19.2.3一次函数的图象和性质
- 格式:ppt
- 大小:410.50 KB
- 文档页数:15
一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
一次函数的图像与性质知识点总结知识点1 、 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数. 知识点2、 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3、一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 、 一次函数y=kx+b (k ,b 为常数,k≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②当k >0,b ﹥0时,直线经过第一、三、四象限(直线不经过第二象限);③当k ﹤0,b >0时,直线经过第一、二、四象限(直线不经过第三象限);④当k﹤0,b﹤0时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5、正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点6、点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l 的图象上.知识点7、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k,b就是待定系数.知识点9、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.。
一次函数的图像与性质一次函数,也被称为线性函数,是指一个变量与另一个变量之间的关系可以表示为 y = ax + b 的函数形式,其中 a 和 b 是常数。
本文将探讨一次函数的图像及其相关性质。
I. 一次函数的图像一次函数的图像是一条直线,在直角坐标系中表示为一条斜率为a、截距为 b 的直线。
斜率 a 决定了直线的倾斜方向和角度。
若 a > 0,则直线向右上方倾斜;若 a < 0,则直线向右下方倾斜;若 a = 0,则直线为水平直线。
截距 b 则表示了直线与 y 轴的交点。
II. 一次函数的性质1. 斜率一次函数的斜率 a 表示了直线的倾斜程度。
斜率的绝对值越大,则直线越陡峭;斜率为正值时表示直线上升,为负值时表示直线下降;斜率为零时表示直线水平。
通过斜率,我们可以判断一次函数的增减性。
2. 截距截距 b 表示了一次函数与 y 轴的交点,即当 x = 0 时,函数的取值。
截距的正负决定了直线在 y 轴上的位置,正值表示与 y 轴正向交点在上方,负值则在下方。
截距的大小也影响了直线与坐标轴的交点。
3. 零点一次函数的零点是指函数取值为零的点,也就是使得y = 0 的x 值。
通过求解一次函数的零点,我们可以求得函数与 x 轴的交点。
4. 增减性一次函数的增减性由斜率来决定。
当斜率a > 0 时,函数单调递增;当斜率 a < 0 时,函数单调递减;当斜率 a = 0 时,函数为常数函数,不具有增减性。
5. 定义域与值域一次函数的定义域为所有实数,因为 x 可以取任意实数值;值域则由斜率和截距来决定。
当斜率 a > 0 时,值域为 (-∞, +∞);当斜率 a < 0 时,值域为(+∞, -∞);当斜率 a = 0 时,值域只有截距 b。
6. 图像平移一次函数的图像可以通过改变斜率或截距来进行平移变换。
增加或减小截距 b 可以使得图像上下平移,增加或减小斜率 a 则使得图像左右平移。
一次函数的图象和性质一次函数,也叫一元一次方程,是由一项常数和一项一次项组成的形如y=ax+b 的函数,其中 a 和 b 分别代表斜率和截距。
它是代数学中最简单的一种函数类型,同时也是现实生活中最常用的一种函数类型。
在数学和物理等重要领域中,一次函数和它的图象和性质可以发挥重要作用。
一次函数的图象一个一次函数可以通过以下两种方法绘制其图象:1.通过表格计算和绘制:选择一些x 和y 值,将它们代入y = ax + b 中计算y 值,然后将这些值绘制为一个点的图象并连起来。
2.通过斜率和截距:通过y = ax + b,我们可以看出当x增加 1 时,y 增加 a 单位。
所以,在y 轴上,当x = 0 时,y 的值就是截距b,也就是函数图象在y 轴上的截距。
而当x 轴上的a 和b 分别表示函数图象在y 轴和x 轴上的斜率和截距。
一次函数的性质1.斜率(a):一次函数的斜率代表着函数图象在同一个单位x 范围内,y 增量的数量。
斜率越大,函数图象就越陡峭,因此斜率可以帮助我们确定函数图象的变化趋势。
2.截距(b):一次函数的截距是函数图象在y 轴上的截距位置。
截距表示的是当x = 0 时,函数图象所在的位置。
如果一个一次函数的截距非常接近于原点,那么这个函数会变得非常陡峭,因为它的斜率会非常大。
3.定义域和值域:一个一次函数的定义域是所有可能的x 值的集合,而它的值域是所有可能的y 值的集合。
因为一次函数的定义依赖于斜率的值,而斜率零表示函数图象是水平的,值域也是有限的。
4.最大值与最小值:一个一次函数的最大值或最小值会发生在其斜率从正数到负数的转变点,也就是当斜率从正数变为负数时,函数图象达到其峰值。
因此,对于一个一次函数来说,它可能会存在最大值或最小值,但是它们一定属于图象的端点,不会出现在中间部分。
总之,一次函数作为数学和现实生活中最常见和最基础的函数类型,在多个领域中发挥着重要作用。
对于初学者来说,学习它的图象和性质是非常重要的,因为这可以帮助他们更好地理解一些其他更加复杂的函数类型,如二次函数、指数函数等等,并且也有助于理解数学和物理等领域中的问题。
19.2.2(2)一次函数的图像和性质主备人:目标:1、掌握一次函数的图象的简单画法;2、经历探索由一次函数图象观察归纳一次函数性质的过程;3、掌握并应用一次函数性质解决问题。
重点:一次函数的图象和性质难点:一次函数的图象和性质一.知识清单1.一次函数图象的画法2.一次函数的性质3. 一次函数的系数k,b对图象、性质的影响4. 两条直线的位置关系二.经典例题和变式知识点1.一次函数图象的画法例1 用你认为最简单的方法画出下列函数的图象:(1)y=-2x-1;(2)y=0.5x+1【变式练习1】下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)知识点2. 一次函数的性质例2已知一次函数y=(2a+4)x+(2b-4),(1)a为何值时,y随x的增大而减小?(2)a、b为何值时,函数图象与y轴的交点在y轴的正半轴上?【变式练习2】已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定知识点3.一次函数的系数k,b对图象的影响例3 正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是( )A. B. C. D.【变式练习3】已知函数y=(2m+1)x+m﹣3,若这个函数的图象不经过第二象限,则m的取值范围是()A.m>﹣ B.m<3 C.﹣<m<3 D.﹣<m≤3知识点4.两条直线的位置关系例4在同一坐标系中画出下列函数的图象,并观察两条直线的位置关系:x+1(1)y=2x+1与y=2x-3 (2)y=2x+1与y=−12【变式练习4】x+2交于y轴上一点,则k=________,b=________(1)已知直线y=kx+b与y=3x平行,与y=12(2)已知直线y=kx+b与y=-3x垂直,与y=x−2交于y轴上一点,则k=________,b=________三.习题精选A基础演练1.关于函数y=2x-6,下列叙述正确的是()A.图象经过点(2,-6)B.图象经过第一、二、三象限C.当x>3时,y>0D.y随x的增大而减小2. 对于一次函数y=kx+k-1(k≠0),下列叙述正确的是()A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,函数图象y随x的增大而减小C.当k<1时,函数图象一定与y轴交于负半轴D. 函数图象一定经过(-1,-2);④y=(1﹣√2)x,y随x的增大而减小的有()3.下列函数中,①y=﹣2x+1;②y=6﹣x;③y=−1+x3A.1个B.2个C.3个D.4个4.在同一平面直角坐标系中,直线y=4x+1与直线y=-x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.已知一次函数y=(3−k)x−2k2+18.(1)当k=_______时,其图象经过原点;(2)当k__________时,y随x的增大而减小;(3)当_________时,其图象与y轴的交点在x轴的上方;(4)当k=_________时,其图象垂直于直线y=−x.6.(1) 已知一次函数y=(1-m)x+m-2,当m__________时,y随x的增大而增大;(2) 已知直线y=kx+b,k+b= -5,kb=6,那么该直线不经过第_______象限;(3)已知一次函数y=kx+2k+3图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能值的整数值为___________7.如图,一次函数y=−x+m的图象和y轴交于点B,与正比例函数y=32x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积8.已将一次函数y=kx−1的图象向上平移k个单位后恰好经过点A(3,2+k).(1)求k的值;(2)若一条直线与函数y=kx−1的图象平行,且与两个坐标轴所围成的三角形的面积为1,求该直线的函数关2系式B能力提升9.若点M(−7,m)、N(−8,n)都在函数y=−(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是( )A. m>nB. m<nC. m=nD. 不能确定10.若实数a,b,c满足a+b+c=0且a<b<c,则函数y=cx+a的图象可能是()A. B. C. D.11.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为_______.C巅峰突破12.如图,直线y=2x+4与x轴,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .13.在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x轴交于点B,且S△AOB=4,求k的值。
学科:数学 教学内容:一次函数的图像和性质【基础知识精讲】 一、一次函数的图像1.正比例函数y=kx(k ≠0,k 是常数)的图像是经过O(0,0)和M(1,k)两点的一条直线(如图).(1)当k >0时,图像经过原点和第一、三象限;(2)k <0时,图像经过原点和第二、四象限.2.一次函数y=kx+b(k 是常数,k ≠0)的图像是经过A(0,b)和B(-k b,0)两点的一条直线,当kb ≠0时,图像(即直线)的位置分4种不同情况:(1)k >0,b >0时,直线经过第一、二、三象限,如图A (2)k >0,b <0时,直线经过第一、三、四象限,如图B (3)k <0,b >0时,直线经过第一、二、四象限,如图C (4)k <0,b <0时,直线经过第二、三、四象限,如图D3.一次函数的图像的两个特征(1)对于直线y=kx+b(k ≠0),当x=0时,y=b 即直线与y 轴的交点为A(0,b),因此b 叫直线在y 轴上的截距.(2)直线y=kx+b(k ≠0)与两直角标系中两坐标轴的交点分别为A(0,b)和B(-k b ,0).设直线与x 的夹角为α,则tg α=|k bb|=|k|,由于角α:0<α<90°,tg α>,因此|k|=tg α.4.一次函数的图像与直线方程(1)一次函数y=kx+b(k ≠0)的图像是一条直线,因此y=kx+b(k ≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x 轴平行的直线方程形如:y=a(a 是常数).a >0时,直线在x 轴上方;a=0时,直线与x 轴重合;a <0时,直线在x 轴下方.(如图)②与y 轴平行的直线方程形如x=b(b 是常数),b >0时,直线在y 轴右方,b=0时,直线与y 轴重合;b <0时,直线在y 轴左方,(如图13-二、两条直线的关系1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b,若l1若l2相交,则k 1≠k2;若k1≠k2,则l1与l2不平行,其交点是联立这两条直线的方程,求得的公共解.三、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.待定系数法求一次函数的解析式:若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=k1x1+b①y 2=k2x2+b2②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.【重点难点解析】例1已知一次函数y=(m+3)x+(4-n),(1)m为何值时,y随x的增大而减小;(2)n为何值时,函数的图像与y轴的交点x轴下方;(3)m、n为何值时,函数图像与y=x+2的图像平行.解:(1)当m+3<0,即m <-3时,y 随x 的增大而减小; (2)当4-n <0,即n >4时,函数的图像与y 轴的交点在x 下方; (3)当m+3=1且4-n ≠2时,即m=-2, n ≠2时,函数的图像是一条与y=x+2平行的直线.例2 当a 、b >0,ac <0,直线ax+by+c=0不通过哪个象限. 解:∵b ≠0 ∴由原函数式变形得:y=-b a x-b c∴ab >0 ∴-b a<0 又∵ac <0,∴-b c>0直线ax+by+c=0不通过第三象限.例3 直线l 1:y 1=k 1x+b 1 与y=2x 平行且通过A(3,4),直线l 2:y 2=k 2x+b 2通过B(1,3),C(-1,5),求l 1和l 2的解析式.解:∵y 1=k 1x+b 1与y=2x 平行且通过A(3,4)∴⎩⎨⎧=+=4b 3k 2k 111解这个方程组得:⎩⎨⎧==-2b 2k 11∴l 1的解析式为:y=2x-2∵y 2=k 2x+b 2通过B(1,3)和C(-1,5)两点,将两点的坐标代入解析式得:∴l 2的解析式为:y=-x+4例4 已知一个正比例函数和一个一次函数,它们的图像都经过P(-2,1),且一次函数在y 轴上的截距为3.(1)求这两个函数的解析式;(2)在同一坐标系中,分别画出两个函数的图像;(3)求这两个函数的图像与y 轴围成的三角形的面积.解:(1)设正比例函数和一次函数的解析式分别为y=k 1x 和 y=k 2x+b.由y=k 1x过点(-2,1)得1=-2k 1 ∴k 1=-21由y=k 2x+b 过点(-2,1),截距为3 得:b=3 -2k 2+b=1 解得:k 2=1 b=3(2)过点O(0,0)、P(-2,1)两点画一条直线,即得函数y=-21x 的图像.经过A(0,3)和P(-2,1)画一条直线即得y=x+3的直线,如图13-21(3)直线y=x+3与y 轴交于点A(0,3)过P 作PH ⊥y 轴,则OA=3,PH=|-2|=2,而函数与y 轴所围成的三角形面积即是△APO 的面积.S △APO=21·AO ·PH =21×3×2=3例5 已知y-(m-3)与x(m 是常数)成正比例,且 x=6时,y=1;x=-4时, y=-4.(1)求y 与x 之间的函数关系式;(2)在直角坐标系中,画出这个函数的图像;(3)求出这个函数的图像与坐标轴的两个交点之间的距离.解:∵y-(m-3)与x 成正比例 ∴可设y-(m-3)=kx,即y=kx+m-3①⎩⎨⎧-=+-=+1m k 44m k 6故所求函数关系式为:y=21x-2(2)经过A(6,1)和B(-4,-4)画直线即是函数y=21x-2的图像.如图13-22(3)当x=0时:y=21×0-2=-2 当y=0时,0=21x-2 x=4∴C(4,0),D(0,-2)|CD|=52242222=+=+OD OC综上所述5例可见,本节重点为:①根据直线所通过的点的条件求直线方程;②根据直线方程求作直线的图像;③根据增减性、截距求直线方程;④根据两直线的位置关系求直线方程;本节的难点是求直线围成的图形的面积.解决重难点的方法是运用待定系数法和数形结合的方法.【难题巧解点拨】例6 已知函数y=|x-a|+|x+19|+|x-a-96|,其中a 为常数,且满足19<a <96,当自变量x 的取值范围为a ≤x ≤96时,求y 的最大值.解:∵19<a <96,a ≤x ≤96∴x-a ≥0,x+19>10,x-a-96<0则y=x-a+x+19+a+96-x=115+x 函数y=15+x 是一次函数,其增减性表明y 随x 的增大而增大. ∴在a ≤x ≤96的x 取值范围内,当x=96时,y 取最大值,即: y max =96+115=211说明:含绝对值的函数首先要讨论绝对值的式子的正负性质,再根据绝对值定义化简,从而得到一次函数;讨论在某一自变量的取值范围内最大值或最小值要根据一次函数的性质和自变量x 范围的两端点取值来求.例7 如图13-23在平面直角坐标系中,点O ′的坐标为(0,3),⊙O ′与y 轴交于原点O 和点A ,又B 、C 、E 三点的坐标分别为(0,-2)、(4,0)、(x ,0),且0<x <4.(1)求点A 的坐标;(2)当点E 在线段OC 上移动时,直线BE 与⊙O ′有哪几种位置关系?(3)求出直线BE 与⊙O ′每种位置关系时,x 的取值范围.分析:直线与圆有三种位置关系,从直线与圆相切这种特殊情形,用运动变化的观点寻求结论成立的条件是解本题的关键.解:(1)∵O ′(0,3) ∴⊙′的半径为: OO ′=3,∴OA=2·OO ′=2×3=6,∴A(0,6)(2)∵点B 在⊙O ′外,BE 与⊙O ′有三种位置关系:相离、相切、相交; (3)当直线BE 与⊙O ′相切于D 点时,连结O ′D ,则△O ′BD 是Rt △. O ′D=3, O ′B=5,BD=4,OB=2,OE=x ∵△O ′BD ∽△EBO∴BD OB D O OE =' 即423=x ,解得:x=23故当23<x <4时,直线BE 与⊙O ′相离;当x=23时,直线BE 与⊙O ′相切.当0<x <23时,直线BE 与⊙O ′相交.例8 如图13-24,某航空公司托运行李的费用与托运行李重量的关系为一直线,由图中可知行李的重量不超过多少公斤,就可以免费托运?解:设直线方程为:y=kx+b (k 、b 是常数,k ≠0)由图可知:x=y=330;x=40时,y=630;把x,y 的对应取值代入直线方程,得:解这个方程组,得:k=30,b=-570 ∴直线方程为:y=30x-570 若y=0时,30x-570=0, ∴x=19答:只要行李重量不超过19公斤时,就可免费托运.【命题趋势分析】由于一次函数是最基本的函数内容,是初中重点之一,在实际中应用十分广泛,因此是中考热点考题.有关一次函数考试主要是概念、图像、性质三个基本内容和待定系数法、数形结合法两种数学方法.【典型热点考题】例9 填空题:已知直线l:y=-3x+2,现在4个命题:①点P(在直线l 上;②若直线l 与x 轴、y 轴分别交于A 、B 两点,则AB=1032;③若点M(31,1),N(a 、b)都在直线l 上,且a >31,则b >1;④若点Q 到两坐标轴的距离相等,且点Q 在l 上,则点Q 在第一或第四象限.其中正确的命题是 .(注意:在横线上填上你认为正确的命题序号)(厦门市中考题)分析:检验①:只需将x=1,y=-1代入函数式看是否适合,当x=1时,y=-3+2=-1,即P(在直线y=-3x+2上,①命题正确;检验②;当y=0时,求得x=32,即A(32,0),当x=0时,y=2,即B(0,2),∴AB=10322)32(22=+,命题②正确;检验③,若M(31,1),N(a,b)都在y=-3x+2上,根据直线的性质,k=-3<0,y 随x 的增加而减小,∴a >31时,应该有b <0,因此b >1错误,即命题③错误;检验④,∵Q 到两坐标轴的距离相等,设Q(m 、n),则|m|=|n|,且n=-3m+2,由此解得:⎩⎨⎧-==11n m 或⎪⎪⎩⎪⎪⎨⎧==2121n m 因此Q 点在第一或第四象限,命题④正确. 因此,选①、②、④填空.例10 某居民小区按照分期付款的形式福利售房,政府给予一定的贴息,小明家购得一套现价为10元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款5000元与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%.(1)若第x(x ≥2)年小明家交付房款y 元,求年付款y(元)与x(年)的函数关系式;(2)将第三年,第十年应付房款填入下列表格中:(大连市中考题)分析:首期付款后共余10-30000=90000元房款,以后每年付款应为5000,与上一年所欠余款×0.4%,即余款的利息之和.解:(1)y=5000+[90000-5000(x-2)] ×0.4% =5400-x ≥2)(2)当x=3时,y=5340,当 x=10 时,y=5 因此第三年应付款5340元,第十年应付款5.例11 已知直线x-2y=-k+6和x+3y=4y+1,若它们的交点在第四象限内,(1)求k 的取值范围,(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线x-2y=-k+6上,求使△PAO 为等腰三角形的点P 的坐标.(西安市中考题)解:(1)依题意:解这个方程组,得:x=k+4,y=k-1 ∵两直线的交点在第四象限∴k+4>0,且k-1<0 解不等式组得:-4<k <1 (2)∵k 为非负整数,∴k=0∴直线x-2y=-k+6即为:y=x21-3设P(a ,b)为直线y=x21-3上一点,作PE ⊥x 轴,垂足为E ,若使PO=PA ,则应有OE=AE ,即E(1,0)∵a=1,∴b=-25∴P 1(1,- 25)若使PO=OA=2,则a 2+b 2=4,a 2+(21a-3)2=4,45a 2-3a+5=0, △=9-25<0此方程无解.若使PA=OA=2,则(2-a)2+b 2=4,(2-a)2+(21a-3)2=4, ∴45a 2-7a+9=0,a 1=2,a 2=518,当a 1=2时,b 1=-2,当a 2=518时 ,b 2=-56.∴P 2(2,-2)或P 3(518,56)综合上所述,点P 的坐标为(1,-25),(2,-2),(518,-56)如图13-25.【同步达纲练习】(时间:45分钟,满分:100分) 一、选择题(10分×6=60分)(1)一次函数y=kx+b 的图像经过点(m,-1)和点(1,m),其中,m <-1,则k 和b 满足的条件是( )A.k <0,b <0B.k >0,b >0C.k <0,b >0D.k >0,b <0 (2)若一次函数y=(1-2k)x-k(x 为自变量)的函数值y 随x 的增大而增大,且此函数的图像不经过第二象限,则k 的取值范围是( )A.k <21B.k >0C.0<k <21D.k <0或k >21(3)当mn <0 mp >0时,一次函数y=m n x pm的图像不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (4)一次函数y=kx+b 的图像如图13-26,那么k 、b 应满足的条件是( ) A.k >0,b >0 B.k >0,b <0 C.k <0,b >0 D.k <0,b <0(5)已知函数y=x k的图像经过点(-1,1),则函数y=kx+3的图像是( )(6)直线y=kx+b 与直线 y=-x 垂直,并且经过点(-1,1),那么直线y=kx+b 的解析式为( )A.y=-x-2B.y=x+2C.y=x-2D.y=-x+2二、解答题(10分×3=30分)(7)已知一次函数y=(3-k)x+2k+1.①如果它的图像经过(-1,2)点,求k 的值;②如果它的图像经过第一、二、四象限,求k 的取值范围.(8)已知y+b 与x-1(其中b 是常数)成正比例.①证明:y 是x 的一次函数;②若这个一次函数的图像经过点(25,0),且与坐标轴在第一象限内围成的三角形的面积为425,求这个一次函数,并画出它的图像.(9)已知一次函数y=(p+3)x+(2-q).①p 为什么实数时y 随x 的增大而增大?②q 为什么实数时,函数图像与y 轴的交点在x 轴的上方;③p 、q 为什么实数时,函数的图像过原点?(10)如图13-27,在直角坐标系中,点A(x 1,-3)在第三象限,点B(x 2,-1)在第四象限,线段AB 与y 轴交于点D ,∠AOB=90°,①当x 2=1时,求图像经过A 、B 的一次函数的解析式;②当△OAB 的面积等于9时,设∠AOD=α,求sin α·cos α的值.【素质优化训练】一个水池的容积是100m 3,现存水,今要灌满水池,已知进水管的流量是每小时8m 3,写出水池的水量υ与进水时间t 之间的函数关系式,并画出图像.【生活实际应用】某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出货,可获利15%,并可用本和利再投资其它商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用,请问根据商场的资金状况,如何购销获利最多?【知识探究学习】求直线方程的几种方法:1.如图1,若l 与x 轴的夹角为α(0<α<90),直线与y 轴交于点(0,b),则直线l 方程即为:y=tg α·x+b2.若l 与x 的夹角为α(0<α<90),且经过点M(x 1,y 1),如图2,则直线l 的方程即可写为:αtg x x y y =--113.若l 经过A(x 1,y 1),B(x 2,y 2),则直线l 的方程即可写为:122122x x xx y y y y --=--参考答案:【同步达纲练习】一、A C D D C B二、(7)k=34,k>3,(8)①y=kx-(k+b)(k≠0);②y=-2x+5;(9)①P>-3,②q<2,③p≠3且q=2;(10)①y=21x-32;②sinα·cosα=61【素质优化训练】v=t(0≤t≤10)【生活实际应用】设商场投资x元,在月初出售,到月末可获得y1元,在月末出售可获利y2元.y1=0.265x,y2=0.3x-700(1) 当y1=y2时,x=0(2) y1<y2时,x>0(3) y1>y2时,x<。
一次函数的图像与性质知识点总结知识点1 、 一次函数和正比例函数的概念若两个变量x,y 间的关系式可以表示成y=kx+b(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数。
例如:y=2x+3,y=—x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.知识点2、 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3、一次函数的图象由于一次函数y=kx+b(k,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b),直线与x 轴的交点(-kb ,0)。
但也不必一定选取这两个特殊点。
画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 、 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k |大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5、正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点6、点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点7、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y 的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点9、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.。
一次函数的图象和性质介绍一次函数是数学中最简单的函数之一,它的图象是一条直线。
在代数中,一次函数也被称为线性函数,因为它的图象是一条直线。
一次函数的一般形式为:y=ax+b,其中a和b是常数,x和y分别表示函数的自变量和因变量。
在一次函数中,a表示直线的斜率,决定了直线的倾斜程度;b则表示直线与y轴的截距,决定了直线与y轴的交点。
在本文档中,我们将探讨一次函数的图象和性质,包括函数图象的特点、斜率的意义以及如何通过图象判断函数在不同区间的增减性。
一次函数图象的特点一次函数的图象是一条直线,它具有以下几个特点:•直线上的两点确定一条直线:对于一次函数y=ax+b,只需要确定直线上的两个点,就可以准确绘制出整条直线。
这是因为一次函数的图象是一条直线,而直线上的两点可以唯一确定一条直线。
•斜率决定直线的倾斜程度:一次函数的斜率a决定了直线的倾斜程度。
斜率为正时,直线向右上方倾斜;斜率为负时,直线向右下方倾斜;斜率为零时,直线平行于x轴。
•截距决定直线与y轴的交点:一次函数的截距b决定了直线与y轴的交点。
当x=0时,y=b,即直线与y轴交于点(0,b)。
斜率的意义斜率是一次函数图象的重要性质,它代表了函数值随自变量变化的速率。
具体来说,斜率表示了单位自变量增加时因变量增加或减少的比率。
对于一次函数y=ax+b,斜率a的意义如下:•当a>0时,斜率表示了因变量y随自变量x的增加而增加的比率。
换句话说,斜率为正时,函数图象上的点从左到右逐渐上升。
•当a<0时,斜率表示了因变量y随自变量x的增加而减少的比率。
换句话说,斜率为负时,函数图象上的点从左到右逐渐下降。
•当a=0时,斜率为零,表示函数图象是水平的,因变量y的值保持不变。
斜率可以帮助我们理解和分析一次函数的性质,包括函数的增减性以及直线的倾斜方向。
函数的增减性通过一次函数的图象,我们可以判断函数在不同区间的增减性。
根据斜率的正负,可以得出以下结论:•若a>0,则函数图象上的点从左到右逐渐上升,表示函数在该区间上是递增的。
03一次函数的图象与性质一次函数,也叫线性函数,是数学中最简单的函数之一、它的基本形式可以表示为 y = mx + b ,其中 m 和 b 是常数,且 m 不等于 0。
以下是关于一次函数的图象和性质的详细解释,包括它的图象特征、斜率和截距的意义、线性函数的变化规律以及一次函数与实际问题的应用等等。
一次函数的图象特征:一次函数的图象是一条直线。
直线可以通过两个点来确定,所以一次函数图象上的两个点就可以确定一次函数的性质。
一次函数图象上的两个点叫做(x₁,y₁)和(x₂,y₂),其中x₁和x₂是自变量x的取值,y₁和y₂是因变量y的取值。
斜率和截距的意义:一次函数的斜率m是直线的倾斜程度的量度。
斜率m的数值表示直线在x轴上水平移动一个单位时,在y轴上的移动距离。
斜率不同说明了不同的倾斜程度,斜率越大表示直线越陡峭,斜率趋近于零表示直线趋近于水平。
一次函数的截距b是直线与y轴的交点的纵坐标。
截距b的数值表示直线与y轴平行时与y轴的距离。
当b大于0时,直线在y轴上方与y轴相交;当b小于0时,直线在y轴下方与y轴相交。
线性函数的变化规律:一次函数的图象呈现的是一个线性的变化规律。
这意味着,x的每一个增量所引起的y的变化量都是相等的。
这个变化量就是斜率m。
换句话说,当x增加一个单位时,y的变化量就是斜率m。
此外,一次函数还有几个变化规律需要注意。
当m大于0时,y随着x的增加而增加,这代表了一个正相关的关系;当m小于0时,y随着x的增加而减少,这代表了一个负相关的关系。
当m=0时,y的取值不受x的影响,即y是一个常数。
一次函数与实际问题的应用:一次函数在实际问题中有广泛的应用。
以直线运动为例,直线运动的位移与时间之间的关系可以表示为一次函数。
位移 y 是时间 t 的函数,可以表示为 y = vt + b,其中 v 是速度,b 是起始位置。
另一个应用是成本和产量之间的关系。
假设一家工厂的总成本C是产品产量的函数,可以表示为C=mQ+b,其中m是单位成本,Q是产量,b是固定成本。