二维粒子图像测速系统的研制α
- 格式:pdf
- 大小:310.17 KB
- 文档页数:9
南京理工大学课程考核论文课程名称:图像传感与测量论文题目:粒子图像测速技术姓名:陈静学号: 314101002268 成绩:任课教师评语:签名:年月日粒子图像测速技术一、引言粒子图像测速技术即PIV(Particle Image Velocimetry)是流场显示技术的新发展。
它是在传统流动显示技术基础上,利用图形图像处理技术发展起来的一种新的流动测量技术。
湍流、复杂流动、非定常流动等现象一直是流体力学中重要的研究对象及疑难问题,因此开发适于流体运动研究的方法与技术也始终是一个重要的课题[1]。
早期发明的热线热膜流速计(简称HWFA)至今已有80多年的历史,曾经为流动测量特别是湍流的研究立下过汗马功劳。
这项技术的最大缺点是接触式测量,对流场有较大的干扰[2]。
20世纪60年代发展起来的激光多普勒测速仪(简称LDV),利用流场中粒子的散射,测量散射光对原入射光的多普勒频移量,计算粒子的运动速度,实现了对流场的无接触测量[3],这种技术具有极好的时间分辨率和空间分辨力,可做三维测速,已经成为流速测量的标准技术并得到了广泛应用。
然而,它和热线流速仪一样,都只是单点测量技术,难以实现对流场的全场、瞬态测量。
20世纪80年代发展起来的粒子图像测速技术则是在流动显示的基础上,充分吸收现代计算机技术、光学技术以及图像分析技术的研究成果而成长起来的最新流动测试手段,它不仅能显示流场流动的物理形态,而且能够提供瞬时全场流动的定量信息,使流动可视化研究产生从定性到定量的飞跃。
二、主要内容1.粒子图像测速技术的原理粒子图像测速技术原理简单,就是在流场中撤入示踪粒子,以粒子速度代表其所在流场内相应位置处流体的运动速度。
应用强光(片形光束)照射流场中的一个测试平面,用成像的方法(照像或摄像)记录下两次或多次曝光的粒子位置,用图像分析技术得到各点粒子的位移,由此位移和曝光的时间间隔便可得到流场中各点的流速矢量,并计算出其他运动参量(包括流场速度矢量图、速度分量图、流线图、漩度图等)[4]。
PIV实验技术报告摘要:本文介绍了PIV(粒子图像测速)实验技术的原理、仪器设备、实验过程和数据处理方法。
通过PIV实验,可以精确地测量流体介质中的速度分布,并对流场的运动特性进行分析和研究。
实验结果表明,PIV技术是一种高精度、高分辨率的流场测量方法,对于流体力学研究和工程应用具有重要意义。
1.引言粒子图像测速(PIV)是一种用于测量流体介质中速度场分布的非接触式测量方法。
它通过在流场中添加颗粒或通过实验液体中的已有颗粒来测量流场中颗粒的运动轨迹,并利用计算算法来获得流场中的速度矢量场。
本文主要介绍PIV技术的原理、仪器设备、实验过程和数据处理方法。
2.原理PIV实验的基本原理是通过拍摄两幅连续时间间隔极短的图像,再通过计算机处理这两幅图像来获得流场速度分布。
实验中,通过成像装置将流场中的颗粒的二维图像记录下来,并通过图像处理软件对这些图像进行处理,得到颗粒运动的位移信息。
根据颗粒在两幅图像中的位置变化以及两幅图像之间的时间间隔,可以计算出流场中颗粒的平均速度。
3.仪器设备PIV实验所需的主要仪器设备有:激光器、摄像机、成像装置、实验容器和图像处理软件。
激光器用于提供激光光源,摄像机用于捕捉流场中颗粒的图像,成像装置用于将颗粒的图像传送给摄像机进行记录,实验容器用于容纳流体介质,图像处理软件用于对图像进行处理和分析。
4.实验过程PIV实验的基本步骤包括:实验准备、实验装置安装、调试系统、进行实验和数据处理。
实验前需要根据具体情况选择合适的颗粒,并进行流动性能测试以确定实验参数。
然后需要根据实验要求进行装置安装和调试,确保实验装置的稳定性和准确性。
实验过程中,通过激光照射流体中的颗粒,并通过摄像机记录颗粒的图像。
最后,通过图像处理软件对图像进行处理和分析,得到流场的速度分布数据。
5.数据处理方法PIV实验得到的数据需要经过一系列处理方法来提取有用的流场信息。
数据处理方法包括:图像预处理、图像匹配、自相关分析、位移矢量计算和速度矢量分析。
基于粒子图像测速技术(PIV)的砂箱物理模拟实验研究【摘要】本研究基于粒子图像测速技术(PIV),通过砂箱物理模拟实验探究颗粒在不同特定流场下的运动规律。
在实验设计中,我们搭建了流动场装置,并通过PIV技术实时捕捉颗粒运动图像。
测速原理部分介绍了PIV技术的工作原理及应用。
在数据处理方法中描述了如何处理和分析实验数据,结果分析部分详细探讨了实验结果及颗粒运动规律。
实验验证部分通过与理论模型对比进行验证。
最后结论部分总结了实验结果,展望了PIV技术在地质工程领域的应用前景。
本研究将深入探讨颗粒在复杂流场下的运动规律,为解决地质工程中的颗粒运动问题提供理论支持。
【关键词】粒子图像测速技术(PIV)、砂箱物理模拟、实验设计、测速原理、数据处理方法、结果分析、实验验证、实验结果总结、技术应用展望、研究背景、研究意义1. 引言1.1 研究背景随着科学技术的不断进步,粒子图像测速技术(PIV)在流体力学研究中得到了广泛应用。
砂箱物理模拟实验是一种常用的流体力学实验方法,通过在实验室环境中模拟真实的地质流体运动情况,可以帮助研究人员理解地下水流、地表水流、河道水流等现象的规律。
传统的砂箱物理模拟实验存在着一些局限性,比如实验数据获取困难、测速精度低等问题。
而基于粒子图像测速技术的砂箱物理模拟实验则能够更准确地获取流体速度场信息,提高实验数据的准确性和可靠性。
本研究旨在结合粒子图像测速技术和砂箱物理模拟实验,探讨如何应用PIV技术提高砂箱实验的测速精度,以及进一步揭示地下水流或地表水流等流体运动规律。
这将为地质工程领域提供更为准确的实验数据和分析方法,具有重要的理论和实践意义。
1.2 研究意义基于粒子图像测速技术(PIV)的砂箱物理模拟实验研究具有重要的理论和应用价值。
通过这种技术可以精确地测量流体中颗粒的速度和运动轨迹,从而揭示颗粒在流场中的动力学行为和相互作用规律,为颗粒物理学和流体力学等领域的研究提供重要的实验数据。
热灾害实验技术粒子图像测速技术实验目的:测量流场的速度分布实验装置:摄像头,片光源,计算机实验原理与方法:互相关算法:根据DPIV 互相关算法理论,过一采样窗口,同一特定位置,可顺序获取两幅数字图像。
粒子的位移可从一幅图像到另一幅相对应的图像经互相关计算获得。
两幅顺序获取图像中相同位置的两个查问窗口函数 f(m ,n)和g(m ,n),从信号系统的观点出发,g(m ,n)可以看作是f(m ,n)经线性转换后叠加以噪声而成,如图所示。
1、预先在流场中撒入一定浓度和大小的示踪粒子,用脉冲激光片光源照明二维流场,在垂直片光的方向上摄像,获得两次或者多次曝光的粒子图像。
2、对采取的图像使用Photoshop进行处理使之变成长宽为256x256的灰度图像,使用matlab和互相关算法编程,对图像进行处理,得到二维流场中速度矢量分布图。
实验结果:隔两帧得到的灰度图:得到速度矢量图如图所示:得到速度矢量图如图所示:源程序:function [XNum,YNum,AutoFlag]=g(a1,a2,OutFile) fid1=fopen('a1.jpg','r');fid2=fopen('a2.jpg','r');fid3=fopen('OutFile.jpg','w');XL=256;YL=256;frewind(fid1);Image1=fread(fid1,[XL,YL]);frewind(fid2);Image2=fread(fid2,[XL,YL]);WinSizeX=64;WinSizeY=64;DeltaX=16;DeltaY=16;XNum = (XL-WinSizeX)/DeltaX;YNum = (YL-WinSizeY)/DeltaY;a=3.4968e+006 +4.7425e-010i;frewind(fid3);for j1=1:YNum+1;for i1=1:XNum+1;CorrWin1=Image1((i1-1)*DeltaX+1:(i1-1)*DeltaX+WinSizeX,(j1-1)*Del taY+1:(j1-1)*DeltaY+WinSizeY);CorrWin2=Image2((i1-1)*DeltaX+1:(i1-1)*DeltaX+WinSizeX,(j1-1)*Del taY+1:(j1-1)*DeltaY+WinSizeY);F1=fft2(CorrWin1);F2=fft2(CorrWin2);S=F2.*conj(F1);Pks=ifft2(S);Pks=fftshift(Pks);Pks=Pks/a;if (i1==2)SURF(abs(Pks));pauseend[temp1,maxx]=max(Pks);[temp2,maxy]=max(temp1);if temp2==0.0 || abs(maxx(maxy)-WinSizeX/2-1)> WinSizeX/3.0 || abs(maxy-WinSizeY/2-1)>WinSizeY/3.0VX(i1,j1)=0;VY(i1,j1)=0;Corr(i1,j1)=0;elseTX=maxx(maxy);TY=maxy;Corr(i1,j1)=temp2;%---------用高斯拟合峰值的精确位置-----------y0=Pks(TX-1,TY); %横向y1=Pks(TX,TY);y2=Pks(TX+1,TY);CX1=(y0-y2)/(2.0*(y0+y2-2.0*y1));y0=Pks(TX,TY-1); %纵向y1=Pks(TX,TY);y2=Pks(TX,TY+1);CY1=(y0-y2)/(2.0*(y0+y2-2.0*y1));y0=Pks(TX-1,TY-1); %第一对角线y1=Pks(TX,TY);y2=Pks(TX+1,TY+1);CX2=(y0-y2)/(2.828*(y0+y2-2.0*y1));CY2=(y0-y2)/(2.828*(y0+y2-2.0*y1));y0=Pks(TX+1,TY-1); %第二对角线y1=Pks(TX,TY);y2=Pks(TX-1,TY+1);CX3=-(y0-y2)/(2.828*(y0+y2-2.0*y1));CY3=(y0-y2)/(2.828*(y0+y2-2.0*y1));%--------------------------------------------------VX(i1,j1)=TX+CX1+CX2+CX3-WinSizeX/2-1;VY(i1,j1)=TY+CY1+CY2+CY3-WinSizeY/2-1;endX(i1,j1)=WinSizeX/2+(i1-1)*DeltaX;Y(i1,j1)=WinSizeY/2+(j1-1)*DeltaY;%if(abs(Corr(i1,j1))>abs(a))% a=Corr(i1,j1);%end;fprintf(fid3,'%8.2f,%8.2f,%12.6f,%12.6f,%8.2f\n',X(i1,j1),Y(i1,j1 ),VX(i1,j1),VY(i1,j1),Corr(i1,j1));end%j1end%aquiver(X,Y,VX,VY);fclose(fid1);fclose(fid2);fclose(fid3);cx=5;cy=5;sigma=0;for j1=1:YNum+1,for i1=1:XNum+1,sx=cx*abs(VX(i1,j1)-cx)/(cx*cx+cy*cy);sy=cy*abs(VY(i1,j1)-cy)/(cx*cx+cy*cy);sigma=sigma+sqrt(sx*sx+sy*sy);endendsigma=sigma*100/((XNum+1)*(YNum+1)); %百分比[s,errmsg]=sprintf('sigma=%f\n',sigma);s。
简述二维piv测量方法的原理二维PIV(Particle Image Velocimetry,颗粒图像测速法)是一种用于流场测量的非侵入性方法,可用于获得流场中每个空间点的瞬时速度和涡量信息。
该方法通过激光照射和摄像机拍摄,并对流场中的颗粒进行跟踪和分析来实现。
以下是二维PIV测量方法的原理的详细说明:1.激光照射:一个激光束通过一个透镜系统聚焦为一个薄平面,这个平面通常与被测的流场平行。
激光束可视化流场中的颗粒,从而使其拍摄变得可能。
2.颗粒示踪:在被测流场中加入由适当大小和材料制成的颗粒(通常是微型粒子),如硅胶颗粒或液滴。
这些颗粒可以在光线照射下反射或散射激光,并随着流场运动。
3.摄像机拍摄:一个高速摄像机(通常在数千至数万帧/秒的范围内)对颗粒运动进行拍摄。
摄像机位置需合理安排,以保证流场中的颗粒在图像上有足够的对比。
4.图像处理:通过图像处理算法,可以对拍摄的图像进行后处理。
首先,图像被分解成小的互相重叠的区域,称为“栅格”。
然后,对每个栅格进行互相关计算,以确定颗粒的位移。
5.速度和涡量计算:根据互相关结果,可以计算颗粒在两个相邻帧之间的位移,并根据拍摄的时间间隔计算速度。
由于颗粒的速度是流体速度的直接表示,因此可以确定整个流场中的速度和涡量信息。
6.可视化和数据分析:最后,可以通过将速度和涡量信息可视化为等值线、矢量图或流线图来呈现流场。
此外,还可以进行进一步的数据处理和分析,用于流场的描述和理解。
需要注意的是,二维PIV测量方法有一些限制和注意事项。
例如,颗粒的大小和密度应选择合适的范围,以确保其在流场中能够合理地跟踪。
此外,由于相机曝光时间和颗粒在相邻帧之间的运动引起的模糊,液体流动要求更高的曝光时间。
因此,对于高速流动的测量,可能需要使用高重复频率的激光和摄像机。
总之,二维PIV测量方法通过激光照射和摄像机拍摄,并对流场中的颗粒进行跟踪和分析,实现了对流场中每个空间点的速度和涡量信息的测量。
粒子影像测速(PIV)技术概述1.PIV技术介绍1.1.引言目前为止,人类对流体力学仍有许多疑难问题,如对湍流、非定常流动等现象了解甚少,而在许多工程应用如飞行器外形设计、内燃机燃烧室中的多相流动等中又迫切需要解决这些问题,因而使流场测量问题变得极为重要。
流场测速新方法研究中,至今已发展了激光多普勒测速LDV(Laser Doppler Velocimetry)、粒子影像测速PIV(Particle Image Velocimetry)等技术。
LDV的综合性能较高,具有高精度、高分辨率和非接触测量等优点,通常作为仪器标校技术使用,但LDV只能实现单点测量。
PIV技术是一种全场、动态、非接触测量手段,已获得广泛使用,成功应用于风洞、水洞、水槽燃烧及喷射等实验中。
PIV研究始于上个世纪80年代,随着光学和计算机图像处理技术的迅猛发展,PIV取得了长足进步,测量精度已与LDV接近。
1.2.PIV原理图1是PIV 技术应用的简单原理图。
散播在流场中的跟随性及反光性良好的示踪粒子,由激光光束首先入射到一组球面透镜上,经聚焦后通过全反射镜至一组可调的柱面透镜形成具有一定厚度的片光,照亮流场中特定的区域,此时经过此区域的示踪粒子被照亮,通过CCD(CMOS)成像设备进行成像。
对这个特定的区域在一定时间间隔内利用图1 PIV简单原理图激光脉冲连续照亮两次,就能得到粒子在第一次照亮时间t 和第二次照亮时间t’的两个图像,对这两幅图像进行互相关分析,就能得到流场内部的二维速度矢量分布。
在利用PIV 技术测量流速时,需要在二维流场中均匀散布跟随性、反光性良好且比重与流体相当的示踪粒子。
将激光器产生的光束经透镜散射后形成厚度约1 mm 的片光源入射到流场待测区域,CCD 摄像机以垂直片光源的方向对准该区域。
利用示踪粒子对光的散射作用,记录下两次脉冲激光曝光时粒子的图像,形成两幅PIV 底片(即一对相同待测区域、不同时刻的图片) ,底片上记录的是整个待测区域的粒子图像。
PIV,全名:Particle Image Velocimetry,简单来说是一种二维的方式显示速度矢量,使流体可视化的一种测量技术。
该方法是七十年代末发展起来的一种瞬态、多点、无接触式的激光流体力学测速方法。
近几十年来得到了不断完善与发展,PIV技术的特点是超出了单点测速技术(如CTA、LDA)的局限性,能在同一瞬态记录下大量空间点上的速度分布信息,并可提供丰富的流场空间结构以及流动特性。
粒子图像测速系统(PIV)技术简介PIV流速测量范围为0.02~500.00m/s。
在流体力学领域中,流场测量技术与流场理论研究相辅相成,共同推进本学科的前进与发展。
但是该研究领域中湍流、涡流等复杂非定常流动的存在使得传统流场测量技术的单点测量,已经不能满足人们对流体流动认知的需求。
这就需要新的流场测量技术,实现流场测量由单点向多点、平面向空间、稳态向瞬态、单相向多相发展。
流场测量技术随着时代迅速发展,从20世纪初对湍流流动测量有开创性意义的热线热膜流速计(Hot Wire/Film Anemometer,HWFA)的出现。
到20世纪60年代,激光多普勒测速仪(Laser Doppler Velocimetry,LDV)利用流场中粒子的Mie散射。
实现流场的无接触测量。
再到20世纪80年代,粒子图像测速技术(Particle ImageVelocimetry,PIV)实现了点向面的流场测量。
PIV技术是一种瞬态、多点、无接触式的流体力学(水和空气)测速方法。
可以在同一瞬时记录下大量空间上的速度矢量分布信息,并可以提供丰富的流场空间结构和流动特性。
目前,PIV技术也是在不断的发展,从一个切面发展到一个容积空间、从平面二维速度矢量的二维切片发展到二维切片内三位速度矢量、从瞬间速度场的测量发展到一个连续时间过程内的速度场测量。
粒子图像测速系统(PIV)的基本原理PIV技术的基本原理是在待测流场中布散示踪粒子,示踪粒子代表流场空间中相应的流体质点,粒子会随着流场运动而运动,使用相机来记录不同时刻下示踪粒子的位置信息,通过计算机的图像处理算法分析相机所拍摄的粒子图片,将示踪粒子的位置信息和时间信息转换为流场流动的速度矢量信息,进而分析出流场的流动结构、涡量场等流动特性。
粒子影像测速(PIV)技术概述1.PIV技术介绍1.1.引言目前为止,人类对流体力学仍有许多疑难问题,如对湍流、非定常流动等现象了解甚少,而在许多工程应用如飞行器外形设计、燃机燃烧室中的多相流动等中又迫切需要解决这些问题,因而使流场测量问题变得极为重要。
流场测速新方法研究中,至今已发展了激光多普勒测速LDV(Laser Doppler Velocimetry)、粒子影像测速PIV(Particle Image Velocimetry)等技术。
LDV的综合性能较高,具有高精度、高分辨率和非接触测量等优点,通常作为仪器标校技术使用,但LDV 只能实现单点测量。
PIV技术是一种全场、动态、非接触测量手段,已获得广泛使用,成功应用于风洞、水洞、水槽燃烧及喷射等实验中。
PIV研究始于上个世纪80年代,随着光学和计算机图像处理技术的迅猛发展,PIV取得了长足进步,测量精度已与LDV 接近。
1.2.PIV原理图1是PIV 技术应用的简单原理图。
散播在流场中的跟随性及反光性良好的示踪粒子,由激光光束首先入射到一组球面透镜上,经聚焦后通过全反射镜至一组可调的柱面透镜形成具有一定厚度的片光,照亮流场中特定的区域,此时经过此区域的示踪粒子被照亮,通过CCD(CMOS)成像设备进行成像。
对这个特定的区域在一定时间间隔利用图1 PIV简单原理图激光脉冲连续照亮两次,就能得到粒子在第一次照亮时间t 和第二次照亮时间t’的两个图像,对这两幅图像进行互相关分析,就能得到流场部的二维速度矢量分布。
在利用PIV 技术测量流速时,需要在二维流场中均匀散布跟随性、反光性良好且比重与流体相当的示踪粒子。
将激光器产生的光束经透镜散射后形成厚度约1 mm 的片光源入射到流场待测区域,CCD 摄像机以垂直片光源的方向对准该区域。
利用示踪粒子对光的散射作用,记录下两次脉冲激光曝光时粒子的图像,形成两幅PIV 底片(即一对相同待测区域、不同时刻的图片) ,底片上记录的是整个待测区域的粒子图像。
简述二维piv测量方法的原理二维粒子图像测速(Particle Image Velocimetry, PIV)是一种用于测量流体速度场的非侵入式方法。
它通过追踪空气、液体或气固界面中的小颗粒来获取流场中物质的动态信息。
其基本原理是利用流体中的颗粒在快速连续曝光下的位移来计算流场的速度。
PIV测量技术主要分为两个步骤:颗粒图像拍摄和图像处理。
在图像拍摄阶段,液体或气体中被称为追溯颗粒的小颗粒会被注入流场中。
然后,通过一个激光光源对颗粒进行照亮,并利用高速相机捕捉两幅连续图像。
接着进行图像处理,包括颗粒图像的光流检测、颗粒匹配、位移和速度计算等。
在PIV测量中,颗粒图像的光流检测是其中一个重要步骤。
它通过分析两幅连续图像之间的亮度变化来确定颗粒的位移。
颗粒的位移是通过计算两幅图像上对应颗粒位置的亮度互相关来估计的。
由于连续图像中的颗粒位置不同,因此需要使用其中一种算法将其对齐。
常用的光流检测算法有相关法、互相关法、基于模型法等。
接下来是颗粒匹配阶段,它是确定两幅图像中对应颗粒位置的过程。
颗粒匹配的目标是找到两幅图像中最接近的颗粒匹配对,从而计算出颗粒的位移。
这可以通过计算两幅图像中颗粒的亮度互相关来实现。
一种常见的颗粒匹配算法是基于相关峰值的匹配算法,通过在互相关函数中寻找最大峰值来确定匹配颗粒的位置。
在位移和速度计算阶段,通过测得的颗粒位移和已知的时间间隔,可以计算出流场中颗粒的平均速度。
常见的位移和速度计算方法有全局、局部和迭代方法。
全局方法是对整个流场进行统一的位移和速度计算,适用于均匀的速度场。
局部方法只考虑特定区域内的位移和速度,适用于非均匀的速度场。
迭代方法则通过多次迭代计算来提高位移和速度计算的精度。
最后,通过将颗粒的位移和速度进行插值和平滑处理,可以得到整个流场的速度分布。
PIV测量方法的优点是非常适用于高速流动和动态流动的实时定量测量。
它不需要在流体中放置传感器,也不会干扰流场的流动特性。
PIV操作使用手册一、注意事项(使用前必看)1.操作一定要按规定的方法执行。
2.激光开启时,人眼绝对不能看激光源。
3.用相机标定时,需要拆下滤光镜,不能打开激光器;实验时,打开激光器前,必须盖上相机镜头盖。
4.相机不能长时间连接电源,实验完成后一定要将电源线拔掉。
5.激光器必须每周至少使用一次,否则性能下降。
6.实验时,实验台不容许有多于3个人停留。
二、开机步骤先检查线路连接是否正确,然后打开所有仪器的电源(包括相机、激光器、移动架和计算机)。
开启计算机,启动DynamicStudio操作软件。
三、标定步骤采用三维标定靶标定1.运行DynamicStudio软件,新建一个Database并切换到采集模式,在System Control中,点击“Free Run”模式调整两个相机,使标定靶在两个相机拍摄区域的中间位置(注意此时需使标定靶大概在片光平面内调整)。
2.点击“stop”关闭相机,并盖上相机盖,打开激光,激光强度要弱,使用标定靶确定准确的片光平面。
3.标定靶不动,将激光关闭(用激光控制面板),打开相机盖。
4.选择Single Frame Mode单帧拍摄模式,采集图片数量输入1,点击Acquire采集图片,选择Do Not Start(此时激光器处于关闭状态),切换到Acquired Data栏,点击Save for Calibration,把数据存为标定数据,确保拍到图片中心及四周都很清楚(调节相机焦距);然后分别向前或向后移动坐标靶,对称的采集几个位置(一般6个就可以,步骤如粗体字所示)。
5.采集并存储完成后,点击采集按钮回到Database模式。
右键点击Calibration里面的FlowSenseEO 4M#1,选择Calibrate...,进去后选择Calibrations,选择Multi Camera Calibration,点OK。
进去后观察绿色网格是否充满整个标定纸,如果没有充满需重新标定(返回第4步),如果充满,点击OK,此时图片下方出现Multi Calibration。
PIV粒⼦图像测速系统的基本原理PIV,全名:Particle Image Velocimetry,简单来说是⼀种⼆维的⽅式显⽰速度⽮量,使流体可视化的⼀种测量技术。
该⽅法是七⼗年代末发展起来的⼀种瞬态、多点、⽆接触式的激光流体⼒学测速⽅法。
近⼏⼗年来得到了不断完善与发展,PIV技术的特点是超出了单点测速技术(如CTA、LDA)的局限性,能在同⼀瞬态记录下⼤量空间点上的速度分布信息,并可提供丰富的流场空间结构以及流动特性。
粒⼦图像测速系统(PIV)技术简介PIV流速测量范围为0.02~500.00m/s。
在流体⼒学领域中,流场测量技术与流场理论研究相辅相成,共同推进本学科的前进与发展。
但是该研究领域中湍流、涡流等复杂⾮定常流动的存在使得传统流场测量技术的单点测量,已经不能满⾜⼈们对流体流动认知的需求。
这就需要新的流场测量技术,实现流场测量由单点向多点、平⾯向空间、稳态向瞬态、单相向多相发展。
流场测量技术随着时代迅速发展,从20世纪初对湍流流动测量有开创性意义的热线热膜流速计(Hot Wire/Film Anemometer,HWFA)的出现。
到20世纪60年代,激光多普勒测速仪(Laser Doppler Velocimetry,LDV)利⽤流场中粒⼦的Mie散射。
实现流场的⽆接触测量。
再到20世纪80年代,粒⼦图像测速技术(Particle ImageVelocimetry,PIV)实现了点向⾯的流场测量。
PIV技术是⼀种瞬态、多点、⽆接触式的流体⼒学(⽔和空⽓)测速⽅法。
可以在同⼀瞬时记录下⼤量空间上的速度⽮量分布信息,并可以提供丰富的流场空间结构和流动特性。
⽬前,PIV技术也是在不断的发展,从⼀个切⾯发展到⼀个容积空间、从平⾯⼆维速度⽮量的⼆维切⽚发展到⼆维切⽚内三位速度⽮量、从瞬间速度场的测量发展到⼀个连续时间过程内的速度场测量。
粒⼦图像测速系统(PIV)的基本原理PIV技术的基本原理是在待测流场中布散⽰踪粒⼦,⽰踪粒⼦代表流场空间中相应的流体质点,粒⼦会随着流场运动⽽运动,使⽤相机来记录不同时刻下⽰踪粒⼦的位置信息,通过计算机的图像处理算法分析相机所拍摄的粒⼦图⽚,将⽰踪粒⼦的位置信息和时间信息转换为流场流动的速度⽮量信息,进⽽分析出流场的流动结构、涡量场等流动特性。
PIV(粒子图像测速)全名:Particle Image Velocimetry,简单来说是一种二维的方式显示速度矢量,使流体可视化的一种测量技术。
该方法是七十年代末发展起来的一种瞬态、多点、无接触式的激光流体力学测速方法。
近几十年来得到了不断完善与发展,PIV技术的特点是超出了单点测速技术(如CTA、LDA)的局限性,能在同一瞬态记录下大量空间点上的速度分布信息,并可提供丰富的流场空间结构以及流动特性。
PIV技术除向流场散布示踪粒子外,所有测量装置并不介入流场。
另外PIV 技术具有较高的测量精度。
由于PIV技术的上述优点,已成为当今流体力学测量研究中的热门课题,因而日益得到重视。
PIV测速方法有多种分类,无论何种形式的PIV,其速度测量都依赖于散布在流场中的示踪粒子,PIV法测速都是通过测量示踪粒子在已知很短时间间隔内的位移来间接地测量流场的瞬态速度分布。
若示踪粒子有足够高的流动跟随性,示踪粒子的运动就能够真实地反映流场的运动状态。
因此示踪粒子在PIV测速法中非常重要。
在PIV测速技术中,高质量的示踪粒子要求为:(1)比重要尽可能与实验流体相一致;(2)足够小的尺度;(3)形状要尽可能圆且大小分布尽可能均匀;(4)有足够高的光散射效率。
通常在液体实验中使用空心微珠或者金属氧化物颗粒,空气实验中使用烟雾或者粉尘颗粒(超音速测量使用纳米颗粒),微管道实验使用荧光粒子等。
通过使用西华数码影像(日本Seika公司)开发的PIV专用控制和分析软件Koncerto II,就可以完成测量与分析(详情可咨询武汉中创联达科技有限公司,网址:)。
其技术原理为:对在一定空间中的粒子使用片状激光在极短的时间内连续照射两次,并且使用高分辨率相机于继光同时拍摄,取得两个粒子群的图像。
通过PIV专有算法(互相关)分析该图像的同一区域(解析窗口)中的粒子,可以获得表示速度矢量的二维数据。
PIV不仅可以获得二次元的数据(2D2C),还可以通过使用立体拍摄来获得二维三分量(2D3C)数据。
粒子图像测速技术与应用粒子图像测速技术(Particle Image Velocimetry, PIV)是一种非侵入式流场测量技术,其原理是利用高速数字摄像机捕捉流体中由体积或表面轮廓的微粒所组成的图像序列,并通过计算处理来得到流体的速度场信息。
PIV技术的应用范围非常广泛,既可以用于研究天然流体运动现象,又可以用于工业流体力学领域的实验研究,还可以应用于医学、环境、生态等领域的研究。
1. PIV技术原理PIV技术主要基于两帧流场图像的匹配和计算,其中流体中的不透明微粒被认为是运动的跟踪标记。
首先,在被测流场中加入微粒探针,并用高速摄像机记录粒子在不同时刻的位置分布图像序列,然后通过图像处理技术,选定两个特定的时间点,提取出图像中的微粒位置,并进行匹配。
匹配后,根据匹配到的微粒在两个时间点的位置变化,即可得到流体中的速度矢量场分布。
最后,通过计算流体中的不同位置的速度值,得到流量、涡量、剪切应力等流体动力学参数。
2. PIV技术的应用2.1 工业流体力学领域PIV技术广泛应用于工业流体力学领域的实验研究,例如:航空、汽车等领域的气动力学研究。
在飞行器的设计和研发过程中,需要研究其外形对飞行性能的影响,包括气动阻力和升力,而PIV技术可以帮助识别飞行器表面的速度分布,为改善其性能提供参考。
同样,汽车的气动设计也需要通过PIV技术来评估不同外形对车速、空气阻力的影响。
2.2 医学、环境、生态研究PIV技术还可以应用于医学、环境、生态等领域的研究。
例如,PIV技术可以研究心脏壁的运动,进而分析心脏的收缩过程;还可以用于细菌、气溶胶等颗粒的测速和分布分析;在水流环境中,PIV技术可以帮助研究河流和海洋生态系统中的流体运动,以及水动力学问题,如洪水预警、海洋污染控制等方面。
3. PIV技术的优劣虽然PIV技术被广泛应用于流体力学领域中,但PIV技术本身存在一些局限性。
首先,由于流场中粒子的亮度和聚集程度可能受到流体物性、涡旋等因素的影响,粒子图像的质量会受到一定的影响,对测量结果的准确性产生影响。
粒子影像测速技术概述粒子影像测速(Particle Image Velocimetry,PIV)技术是一种非侵入式流体力学测量方法,用于研究流体的运动和流场。
该技术通过在流体中悬浮微小颗粒,并利用激光照射和相机拍摄的方式,获得颗粒在不同时间间隔内的位置信息,从而推导出流体的速度场。
PIV技术的基本原理是利用流体中的颗粒作为标记物,在连续拍摄的图像序列中跟踪颗粒的运动轨迹,从而得到流体速度场的空间分布情况。
其中,激光光束被用来照射流体中的颗粒,通过相机拍摄颗粒图像,并计算相邻两幅图像中颗粒位置的变化,从而计算颗粒的位移和速度。
PIV技术的实施过程主要包括以下几个步骤:1.准备实验环境:选择合适的流场实验装置和流体介质,并在流体中悬浮微小颗粒,以便在图像中能够清晰地观察到颗粒的运动轨迹。
2.激光照射:通过激光光源照射流体,形成一个平面光束,并在流体中的颗粒上产生散射,从而在图像中形成明亮的颗粒光斑。
3.图像拍摄:使用高速相机或摄像机对照明的颗粒图像进行连续拍摄,并以一定的时间间隔记录图像序列。
4.图像处理:对连续的图像序列进行处理,包括背景校正、图像配准、颗粒定位等步骤,以获得颗粒位置信息。
5.数据分析:通过比较颗粒在不同时间间隔内的位置信息,计算颗粒的位移和速度,并进一步推导出整个流体区域的速度场分布。
PIV技术的优点在于它能够提供全场的速度信息,而不仅仅是单点或线性的数据。
这使得PIV技术在研究流体湍流、气动性能以及流体工程等领域具有广泛的应用。
同时,PIV技术还可以与其他测量技术相结合,如激光雷达、压力传感器等,以提供更加全面和准确的流体力学数据。
然而,PIV技术也存在一些局限性。
首先,要求流体中应有足够数量和密度的微小颗粒,以便在图像中清晰可见,这对于一些实验环境下的流体可能是困难的。
其次,由于颗粒在流体中的多次散射,会造成颗粒在一些位置上的位置模糊,从而影响速度计算的准确性。
总的来说,粒子影像测速(PIV)技术作为一种先进的非侵入式流体力学测量方法,具有高时空分辨率、全场测量等优点,被广泛应用于航空航天、水力学、气动学等领域的流体力学研究。
粒子影像测速(PIV)技术概述1.PIV技术介绍1.1.引言目前为止,人类对流体力学仍有许多疑难问题,如对湍流、非定常流动等现象了解甚少,而在许多工程应用如飞行器外形设计、内燃机燃烧室中的多相流动等中又迫切需要解决这些问题,因而使流场测量问题变得极为重要。
流场测速新方法研究中,至今已发展了激光多普勒测速LDV(Laser Doppler Velocimetry)、粒子影像测速PIV(Particle Image Velocimetry)等技术。
LDV的综合性能较高,具有高精度、高分辨率和非接触测量等优点,通常作为仪器标校技术使用,但LDV只能实现单点测量。
PIV技术是一种全场、动态、非接触测量手段,已获得广泛使用,成功应用于风洞、水洞、水槽燃烧及喷射等实验中。
PIV研究始于上个世纪80年代,随着光学和计算机图像处理技术的迅猛发展,PIV取得了长足进步,测量精度已与LDV接近。
1.2.PIV原理图1是PIV 技术应用的简单原理图。
散播在流场中的跟随性及反光性良好的示踪粒子,由激光光束首先入射到一组球面透镜上,经聚焦后通过全反射镜至一组可调的柱面透镜形成具有一定厚度的片光,照亮流场中特定的区域,此时经过此区域的示踪粒子被照亮,通过CCD(CMOS)成像设备进行成像。
对这个特定的区域在一定时间间隔内利用图1 PIV简单原理图激光脉冲连续照亮两次,就能得到粒子在第一次照亮时间t 和第二次照亮时间t’的两个图像,对这两幅图像进行互相关分析,就能得到流场内部的二维速度矢量分布。
在利用PIV 技术测量流速时,需要在二维流场中均匀散布跟随性、反光性良好且比重与流体相当的示踪粒子。
将激光器产生的光束经透镜散射后形成厚度约1 mm 的片光源入射到流场待测区域,CCD 摄像机以垂直片光源的方向对准该区域。
利用示踪粒子对光的散射作用,记录下两次脉冲激光曝光时粒子的图像,形成两幅PIV 底片(即一对相同待测区域、不同时刻的图片) ,底片上记录的是整个待测区域的粒子图像。