PLC控制变频调速恒压供水系统
- 格式:doc
- 大小:589.50 KB
- 文档页数:7
plc变频恒压供水系统
plc变频恒压供水系统就是采用plc变频器的恒压供水设备的系统。
plc的定义
最初,可编程逻辑控制器(Programmable Logic Controller)简称plc。
只能进行计数、定时及开关量的逻辑控制。1987年2月,国际电工委员会(IEC)对可编程控制器的定义是:可编程控制器是一种数学运算操作的电子系统,专为在工业环境下的应用而设计。它采用一类可编程序的存储器,用于其内部存储程序、执行逻辑运算、顺序控制、定时、计数和算术操作等面向拥护的指令,并通过数字式和模块式输入/输出,控制各种类型的机械和生产过程。可编程序控制器及其有关外部设备,都按易于与工业控制系统连成一个整体、易于扩充功能的原则设计。
plc变频恒压供水系统的基本构成
恒压供水泵站一般需没多台水泵及电机,这比没单台水泵及电机节能而可靠。配单台电机及水泵时,它们的功率必须足够的大,在用水量少时开一台大电机肯定是浪费的.电机选小了用水量大时供水会不足。而且水泵与电机都有维修的时候,备用泉是必要的。恒压供水的主要目标是保持管网水压的恒定,水泵电机的转速要跟随用水量的变化而变化,这就要用变频器为水泵电机供电。这也有两种配置方案,
一是为每台水泵电机配一台变频器,这当然方便,电机与变频器间不须切换,但购变频器的费用较高。另一种方案是数台电机配一台变频器,变频器与电机间可以切换,供水运行时,一台水泵变频运行。其余水泵工频运行,以满足不同用水量的需求。
变频器和压力传感器
交流变频器是微计算机及现代电力电子技术高度发展的结果。微计算机是变频器的核心,电力电子器件构成了变频器的主电路。大家都知道,从发电厂送出的交流电的频率是恒定不变的,在我国是每秒50Hz。而交流电动机的同步转速。
变频恒压供水PLC控制系统的设计
摘要:目前,我国的供水方式正朝着高效节能、自动化的方向发展,采用现代科学技术和变频技术,实现恒压供水自动化系统。基于此,本文就对变频恒压供水PLC控制系统的设计进行了一定的分析,希望可以为有关人员提供一定的借鉴。
关键词:PLC;恒压供水;控制系统;设计
我国目前的供水设备还处在智能化水平较低、自动化程度较低的状况。PLC 具有较高的可靠性,较好的性价比,价格低廉,适应性广,便于扩充的优点。将PLC技术和变频技术相结合,并将其用于恒压供水是当前系统设计的必然趋势。恒压供水系统的首要目标是保证管网内的水压不变。由于水泵电动机的转速随着流量的变化而经常发生变化,为了保证管网水压的稳定,需要采用变频调速装置为水泵电机供电。
1变频恒压供水详细情况
小区内的生活用水因季节、昼夜差异较大,因用水与供水的不均衡主要体现在水压上,也就是用水量多、供水不足、水压低、水量少。目前,国内的城市给水、工业生产的循环水等技术还处于起步阶段。随着电力电子及计算机控制技术的发展,以PLC为主要控制器,变频调速装置为执行器,实现了恒压、节水、节能的供水,以满足生活用水和工业用水的需求[1]。新的变频恒压供水系统在设备投入、运行经济性、稳定性、可靠性、自动化等方面均有明显的优越性,并且节能效果明显。恒压供水系统的上述优点吸引了国内各大供水企业的关注,并不断投入研发、生产该高科技产品。随着城市建设、智能楼宇的发展、供水网络的调度以及总体规划的需要,传统的单泵、恒压系统逐步被多泵控制取代。尽管单泵产品系统结构简单、可靠,但是单泵电机的深度调节会导致水泵和电机的效率低下,而多泵产品的投资更少,运行效率更高。
城市恒压供水系统
、尸■、■
前言
1、供水系统概述
城市规模的不断扩大,高层建筑的不断增长,对于高层的用户来说,在白天或者用水高峰时供水系统的电动机负荷最大,常常需要满负荷或超负荷运行,而在晚上或休闲是,所需水量减少很多,但是电动机依然处于满负荷运行状态,这样既浪费了大量的资源,对电动机的损耗也较大。所以需要根据不同的需求条件来调节电动机的转速以实现恒压供水。
在供水系统中,当用水量需要变化时,传统的调节方法是通过人工改变阀门的开度来调整, 但是此类方法无法对供水管道内的压力和水位变化做出及时、恰当的反应,往往会造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患(例如压力过高容易造成爆管事故)。因此无法满足城市供水系统的要求。
采用变频调速的供水系统可以有效解决以上的问题。根据用水量的大小,控制水泵的转速,即用水量增大时,调高变频,使水泵转速升高,增加供水量。当用水量超过一台水泵的供水量时启动新的水泵以增加供水量,当用水量减少时,使水泵转速降低或减少投入运行的水泵数量,减少供水量。
2、供水系统功能
城市供水系统的主要功能是在用水量不断变化的情况下,维持管内的压力在一定范围内,既能满足用水的需求,又能最大程度节约能源,延长设备寿命。变频供水的控制器经历了从继电器-接触器,到单片机,再到PLC而变频器也从多端速度控制、模拟量输入控制发展到专用变频器,为实现城市供水系统简单、高效、低能耗的功能,并且实现自动化的控制过程,采用PLC乍为核心控制器是个
较好的方案。
PLC具有体积小、设计周期短、数据处理和通信方便、易于维护和操作、明显降低成本等优点,可满足城市供水系统的控制要求。除此以外,PLC作为城市
绪论
近年来我国中小城市发展迅速,集中用水量急剧增加。据统计,从1990年到1998年,我国人均日生活用水量(包括城市公共设施等非生产用水)有175.7升增加到241.1升,增长了37.2%,与此同时我国城市家庭人均日生活用水量也在逐年提高。
传统的自来水厂的供水模式在用水量高峰期时供水量普遍不足,造成城市公用管网水压浮动较大。由于每天不同时段用水对供水压力的要求变化较大,仅仅靠供水厂值班人员依据经验进行人工手动调节很难及时有效的达到目的。这种情况造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患。
供水厂以前虽然也进行过一些技术改造,但是生产系统大部分仍然采用人工手动控制,生产过程中的重要参数仍然依靠人工定时记录,例如清水池水位、电机运行时间、耗电量等都是由值班人员定时记录。随着地区经济的发展,城区居民生活用水和工业用水量大幅度上升。经过改造和扩建,供水厂目前的日供水能力在7.5万立方米左右,仍然不能完全满足用水需求。由于城区用水量中居民生活用水所占的比例比较大,用水量的需求具有时变性。在用水高峰期时,清水池的水位达不到要求高度,管网压力达不到规定的标准压力,造成高层建筑断水。用水低峰期时,管网压力经常超过规定的压力上限,极易造成爆管事故并且能源损耗严重。供水厂原有的生产设备的控制方式比较落后,控制过程烦琐,大部分需要人工进行手动操作,能耗高,而且不能保证供水压力达到压力标准。此外,水厂作为城市供水系统的重要组成部分,其日常的生产、计划、运行和管理都直接影响到城市的安全供水。在这种供水模式下长期以来许多水厂各部门的管理人员采用传统的人工管理模式,通过手工从事繁重的业务管理、各种日报表、月报表、年报表的统计汇总等工作。由于对大量的统计报表的基础数据缺乏科学的分析手
基于PLC的变频恒压供水系统的设计
一、本文概述
随着工业技术的不断发展和城市化进程的加速,供水系统的稳定性和效率成为现代社会不可或缺的一部分。传统的供水系统往往存在压力不稳定、能耗高等问题,难以满足现代社会的需求。因此,基于PLC (可编程逻辑控制器)的变频恒压供水系统应运而生,成为解决这些问题的有效手段。本文旨在探讨基于PLC的变频恒压供水系统的设计原理、系统构成、控制策略以及实际应用,以期为提高供水系统的稳定性和效率提供理论和技术支持。
本文将介绍基于PLC的变频恒压供水系统的基本设计原理,包括PLC 的工作原理、变频器的控制原理以及恒压供水的实现原理。文章将详细阐述该系统的构成部分,包括硬件组成和软件设计,以便读者能够全面了解系统的整体架构。在此基础上,本文将深入探讨系统的控制策略,包括PLC的编程实现、变频器的调速控制以及恒压供水的控制算法等,以展示系统如何实现精准的压力控制和节能运行。
本文还将通过实际案例分析,展示基于PLC的变频恒压供水系统在实际应用中的表现,包括系统的稳定性、节能效果以及运行效率等方面
的评估。文章将总结该系统的设计经验和教训,并提出改进和优化的建议,以期为推动供水系统的技术进步和可持续发展做出贡献。
本文旨在全面介绍基于PLC的变频恒压供水系统的设计原理、系统构成、控制策略以及实际应用,以期为供水系统的稳定性和效率提升提供理论和技术支持。
二、PLC与变频技术基础
PLC,即可编程逻辑控制器(Programmable Logic Controller),是一种专为工业环境设计的数字运算操作电子系统。它采用可编程的存储器,用于在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。随着微电子技术的发展,PLC的性能得到了不断提升,其应用领域也越来越广泛。在变频恒压供水系统中,PLC作为核心控制器,负责接收压力传感器的信号,根据设定压力与实际压力的差异,通过控制变频器的输出频率,从而调节电机的转速,实现恒压供水。
城市恒压供水系统
一、前言
1、供水系统概述
城市规模的不断扩大,高层建筑的不断增长,对于高层的用户来说,在白天或者用水高峰时供水系统的电动机负荷最大,常常需要满负荷或超负荷运行,而在晚上或休闲是,所需水量减少很多,但是电动机依然处于满负荷运行状态,这样既浪费了大量的资源,对电动机的损耗也较大。所以需要根据不同的需求条件来调节电动机的转速以实现恒压供水。
在供水系统中,当用水量需要变化时,传统的调节方法是通过人工改变阀门的开度来调整, 但是此类方法无法对供水管道内的压力和水位变化做出及时、恰当的反应,往往会造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患(例如压力过高容易造成爆管事故)。因此无法满足城市供水系统的要求。
采用变频调速的供水系统可以有效解决以上的问题。根据用水量的大小,控制水泵的转速,即用水量增大时,调高变频,使水泵转速升高,增加供水量。当用水量超过一台水泵的供水量时启动新的水泵以增加供水量,当用水量减少时,使水泵转速降低或减少投入运行的水泵数量,减少供水量。
2、供水系统功能
城市供水系统的主要功能是在用水量不断变化的情况下,维持管内的压力在一定范围内,既能满足用水的需求,又能最大程度节约能源,延长设备寿命。变频供水的控制器经历了从继电器-接触器,到单片机,再到PLC。而变频器也从多端速度控制、模拟量输入控制发展到专用变频器,为实现城市供水系统简单、高效、低能耗的功能,并且实现自动化的控制过程,采用PLC作为核心控制器是个较好的方案。
PLC具有体积小、设计周期短、数据处理和通信方便、易于维护和操作、明显降低成本等优点,可满足城市供水系统的控制要求.除此以外,PLC作为城市供水控制系统使设计过程变得更加简单,可实现的功能变得更多。由于PLC的CPU强大的网络通信能力,是城市供水系统的数据传输与通信变得可能,并且也可以实现其远程监控.
PLC控制变频器的恒压供水系统的设计恒压供水系统是一种能够根据管网压力变化自动调节水泵运行速度的
系统,常用于公共建筑、工业厂房和住宅小区的水供应系统中。PLC(可
编程逻辑控制器)控制变频器的恒压供水系统设计是一种自动化控制方案,能够有效地提高供水系统的稳定性和能效。
1.系统布局设计:需要根据实际的供水系统布局来确定变频器的安装
位置和水泵的布置,以确保系统的整体效果最优。通常情况下,变频器和PLC控制器会安装在一个控制柜中,方便集中控制和管理。
2.传感器选择与安装:恒压供水系统需要通过传感器来实时监测管网
压力的变化,常用的传感器包括压力传感器和流量传感器。这些传感器需
要适当地安装在管道上,并与PLC控制器相连接,以便实时采集和反馈数据。
3.变频器选择与参数设置:根据水泵的功率和变频器的性能需求,选
择合适的变频器,并进行参数设置。在供水系统中,变频器的作用是通过
控制电机的转速来调整水泵的出水量,从而满足恒压供水的需求。
4.PLC程序设计:根据实际的供水系统需求,编写PLC程序进行控制
逻辑的设计。程序中需要包括对传感器数据的采集和处理、对变频器的频
率设置和控制、对水泵的启停控制等功能。
5.系统调试与优化:在完成PLC程序的设计后,需要进行系统的调试
与优化。通过实际操作和测试,确定系统的参数设置和控制策略是否满足
恒压供水系统的要求,并对系统进行优化,提高供水系统的工作效率和稳
定性。
6.联动控制与报警功能设计:为了确保供水系统的安全性和稳定性,在PLC控制变频器的恒压供水系统设计中,还需要考虑系统的联动控制和报警功能。例如,当系统发生故障或异常情况时,PLC控制器可以发出报警信号,并采取相应的措施来保护设备和系统的运行。
基于PLC变频调速恒压供水系统设计
PLC变频调速恒压供水系统是一种自动化控制系统,它通过PLC控制
器和变频器实现对水泵的调速控制,从而稳定地维持供水系统的压力。
设计一个PLC变频调速恒压供水系统需要考虑以下几个方面:
1.系统结构设计:首先,基于实际需求确定系统的结构,包括水泵的
数量和类型、PLC控制器的型号和数量等。一般来说,系统采用一台主泵
和一台备用泵,通过PLC控制器对主泵和备用泵进行控制。同时,为了保
证供水系统的连续供水,可以设置压力传感器和PLC控制器来实时监测供
水系统的压力,并自动调节水泵的转速。
2.变频调速设计:系统采用变频器对水泵进行调速控制,可以根据实
际需求调整水泵的转速,从而实现恒压供水。在设计中,需要确定变频器
的型号和参数,同时考虑到系统的容量、需求和额定负载等因素。变频器
需要与PLC控制器进行通信,以实现对水泵的实时控制。
3.压力控制设计:为了实现恒压供水,设计中需要设置压力传感器,
并将其与PLC控制器进行连接。通过实时监测供水系统的压力,PLC控制
器可以根据设定值自动调节水泵的转速,使其保持在稳定的工作状态,从
而提供稳定的水压。同时,设置合适的压力传感器的位置和数量是非常重
要的,以确保准确的压力测量。
4.信号监测与故障报警:PLC控制器可以实时监测系统中的各种信号,包括水泵的运行状态、压力传感器的测量值、变频器的输出频率等。当出
现故障或异常情况时,PLC控制器可以触发相应的报警信号并采取必要的
措施,例如切换备用泵、停止泵的运行等。
5.软件编程与参数调整:设计完成后,需要进行PLC控制器的软件编
基于PLC的恒压供水系统的设计
恒压供水系统是一种应用广泛的自动化控制系统,可以实现对供水系统的稳定控制,使水压恒定。本文将介绍基于PLC的恒压供水系统的设计。
恒压供水系统的工作原理是通过对水泵的控制,使得水泵的流量可以根据需求进行自动调节,从而保持系统中的水压恒定。PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的计算机控制系统,具有可编程性和灵活性强的特点,适用于对恒压供水系统进行控制和监测。
基于PLC的恒压供水系统的设计主要包括以下几个方面:水泵控制逻辑设计、传感器选择和布置、PLC程序设计和系统监测。
在水泵控制逻辑设计方面,首先需要确定恒压供水系统的工作方式,例如开启水泵的条件、关闭水泵的条件等。然后,根据系统的需求和特点,设计相应的控制逻辑,如水泵的启停控制、流量调节等。
传感器的选择和布置是恒压供水系统设计中非常重要的一步。常用的传感器有压力传感器、液位传感器等。通过这些传感器可以实时监测水压和水位等参数,并将数据反馈给PLC进行处理和控制。
PLC程序的设计是实现恒压供水系统自动化控制的核心。根据系统的要求,设计合理的控制策略,编写PLC程序,实现对水泵的自动控制和流量调节。
系统监测是基于PLC的恒压供水系统设计中的一项重要任务。通过PLC可以实时监测系统的运行状态、水泵的工作状态、水压和水位等参数,并及时报警或做出相应的控制。
基于PLC的变频调速恒压供水系统设计与实现
一、本文概述
随着工业自动化的发展,变频调速技术在供水系统中的应用越来越广泛。基于PLC(可编程逻辑控制器)的变频调速恒压供水系统,以其高效、稳定、节能的特点,成为当前供水系统设计的重要趋势。本文旨在探讨基于PLC的变频调速恒压供水系统的设计与实现方法,以期为相关领域的工程应用提供有益的参考。
文章首先介绍了供水系统的基本构成和功能需求,包括恒压供水的重要性以及变频调速技术在供水系统中的应用优势。随后,详细阐述了基于PLC的变频调速恒压供水系统的总体设计方案,包括硬件选型、软件编程、系统控制策略等方面。在此基础上,文章重点探讨了系统实现过程中的关键技术问题,如PLC编程实现、变频器的选择与配置、压力传感器信号的采集与处理等。
通过本文的研究,期望能够为供水系统的设计与实现提供一种有效、可靠的解决方案,同时推动变频调速技术在供水领域的应用和发展。
二、系统需求分析和设计目标
随着现代工业技术的快速发展,供水系统的稳定性和效率成为了
评价一个城市或企业基础设施水平的重要指标。传统的供水系统往往存在能耗高、调节性差、压力不稳定等问题,无法满足现代供水系统的要求。为了解决这些问题,本文提出了一种基于PLC的变频调速恒压供水系统设计方案。
稳定性需求:供水系统需要保持长时间的稳定运行,确保供水压力的稳定性,避免因压力波动对供水质量造成影响。
节能性需求:传统的供水系统往往存在能耗高的问题,新的供水系统需要采用先进的控制技术,降低能耗,提高能源利用效率。
调节性需求:供水系统需要能够根据实际需求,自动调节供水流量和压力,以满足不同时段、不同区域的供水需求。
摘要
本论文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统,并利用组态软件开发良好的运行管理界面。变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器、工控机等构成。
系统由变频器、PLC和两台水泵构成。利用了变频器控制电路的PID 等相关功能,和PLC配合实施变频一拖二自动恒压力供水。具有自动/手动切换功能。变频故障时,可切换到手动控制水泵运行。控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。如此循环不已。
关键词:变频调速,恒压供水,PLC,组态软,电机
1 绪论
1.1 课题的提出
水和电是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能源短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度较低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到小区住户的正常工作和生活,也直接体现了小区物业管理水平的高低。