(精校版)2016年新课标Ⅰ文数高考试题文档版(word含答案)
- 格式:doc
- 大小:839.74 KB
- 文档页数:11
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则AB =(A ){1,3} (B ) {3,5} ( C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )13 (D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= (A )2 (B )3 (C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3)(C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直 的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b(9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为(A )32 (B )22 (C )33 (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =.(14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。
绝密★启用前2016 年普通高等学校招生全国统一考试(山东卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 4 页。
满分 150 分。
考试用时 120 分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用 0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件 A,B 互斥,那么 P(A+B)=P(A)+P(B).第 I 卷(共 50 分)一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合U ={1, 2,3, 4,5,6}, A ={1,3,5}, B ={3, 4,5} ,则ðU( A B) =(A){2,6}(B){3,6}(C){1,3, 4,5} (D){1, 2, 4,6}(2)若复数z =21- i ,其中i 为虚数单位,则z =(A)1+i (B)1−i (C)−1+i (D)−1−i(3)某高校调查了200 名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这 200 名学生中每周的自习时间不少于 22.5 小时的人数是22 2 ⎨ (A )56(B )60 (C )120 (D )140⎧x + y ≤ 2, ⎪2x - 3y ≤ 9, (4)若变量x ,y 满足 ⎪⎩x ≥ 0,则 x2+y2 的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为1 + 2π1 + π 1 + π 1+ π(A )3 3 (B ) 3 3 (C ) 3 6 (D )6(6)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线 a 和直线 b 相交”是“平面 α 和平面b 相交”的(A )充分不必要条件 (B )必要不充分条件(C)充要条件(D)既不充分也不必要条件x2 + y2 - 2ay = 0(a > 0) 截直线x + y = 0 所得线段的长度是2 2 ,则圆 M 与圆 N:(7)已知圆M:(x-1)2 +(y-1)2 =1的位置关系是(A)内切(B)相交(C)外切(D)相离b = c, a2 = 2b2 (1-sin A) ,则 A=(8)△ABC 中,角 A,B,C 的对边分别是 a,b,c,已知3ππππ(A)4 (B)3 (C)4 (D)61(9)已知函数 f(x)的定义域为 R.当 x<0 时,f(x)=x3-1;当-1≤x≤1时,f(-x)= —f(x);当 x>2 时,1 1f(x+ 2 )=f(x—2 ).则 f(6)=(A)-2 (B)-1 (C)0 (D)2(10)若函数y =f (x) 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x)具有 T 性质.下列函数中具有 T 性质的是学科&网(A)y = sin x(B)y = ln x(C)y = e x(D)y =x3第 II 卷(共 100 分)二、填空题:本大题共 5 小题,每小题 5 分,共 25 分。
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I (A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a= (A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=(A (B C )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的,则该椭圆的离心率为 (A )(B )(C )(D )(6)若将函数y =2sin(2x +)的图像向右平移个周期后,所得图像对应的函数为 (A )y =2sin(2x +)(B )y =2sin(2x +)(C )y =2sin(2x –)(D )y =2sin(2x –) (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是 (A )17π(B )18π(C )20π(D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A (B (C (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =.(14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=2√3,则圆C 的面积为。
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则AB =(A ){1,3} (B ) {3,5} ( C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )13 (D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= (A )2 (B )3 (C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3)(C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直 的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b(9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x = (11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为(A )32 (B )22 (C )33 (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =.(14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。
2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B )12+π33(C )12+π36(D )21+π6(6)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是学科&网(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
高中数学学习材料(灿若寒星精心整理制作)绝密★启用前试题类型:A2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选考题),全卷满分150分,考试用时120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小时选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上帝非答题区域均无效。
.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5. 考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x=-+<,{|230}B x x=->,则A B =()(A)3(3,)2--(B)3(3,)2-(C)3(1,)2(D)3(,3)2(2)设(1i)1ix y+=+,其中x,y是实数,则i=x y+()(A )1(B )2(C )3(D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ( )(A )100(B )99(C )98(D )97(4)某公司的班车在7:30,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12(C )23(D )34(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π(B )18π(C )20π(D )28π(7)函数y =2x 2–e x在[–2,2]的图像大致为( )(A )(B )(C )(D )(8)若101a b c >><<,,则(A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足 n=n +1结束输出x,yx 2+y 2≥36?x =x+n-12,y=ny 输入x,y,n开始(A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的标准线于D ,E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为( )(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m ,n 所成角的正弦值为( )(A)32(B )22 (C)33 (D)1312.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( ) (A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题 (21)题为必考题,每个试题考生都必须作答.第(22)题 (24)题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . (14)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案)(15)设等比数列 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 。
2016年全国统一高考数学试卷(新课标Ⅰ)(文科)答案与解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.2.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.3.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.故选:C.4.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.5.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.6.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.7.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.8.【解答】解:∵a>b>0,0<c<1,∴logc a<logcb<0,故B正确;∴0>loga c>logbc,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B9.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D 10.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C11.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.12.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].故选:C.二、填空题:本大题共4小题,每小题5分13.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.14.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.15.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即=,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π16.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y .经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元. 故答案为:216000.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.【分析】(Ⅰ)令n=1,可得a 1=2,结合{a n }是公差为3的等差数列,可得{a n }的通项公式; (Ⅱ)由(1)可得:数列{b n }是以1为首项,以为公比的等比数列,进而可得:{b n }的前n 项和. 【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n . 当n=1时,a 1b 2+b 2=b 1. ∵b 1=1,b 2=,∴a 1=2,又∵{a n }是公差为3的等差数列, ∴a n =3n ﹣1,(Ⅱ)由(I )知:(3n ﹣1)b n+1+b n+1=nb n . 即3b n+1=b n .即数列{b n }是以1为首项,以为公比的等比数列,∴{b n }的前n 项和S n ==(1﹣3﹣n )=﹣.18.【分析】(Ⅰ)根据题意分析可得PD ⊥平面ABC ,进而可得PD ⊥AB ,同理可得DE ⊥AB ,结合两者分析可得AB ⊥平面PDE ,进而分析可得AB ⊥PG ,又由PA=PB ,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF ⊥平面PAC ,可得F 为E 在平面PAC 内的正投影.由棱锥的体积公式计算可得答案. 【解答】解:(Ⅰ)证明:∵P ﹣ABC 为正三棱锥,且D 为顶点P 在平面ABC 内的正投影, ∴PD ⊥平面ABC ,则PD ⊥AB ,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF19.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.20.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;=,(Ⅱ)由(Ⅰ)知kMH∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.21.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增;②当a<0时,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,f(x)在(1,+∞)单调递增,又x≤1时,f(x)<0,所以f(x)不存在两个零点.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(略)[选修4-4:坐标系与参数方程]23.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α,其中α满足tanα=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3,∴1﹣a2=0,∴a=1(a>0).[选修4-5:不等式选讲]24.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).。
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b= (A(B(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C ) (D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足n=n +1输出x,y x 2+y 2≥36?x =x+n-12,y=ny输入x,y,n 开始(A )2y x =(B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A,11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A )32 (B )22 (C )33 (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13) ~ (21)题为必考题,每个试题考生都必须作答.第(22)~ (24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =___________ (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=___________. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为_________(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则AB =( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=( )(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )13 (B )12 (C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=( ) (A(B(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则( )(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b(9)函数y =2x 2–e |x |在[–2,2]的图像大致为( )(A )(B )(C ) (D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = (11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A(B)2 (C(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .(14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= .(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为 。
2016年全国高考新课标1卷文科数学试题第Ⅰ卷一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7} 2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .564.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===,则b=( )A .B .C .2D .35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .346.若将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +4π)B .y =2sin(2x +3π)C .y =2sin(2x –4π)D .y =2sin(2x –3π)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A .17πB .18πC .20πD .28π 8.若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b 9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )10.执行右面的程序框图,如果输入的x =0,y =1则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x 11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n A .2 B .2 C .3 D 12.若函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,-13]第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上. 13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=则圆C 的面积为 .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分. 17.(本题满分12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n .(Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.BEGP D C A 如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第(18)题图中作出点E 在平面P AC内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求OHON;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x -2)e x+a(x -1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若有两个零点,求a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.24.(本小题满分10分),选修4—5:不等式选讲已知函数f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第24题图中画出y=f(x)的图像;(Ⅱ)求不等式| f(x)|>1的解集.2016年全国高考新课标1卷文科数学试题参考答案一、选择题,本大题共12小题,每小题5分,共60分.1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C 二、填空题:本大题共4小题,每小题5分,共20分.13.23- 14.43- 15.4π 16.216000三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.解:(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为1的等比数列.…9分所以{b n }的前n 项和S n =111()313122313nn --=-⨯-…18.(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB . 又DE ⊥平面P AB ,∴DE ⊥AB .∴AB ⊥平面PDE . 又PG ⊂平面PDE ,∴AB ⊥PG .依题P A=PB ,∴G (Ⅱ)解:在平面P AB 内作EF ⊥P A (或EF // PB )垂足为F ,则F 是点E 在平面P AC 内的正投影. …7分理由如下:∵PC ⊥P A ,PC ⊥PB ,∴ PC ⊥平面P AB . ∴EF ⊥PC作EF ⊥P A ,∴EF ⊥平面P AC .即F 是点E 在平面P AC 内的正投影.…9分 连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD=2DG .易知DE // PC ,PC=PB=P A = 6,∴DE =2,PE =2233PG =⨯=则在等腰直角ΔPEF 中,PF=EF=2,∴ΔPEF 的面积S=2.所以四面体PDEF 的体积1433V S DE =⨯=. …12分19.解:(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700.所以y 与x 的函数解析式为3800,19(*)5005700,19x y x N x x ≤⎧=∈⎨->⎩…3分(Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n 的最小值为19. …6分(Ⅲ)若每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的平均数为1100(3800×70+4300×20+4800×10)=4000. …9分若每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的平均数为1100(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分20.解:(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为py x t=.联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分(Ⅱ)直线MH 的方程为2py t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0.解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .所以除H 以外,直线MH 与C 没有其它公共点. …12分21.解:(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分 (1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①若a =2e-,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增.②若a >2e-,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减;在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增. ③若a <2e-,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减;在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分 (2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,若取b <0且b <ln 2a ,e b <2a.从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分(3)当a <0时,在(-∞,1]上,f (x )<0恒成立;若a ≥2e-,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.若a <2e-,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a 的取值范围是(0,1). …12分2016年全国高考新课标1卷文科数学试题参考答案第Ⅰ卷一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A∩B=( )BA .{1,3}B .{3,5}C .{5,7}D .{1,7} 2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( ) AA .-3B .-2C .2D . 33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) CA .13B .12C .23D .564.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===,则b=( )DA .B .C .2D .35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )B A .13 B .12 C .23 D .346.若将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为( ) DA .y =2sin(2x +4π)B .y =2sin(2x +3π)C .y =2sin(2x –4π)D .y =2sin(2x –3π)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) AA .17πB .18πC .20πD .28π 8.若a >b >0,0<c <1,则( )BA .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b 9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )D10.执行右面的程序框图,如果输入的x =0,y =1则输出x ,y 的值满足( )CA .y =2xB .y =3xC .y =4xD .y =5x11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n A .2 B .2 C .3 D 12.若函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( )CA .[-1,1]B .[-1,13]C .[-,13]D .[-1,-13]第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . 23-14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 43-15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=则圆C 的面积为 .4π16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.216000三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分. 17.(本题满分12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n .(Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.解:(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分通项公式为 a n =2+3(n -1)=3n -1 …6分BEGP FD C A (Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分所以{b n }的前n 项和S n =111()313122313nn --=-⨯- …12分 18.(本题满分12分)如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第(18)题图中作出点E 在平面P AC内的正投影F (说明作法及理由),并求四面体PDEF 的体积.(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB .又DE ⊥平面P AB ,∴DE ⊥AB .∴AB ⊥平面PDE . …3分 又PG ⊂平面PDE ,∴AB ⊥PG .依题P A=PB ,∴G 是AB 的中点.…6分 (Ⅱ)解:在平面P AB 内作EF ⊥P A (或EF // PB )垂足为F ,则F 是点E 在平面P AC 内的正投影. …7分理由如下:∵PC ⊥P A ,PC ⊥PB ,∴ PC ⊥平面P AB . ∴EF ⊥PC作EF ⊥P A ,∴EF ⊥平面P AC .即F 是点E 在平面P AC 内的正投影.…9分 连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE // PC ,PC=PB=P A = 6,∴DE =2,PE =22322233PG =⨯=则在等腰直角ΔPEF 中,PF=EF=2,∴ΔPEF 的面积S=2.所以四面体PDEF 的体积1433V S DE =⨯=. …12分19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解:(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700.所以y 与x 的函数解析式为3800,19(*)5005700,19x y x N x x ≤⎧=∈⎨->⎩…3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n 的最小值为19. …6分(Ⅲ)若每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的 平均数为1100(3800×70+4300×20+4800×10)=4000. …9分 若每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的 平均数为1100(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分20.(本小题满分12分)在直角坐标系xoy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 解:(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .所以除H 以外,直线MH 与C 没有其它公共点. …12分21.(本小题满分12分)已知函数f (x )=(x -2)e x +a (x -1)2.(Ⅰ)讨论f (x )的单调性; (Ⅱ)若有两个零点,求a 的取值范围.解:(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①若a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②若a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.③若a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,若取b <0且b <ln 2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;若a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.若a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a 的取值范围是(0,1). …12分22.(本小题满分10分)选修4-1:几何证明选讲如图,ΔOAB 是等腰三角形,∠AOB =120°. 以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .证明:(Ⅰ)设E 是AB 的中点,连接OE ,因为OA=OB ,∠AOB =120°. 所以OE ⊥AB ,∠AOE =60°. …3分在Rt ΔAOE 中,OE=12OA . 即圆心O 到直线AB 的 距离等打半径,所以直线AB 与⊙O 相切. …5分(Ⅱ)因为OD=12OA,所以O不是A,B,C,D四点共圆的圆心,故设其圆心为O',则O'在AB的垂直平分线上.又O在AB的垂直平分线上,作直线O O',所以O O'⊥AB.…8分同理可证O O'⊥CD.所以AB∥CD. …10分23.(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.解:(Ⅰ)消去参数t得到C1的普通方程x2+(y-1)2=a2.所以C1是以(0,1)为圆心a为半径的圆. …3分将x=ρcosθ,y=ρsinθ代入可得C1的极坐标方程为ρ2-2ρ sinθ+1-a2=0. …5分(Ⅱ)联立ρ2-2ρ sinθ+1-a2=0与ρ=4cosθ消去ρ得16cos2θ-8sinθ cosθ+1-a2=0,由tanθ=2可得16cos2θ-8sinθ cosθ=0. 从而1-a2=0,解得a=1. …8分当a=1时,极点也是C1与C2的公共点,且在C3上,综上a=1. …10分24.(本小题满分10分),选修4—5:不等式选讲已知函数f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第24题图中画出y=f(x)的图像;(Ⅱ)求不等式| f(x)|>1的解集.解:(Ⅰ)4,13 ()32,1234,2x xf x x xx x⎧⎪-<-⎪⎪=--≤<⎨⎪⎪-+≥⎪⎩y=f(x)的图像如图所示. …5分(Ⅱ)由f(x)的图像和表达式知,当f(x)=1时,解得x=1或x=3.当f(x)=-1时,解得x=13或x=5. …8分结合f(x)的图像可得| f(x)|>1的解集为{x|x<13或1< x<3或x>5}. …10分小题详解一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )BA .{1,3}B .{3,5}C .{5,7}D .{1,7}解:取A ,B 中共有的元素是{3,5},故选B2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( ) AA .-3B .-2C .2D . 3解:(1+2i )(a+i )= a -2+(1+2a )i ,依题a -2=1+2a ,解得a=-3,故选A3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) CA .13B .12C .23D .56解:设红、黄、白、紫4种颜色的花分别用1,2,3,4来表示,则所有基本事件有 (12,34),(13,24),(14,23),(23,14),(24,13),(34,12),共6个,其中1和4不在同一花坛的事件有4个, 其概率为P=4263=,故选C4.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===, 则b=( )DA .B .C .2D .3解:由余弦定理得:5=4+b 2-4b ×23, 则3b 2-8b -3=0,解得b =3,故选D 5.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )B A .13 B .12 C .23 D .34解:由直角三角形的面积关系得bc=124⨯12c e a ==,故选B 6.若将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为 ( ) DA .y =2sin(2x +4π)B .y =2sin(2x +3π)C .y =2sin(2x –4π)D .y =2sin(2x –3π) 解:对应的函数为y =2sin[ 2(x -14π⨯)+6π],即y =2sin(2x –3π),故选D7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π, 则它的表面积是( ) AA .17πB .18πC .20πD .28π34728383V R ππ=⨯=,解得R=2,表面积227342+21784S πππ=⨯⨯⨯=,故选B 8.若a >b >0,0<c <1,则( )BA .log a c <logb c B .log c a <log c b C .a c <b c D .c a >c b解:取特值a =1,b =0.5,c =0.5,可排除A ,C ,D ,故选B9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )Dx =0.5. 故选D10.执行右面的程序框图,如果输入的x =0,y =1则输出x ,y 的值满足( )CA .y =2xB .y =3xC .y =4xD .y =5x 解:运行程序,循环节内的n ,x ,y 依次为 (1,0,1),(2,0.5,2),(3,1.5,6), 输出x =1.5,y= 6,故选C 11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A , α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面则m ,n 所成角的正弦值为( )AA B . C D .3解:平面A 1B 1C 1D 1∩平面CB 1D 1= B 1D 1与m 平行,平面CDD 1C 1∩平面CB 1D 1= CD 1与n 平行,所以m ,n 所成角就是B 1D 1与CD 1所成角,而ΔCB 1D 1是等边三角形,则所成角是60°,故选A12.若函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( )C A .[-1,1] B .[-1,13] C .[-,13] D .[-1,-13]解:2()sin cos sin 3f x x -x x a x =+Q ,222'()1(cos sin )cos 3f x -x x a x ∴=-+, 依题f'(x )≥0恒成立,即a cos x ≥2cos213x -恒成立,而(a cos x )min =-|a |,21111cos21||[]33333x a a -≤-∴-≥-∈-,,解得,,故选C二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . 23- 解:依题x +2(x +1)=0,解得x=23- 14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 43- 解:依题θ+π4是第一象限角,cos(θ+π4)=45,tan(θ-π4)=- tan(π4-θ) =- tan[π2-(θ+π4)]=- sin[π2-(θ+π4)]/cos[π2-(θ+π4)]=- cos(θ+π4)/ sin(θ+π4)=4- 15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=则圆C 的面积为.4π解:圆方程可化为x 2+ (y -a )2=a 2+2,圆心C 到直线距离d ,由d 2+3=a 2+2, 解得a 2=2,所以圆半径为2,则圆面积为4π16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.216000解:设生产A 、B 两种产品各x 件、y 件,利润之和是z =2100x +900y ,约束条件是 1.50.51500.390536000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,即3300103900536000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩ 作出可行域四边形OABC ,如图.画出直线l 0:7x +3y =0,平移l 0到l , 当l 经过点B 时z 最大,联立10x+3y=900与5x+3y=解得交点B (60,100),所以 z max =126000+90000=。
《【2016年高考全国1卷文数试题(含答案)】》摘要:文科数学参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)B (2) A (3)C (4)D (5)B (6)D (7)A (8)B (9)D (10)C (11)A (12)C 第II卷二、填空题:本大题共3小题,每小题5分. (13)(14)(15)(16)三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(I)由已知,得得,所以数列是首项为2,公差为3的等差数列,通项公式为. (II)由(I)和,得,因此是首项为1,公比为的等比数列.记的前项和为,则(18)(I)因为在平面内的正投影为,所以因为在平面内的正投影为,所以所以平面,故又由已知可得,,从而是的中点. (II)在平面内,过点作的平行线交于点,即为在平面内的正投影. 理由如下:由已知可得,,又,所以,因此平面,即点为在平面内的正投影. 连接,因为在平面内的正投影为,所以是正三角形的中心. 由(I)知,是的中点,所以在上,故由题设可得平面,平面,所以,因此由已知,正三棱锥的侧面是直角三角形且,可得在等腰直角三角形中,可得所以四面体的体积(19)(I)分x19及x.19,分别求解析式,(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故的最小值为19. (Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件. (20)(Ⅰ)由已知得,. 又为关于点的对称点,故,的方程为,代入整理得,解得,,因此. 所以为的中点,即. (Ⅱ)直线与除以外没有其它公共点.理由如下:直线的方程为,即.代入得,解得,即直线与只有一个公共点,所以除以外直线与没有其它公共点. (21)(I) (i)设,则当时,,③若,则,故当时,,当时,,所以在单调递增,在单调递减. (II)(i)设,则由(I)知,在单调递减,在单调递增. 又,取b满足b0且,则,所以有两个零点. (ii)设a=0,则所以有一个零点. (iii)设a0,若,则由(I)知,在单调递增. 又当时,0,故不存在两个零点绝密★启封并使用完毕前试题类型: 2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,,则(A){1,3}(B){3,5}(C){5,7}(D){1,7} (2)设的实部与虚部相等,其中a为实数,则a= (A)-3(B)-2(C)2(D)3 (3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A)(B)(C)(D)(4)△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b= (A)(B)(C)2(D)3 (5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为(A)(B)(C)(D)(6)若将函数y=2sin (2x+)的图像向右平移个周期后,所得图像对应的函数为(A)y=2sin(2x+) (B)y=2sin(2x+) (C)y=2sin(2x–) (D)y=2sin(2x–) (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17π (B)18π (C)20π (D)28π (8)若ab0,0c1,则(A)logaclogbc(B)logcalogcb(C)acbc(D)cacb (9)函数y=2x2–e|x|在[–2,2]的图像大致为(A)(B)(C)(D)(10)执行右面的程序框图,如果输入的n=1,则输出的值满足(A)(B)(C)(D)(11)平面过正文体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的正弦值为(A)(B)(C)(D)(12)若函数在单调递增,则a的取值范围是(A)(B)(C)(D)第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a=(x,x+1),b=(1,2),且a b,则x=. (14)已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=. (15)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若AB=23,则圆C的面积为。
绝密★启用前2016年普通高等学校招生全国统一考试语文本试卷共10页,18题(含选考题)。
全卷满分150分。
考试用时150分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试卷和答题卡一并上交。
第I卷阅读题甲必考题一、现代文阅读(9分,毎小题 3分)阅读下面的文字,完成1〜3题殷墟甲骨文是商代晚期在龟甲兽骨上的文字,是商王室及其他贵族利用龟甲兽骨占卜吉凶时写刻的卜辞和与占卜有关的记事文字,殷墟甲骨文的发现对中国学术界产生了巨大而深远的影响。
甲骨文的发现证实了商王朝的存在。
历史上,系统讲述商史的是司马迁的《史记·殷本纪》,但此书撰写的时代距商代较远;即使公认保留了较多商人语言的《尚书·盘庚》篇,其中亦多杂有西周时的词语,显然是被改造过的文章。
因此,胡适曾主张古史作为研究对象,可“缩短二三千年,从诗三百篇做起”。
·甲骨文的发现,将商人亲手书写、契刻的文字展现在学者面前,使商史与传说时代分离而进入历史时代。
特别是1917年王国维写了《殷卜辞中所见先公先王考》及《续考》,证明《史记·殷本纪》与《世本》所载殷王世系几乎皆可由卜辞资料印证,是基本可靠的。
论文无可辩驳地证明《殷本纪》所载的商王朝是确实存在的。
学科&网更多优质资料请关注公众号:诗酒叙华年甲骨文的发现也使《史记》之类的历史文献中有关中国古史记载的可信性增强。
绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试 1文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.2。
第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3。
考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(—4,-3),则向量BC=(A)(—7,-4)(B)(7,4) (C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2—I (B)-2+I (C)2—I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。
2016 年普通高等学校招生全国统一考试(四川卷)数学(文史类)第 I 卷(选择题共 50 分)一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2=(A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x≤5},Z为整数集,则集合A∩Z中元素的个数是(A)6 (B) 5 (C)4 (D)33.抛物线 y2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)4.为了得到函数 y=sin (x +π) 的图象,只需把函数 y=sinx 的图象上所有的点3π (A)向左平行移动3π个单位长度(B) 向右平行移动3个单位长度π (C) 向上平行移动3π个单位长度(D) 向下平行移动3个单位长度5.设 p:实数 x,y 满足 x>1 且 y>1,q: 实数 x,y 满足 x+y>2,则 p 是 q 的(A)充分不必要条件(B)必要不充分条件(C) 充要条件(D) 既不充分也不必要条件6.已知a 函数f(x)=x3-12x 的极小值点,则a=(A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。
若该公司 2015 年全年投入研发奖金 130 万元,在此基础上,每年投入的研发奖金比上一年增长 12%,则该公司全年投入的研发奖金开始超过 200 万元的年份是(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) 学科&网(A)2018 年(B) 2019 年(C)2020 年(D)2021 年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入 n,x 的值分别为 3,2,则输出 v 的值为⎨(A)35 (B) 20 (C)18 (D)9u u u ruuur 2 9.已知正三角形 ABC 的边长为2 3 ,平面 ABC 内的动点 P ,M 满足 AP = 1, PM = MC ,则 BM 的最大值是43 (A)449 (B)4(C) 4(D)410. 设直线 l 1,l 2 分别是函数 f(x)= ⎧-ln x , 0 < x < 1, ⎩ln x , x > 1,图象上点 P 1,P 2 处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则△PAB 的面积的取值范围是(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)第 II 卷 (非选择题 共 100 分)二、填空题:本大题共 5 小题,每小题 5 分,共 25 分。
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅰ,文1,5分】设集合{}1,3,5,7A =,{}25B x x =≤≤,则A B = ( )(A ){}1,3 (B ){}3,5 (C ){}5,7 (D ){}1,7【答案】B【解析】集合A 和集合B 公共元素有3,5,所以{}3,5A B = ,所以A B 中有2个元素,故选B .【点评】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)【2016年全国Ⅰ,文2,5分】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a =( )(A )3- (B )2- (C )2 (D )3【答案】A【解析】()()()12i i 212i a a a ++=-++,由已知,得212a a -=+,解得3a =-,故选A .【点评】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)【2016年全国Ⅰ,文3,5分】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )13(B )12 (C )23 (D )56 【答案】A【解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选A . 【点评】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.(4)【2016年全国Ⅰ,文4,5分】ABC ∆的内角A B C 、、的对边分别为a b c 、、.已知a =2c =,2cos 3A =,则b =( )(A (B (C )2 (D )3【答案】D 【解析】由余弦定理得2254223b b =+-⨯⨯⨯,解得3b =(13b =-舍去),故选D . 【点评】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记!(5)【2016年全国Ⅰ,文5,5分】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13(B )12 (C )23 (D )34 【答案】B【解析】如图,由题意得在椭圆中,OF c =,OB b =,11242OD b b =⨯=,在Rt OFB ∆中,OF OB BF OD ⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B . 【点评】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .(6)【2016年全国Ⅰ,文6,5分】若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函 数为( )(A )2sin 24y x π⎛⎫=+ ⎪⎝⎭ (B )2sin 23y x π⎛⎫=+ ⎪⎝⎭ (C )2sin 24y x π⎛⎫=- ⎪⎝⎭ (D )2sin 23y x π⎛⎫=- ⎪⎝⎭ 【答案】D 【解析】函数=2sin(2+)6y x π的周期为π,将函数=2sin(2+)6y x π的图像向右平移14个周期即4π个单位,所得函数为=2sin 2()+2sin 2463y x x πππ⎡⎤⎛⎫-=- ⎪⎢⎥⎣⎦⎝⎭,故选D . 【点评】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.(7)【2016年全国Ⅰ,文7,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π(B )18π (C )20π (D )28π【答案】A 【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=,解得2r =, 2271431784S r r πππ∴=⋅+⋅=,故选A . 【点评】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(8)【2016年全国Ⅰ,文8,5分】若0a b >>,01c <<,则( ) (A )log log a b c c < (B )log log c c a b < (C )c c a b < (D )a b c c >【答案】B【解析】由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B .本题也可以用特殊值代入验证,故选B .【点评】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)【2016年全国Ⅰ,文9,5分】函数22xy x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )【答案】D【解析】解法一(排除法):2()2x f x x e =- 为偶函数,且2(2)887.40.6f e =-≈-=,故选D . 解法二:2()2xf x x e =- 为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如 图),故存在实数0(0,1)x ∈,使得'0()0f x =,且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时,'0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.(10)【2016年全国Ⅰ,文10,5分】执行右面的程序框图,如果输入的0,1,1x y n ===,则输出,x y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x =【答案】C【解析】第一次循环:0,1,2x y n ===,第二次循环:1,2,32x y n ===,第三次循环: 3,6,32x y n ===,此时满足条件2236x y +≥,循环结束,3,62x y ==,满足 4y x =,故选C .【点评】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(11)【2016年全国Ⅰ,文11,5分】平面α过正方体1111ABCD A B C D -的顶点A ,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为( )(A (B (C (D )13 【答案】A【解析】如图,设平面11CB D 平面ABCD m '=,平面11CB D 11ABB A n '=,因为α∥平面11CB D ,所以m m '∥,n n '∥,则,m n 所成的角.延长AD ,过1D 作11D E B C ∥,连接CE ,11B D ,则CE 为m ',同理11B F 为n ',而BD CE ∥,111B F A B ∥,则,m n ''所成的角即为1A B ,BD所成的角即为60︒,故,m n 故选A . 【点评】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12)【2016年全国Ⅰ,文12,5分】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦ 【答案】C【解析】()21cos2cos 03f x x a x '=-+≥对x ∈R 恒成立,故()2212cos 1cos 03x a x --+≥,245cos cos 033a x x -+≥恒成立,即245033at t -+≥对[]1,1t ∈-恒成立,构造()24533f t at t =-+,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-≥⎪⎪⎨⎪-=+≥⎪⎩,解得1133t -≤≤,故选C . 【点评】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,文13,5分】设向量(),1x x =+a ,()1,2=b ,且⊥a b ,则x = .【答案】23-【解析】由题意,20,2(1)0,3x x x ⋅=++=∴=-a b . 【点评】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)【2016年全国Ⅰ,文14,5分】已知θ是第四象限角,且3sin 45πθ⎛⎫+= ⎪⎝⎭,则tan 4πθ⎛⎫-= ⎪⎝⎭ . 【答案】43- 【解析】由题意sin sin 442θθπ⎡ππ⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭,因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z ,从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 【点评】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.(15)【2016年全国Ⅰ,文15,5分】设直线2y x a =+与圆22220C x y ay +--=:相交于A ,B 两点,若AB =,则圆C 的面积为 .【答案】4π【解析】有题意直线即为20x y a -+=,圆的标准方程为()2222x y a a +-=+,所以圆心到直线的距离d =,所以AB ==2224a r +==,所以244S r ππ==. 【点评】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到. (16)【2016年全国Ⅰ,文16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元, 那么 1.50.5150,0.390,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩①目标函数2100900z x y =+.①等价于3300,103900,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩ ②作出二元一次不等式组②表示的平面区域(如图),即可行域将2100900z x y =+变形得73900z y x =-+,平行直线73y x =-,当直线73900z y x =-+经过点M 时,z取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标()60,100.所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=.故生产产品A 、产品B 的利润之和的最大值为216000元.【点评】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2016年全国Ⅰ,文17,12分】已知{}n a 是公差为3的等差数列,数列{}n b满足11b =,213b =,11n n n n a b b nb +++=.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.解:(1)由已知1221a b b b +=,11b =,213b =,得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-.(2)由(1)和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313122313nn n S --==-⨯-. 【点评】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(18)【2016年全国Ⅰ,文18,12分】如图,在已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 解:(1)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正 投影为E ,所以.AB DE ⊥所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点. (2)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,PB PC ⊥,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB ,DE ⊥平面PAB , 所以//DE PC ,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF ==所以四面体PDEF 的体积114222323V =⨯⨯⨯⨯=. 【点评】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.(19)【2016年全国Ⅰ,文19,12分】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若19n =,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求的n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买PA B D C GE19个还是20个易损零件?解:(1)当19x ≤时,3800y =;当19x >时,()3800500195005700y x x =+-=-,所以y 与x 的函数解析式为()3800,195005700,19x y x x x ≤⎧=∈⎨->⎩Ν. (2)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯+⨯=.比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 【点评】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20)【2016年全国Ⅰ,文20,12分】在直角坐标系xOy 中,直线():0l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OH ON; (2)除H 以外,直线M H 与C 是否有其它公共点?说明理由.解:(1)由已知得()0,M t ,2,2t P t p ⎛⎫ ⎪⎝⎭.又N 为M 关于点P 的对称点,故2,t N t p ⎛⎫ ⎪⎝⎭,ON 的方程为2y px =,整理得2220px t x -=,解得10x =,222t x p =,因此22,2t H t p ⎛⎫ ⎪⎝⎭.所以N 为OH 的中点,即2OH ON =. (2)直线M H 与C 除H 以外没有其它公共点.理由如下:直线M H 的方程为2p y t x t-=,即2()t x y t p =-. 代入22y px =得22440y ty t -+=,解得122y y t ==,即直线M H 与C 只有一个公共点,所以除H 以外 直线M H 与C 没有其它公共点.【点评】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)【2016年全国Ⅰ,文21,12分】已知函数()()()22e 1x f x x a x =-+-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)()()()()()'12112x x f x x e a x x e a =-+-=-+.(i) 设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >.所以在(),1-∞单调递减,在()1,+∞单调递增.(ii) 设0a <,由()'0f x =得1x =或()ln 2x a =-. ①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2e a >-,则()ln 21a -<,故当()()(),ln 21,x a ∈-∞-+∞ 时,()'0f x >;当()()ln 2,1x a ∈-时, ()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减. ③若2e a <-,则()ln 21a ->,故当()()(),1ln 2,x a ∈-∞-+∞ 时,()'0f x >,当()()1,ln 2x a ∈-时, ()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(2)(i) 设0a >,则由(1)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()1f e =-,()2f a =,取b 满足0b <且ln 22b a <,则()()()23321022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,所以()f x 有两个零点. (ii)设0a =,则()()2x f x x e =-,所以()f x 有一个零点.(iii)设0a <,若2e a ≥-,则由(1)知,()f x 在()1,+∞单调递增.又当1x ≤时,()0f x <,故()f x 不 存在两个零点;若2e a <-,则由(1)知,()f x 在()()1,ln 2a -单调递增,在()()ln 2,a -+∞单调递增.又 当1x ≤时,()0f x <,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.【点评】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2016年全国Ⅰ,文22,10分】(选修4-1:几何证明选讲)如图,OAB ∆是等腰三角形,120AOB ∠=︒.以O 为圆心,12OA 为半径作圆. (1)证明:直线AB 与O 相切;(2)点C ,D 在⊙O 上,且A B C D ,,,四点共圆,证明://AB CD .解:(1)设E 是AB 的中点,连接OE ,因为OA OB =,120AOB ∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半 径,所以直线AB 与O e 相切. (2)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥.同理可证,'OO CD ⊥.所以//AB CD .【点评】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)【2016年全国Ⅰ,文23,10分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (1)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .解:(1)cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ① ∴1C 为以()01,为圆心,a 为半径的圆.方程为 222210x y y a +-+-=∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+= ② 3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①-②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.【点评】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)【2016年全国Ⅰ,文24】(本小题满分10分)(选修4-5:不等式选讲)已知函数()123f x x x =+--.(1)在答题卡题图中画出()y f x =的图像;O D C B A E O'D C O BA(2)求不等式()1f x >的解集.解:(1)4,13()12332,1234,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=--≤<⎨⎪⎪-+≥⎪⎩,如图所示: (2)①当1x <-时,()41f x x =->,解得3x <或5x >,1x ∴<-; ②当312x -≤<时,()321f x x =->,解得13x <或1x >, 113x ∴-≤<或312x <<; ③当32x ≥时,()41f x x =-+>,解得3x <或5x >,332x ∴≤<或5x >. 综上可知,不等式()1f x >的解集为()()1,1,35,3⎛⎫-∞+∞ ⎪⎝⎭ . 【点评】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b=(A 2(B 3C )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为(A )32(B )22(C )33(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =. (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )13(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b= (A(BC )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为 (A )3(B )2(C )3(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为 。
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )23(D )56 (4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=(ABC )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为 (A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π(8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b(9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α= 平面, 11ABB A n α= 平面,则m ,n 所成角的正弦值为(A B )2(C (D )13 (12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =.(14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。
试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= (A )2 (B )3 (C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C ) (D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足n=n +1结束输出x,y x 2+y 2≥36?x =x+n-12,y=ny 输入x,y,n 开始(A )2y x = (B )3y x =(C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为(A )32 (B )22 (C )33(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13) ~ (21)题为必考题,每个试题考生都必须作答.第(22)~ (24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =___________ (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=___________. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为_________(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。
学.科网该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为__________元。
三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和. 18.(本题满分12分)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . 学科&网PABD CGE(I )证明: G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.(19)(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:161718192021频数更换的易损零件数610162024记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (I )若n =19,求y 与x 的函数解析式;(II )若要求学科&网“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(III )假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?学科&网(20)(本小题满分12分)在直角坐标系xOy 中,直线l : y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OH ON;(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.(21)(本小题满分12分) 已知函数.(I)讨论的单调性;(II)若有两个零点,求a 的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆. (I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB ∥CD.D COAB(23)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xOy中,曲线C1的参数方程为(t为参数,a>0)。
在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(II)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a. (24)(本小题满分10分),选修4—5:不等式选讲已知函数f(x)= ∣x+1∣-∣2x-3∣. 学科&网(I)在答题卡第(24)题图中画出y= f(x)的图像;(II)求不等式∣f(x)∣﹥1的解集。
2016年普通高等学校招生全国统一考试文科数学参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)B (2) A (3)C (4)D (5)B (6)D (7)A (8)B (9)D (10)C (11)A (12)C第II 卷二、填空题:本大题共3小题,每小题5分. (13)23-(14)43-(15)4π (16)216000 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(I )由已知,1221121,1,,3a b b b b b +===得1221121,1,,3a b b b b b +===得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-.学科&网 (II )由(I )和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313.122313nn n S --==-⨯- (18)(I )因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影. 学科&网连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V (19)(I )分x ≤19及x.19,分别求解析式;(II )通过频率大小进行比较;(III )分别求出您9,n=20的所需费用的平均数来确定。
试题解析:(Ⅰ)当19≤x 时,3800=y ;当19>x 时,5700500)19(5003800-=-+=x x y ,所以y 与x 的函数解析式为)(,19,5700500,19,3800N x x x x y ∈⎩⎨⎧>-≤=.(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为4050)104500904000(1001=⨯+⨯. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(20)(Ⅰ)由已知得),0(t M ,),2(2t pt P . 又N 为M 关于点P 的对称点,故),(2t pt N ,ON 的方程为x t p y =,代入px y 22=整理得0222=-x t px ,解得01=x ,p t x 222=,因此)2,2(2t pt H .所以N 为OH 的中点,即2||||=ON OH . (Ⅱ)直线MH 与C 除H 以外没有其它公共点.理由如下: 直线MH 的方程为x t p t y 2=-,即)(2t y ptx -=.代入px y 22=得04422=+-t ty y ,解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.(21) (I)()()()()()'12112.x xf x x e a x x e a =-+-=-+(i)设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以在(),1-∞单调递减,在()1,+∞单调递增. 学科&网 (ii)设0a <,由()'0f x =得x=1或x=ln(-2a).①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2ea >-,则ln(-2a)<1,故当()()(),ln 21,x a ∈-∞-+∞ 时,()'0f x >;当()()ln 2,1x a ∈-时,()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减. ③若2ea <-,则()21ln a ->,故当()()(),1ln 2,x a ∈-∞-+∞ 时,()'0f x >,当()()1,l n 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减. (II)(i)设0a >,则由(I)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增. 又()()12f e f a =-=,,取b 满足b <0且ln 22b a<, 则()()()23321022a f b b a b a b b ⎛⎫>-+-=->⎪⎝⎭,所以()f x 有两个零点. (ii)设a =0,则()()2xf x x e =-所以()f x 有一个零点.(iii)设a <0,若2ea ≥-,则由(I)知,()f x 在()1,+∞单调递增. 又当1x ≤时,()f x <0,故()f x 不存在两个零点;若2ea <-,则由(I)知,()f x 在()()1,ln 2a -单调递减,在()()ln 2,a -+∞单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞. (22)(Ⅰ)设E 是AB 的中点,连结OE ,因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径,所以直线AB 与⊙O 相切. EO'DCO BA(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .学科&网由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥. 同理可证,'OO CD ⊥.所以//AB CD . (23)⑴cos 1sin x a ty a t =⎧⎨=+⎩(t 均为参数)∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==, ∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,224x y x ∴+= 即()2224x y -+= ②3C :化为普通方程为2y x =第 11 页 共 11 页 由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C ∴210a -=∴1a =(24)⑴如图所示:⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥ ()1f x >当1x -≤,41x ->,解得5x >或3x < 1x -∴≤ 当312x -<<,321x ->,解得1x >或13x < 113x -<<∴或312x << 当32x ≥,41x ->,解得5x >或3x < 332x <∴≤或5x > 综上,13x <或13x <<或5x > ()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,。