分式的约分、通分专项练习题
- 格式:doc
- 大小:136.17 KB
- 文档页数:2
分式的约分通分一. 填空题1. 约分:=-++22112m m m ;=+-+2311a a a ;=⋅-+-2321213n an n ba ab (n 为正整数) 2. 计算:=-⋅224)2()2(c ab c ;=⋅-⋅-4222)1()()(ab a b b a =-÷-⋅-)()()(2222xy x y y x ;=⋅-112112)2()2(yx x y ;=÷62332)2()43(a bc ab c ;=-⋅+-÷-222222)(xy x xy y xy x x xy 。
二. 判断题下列运算正确的打“√”,错误的打“×”:1. y x xy x x y y x y x y y x x +=÷+=+⋅+÷+2122( )2.33632)(zy x z y x +=+( ) 3.249223)(z y x z y x =( )4.n n n a b a b 2422)(-=-(n 为正整数)( )5.69323278)32(ab a b -=-( ) 三. 选择题1. 已知3:=y x ,则分式222)(yx y x --的值是( )A.43B.2627C.21D.1314 2. 在分式x a 3,y x xy 226+,2222y x y x +-,2)(y x x y --,2233yx y x -+中,最简分式有( ) A. 1个 B. 2个 C. 3个 D. 4个 3. 下列各式正确的是( )A.y x yx yx y x +-=+-2222 B.222)11(1212-+-=--++x x x x x x C.b b a b a 2+= D.2222)(b a c b a c +=+ 四. 计算1. )6()43(8232y x z y x x -⋅-⋅ 2.223332)()()3(a b a b b a b a x +-÷-⋅+ 3.222222)()(yb x a ab x b a x ab y b a y --⋅++-+++4.)5(2310396962222-+⋅---÷--+-x x x x x x x x x 5.x x x x xx x --+⋅+÷+--36)3(4462226.)]2(11[1122322-+÷+-÷+++x x x x x x x 7.214415610722322++-÷+++⋅++++a a a a a a a a a a8.3222)()(b a a ab b a -⋅-9.2224422222322)(1)2()(x ax a x a x ax a x a x a +-⋅-++÷+-10.ab c b a bc c b a ac c b a ab c b a 2222222222222222+-++--÷-+---+11.])([)(2222y x y xy y xy y x -+-÷-+12.yx yx x y x y 21312313232+-⋅-+13.112244442222232223-+÷+--+-⋅+++++x x x x x x x x x x x x14.)2(44124416222+÷--÷+--x x x x x x 15.32242227]2)([)(])(3[a b a ab a b a b a -÷-⋅+-16.2222322226535244)28(a ab b ba ab b b ab b a b a +-⋅--++÷-,其中21-=a ,41=b 。
初二上册数学分式通分约分练习题在初二上册数学课程中,分式通分约分是一个重要的学习内容。
通过练习题的方式,能够帮助学生巩固理论知识,提高解题能力。
以下是一些例题,帮助学生进行练习。
例题1:通分将以下的两个分式通分:a) $\frac{2}{3}$,$\frac{5}{6}$解析:首先确定两个分式的分母乘积,得到6。
然后根据乘法法则,对分子和分母进行相同的乘法操作。
通分之后的结果为:$\frac{4}{6}$,$\frac{5}{6}$。
例题2:约分将以下的分式约分到最简形式:a) $\frac{8}{12}$解析:首先找到分子和分母的最大公因数,这里是4。
然后用分子和分母同时除以最大公因数,得到约分后的结果:$\frac{2}{3}$。
通过这些例题的练习,初二学生可以更好地理解分式的通分和约分。
接下来是更多的练习题:练习题1:通分与约分将以下的分式进行通分和约分:a) $\frac{3}{8}$,$\frac{2}{5}$练习题2:通分与约分将以下的分式进行通分和约分:a) $\frac{4}{9}$,$\frac{3}{12}$练习题3:通分与约分将以下的分式进行通分和约分:a) $\frac{7}{10}$,$\frac{9}{20}$通过这些练习题,学生可以加深对数学分式的通分和约分的理解,并提高解题的能力。
在处理练习题时,学生应该注意以下几点:1. 确定通分的分母乘积,将分子和分母进行相同的乘法操作。
2. 确定约分的最大公因数,将分子和分母同时除以最大公因数。
通过不断地练习,学生可以熟练地掌握数学分式的通分和约分,为今后的学习打下基础。
希望学生能够认真对待这些练习题,提高自己对数学的理解能力,取得优异的成绩!。
分式约分与通分的练习题以下是关于分式约分与通分的练习题,共计2000字:1. 约分练习题在本节中,我们将练习如何约分分式。
约分是指将一个分数的分子和分母同时除以它们的公约数,以得到一个与原分数相等但分子和分母不能再被约分的新分数。
(略去小标题,直接进入练习题)题一:将下列分数约分到最简形式:a) 10/50首先,我们观察到10和50它们有公约数10。
因此,我们将10/50约分为1/5。
b) 12/36观察到12和36它们有公约数12。
因此,我们将12/36约分为1/3。
题二:约分混合数a) 16 1/4将16写成分数的形式,得到16/1,与1/4组合得到65/4。
观察到65和4它们有公约数1。
因此,我们将65/4约分为16 1/4。
题三:约分小数a) 0.7将0.7写成分数的形式,得到7/10。
观察到7和10它们没有公约数,因此7/10已经是最简形式,无法再约分。
2. 通分练习题在本节中,我们将练习如何将两个分数通分,即找到一个新的分母,使得两个分数的分母相同,从而便于进行比较和运算。
(略去小标题,直接进入练习题)题一:将下列分数通分:a) 1/2, 2/3观察到2和3它们没有公约数,因此两个分数的最小公倍数为2×3=6。
将1/2分母扩大为6,得到3/6。
将2/3分母扩大为6,得到4/6。
题二:将分数与混合数通分:a) 1/4, 3 1/2观察到4和2它们有公约数2。
因此,我们将3 1/2写成分数形式,得到7/2。
两个分数的最小公倍数为4×2=8。
将1/4分母扩大为8,得到2/8。
将7/2分母扩大为8,得到28/8。
题三:将分数与小数通分:a) 3/5, 0.2观察到5和2它们没有公约数,因此两个数的最小公倍数为5×2=10。
将3/5分母扩大为10,得到6/10。
将0.2转化为分数形式,得到2/10。
3. 联合练习题:约分与通分结合应用在本节中,我们将结合练习约分和通分操作,以解决更复杂的问题。
初中数学分式的约分通分综合练习题(附答案)初中数学分式的约分通分综合练题一、单选题1.下列分式中,不论$x$取何值,一定有意义的是()frac{x-1}{x-1}\cdot\frac{x+1}{x-1}$A。
$\frac{x+1}{x}$B。
$x$C。
$\frac{x^2-1}{x}$D。
$\frac{x^2+1}{x}$2.下列代数式中,是分式的为()A。
$\frac{1}{2}$B。
$\frac{x}{3}$C。
$\frac{x}{2}-y$D。
$\frac{5}{x^3}$3.下列各式中,是分式的是()A。
$\frac{2x+1}{x(x-3)}$B。
$2$C。
$\frac{x}{\pi-2}$D。
$\frac{1}{3x^2}$4.当分式$\frac{x}{2x-1}$无意义时,$x$的值是()A。
$2$B。
$-\frac{1}{2}$C。
$0$D。
$1$5.下列各式正确的是()A。
$\frac{b+xa}{b+x}=\frac{a}{b+1}$B。
$\frac{y^2n}{n-ax}=\frac{y}{x^2}$C。
$\frac{n}{ma}=\frac{1}{a}$($a\neq 0$)D。
$m=m-a$6.下列三个分式$\frac{1}{2x^2}$,$\frac{4(m-n)}{3x}$,$\frac{2x+4x^2y}{x^2-1}$,的最简公分母是()A。
$4(m-n)x$B。
$2(m-n)x^2$C。
$\frac{1}{4}x^2(m-n)$D。
$4(m-n)x^2$7.计算$\frac{(x+y)^2-(x-y)^2}{4xy}$的结果为()A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{4}$D。
$0$8.下列分式:$\frac{3x}{-x^2}$,$\frac{x-y}{x^2+y^2}$,$\frac{x+y}{xy+x}$,$\frac{2x+4x^2y}{x^2-1}$,其中是最简分式的有()A。
分式通分练习题及答案【篇一:分式的约分、通分专项练习题】t>1.不改变下列分式的值,使分式的分子、分母首相字母都不含负号。
4.约分6x2y?2xy2(a?b)2?c216a4b2c52b?ab①2 ②③④ 22342①?y?x②??x?yx?2y③?x?y?x?y约分练习:1.根据分数的约分,把下列分式化为最简分式:826?a?b?2a212a =_____;125a2bc326a?b45ab2c=_______13a?b=__________13a2?b2=________ 2、约分⑴3a3b3c12ac2⑵ ?x?y?yxy2 ⑶ x2?xyx2?y2x?y2 ⑷x?y23、约分:;?2?252321?.xx2?5x?2?.a?4a?3a2?a?6(3) ?32abc24a2b3d?15(a?b)2a2?abx2(4) ?25(a?b) (5) a?b; (6) ?x?24?x2;a?2a⑤2a?2b4a2?4b25.约分x2?6x?9x2?92?4x?3x2?x?6x2y?xy22xy1a?b?c⑥m3?2m2?mm2?1 a2?9a2?6a?9 2?7xx2 49?2m?2m?11?m9x?y12abc2y(2y?x)415mn2 ⑦6x(x?2y)3 ⑧?10m2n5mn ?x?y??a?b?3x2?3x?18x?y2a?b x2?9212a3?y?x?27ax?y1?x2x2?3x?26.约分:2.通分:(1)(1);(2);(3);(4).x12x12x,(2); ,,,22222(2x?4)6x?3xx?4x?1x?3x?2(1);(2); (1);(2).7.先化简,再求值:4x3y?12x2y2?9xy34x3?9xy2,其中x=1,y=1通分练习: 1. 通分:(1)y2x,x13y2,4xy;3);(4)3.通分:(1)x?y;2y2x3x?y (2)x?1;?x2?x?1 (3)1b4a2,2ac(4)29?3a,a?1a2?9(5)111(a?b)(b?c),(b?c)(c?a),(a?c)(a?b)4.通分:(1)y2x,z3y,3x4z;(2)3bc2a1254a3,6ab?3b2c;(3)?8x4y,3x2y3z,6xz2。
初二约分和通分练习题在数学学习中,约分和通分是非常基础而重要的概念。
通过约分,我们可以将一个分数化简为最简形式,而通分则帮助我们将不同分母的分数转化为相同分母的分数,方便进行比较和计算。
本文将为大家提供一些初二约分和通分的练习题,帮助大家巩固和加深理解这两个概念。
练习题1:约分1. 将 12/18 约分为最简形式。
解析:我们可以发现 12 和 18 的公约数为 6,所以可以将分子和分母都除以 6,得到 2/3。
答案:2/32. 将 35/70 约分为最简形式。
解析:我们可以发现 35 和 70 的公约数为 35,所以可以将分子和分母都除以 35,得到 1/2。
答案:1/23. 将 63/81 约分为最简形式。
解析:我们可以发现 63 和 81 的公约数为 9,所以可以将分子和分母都除以 9,得到 7/9。
答案:7/9练习题2:通分1. 将 1/5 和 3/8 进行通分。
解析:我们可以找到两个分数的最小公倍数为 40,所以将分子和分母分别乘以对方的倍数,得到 8/40 和 15/40。
答案:8/40 和 15/402. 将 2/3、5/6 和 3/10 进行通分。
解析:我们可以找到三个分数的最小公倍数为 30,所以将分子和分母分别乘以对方的倍数,得到 20/30、25/30 和 9/30。
答案:20/30、25/30 和 9/303. 将 4/7 和 1/3 进行通分。
解析:我们可以找到两个分数的最小公倍数为 21,所以将分子和分母分别乘以对方的倍数,得到 12/21 和 7/21。
答案:12/21 和 7/21练习题3:综合练习1. 计算 2/3 + 3/4。
解析:首先进行通分,最小公倍数为 12,所以得到 8/12 + 9/12,相加得到 17/12。
需要进一步约分,得到最简形式 1 5/12。
答案:1 5/122. 计算 3/4 - 1/2。
解析:首先进行通分,最小公倍数为 4,所以得到 3/4 - 2/4,相减得到 1/4。
中考数学专项练习分式的约分(含解析)【一】单项选择题1.计算a÷a×的结果是〔〕A.aB.1C.D.a22.计算的结果是〔〕A.B.C. yD.x3.以下计算中,正确的选项是〔〕A.B.C.D.4.化简分式的结果为〔〕A.B.C.D.5.的分子与分母的公因式是()bB.2abC.4a2b2D.2a2b26.以下分式化简正确的选项是〔〕A.B.=C.=D.7.以下约分正确的选项是〔〕A.=B.=0 C.=x3 D.=8.以下四个分式中,是最简分式的为〔〕A.B.C.D.9.以下各式中,约分后得的是〔〕A.B.C.D.10.计算·〔-〕·〔〕的结果是〔〕B.C.-D.-11.以下分式约分正确的选项是〔〕A.=a2 B.=1 C.=D.=12.化简的结果是〔〕A.B.C.D.13.计算:的结果是〔〕A.aB.bC.﹣bD.114.计算(a-4)·的结果是〔〕4B.a-4C.-a+4D.-a-4【二】填空题15.化简:=________.16.化简:÷〔﹣1〕•a=________17.化简的结果是________.18.计算:﹣=________.19.把﹣4m写成分式的形式,假设分母是﹣2mn2 ,那么分子是____ ____.20.约分:=________;化简:=________.21.计算的结果是________.22.化简分式的结果为________.【三】计算题23.计算:24.化简以下各式.〔1〕;〔2〕;〔3〕;〔4〕;〔5〕.25.化简:.26.先化简分式,然后在0,1,2三个数值中选择一个合适的a的值代入求值.27. ,求的值.28.化简:〔1〕;〔2〕【四】解答题29.〔1〕计算:;〔2〕请从以下三个代数式中任选两个构成一个分式,并化简该分式.2x+6,x2+6x+9,x2﹣9.30.问题:当a为何值时,分式无意义?小明是这样解答的:解:因为,由a﹣3=0,得a=3,所以当a=3时,分式无意义.你认为小明的解答正确吗?如不正确,请说明错误的原因.31.对分式进行变形:甲同学的解法是: = =a-b;乙同学的解法是: = ==a-b.请判断甲、乙两同学的解法是否正确,并说明理由.【五】综合题32.化简:〔1〕〔2〕〔3〕〔4〕.33.将以下各式约分的结果填在横线上.〔1〕﹣=________;〔2〕=________;〔3〕=________;〔4〕=________.【一】单项选择题1.计算a÷a×的结果是〔〕A.aB.1C.D.a2【考点】约分,分式的乘除法【解析】【分析】先把除化为乘(除以一个不为零的数,等于乘以它的倒数),再约分即可。
初中数学分式的约分通分综合练习题一、单选题1.下列分式中,不论x 取何值,一定有意义的是( ) A.11x x -+ B.1x x - C.211x x +- D.211x x -+2.下列代数式中,是分式的为( ) A.12 B. 3x C. 2xy - D.5x3.下列各式中,是分式的是( ) A.213x x +- B.2x C.π2x- D.213x4.当分式21xx -无意义时,x 的值是( ) A.12 B.12- C.0 D.15.下列各式正确的是( ) A.11b x ab x b ++=++ B.22y y x x = C.(0)n naa m ma =≠ D.n n am m a -=-6.下列三个分式21513,,24()x x m n x --,的最简公分母是( )A.()4m n x -B.()22m n x -C.()214x m n - D.()24m n x -7.计算()()224x y x y xy +--的结果为( ) A.1 B.12 C.14 D.08.下列分式:22226,,,3xy y x x y x x y x y --+-+2221,2421xy xx x x y x x +-+++,其中是最简分式的有( )A.1个B.2个C.3个D.4个9.分式11x --可变形为( ) A.11x - B.11x + C.11x -+ D.11x --10.将分式2x yx y +中,x y 的值同时扩大为原来的3倍,则分式的值( )A.扩大3倍B.缩小为原来的19C.缩小为原来的13D.不变 11.下列约分正确的是( ) A.632a a a = B. a x a b x b +=+ C. 22a b a b++ D. 1x y x y --=-+ 12.在下面的分式变形时,不正确的是( ) A. a a b b -=- B.a a b b -=-- C. a a b b =-- D. a a b b--= 13.下列分式是最简分式的是( ) A.24xy x B.426x - C.33x + D.22x y x y -- 14.在下列分式:①223a a ++②22a b a b --③412()a a b -④12x -中,最简分式的个数为( ) A.1B.2C.3D.4 15.分式223a a b-的分母经过通分后变成()()22a b a b -+那么分子应变为( ) A.()()26a a b a b -+ B.()2a b -C.()6a a b -D..()6a a b + 16.如果把分式2y x y+中x 和y 都扩大2倍,那么分式的值( ) A.不变 B.缩小12C.扩大2倍D.扩大4倍 17.下列各式变形正确的是( ) A.2121a a=++ B.21111a a a +=++ C.x y x y x y y x-++=-- D.2111a a a -=-+ 18.计算22()()4x y x y xy+--的结果为( )A.1B. 12C. 14D.0 19.下列各式从左到右的变形一定正确的是( ) A.22222439x x y y= B.2233c c a b a b=-++ C.x y y x x y y x--=++ D.2x x y xy y y y y ⋅==⋅ 20.若,x y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A.2x x y +- B.22y x C.3223y x D.222()y x y - 二、解答题21.先化简,在求值:22344(2)x xy y x y -+-其中2,3x y =-= 三、计算题22.已知分式2321x x --,求: (1)当x 为何值时,此分式有意义;(2)当x 为何值时,此分式无意义.23.先约分,再求值:32322444a ab a a b ab --+,其中12,2a b ==-. 四、填空题24.分式31x a x +-中,当x a =-时,下列结论正确的是 .(填序号) ①分式的值为零;②分式无意义;③若13a ≠-,分式的值为零;④若13a ≠分式的值为零. 25.在式子231235,,,π46xy abc a x +10,,978x y x y++中,分式有 个. 26.化简:22211x x x x x x+++-=+ . 27.将分式,32b ab a c-通分,依次为 .28.化简:22x y y x -=- . 29.分式322312,,,32x a m n x x a b m n x ++-+-中,最简分式的个数是 . 30.不改变分式的值,把分式0.10.20.3x y y++的分子、分母各项系数都化为整数为 . 31.分式2213,,ab a b abc的最简分母是 . 32.分式22,b a b a ab a ab ---+的最简公分母是 . 33.对分式2333123,,234a bc ab a bc进行通分,它们的最简公分母为 . 参考答案1.答案:D解析:选项A ,当1x =-时,11x x -+没有意义选项B ,当0x =时,1x x-没有意义选项C ,当1x =±时,211x x +-没有意义选项D ,分母21x +恒大于0. 2.答案:D 解析:选项A 中,12是单项式,属于整式;选项B 中,3x 是单项式,属于整式;选项C 中,2x y -分母中不含字母,是整式;选项D 中,5x 分母中含有字母,是分式 3.答案:A 解析:212π23x x x -,,的分母中均不含有字母,因此它们是整式,而不是分式;213x x +-的分母中含有字母,因此是分式.故选A.4.答案:A 解析:分式21x x -无意义,210x ∴-=,解得12x =.故选A 5.答案:C解析:根据分式的基本性质来判别,只有选项C 是正确的故选C.6.答案:D 解析:分式21513,,24()x x m n x--的分母分别是()224,x m x n -,,故最简公分母是()24m n x -.故选D.7.答案:A解析:原式()()4x y x y x y x y xy ++-+-+=2214x y xy⋅==. 8.答案:A 解析:623xy y x-=-,22y x x y x y -=---,212424xy x y x x y xy ++=++,2211211x x x x x --=+++,都不是最简分式;22x y x y++是最简分式,故选A. 9.答案:A 解析:1111x x -=--.故选A 10.答案:B 解析:把分式2x y x y +中,x y 的值同时扩大为原来的3倍为()2233933x y x y x y x y ++=⋅219x y x y+=⋅,则分式的值缩小为原来的19.故选B. 11.答案:D解析:选项A 中,原式4a =,故本选项错误;选项B 中,不能化简,故本选项错误;选项C 中,不能化简,故本选项错误;选项D 中,()1x y x y x y x y---+=-++,故本选项正确. 12.答案:B解析:选项A 中,a ab b-=-,变形正确,不合题意; 选项B 中,a a b b-=--,变形错误,符合题意; 选项C 中,a a b b=--,变形正确,不合题意; 选项D 中,a a b b--=,变形正确,不合题意; 13.答案:C 解析:A 选项,244xy y x x =,不是最简分式;B 选项,42263x x =--,不是最简分式;C 选项,33x +是最简分式;D 选项,()()22x y x y x y x y x y --=-+-1x y=+,不是最简分式.故选C. 14.答案:B解析:①④中分子分母没有公因式,是最简分式.②中22()()a b a b a b a b a b --=-+-,有公因式()a b -,③中4412()43()a aa b a b =-⨯-,有公约数4,所以②③不是最简分式故选B15.答案:C 解析:222332()6()()()2()2()()a a ab a a b a b a b a b a b a b a b --==-+---+故选C 16.答案:A解析: 分别用2,2x y 去代换原分式中的,x y 得2242222()y y y x y x y x y ⨯==+++,可见新分式与原分式相等.17.答案:D解析: 选项A 中,2121a a ≠++,此选项错误;选项B 中,21111a a a +≠++,此选项错误;选项C 中,x y x y x y y x -++=--,此选项错误;选项D 中,()()211111a a a a a +--=++1a =-,此选项正确. 18.答案:A 解析:原式()()22144x y x y x y x y x y xy xy++-+-+⋅=== 19.答案:D 解析:选项A 中,22222639x x y y =,错误;选项B 中,2233c c a b b a=-+-,错误;选项C 中,x y x y x y y x --=++,错误;选项D 中,2x x y xy y y y y ⋅==⋅,正确.故选D. 20.答案:D解析:将,x y 的值均扩大为原来的3倍,A 选项,23233x x x y x y ++≠--,错误;B 选项,22629y y x x≠,错误;C 选项3322542273y y x x≠,错误;D 选项22221829()()y y x y x y =--,正确;故选D. 21.答案:2223344(2)1(2)(2)2x xy y x y x y x y x y-+-==--- 把2,3x y =-=代入,得11122238x y ==----⨯ 解析:22.答案:(1)当分母210x -≠,即1x ≠且1x ≠-时,分式2321x x --有意义. (2)当分母210x -=,且1x =或1x =-时,分式2321x x --无意义. 解析: 23.答案:原式2222(4)(44)a a b a a ab b -=-+2(2)(2)(2)a b a b a b +-=-22a b a b+=-. 当12,2a b ==-时,原式122()121322()2+⨯-==-⨯-. 解析:24.答案:③解析:由310x -≠,得13x ≠,故把x a =-代入分式31x a x +-中,当x a =-且13a -≠,即13a ≠-时,分式的值为零.25.答案:3 解析:式子1510,,96x a x y++的分母中含有字母,是分式.其他的式子分母中不含字母,不是分式.26.答案:0 解析:27.答案:26bc ac和236a b ac - 解析:两个分式分母分别为3,2a c ,未知数系数的最小公倍数为326⨯=,,a c 的最高次数为1,∴最简公分母为6ac ,将,32b ab a c -通分依次为26bc ac和236a b ac -. 28.答案:1x y-+ 解析: 221()()x y x y y x x y x y x y--==---+-+ 29.答案:2解析:321x x x =,221m n m n m n +=--,∴最简分式是312,32a x a b x+-+. 30.答案:2310x y y++ 解析: 要想将分式0.10.20.3x y y++的分子、分母各项系数都化为整数,可将分子、分母同乘10,即原式()()100.10.22100.3310x y x y y y⨯++==⨯++. 31.答案:2a bc解析:最简公分母2,,ab a b abc 的最高次幂的积,即为2a bc . 32.答案:()()a a b a b +-解析:分式22,b a b a ab a ab---+的分母分别是22(),()a ab a a b a ab a a b -=-+=+,故最简公分母是()()a a b a b +-33.答案:33312a b c解析:分母23332,3,4a bc ab a bc 中,未知数系数2,3,4的最小公倍数为12,字母,,a b c 的最高次幂均为3,所以它们的最简公分母为33312a b c .。
分式的通分与约分(培优训练)知识解读1.约分步骤:(1)分子、分母都是单项式第一步:判断结果的符号,整个分式、分子和分母的负号个数之和,奇数个为负,偶数个为正;第二步:约去公因式,系数与系数约分,同样的字母与同样的字母分别约分。
(2)分子、分母是多项式第一步:分别将分子、分母因式分解第二步:分子、分母约去公因式注意:最高次项系数为负数的,可应用分式性质将最高次项系数化为正数后再因式分解。
2.找寻最大公因式的方法找寻分子、分母最大公因式的步骤:( 1)系数,找最大条约数;(2 )同样式子,找最低次幂。
假如分子或分母是多项式,要先进行因式分解,再找公因式。
二、通分1.通分步骤(1)确立几个分式的最简公分母;(2)将几个分式的分子、分母同时乘同一个整式,使得全部分式的分母都化成最简公分母。
2.找寻最简公分母的方法(1)分母为单项式①系数取单项式中全部系数的最小公倍数作为最简公分母的系数;②取单项式中的每个字母出现的最高次幂作为最简公分母中该字母的次数。
(2)分母为多项式:①将每个分母因式分解;②找出每个出现的因式的最高次幂,它们的积为最简公分母的因式;③如有系数,方法同上。
培优教案典例示范一、约分例1约分:【追踪训练 1】约分:二、先化简,才能简化求值过程例2 计算:【追踪训练 2】先化简,再求值:三、通分例3通分【追踪训练 3】通分:四、分式的特别求值技巧例 4假如,则=。
【追踪训练 4】已知,求的值。
五、设参数求代数值例 5已知,求的值。
【追踪训练 5】若是()A.2B.-2C.3D.-3比赛链接例 6已知,知足,则的值为()A.1B.C.D.【追踪训练 6】若则的值为()A. B. C. D.直击中考1.已知实数知足,则的结果是()A. B. C. D.2.约分:3.已知,求的值4.已知的值5.一项工程,由甲队独自做填能够达成,由乙队独自做填能够达成。
(1)乙队一天能够做多少?(2)若甲队做 m 填,乙队做 n 天,一共能够达成多少?(3)甲和乙两队一同做,几日能够达成工程的?6.先将分式约分,而后辈入你喜爱的一个值求分式的值,下边是小明的解题过程:你以为小明的解题过程有错误吗?假如有错误,支犯错误的地方及原由,并写出正确的解答过程。
初中数学分式的约分通分综合练习题一、单选题1.下列分式中,不论x 取何值,一定有意义的是( ) A.11x x -+ B.1x x - C.211x x +- D.211x x -+2.下列代数式中,是分式的为( ) A.12 B. 3x C. 2xy - D.5x3.下列各式中,是分式的是( ) A.213x x +- B.2x C.π2x- D.213x4.当分式21xx -无意义时,x 的值是( ) A.12 B.12- C.0 D.15.下列各式正确的是( ) A.11b x ab x b ++=++ B.22y y x x = C.(0)n naa m ma =≠ D.n n am m a -=-6.下列三个分式21513,,24()x x m n x --,的最简公分母是( )A.()4m n x -B.()22m n x -C.()214x m n - D.()24m n x -7.计算()()224x y x y xy +--的结果为( ) A.1 B.12 C.14 D.08.下列分式:22226,,,3xy y x x y x x y x y --+-+2221,2421xy xx x x y x x +-+++,其中是最简分式的有( )A.1个B.2个C.3个D.4个9.分式11x --可变形为( ) A.11x - B.11x + C.11x -+ D.11x --10.将分式2x yx y +中,x y 的值同时扩大为原来的3倍,则分式的值( )A.扩大3倍B.缩小为原来的19C.缩小为原来的13D.不变 11.下列约分正确的是( ) A.632a a a = B. a x a b x b +=+ C. 22a b a b++ D. 1x y x y --=-+ 12.在下面的分式变形时,不正确的是( ) A. a a b b -=- B.a a b b -=-- C. a a b b =-- D. a a b b--= 13.下列分式是最简分式的是( ) A.24xy x B.426x - C.33x + D.22x y x y -- 14.在下列分式:①223a a ++②22a b a b --③412()a a b -④12x -中,最简分式的个数为( ) A.1B.2C.3D.4 15.分式223a a b-的分母经过通分后变成()()22a b a b -+那么分子应变为( ) A.()()26a a b a b -+ B.()2a b -C.()6a a b -D..()6a a b + 16.如果把分式2y x y+中x 和y 都扩大2倍,那么分式的值( ) A.不变 B.缩小12C.扩大2倍D.扩大4倍 17.下列各式变形正确的是( ) A.2121a a=++ B.21111a a a +=++ C.x y x y x y y x-++=-- D.2111a a a -=-+ 18.计算22()()4x y x y xy+--的结果为( )A.1B. 12C. 14D.0 19.下列各式从左到右的变形一定正确的是( ) A.22222439x x y y= B.2233c c a b a b=-++ C.x y y x x y y x--=++ D.2x x y xy y y y y ⋅==⋅ 20.若,x y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A.2x x y +- B.22y x C.3223y x D.222()y x y - 二、解答题21.先化简,在求值:22344(2)x xy y x y -+-其中2,3x y =-= 三、计算题22.已知分式2321x x --,求: (1)当x 为何值时,此分式有意义;(2)当x 为何值时,此分式无意义.23.先约分,再求值:32322444a ab a a b ab --+,其中12,2a b ==-. 四、填空题24.分式31x a x +-中,当x a =-时,下列结论正确的是 .(填序号) ①分式的值为零;②分式无意义;③若13a ≠-,分式的值为零;④若13a ≠分式的值为零. 25.在式子231235,,,π46xy abc a x +10,,978x y x y++中,分式有 个. 26.化简:22211x x x x x x+++-=+ . 27.将分式,32b ab a c-通分,依次为 .28.化简:22x y y x -=- . 29.分式322312,,,32x a m n x x a b m n x ++-+-中,最简分式的个数是 . 30.不改变分式的值,把分式0.10.20.3x y y++的分子、分母各项系数都化为整数为 . 31.分式2213,,ab a b abc的最简分母是 . 32.分式22,b a b a ab a ab ---+的最简公分母是 . 33.对分式2333123,,234a bc ab a bc进行通分,它们的最简公分母为 . 参考答案1.答案:D解析:选项A ,当1x =-时,11x x -+没有意义选项B ,当0x =时,1x x-没有意义选项C ,当1x =±时,211x x +-没有意义选项D ,分母21x +恒大于0. 2.答案:D 解析:选项A 中,12是单项式,属于整式;选项B 中,3x 是单项式,属于整式;选项C 中,2x y -分母中不含字母,是整式;选项D 中,5x 分母中含有字母,是分式 3.答案:A 解析:212π23x x x -,,的分母中均不含有字母,因此它们是整式,而不是分式;213x x +-的分母中含有字母,因此是分式.故选A.4.答案:A 解析:分式21x x -无意义,210x ∴-=,解得12x =.故选A 5.答案:C解析:根据分式的基本性质来判别,只有选项C 是正确的故选C.6.答案:D 解析:分式21513,,24()x x m n x--的分母分别是()224,x m x n -,,故最简公分母是()24m n x -.故选D.7.答案:A解析:原式()()4x y x y x y x y xy ++-+-+=2214x y xy⋅==. 8.答案:A 解析:623xy y x-=-,22y x x y x y -=---,212424xy x y x x y xy ++=++,2211211x x x x x --=+++,都不是最简分式;22x y x y++是最简分式,故选A. 9.答案:A 解析:1111x x -=--.故选A 10.答案:B 解析:把分式2x y x y +中,x y 的值同时扩大为原来的3倍为()2233933x y x y x y x y ++=⋅219x y x y+=⋅,则分式的值缩小为原来的19.故选B. 11.答案:D解析:选项A 中,原式4a =,故本选项错误;选项B 中,不能化简,故本选项错误;选项C 中,不能化简,故本选项错误;选项D 中,()1x y x y x y x y---+=-++,故本选项正确. 12.答案:B解析:选项A 中,a ab b-=-,变形正确,不合题意; 选项B 中,a a b b-=--,变形错误,符合题意; 选项C 中,a a b b=--,变形正确,不合题意; 选项D 中,a a b b--=,变形正确,不合题意; 13.答案:C 解析:A 选项,244xy y x x =,不是最简分式;B 选项,42263x x =--,不是最简分式;C 选项,33x +是最简分式;D 选项,()()22x y x y x y x y x y --=-+-1x y=+,不是最简分式.故选C. 14.答案:B解析:①④中分子分母没有公因式,是最简分式.②中22()()a b a b a b a b a b --=-+-,有公因式()a b -,③中4412()43()a aa b a b =-⨯-,有公约数4,所以②③不是最简分式故选B15.答案:C 解析:222332()6()()()2()2()()a a ab a a b a b a b a b a b a b a b --==-+---+故选C 16.答案:A解析: 分别用2,2x y 去代换原分式中的,x y 得2242222()y y y x y x y x y ⨯==+++,可见新分式与原分式相等.17.答案:D解析: 选项A 中,2121a a ≠++,此选项错误;选项B 中,21111a a a +≠++,此选项错误;选项C 中,x y x y x y y x -++=--,此选项错误;选项D 中,()()211111a a a a a +--=++1a =-,此选项正确. 18.答案:A 解析:原式()()22144x y x y x y x y x y xy xy++-+-+⋅=== 19.答案:D 解析:选项A 中,22222639x x y y =,错误;选项B 中,2233c c a b b a=-+-,错误;选项C 中,x y x y x y y x --=++,错误;选项D 中,2x x y xy y y y y ⋅==⋅,正确.故选D. 20.答案:D解析:将,x y 的值均扩大为原来的3倍,A 选项,23233x x x y x y ++≠--,错误;B 选项,22629y y x x≠,错误;C 选项3322542273y y x x≠,错误;D 选项22221829()()y y x y x y =--,正确;故选D. 21.答案:2223344(2)1(2)(2)2x xy y x y x y x y x y-+-==--- 把2,3x y =-=代入,得11122238x y ==----⨯ 解析:22.答案:(1)当分母210x -≠,即1x ≠且1x ≠-时,分式2321x x --有意义. (2)当分母210x -=,且1x =或1x =-时,分式2321x x --无意义. 解析: 23.答案:原式2222(4)(44)a a b a a ab b -=-+2(2)(2)(2)a b a b a b +-=-22a b a b+=-. 当12,2a b ==-时,原式122()121322()2+⨯-==-⨯-. 解析:24.答案:③解析:由310x -≠,得13x ≠,故把x a =-代入分式31x a x +-中,当x a =-且13a -≠,即13a ≠-时,分式的值为零.25.答案:3 解析:式子1510,,96x a x y++的分母中含有字母,是分式.其他的式子分母中不含字母,不是分式.26.答案:0 解析:27.答案:26bc ac和236a b ac - 解析:两个分式分母分别为3,2a c ,未知数系数的最小公倍数为326⨯=,,a c 的最高次数为1,∴最简公分母为6ac ,将,32b ab a c -通分依次为26bc ac和236a b ac -. 28.答案:1x y-+ 解析: 221()()x y x y y x x y x y x y--==---+-+ 29.答案:2解析:321x x x =,221m n m n m n +=--,∴最简分式是312,32a x a b x+-+. 30.答案:2310x y y++ 解析: 要想将分式0.10.20.3x y y++的分子、分母各项系数都化为整数,可将分子、分母同乘10,即原式()()100.10.22100.3310x y x y y y⨯++==⨯++. 31.答案:2a bc解析:最简公分母2,,ab a b abc 的最高次幂的积,即为2a bc . 32.答案:()()a a b a b +-解析:分式22,b a b a ab a ab---+的分母分别是22(),()a ab a a b a ab a a b -=-+=+,故最简公分母是()()a a b a b +-33.答案:33312a b c解析:分母23332,3,4a bc ab a bc 中,未知数系数2,3,4的最小公倍数为12,字母,,a b c 的最高次幂均为3,所以它们的最简公分母为33312a b c .。
人教版八年级上册第2课时 分式的约分与通分(348)1.已知2+23=22×23,3+38=32×38,4+415=42×415,…,且10+a b =102×a b (a ,b 均为正整数).(1)探究a ,b 的值;(2)求分式a 2+4ab+4b 2a 2+2ab 的值.2.“约去”指数: 如33+1333+23=3+13+2,53+2353+33=5+25+3,….你见过这样的约分吗?面对这“荒谬”的约分,一笑之后,再认真检验,发现其结果竟然正确!这是为什么呢?仔细观察式子,我们可作如下猜想:a 3+b 3a 3+(a−b)3=a+b a+(a−b).试说明此猜想的正确性.供参考:立方和公式x 3+y 3=(x +y)(x 2−xy +y 2)3.已知分式x 2−ax x−3的化简结果是一个整式,分式4x 2−b x+1的化简结果也是一个整式,求b −a 的值4.下列各项中,所求的最简公分母错误的是()A.13x 与a 6x 2的最简公分母是6x 2B.13a 2b 3与13a 2b 3c 的最简公分母是3a 2b 3cC.1m+n 与1m−n 的最简公分母是m 2−n 2D.1a(x−y)与1b(y−x)的最简公分母是ab(x −y)(y −x)5.若将分式3x 2x 2−y 2与分式x 2(x−y)通分后,分式x 2(x−y)的分母变为2(x −y)(x +y),则分式3x 2x 2−y 2的分子应变为()A.6x 2(x −y)2B.2(x −y)C.6x 2D.6x 2(x +y)6.请写出最简公分母是6a(a +1)的两个分式:7.小强昨天做了一道题“对下列分式通分:x−3x 2−1,31−x ”.他的解答如下,请你指出他的错误,并改正.解:x−3x 2−1=x−3(x+1)(x−1)=x −3,31−x =3(x+1)(x+1)(x−1)=3(x +1)8.用简便方法计算:(1)102016−102018102017;(2)20173−2×20172−201520173+20172−20189.计算(−ab)2a 2b 的结果是() A.a B.bC.1D.−b 10.下列分式是最简分式的是() A.m−11−mB.xy−y 3xyC.x−y x 2+y 2D.−61m 32m 11.把分式1x−y ,1x+y ,1x 2−y 2进行通分,它们的最简公分母是()A.x −yB.x +yC.(x +y)(x −y)D.(x +y)(x −y)(x 2−y 2) 12.将下列各式通分:n m 2+2mn ,m 2n 2−mn ,mn 2m 2−4n 213.化简a 2+2ab+b 2a 2−b 2的结果是() A.a+b a−bB.b a−bC.a a−bD.b a+b 14.在分式m 2+12m 2+2,2m+18m 2−2,m 22mn ,16m 2−4m+4中,最简分式的个数是() A.1 B.2C.3D.4 15.请你写出一个分母是二项式且能约分的分式: 16.先约分,再求值:4b 2−a 24b 2−4ab+a 2,其中a =3b参考答案1(1)【答案】解:∵2+23=22×23,3+38=32×38,4+415=42×415,…,且10+ab=102×ab,∴a=10,b=a2−1=99.(2)【答案】原式=(a+2b)2a(a+2b)=a+2ba.将a=10,b=99代入,得原式=20.8.2.【答案】:解:∵a3+b3a3+(a−b)3=(a+b)(a2−ab+b2)(a+a−b)(a2−a2+ab+a2−2ab+b2)=a+ba+(a−b),∴a3+b3a3+(a−b)3=a+ba+(a−b)正确3.【答案】:解:因为分式x2−axx−3的结果是一个整式,所以x2−ax=x(x−a)有一个因式为x−3,即x−3=x−a,所以a=3.分式4x2−bx+1的化简结果也是一个整式,说明4x2−b有一个因式为x+1,即4x2−b=(x+1)(4x+c),即4x2−b=(x+1)(4x+c)=4x2+(c+4)x+c,所以c+4=0,−b=c,所以b=4,所以b−a=4−3=14.【答案】:D5.【答案】:C【解析】:两分式的最简公分母是2(x+y)(x−y),∴3x2x2−y2=3x2(x+y)(x−y)=6x22(x+y)(x−y)6.【答案】:答案不唯一,如12a ,13(a+1)7.【答案】:解:①分式通分后,不能进行去分母;②第二个分式通分时,发生符号错误.改正如下:x−3x2−1=x−3(x+1)(x−1),31−x=−3(x+1)(x+1)(x−1)8(1)【答案】解:102016−102018102017=102016(1−102)102017=−9910.(2)【答案】解:20173−2×20172−201520173+20172−2018=20172×(2017−2)−201520172×(2017+1)−2018=20172×2015−201520172×2018−2018=2015×(20172−1)2018×(20172−1)=2015 20189.【答案】:B10.【答案】:C【解析】:A中分式的分子与分母有公因式m−1,B中分式的分子与分母有公因式y,D中分式的分子与分母有公因式m11.【答案】:C12.【答案】:解:nm2+2mn =n2(2n−m)mn(2n+m)(2n−m),m2n2−mn =m2(2n+m)mn(2n+m)(2n−m),mn2m2−4n2=−m2n3mn(2n+m)(2n−m)13.【答案】:A【解析】:a2+2ab+b2a2−b2=(a+b)2(a+b)(a−b)=a+ba−b14.【答案】:A【解析】:m2+12m2+2=m2+12(m2+1)=12;2m+1 8m2−2=2m+12(2m+1)(2m−1)=14m−2;m2 2mn =m2n;16m2−4 m+4=4(2m+1)(2m−1)m+4.故只有16m2−4m+4是最简分式15.【答案】:答案不唯一,如24a+2。