〞记为点(0,12)A ,点B 坐标为(,0)m ,曲线BC 可用二次函数21125s t bt c =++〔b ,c 是常数〕刻画. 〔1〕求m 的值,并求出潮头从甲地到乙地的速度;〔2〕11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?〔3〕相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?〔潮水加速阶段速度2(30) 125v v t=+-,v是加速前的速度〕.【答案】〔1〕m=30;0.4千米/分钟;〔2〕5分钟;〔3〕小红与潮头相遇到潮头离她1.8千米外共需要26分钟.〔3〕先求出s的解析式,根据潮水加速阶段的关系式,求出潮头的速度到达单车最高速度0.48千米/分钟时所对应的时间t,从而可知潮头与乙地之间的距离s,设她离乙地的距离为s1,那么s1与时间t的函数关系式为s1=0.48t+h〔t≥35〕,当t=35时,s1=s= 115,从而可求出h的值,最后潮头与小红相距1.8千米时,即s-s1=1.8,从而可求出t的值,由于小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,共需要时间为6+50-30=26分钟,试题解析:〔1〕由题意可知:m=30;∴B〔30,0〕,潮头从甲地到乙地的速度为:1230=0.4千米/分钟;〔2〕∵潮头的速度为0.4千米/分钟,∴到11:59时,潮头已前进19×0.4=7.6千米,设小红出发x分钟与潮头相遇,∴0.4x+0.48x=12-7.6,∴x=5∴小红5分钟与潮头相遇,〔3〕把〔30,0〕,C〔55,15〕代入s=1125t2+bt+c,解得:b=-225,c=-245,∴s=1125t2-225t-245∵v0=0.4,∴v=2125〔t-30〕+25,∴从t=35分〔12:15时〕开始,潮头快于小红速度奔向丙地,小红逐渐落后,当小红仍以0.48千米/分的速度匀速追赶潮头.设她离乙地的距离为s1,那么s1与时间t的函数关系式为s1=0.48t+h〔t≥35〕,当t=35时,s1=s=115,代入可得:h=-735,∴s1=1225t-735最后潮头与小红相距1.8千米时,即s-s1=1.8,∴1125t2-225t-245-1225t+735=1.8解得:t=50或t=20〔不符合题意,舍去〕,∴t=50,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,∴共需要时间为6+50-30=26分钟,∴小红与潮头相遇到潮头离她1.8千米外共需要26分钟. 考点:二次函数的应用.。
2017年浙江省嘉兴市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.2 B.﹣2 C.D.2.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.93.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,44.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利5.红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样6.若二元一次方程组的解为,则a﹣b=()A.1 B.3 C. D.7.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=39.一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()A.B.C.1 D.210.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④二、填空题(每题4分,满分2分,将答案填在答题纸上)11.分解因式:ab﹣b2= .12.若分式的值为0,则x的值为.13.如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O, =90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.14.七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是.15.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BAC= ,…按此规律,写出tan∠BAnC= (用含n的代数式表示).16.一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长为.(结果保留根号)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步.)17.(1)计算:()2﹣2﹣1×(﹣4);(2)化简:(m+2)(m﹣2)﹣×3m.18.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.19.如图,已知△ABC,∠B=40°.(1)在图中,用尺作出△ABC的内切圆,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.20.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求的值;若不存在,说明理由.21.小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.22.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)23.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.24.如图,某日的钱塘江观潮信息如表:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t ﹣30),v0是加速前的速度).2017年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9【考点】K6:三角形三边关系.【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.3.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,4【考点】W7:方差;W1:算术平均数.【分析】根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a ﹣2+b﹣2+c﹣2)的值;再由方差为4可得出数据a﹣2,b﹣2,c﹣2的方差.【解答】解:∵数据a,b,c的平均数为5,∴(a+b+c)=5,∴(a﹣2+b﹣2+c﹣2)=(a+b+c)﹣2=5﹣2=3,∴数据a﹣2,b﹣2,c﹣2的平均数是3;∵数据a,b,c的方差为4,∴ [(a﹣5)2+(b﹣5)2+(c﹣5)2]=4,∴a﹣2,b﹣2,c﹣2的方差= [(a﹣2﹣3)2+(b﹣2﹣3)2+(c﹣﹣2﹣3)2]= [(a﹣5)2+(b﹣5)2+(c﹣5)2]=4.故选B.4.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【考点】I8:专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.5.红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A .红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C .两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样【考点】X6:列表法与树状图法;O1:命题与定理.【分析】利用列表法列举出所有的可能,进而分析得出答案.【解答】解:红红和娜娜玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:石头剪刀布红红娜娜石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,故选项B,C,D不合题意;故选:A.6.若二元一次方程组的解为,则a﹣b=()A.1 B.3 C. D.【考点】97:二元一次方程组的解.【分析】将两式相加即可求出a﹣b的值.【解答】解:∵x+y=3,3x﹣5y=4,∴两式相加可得:(x+y)+(3x﹣5y)=3+4,∴4x﹣4y=7,∴x﹣y=,∵x=a,y=b,∴a﹣b=x﹣y=故选(D)7.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位【考点】L8:菱形的性质;Q3:坐标与图形变化﹣平移.【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作DH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选D.8.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3【考点】A6:解一元二次方程﹣配方法.【分析】把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可.【解答】解:∵x2+2x﹣1=0,∴x2+2x﹣1=0,∴(x+1)2=2.故选:B.9.一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()A.B.C.1 D.2【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先根据折叠的性质求出DA′、CA′和DC′的长度,进而求出线段DG 的长度.【解答】解:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=DC′=,故选A.10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④【考点】O1:命题与定理;H3:二次函数的性质.【分析】分别根据抛物线的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2﹣6(3+n)+10,当x=3﹣n时,y=(n﹣3)2﹣6(n﹣3)+10,∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(n﹣3)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2﹣6(n+1)+10,当x=n时,y=n2﹣6n+10,(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣4,∵n是整数,∴2n﹣4是整数,故③正确;∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,∴当x>3时,y随x的增大而增大,x<0时,y随x的增大而减小,∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a,b的大小不确定,故④错误;故选C.二、填空题(每题4分,满分24分,将答案填在答题纸上)11.分解因式:ab﹣b2= b(a﹣b).【考点】53:因式分解﹣提公因式法.【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).12.若分式的值为0,则x的值为 2 .【考点】63:分式的值为零的条件.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.13.如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O, =90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为(32+48π)cm2 .【考点】M3:垂径定理的应用;MO:扇形面积的计算.【分析】连接OA、OB,根据三角形的面积公式求出S△AOB,根据扇形面积公式求出扇形ACB的面积,计算即可.【解答】解:连接OA、OB,∵=90°,∴∠AOB=90°,∴S△AOB=×8×8=32,扇形ACB(阴影部分)==48π,则弓形ACB胶皮面积为(32+48π)cm2,故答案为:(32+48π)cm2.14.七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是3球.【考点】VB:扇形统计图;W5:众数.【分析】根据众数的定义及扇形统计图的意义即可得出结论.【解答】解:∵由图可知,3球所占的比例最大,∴投进球数的众数是3球.故答案为:3球.15.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C= ,…按此规律,写出tan∠BAnC=(用含n的代数式表示).【考点】T7:解直角三角形;KQ:勾股定理;LE:正方形的性质.【分析】作CH⊥BA4于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A4H,根据正切的概念求出tan∠BA4C,总结规律解答.【解答】解:作CH⊥BA4于H,由勾股定理得,BA4==,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H==,∴tan∠BA4C==,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BAnC=,故答案为:;.16.一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是12﹣12 .现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为12﹣18 .(结果保留根号)【考点】O4:轨迹;R2:旋转的性质.【分析】如图1中,作HM⊥BC于M,HN⊥AC于N,则四边形HMCN是正方形,设边长为a.在Rt△BHM中,BH=2HM=2a,在Rt△AHN中,AH==a,可得2a+=8,推出a=6﹣6,推出BH=2a=12﹣12.如图2中,当DG∥AB 时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2,由此即可解决问题.【解答】解:如图1中,作HM⊥BC于M,HN⊥AC于N,则四边形HMCN是正方形,设边长为a.在Rt△ABC中,∵∠ABC=30°,BC=12,∴AB==8,在Rt△BHM中,BH=2HM=2a,在Rt△AHN中,AH==a,∴2a+=8,∴a=6﹣6,∴BH=2a=12﹣12.如图2中,当DG∥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,∴HH1=BH﹣BH1=9﹣15,当旋转角为60°时,F与H2重合,易知BH2=6,观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2=18﹣30+[6﹣(12﹣12)]=12﹣18.故答案分别为12﹣12,12﹣18.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:()2﹣2﹣1×(﹣4);(2)化简:(m+2)(m﹣2)﹣×3m.【考点】4F:平方差公式;2C:实数的运算;49:单项式乘单项式;6F:负整数指数幂.【分析】(1)首先计算乘方和负指数次幂,计算乘法,然后进行加减即可;(2)首先利用平方差公式和单项式的乘法法则计算,最后合并同类项即可.【解答】解:(1)原式=3+×(﹣4)=3+2=5;(2)原式=m2﹣4﹣m2=﹣4.18.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.【考点】C6:解一元一次不等式.【分析】根据一元一次不等式的解法,找出错误的步骤,并写出正确的解答过程即可.【解答】解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.19.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.20.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论①当PA=PB时,可得(n+1)2+4=(n﹣2)2+1.②当AP=AB 时,可得22+(n+1)2=(3)2.③当BP=BA时,可得12+(n﹣2)2=(3)2.分别解方程即可解决问题;【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.∵B(m,﹣1)在Y=﹣上,∴m=2,由题意,解得,∴一次函数的解析式为y=﹣x+1.(2)∵A(﹣1,2),B(2,﹣1),∴AB=3,①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,∵n>0,∴n=0不合题意舍弃.②当AP=AB时,22+(n+1)2=(3)2,∵n>0,∴n=﹣1+.③当BP=BA时,12+(n﹣2)2=(3)2,∵n>0,∴n=2+.综上所述,n=﹣1+或2+.21.小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.【考点】VC:条形统计图;V5:用样本估计总体;VD:折线统计图;W4:中位数.【分析】(1)由每月的平均气温统计图和月用电量统计图直接回答即可;(2)结合生活实际经验回答即可;(3)能,由中位数的特点回答即可.【解答】解:(1)由统计图可知:月平均气温最高值为30.6℃,最低气温为5.8℃;相应月份的用电量分别为124千瓦时和110千瓦时.(2)当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;(3)能,因为中位数刻画了中间水平.22.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)【考点】T8:解直角三角形的应用.【分析】(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈114.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈18,CG=15,∴OH=24+15+18=57,OP=OH﹣PH=57﹣46.53=10.47≈10.5,∴他应向前10.5cm.23.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB 交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=,DM=4时,求DH的长.【考点】LO:四边形综合题.【分析】(1)只要证明AE=BM,AE∥BM即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出=,可得=,解方程即可;【解答】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴=,∴=,解得x=1+或1﹣(舍弃),∴DH=1+.24.如图,某日的钱塘江观潮信息如表:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t ﹣30),v0是加速前的速度).【考点】HE:二次函数的应用.【分析】(1)由题意可知:经过30分钟后到达乙地,从而可知m=30,由于甲地到乙地是匀速运动,所以利用路程除以时间即可求出速度;(2)由于潮头的速度为0.4千米/分钟,所以到11:59时,潮头已前进19×0.4=7.6千米,设小红出发x分钟,根据题意列出方程即可求出x的值,(3)先求出s的解析式,根据潮水加速阶段的关系式,求出潮头的速度达到单车最高速度0.48千米/分钟时所对应的时间t,从而可知潮头与乙地之间的距离s,设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),当t=35时,s1=s=,从而可求出h的值,最后潮头与小红相距1.8千米时,即s﹣s1=1.8,从而可求出t的值,由于小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,共需要时间为6+50﹣30=26分钟,【解答】解:(1)由题意可知:m=30;∴B(30,0),潮头从甲地到乙地的速度为:千米/分钟;(2)∵潮头的速度为0.4千米/分钟,∴到11:59时,潮头已前进19×0.4=7.6千米,设小红出发x分钟与潮头相遇,∴0.4x+0.48x=12﹣7.6,∴x=5∴小红5分钟与潮头相遇,(3)把(30,0),C(55,15)代入s=t2+bt+c,解得:b=﹣,c=﹣,∴s=t2﹣﹣∵v0=0.4,∴v=(t﹣30)+,当潮头的速度达到单车最高速度0.48千米/分钟,此时v=0.48,∴0.48=(t﹣30)+,∴t=35,当t=35时,s=t2﹣﹣=,∴从t=35分(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,当小红仍以0.48千米/分的速度匀速追赶潮头.设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),当t=35时,s1=s=,代入可得:h=﹣,∴s1=﹣最后潮头与小红相距1.8千米时,即s﹣s1=1.8,∴t2﹣﹣﹣+=1.8解得:t=50或t=20(不符合题意,舍去),∴t=50,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,∴共需要时间为6+50﹣30=26分钟,∴小红与潮头相遇到潮头离她1.8千米外共需要26分钟,【素材积累】1、人生只有创造才能前进;只有适应才能生存。