含绝对值的方程和不等式-练习题
- 格式:doc
- 大小:79.00 KB
- 文档页数:4
第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式;◇知识梳理1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >⎧⎪= =⎨⎪ <⎩②几何意义:a 是数轴上表示a 的点____________。
2. 含绝对值的不等式的解法①0a >时,|()|f x a >⇔____________;|()|f x a <⇔____________;②去绝对值符号是解绝对值不等式的常用方法;③根据绝对值的几何意义,通过数形结合解绝对值不等式.◇基础训练1.函数|||3|y x x =--的最大值为 ___________.2.(2008惠州调研) 函数46y x x =-+-的最小值为 .3.(2008珠海质检)已知方程20x ax b -+=的两根分别为1和2,则不等式1ax b -≤的解集为 ____________ (用区间表示).4.(2008广州二模)不等式21<-+x x 的解集是 .◇典型例题例1 .解不等式512x x +>-例2. 解不等式125x x -++>变式1:12x x a -++<有解,求a 的取值范围变式2:212x x a -++<有解,求a 的取值范围变式3:12x x a -++>恒成立,求a 的取值范围◇能力提升1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<<x x ,则实数=a .2.(2008韶关二模)不等式4|2||12|<++-x x 的解集为3.(2008揭阳调研)若()5f x x t x =-+-的最小值为3, 则实数t 的值是________.4. (2008汕头一模) 若不等式121x a x+>-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。
掌握绝对值运算的综合算式练习题绝对值运算是数学中常见的运算方法,它可以帮助我们解决一些与绝对值相关的问题。
掌握了绝对值运算的方法和技巧后,我们就能够更灵活地应用到解决实际问题中。
本文将为大家提供一些综合的绝对值运算练习题,帮助大家巩固所学的知识。
练习题一:求解绝对值方程1. |2x + 3| = 72. |5 - x| = 2x + 13. |3x - 4| - 5 = 104. |x - 1| + |x + 2| = 6练习题二:绝对值不等式的求解1. |2x - 3| > 52. |3x + 2| ≤ 103. |4 - 2x| ≥ 3x + 14. |2x + 1| < 4x - 3练习题三:绝对值运算的应用问题1. 若 |2x - 1| ≤ 7,求 x 的取值范围。
2. 一机场离市中心 10 公里,一旅行社从市中心到机场的车费是每公里 5 元,从机场到市中心的车费是每公里 8 元。
如果小明搭乘旅行社的班车旅行,往返车费不得超过 100 元,问他最远能在机场停留多长时间?3. 甲、乙两地相距160 公里,甲地有一辆卡车每小时行驶60 公里,乙地有一辆卡车每小时行驶 40 公里。
如果两辆卡车同时出发,以相同的速度往对方方向行驶,问多长时间两辆卡车会相遇?练习题四:绝对值与其他运算的综合应用1. 已知 x 是非零实数,求当 x + 1/x = 3 时,x - 1/x 的值。
2. 已知 a, b 是实数,若 |2a - b| = 3,|3a + 2b| = 5,求 |a + b| 的值。
以上所列的练习题涵盖了绝对值方程、绝对值不等式以及绝对值运算在应用问题中的运用。
在解答这些练习题时,我们可以灵活运用绝对值的定义和性质,结合所学的代数知识进行推理和运算,最终得到准确的答案。
通过这些综合的绝对值运算练习题的练习,我们可以提高自己的解题能力和思维灵活性,加深对绝对值运算的理解和应用水平。
高三数学绝对值不等式试题1.已知函数(Ⅰ)a=-3时,求不等式的解集;(Ⅱ)若关于x的不等式恒成立,求实数a的取值范围【答案】(Ⅰ) [-1,2] ;(Ⅱ) (-,]【解析】(Ⅰ) 当a="-3" 时,即为≤6,将分成,和三种情况,通过分类讨论去掉绝对值,将原不等式等价转化为三个一元一次不等式组,解这些不等式组即可得到原不等式的解集; (Ⅱ)利用绝对值不等式性质:求出的最小值,由关于x的不等式恒成立及不等式恒成立的知识知,<,解这个不等式,即可得到实数的取值范围.试题解析:(Ⅰ) 当a="-3" 时,为≤6,等价于或或,解得或或,所以不等式的解集为[-1,2];(5分)(Ⅱ) 因为=,所以<,解得实数a的取值范围(-,].(10分)【考点】含绝对值不等式解法,绝对值不等式性质,恒成立问题2.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是()A.[3,+∞)B.(-∞,3]C.(-1,2)D.(-2,3]【答案】B【解析】当x≤-1时,|x+1|+|x-2|=-x-1-x+2=-2x+1≥3;当-1<x≤2时,|x+1|+|x-2|=x+1-x+2=3;当x>2时,|x+1|+|x-2|=x+1+x-2=2x-1>3;综上可得|x+1|+|x-2|≥3,所以只要a≤3.即实数a的取值范围是(-∞,3],故选B.3.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.4.不等式解集是_____________________.【答案】【解析】设,则.由,解得,所以解集为【考点】分段函数图像不等式5.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.6.若存在实数使得成立,则实数的取值范围为.【答案】【解析】在数轴上,表示横坐标为的点到横坐标为的点距离,就表示点到横坐标为1的点的距离,∵,∴要使得不等式成立,只要最小值就可以了,即,∴.故实数的取值范围是,故答案为:.【考点】绝对值不等式的解法.7.已知函数.若关于的不等式的解集是,则的取值范围是 .【答案】【解析】因为函数.若关于的不等式的解集是.即等价于对恒成立.等价于恒成立.即的最小值大于或等于.由绝对值不等式的性质可得.所以即.所以填.【考点】1.绝对值不等式的性质.2.不等式中恒成立问题.3.最值问题.8.已知函数.(1)若恒成立,求的取值范围;(2)当时,解不等式:.【答案】(1);(2).【解析】(1)即求出即可;(2)去绝对值解答.试题解析:(1)即2分又5分(2)当时,当时,当时,综上,解集为10分【考点】不等式选讲、绝对值不等式.9.关于的不等式的解集为,则实数的取值范围是 .【答案】【解析】表示的是到的距离和到的距离之和,表示的是到的距离,当时,此时若时则不能保证的解集为;当时,此时若时则不能保证的解集为;当,即,此时当为时,所以.【考点】1.绝对值不等式的几何意义.10.已知函数(I)若不等式的解集为,求实数的值;(II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)的取值范围为(-∞,5].【解析】(Ⅰ)不等式的解集为,求实数a的值,首先解不等式,解得,利用解集为,从而求出的值;(Ⅱ)若对一切实数恒成立,转化为求的最小值,只要实数的取值小于或等于它的最小值,不等式对一切实数恒成立,故关键点是求的最小值,由(Ⅰ)知,故,设,于是,易求出最小值为5,则的取值范围为(-∞,5].试题解析:(Ⅰ)由得,解得.又已知不等式的解集为,所以,解得.(Ⅱ)当时,,设,于是,所以当时,;当时,;当时,.综上可得,的最小值为5.从而若,即对一切实数恒成立,则的取值范围为(-∞,5].【考点】本题考不等式的解法,考查学生数形结合的能力以及化归与转化思想.11.设函数(Ⅰ)若,解不等式;(Ⅱ)若函数有最小值,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)分类去掉绝对值符号,化为整式不等式再解,最后取并集即可.(Ⅱ)把函数f(x)化为分段函数,然后再找出f(x)有最小值的充要条件解之即可.试题解析:(Ⅰ)a=1时,f(x)=+x+3当x≥时,f(x)≤5可化为3x-1+x+3≤5,解得≤x;当x<时,f(x)≤5可化为-3x+1+x+3≤5,解得-,综上可得,原不等式的解集为(Ⅱ)f(x)= +x+3=函数有最小值的充要条件是,解得【考点】1.绝对值不等式;2.分段函数及其求函数值.12.设函数,.(1) 解不等式;(2) 设函数,且在上恒成立,求实数的取值范围.【答案】(1);(2)【解析】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及不等式证明以及解法等内容.(1)利用数轴分段法求解;(2)借助数形结合思想,画出两个函数的图像,通过图像的上下位置的比较,探求在上恒成立时实数的取值范围.试题解析:(1) 由条件知,由,解得. (5分)(2) 由得,由函数的图像可知的取值范围是. (10分)【考点】(1)绝对值不等式;(2)不等式证明以及解法;(3)函数的图像.13.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】,3≤x≤8【解析】即,即,配方得,,所以,直线与圆相交的弦长为。
高三数学绝对值不等式试题1.已知函数.(Ⅰ)求的解集;(Ⅱ)设函数,若对任意的都成立,求的取值范围.【答案】(Ⅰ)或(Ⅱ)【解析】(Ⅰ)先利用根式的性质将函数的解析式化为含绝对的函数,在将具体化为,利用零点分析法化为不等式组,通过解不等式组解出的解集;(Ⅱ)利用零点分析法,通过分讨论将的解析式化为分段函数,作出函数的图像,由函数知,函数图像是恒过(3,0),斜率为的直线,由对任意的都成立知,函数的图像恒在函数的上方,作出函数的图像,观察满足的条件,求出的取值范围.试题解析:(Ⅰ)∴即∴①或②或③解得不等式①:;②:无解③:所以的解集为或. 5分(Ⅱ)即的图象恒在图象的上方图象为恒过定点,且斜率变化的一条直线作函数图象如图,其中,,∴由图可知,要使得的图象恒在图象的上方∴实数的取值范围为. 10分【考点】根式性质,含绝对不等式解法,分段函数,数形结合思想,分类整合思想2.解不等式:|x+1|>3.【答案】(-∞,-4)∪(2,+∞).【解析】由|x+1|>3得x+1<-3或x+1>3,解得x<-4或x>2.所以解集为(-∞,-4)∪(2,+∞).3.求函数y=|x-4|+|x-6|的最小值.【答案】2【解析】y=|x-4|+|x-6|≥|x-4+6-x|=2.所以函数的最小值为2.4. A.(坐标系与参数方程)已知直线的参数方程为 (为参数),圆的参数方程为(为参数), 则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A. ; B.; C.【解析】A. 先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C. 由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.5.设,若关于的不等式有解,则参数的取值范围为________.【答案】[0,3]【解析】由知,不等式有解等价于,解得.【考点】绝对值不等式的解法、转化思想.6.已知函数.(1)若不等式的解集为,求实数a的值;(5分)(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.(5分)【答案】(1);(2).【解析】本题考查绝对值不等式的解法和存在问题的求法等基础知识,考查学生运用函数零点分类讨论的解题思想和转化思想.第一问,先解绝对值不等式,得到x的取值范围,由已知条件可知解出的x的取值范围与完全相同,列出等式,解出a;第二问,在第一问的基础上,的解析式确定,若存在n使成立,则,构造新的函数,去掉绝对值使之化为分段函数,求出最小值代入上式即可.试题解析:(1)由得,∴,即,∴,∴. 5分(2)由(1)知,令,则,∴的最小值为4,故实数的取值范围是. 10分【考点】1.绝对值不等式的解法;2.绝对值函数的最值.7.已知实数x,y满足:|x+y|<,|2x-y|<,求证:|y|<.【答案】见解析【解析】解因为3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|,由题设知,|x+y|<,|2x-y|<,从而3|y|<+=,所以|y|<.8.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.【答案】2【解析】由|kx-4|≤2⇔2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.9.不等式的解集是 .【答案】【解析】解含绝对值的不等式可以分类讨论,当即时,不等式变为得,因此;当即时,不等式变为得,因此,所以原不等式的解是把所得两个集合合并得.【考点】解含绝对值的不等式.10.不等式的解集为 .【答案】【解析】即两边平方得,,,所以,不等式的解集为.【考点】绝对值不等式的解法11.若关于x的不等式有解,则实数的取值范围是: .【答案】【解析】∵关于的不等式有解,表示数轴上的到和的距离之差,其最小值等于,最大值是,由题意,∴.【考点】绝对值不等式的解法.12.关于的不等式的解集为,则实数的取值范围是 .【答案】【解析】表示的是到的距离和到的距离之和,表示的是到的距离,当时,此时若时则不能保证的解集为;当时,此时若时则不能保证的解集为;当,即,此时当为时,所以.【考点】1.绝对值不等式的几何意义.13.若关于x的不等式的解集为空集,则实数a的取值范围是 .【答案】【解析】∵|x-1|-|x-2|=|x-1|-|2-x|≤|x-1-x+2|=1,若不等式|x-1|-|x-2|≥a2+a+1(x∈R)的解集为空集,则|x-1|-|x-2|<a2+a+1恒成立,即a2+a+1>1,解得x<-1或x>0.∴实数a的取值范围是(-∞,-1)∪(0,+∞).【考点】1.绝对值不等式的解法;2.函数恒成立问题14.已知函数,其中实数.(1)当时,求不等式的解集;(2)若不等式的解集为,求的值.【答案】(1)不等式的解集为;(2)【解析】(1)将代入得一绝对值不等式:,解此不等式即可.(2)含绝对值的不等式,一般都去掉绝对值符号求解。
解不等式练习题及答案不等式是数学中常见的表示两个数或多个数之间大小关系的形式。
解不等式是指找出使得不等式成立的变量取值范围。
本文将介绍一些常见的不等式类型,并提供相应的练习题及答案,以帮助读者更好地理解和掌握解不等式的方法。
一、线性不等式线性不等式是指不含有平方项及更高次项的一次方程。
解线性不等式的基本思路是将不等式转化为等价的形式,然后解这个等价的方程。
练习题1:解不等式2x + 3 > 7解:首先将不等式转化为等价的形式:2x + 3 - 3 > 7 - 32x > 4然后将等价的方程求解得:x > 2练习题2:解不等式3x - 5 ≤ 10解:首先将不等式转化为等价的形式:3x - 5 + 5 ≤ 10 + 5然后将等价的方程求解得:x ≤ 5二、二次不等式二次不等式是指含有平方项的不等式。
解二次不等式的方法与解二次方程类似,需要将不等式转化为等价的形式,然后解这个等价的方程。
练习题3:解二次不等式x^2 - 4x > -3解:首先将不等式转化为等价的形式:x^2 - 4x + 3 > 0然后将等价的方程求解得:x < 1 或 x > 3练习题4:解二次不等式x^2 - 2x ≤ 3解:首先将不等式转化为等价的形式:x^2 - 2x - 3 ≤ 0然后将等价的方程求解得:三、绝对值不等式绝对值不等式是指不等式中含有绝对值的形式。
解绝对值不等式的方法是将不等式拆分成两个不等式,并分别求解。
练习题5:解绝对值不等式|2x - 4| > 6解:首先拆分不等式:2x - 4 > 6 或 2x - 4 < -6然后解这两个等价的方程:2x > 10 或 2x < -2x > 5 或 x < -1练习题6:解绝对值不等式|3x + 2| ≤ 4解:首先拆分不等式:3x + 2 ≤ 4 或3x + 2 ≥ -4然后解这两个等价的方程:3x ≤ 2 或3x ≥ -6x ≤ 2/3 或x ≥ -2四、分式不等式分式不等式是指不等式中含有分式的形式。
绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。
微专题24 绝对值函数问题【题型归纳目录】题型一:含一个绝对值的函数与不等式问题 题型二:含两个绝对值的和的问题 题型三:含两个绝对值的差的问题 题型四:含多个绝对值的问题 【典型例题】题型一:含一个绝对值的函数与不等式问题 例1.不等式|23|5x -<的解集为( ) A .(1,4)- B .(-∞,1)(4-⋃,)+∞C .(,4)-∞D .(1,)-+∞【解析】解:|23|5x -<, 5235x ∴-<-<,解得:14x -<<, 故选:A .例2.不等式|1|3x -<的解集是( ) A .(-∞,2)(4-⋃,)+∞ B .(2,4)-C .(1,4)D .(-∞,1)(4⋃,)+∞【解析】解:|1|3x -<,313x ∴-<-<,24x ∴-<<, 故不等式的解集是(2,4)-, 故选:B .例3.若不等式|2|3a x x -+对任意[0x ∈,2]恒成立,则实数a 的取值范围是( )A .(1,3)-B .[1-,3]C .(1,3)D .[1,3]【解析】解:由不等式|2|3a x x -+对任意[0x ∈,2]上恒成立,可得()|2|f x a x =-的图象在[0x ∈,2]上恒位于直线3y x =+的下方或在直线3y x =+上, 如图所示:∴02(2)|4|5af a ⎧<⎪⎨⎪=-⎩①,或02(2)|4|5(0)||3a f a f a ⎧⎪⎪=-⎨⎪=⎪⎩②.由①可得10a -<,由②可得03a ,故实数a 的取值范围是{|10a a -<,或者03}[1a =-,3],故选:B .变式1.已知t 为常数,函数2|4|y x x t =--在区间[0,6]上的最大值为10,则t = 2或6 . 【解析】解:函数22|4||(2)4|y x x t x t =--=---在区间[0,6]上的最大值为10, 故有2(62)410t ---=,或410t +=,求得2t =,或6t =, 故答案为:2或6.变式2.已知不等式|3|1x a x ->-对任意(0,2)x ∈恒成立,则实数a 的取值范围是 (,3)[7-∞,)+∞【解析】解:|3|1x a x ->-等价于31x a x ->-或31x a x -<-,解得12a x ->或14a x +<, 当1124a a -+<,即3a <时,不等式解集为R ,显然符合题意. 当3a 时,(0,2)(⊆-∞,11)(42a a +-⋃,)+∞, 所以124a +或102a -,解得7a 或1a (舍去), 综上,实数a 的取值范围是7a 或3a <. 故答案为:(,3)[7-∞,)+∞.变式3.已知a R ∈,函数4()||f x x a a x =+-+在区间[1,4]上的最大值是5,则a 的取值范围是 (-∞,9]2. 【解析】解:由题可知4||5x a a x +-+,即4||5x a a x+--,所以5a , 又因为4||5x a a x+--, 所以455a x a a x -+--, 所以4255a x x-+,又因为14x ,445x x +, 所以254a -,解得92a, 故答案为:(-∞,9]2.变式4.若函数4||y a x a x=-+-在区间[1,4]上的最小值是4,实数a 的取值范围是 [4.5,)+∞ . 【解析】解:由4y x x=+在[1,2)递减,[2,4]递增, 可得4y x x=+的最小值为4,最大值为5, 函数4||y a x a x=-+-的最值在顶点或区间的端点处取得, 若f (1)取得最小值4,即|5|4a a --=,可得 4.5a =, 即有4() 4.5| 4.5|f x x x=-+-,且此时f (1)f =(2)f =(4)取得最小值,成立; 若f (2)取得最小值4,即|4|4a a --=,即有4a ;此时f (1)|5|a a =--,f (4)|5|a a =--,f (2)4=,由f (2)f (1),解得 4.5a ; 当f (4)取得最小值4,即|5|4a a --=,解得 4.5a =,成立. 综上可得a 的范围是[4.5,)+∞. 故答案为:[4.5,)+∞.题型二:含两个绝对值的和的问题例4.不等式|1||2|4x x -++的解集是( ) A .53(,)22-B .53[,]22-C .3[2,]2-D .5[,1)2-【解析】解:令()|1||2|f x x x =-++, 则21,2()3,2121,1x x f x x x x ---⎧⎪=-<<⎨⎪+⎩,∴当2x -时,|2||1|4214x x x ++-⇔--,522x ∴--; 当21x -<<时,有34恒成立,当1x 时,|2||1|4214x x x ++-⇔+,312x∴. 综上所述,不等式|2||1|4x x ++-的解集为5[2-,3]2.故选:B .例5.不等式2|1||2|2x x a a ++--恒成立,则a 的取值范围是( ) A .(,3)-∞B .(3,)+∞C .[1-,3]D .(-∞,1][3-,)+∞【解析】解:|1||2||(1)(2)|3x x x x ++-++-=,|1||2|x x ∴++-的最小值为3,2|1||2|2x x a a ++--恒成立,∴只需223a a -,13a ∴-,a ∴的取值范围为[1-,3].故选:C .例6.若关于x 的不等式|2||1|x x a -+-在R 上恒成立,则a 的最大值是( ) A .0B .1C .1-D .2【解析】解:由绝对值的性质得()|2||1||(2)(1)|1f x x x x x =-+----=,所以()f x 最小值为1,从而1a ,解得1a , 因此a 的最大值为1. 故选:B .变式5.若关于x 的不等式|2|||x x a a -+-在R 上恒成立,则a 的最大值是( )A .0B .1C .1-D .2【解析】解:化简得:|2||||(2)()||2|x x a x x a a a -+----=-,当20a -,即2a 时,上式化为2a a -,实数a 无解;当20a -,即2a 时,上式化为2a a -,解得22a ,解得1a , 综上,实数a 的范围为1a , 则实数a 的最大值为1. 故选:B .变式6.不等式|1||24|6x x ++->的解集为 (-∞,1)(3-⋃,)+∞ . 【解析】解:由于33,1|1||24|5,1233,2x x x x x x x x -<-⎧⎪++-=--<⎨⎪-⎩,故当1x <-时,不等式即336x ->,解得1x <-. 当12x -<时,不等式即56x ->,解得x 无解.当2x 时,不等式即336x ->,解得3x >. 综上可得,不等式的解集为(-∞,1)(3-⋃,)+∞, 故答案为(-∞,1)(3-⋃,)+∞.变式7.关于x 的不等式|2||8|x x a -+-在R 上恒成立,则a 的最大值为 6 . 【解析】解:由绝对值的性质得()|2||8||(2)(8)|6f x x x x x =-+----=,所以()f x 最小值为6,从而6a ,解得6a , 因此a 的最大值为6. 故答案为:6.变式8.已知函数()f x 是定义在R 上的奇函数,当0x 时,1()(|||2|3||)2f x x a x a a =-+--.若集合{|(1)()0x f x f x -->,}x R ∈=∅,则实数a 的取值范围为 1(,]6-∞ .【解析】解:若{|(1)()0x f x f x -->,}x R ∈=∅, 则等价为(1)()0f x f x --恒成立,即(1)()f x f x -恒成立, 当0x 时,1()(|||2|3||)2f x x a x a a =-+--.若0a ,则当0x 时,1()(23)2f x x a x a a x =-+-+=,()f x 是奇函数,∴若0x <,则0x ->,则()()f x x f x -=-=-,则()f x x =,0x <,综上()f x x =,此时函数为增函数,则(1)()f x f x -恒成立, 若0a >,若0x a 时,1()[(2)3]2f x x a x a a x =-+---=-;当2a x a <时,1()[(2)3]2f x x a x a a a =----=-;当2x a >时,1()(23)32f x x a x a a x a =-+--=-.即当0x 时,函数的最小值为a -, 由于函数()f x 是定义在R 上的奇函数, 当0x <时,()f x 的最大值为a , 作出函数的图象如图: 由于x R ∀∈,(1)()f x f x -,故函数(1)f x -的图象不能在函数()f x 的图象的上方,结合图可得133a a -,即61a ,求得106a <, 综上16a, 故答案为:(-∞,1]6题型三:含两个绝对值的差的问题例7.若存在实数x 使得不等式2|1||1|3x x a a +---成立,则实数a 的取值范围为( ) A .(-∞317317][2-+,)+∞ B .(-∞,2][1-,)+∞C .[1,2]D .(-∞,1][2,)+∞【解析】解:令2,1()|1||1|2,112,1x f x x x x x x --⎧⎪=+--=-<<⎨⎪⎩,则2()2f x -,即2|1||1|2x x -+--,若存在实数x 使得不等式2|1||1|3x x a a +---成立, 则232a a --, 解得2a 或1a . 故选:D .例8.若关于x 的不等式2|1||2|2x x a a +-->+有实数解,则实数a 的取值范围为( ) A .(3,1)-B .(1,3)-C .(-∞,3)(1-⋃,)+∞D .(-∞,1)(3-⋃,)+∞【解析】解:|1||2||(1)(2)|3x x x x +--+--=,3|1||2|3x x ∴-+--,由不等式2|1||2|2x x a a +-->+有实数解, 知232a a >+,解得31a -<<.故选:A .例9.若关于x 的不等式2|1||2|4x x a a +--<-有实数解,则实数a 的取值范围为( )A .(-∞,1)(3⋃,)+∞B .(1,3)C .(-∞,3)(1--⋃,)+∞D .(3,1)--【解析】解:|1||2|x x +--表示数轴上的x 对应点到1-的距离减去它到2的距离,它的最大值为3,最小值等于3-,243a a ->-,2430a a -+>,3a ∴>,或1a <,故实数a 的取值范围为(-∞,1)(3⋃,)+∞,故选:A .变式9.对所有的x R ∈,不等式2|20||5|2x x a a ---+恒成立,实数a 的取值范围是 (-∞,5][3-,)+∞【解析】解:|20||5|15x x ---,对所有的x R ∈,不等式2|20||5|2x x a a ---+恒成立,则2215a a +,解得5a -或3a .故答案为(-∞,5][3-,)+∞.变式10.关于x 的不等式2|3||1|5x x a a +---的解集不是∅,则实数a 的取值范围为 (-∞,1][4,)+∞ .【解析】解:|3||1||(3)(1)|4x x x x +---+--=-, (|3||1|)4min x x ∴+--=-.不等式2|3||1|5x x a a +---的解集不是∅,∴只需25(|3||1|)4min a a x x -+--=-,2540a a ∴-+,4a ∴或1a ,a ∴的取值范围为(-∞,1][4,)+∞.故答案为:(-∞,1][4,)+∞. 题型四:含多个绝对值的问题例10.设函数()|1||2||2018||1||2||2018|()f x x x x x x x x R =++++⋯+++-+-+⋯+-∈,下列四个命题中真命题的序号是( ) (1)()f x 是偶函数;(2)当且仅当0x =时,()f x 有最小值; (3)()f x 在(0,)+∞上是增函数;(4)方程2(55)(2)f a a f a -+=-有无数个实根 A .(1)(4)B .(1)(2)C .(1)(2)(3)D .(2)(3)(4)【解析】解:()|1||2||2018||1||2||2018|f x x x x x x x =++++⋯+++-+-+⋯+-,()|1||2||2018||1||2||2018|f x x x x x x x ∴-=-++-++⋯+-++--+--+⋯+-- |1||2||2018||1||2||2018|()x x x x x x f x =-+-+⋯+-+++++⋯++=, ()f x ∴为偶函数,故(1)正确.根据绝对值的几何意义可得()(|1||1|)(|2||2|)(|3||3|)(|2018||2018|)f x x x x x x x x x =++-+++-+++-+⋯+++- 2018(24036)2464036201820192++++⋯+==⨯,当且仅当11x -时,取等号.故(2)错误;由于1()2f f =(1),显然函数()f x 在(0,)+∞上不是增函数,故(3)不正确;由于2(55)(2)f a a f a -+=-,且函数()f x 为偶函数,2552a a a ∴-+=-,或255(2)a a a -+=--,或21551121a a a ⎧--+⎨--⎩. 解得1a =,或3a =,或32a =或13a ,故方程2(55)(2)f a a f a -+=-有无数个实根,故(4)正确. 故答案为:(1)(4) 故选:A .例11.若|1||2||10||11|x x x x m -+-+-+-对一切x R ∈恒成立,则实数m 的取值范围为 (-∞,18] . 【解析】解:244,(1)222,(12)|1||2||10||11|18,(210)22,(1011)424,(11)x x x x x x x x x x x x x -⎧⎪-<⎪⎪-+-+-+-=<⎨⎪-<⎪->⎪⎩,可得|1||2||10||11|18x x x x -+-+-+-,若|1||2||10||11|x x x x m -+-+-+-对一切x R ∈恒成立,则实数m 的取值范围为(-∞,18]. 故答案为:(-∞,18].例12.已知函数()|1||21||31||1001|f x x x x x =-+-+-+⋯+-,则当x = 171时,()f x 取得最小值. 【解析】解:()|1||21||31||1001|f x x x x x =-+-+-+⋯+- 111|1|2||3||100||23100x x x x =-+-+-+⋯+-111111|1|||||||||||||22333100x x x x x x x =-+-+-+-+-+-+⋯+-共有1(1100)10050502+⨯⨯=项 又||||||x a x b a b -+--(注:||x a -为x 到a 的距离⋯||||x a x b -+-即为x 到a 的距离加上x 到b 的距离,当x 在a ,b 之间时,||||x a x b -+-最小且值为a 到b 的距离) 所以()f x 的5050项 前后对应每两项相加,使用公式||||||x a x b a b -+--111()(1)()1002100f x -+-+⋯+⋯当x 在每一对a ,b 之间时,等号成立 由于170(170)24852⨯+⨯= 171(711)25562⨯+⨯= 所以()f x 最中间的两项(第2525,2526项)是1||71x - 所以11111()(1)()()10021007171f x -+-+⋯+- 当171x =时等号成立 则当171x =时()f x 取得最小值 变式11.已知函数()|1||21||31|f x x x x =-+-+-.则f (2)= 9 ,()f x 的最小值为 . 【解析】解:(1)f (2)|21||221||321|9=-+⨯-+⨯-= (2)136,3111,()32141,1263,1x x x f x x x x x ⎧-⎪⎪⎪<⎪=⎨⎪-<⎪⎪⎪->⎩, 由()f x 单调性知,最小值为1.变式12.已知函数()|1||2||3||20|f x x x x x =-+-+-+⋯+-,x N +∈且120x .(1)分别计算f (1),f (5),(20)f 的值;(2)当x 为何值时,()f x 取得最小值?最小值是多少? 【解析】解:(1)由()|1||2||3||20|f x x x x x =-+-+-+⋯+-, 得f (1)19(119)012191902⨯+=+++⋯+==;f (5)15(115)43210121510101201302⨯+=+++++++⋯+=+=+=; 19(191)(20)19181732101902f ⨯+=+++⋯++++==. (2)设x 是1~20中的某一整数,则()(1)(2)321012(20)f x x x x =-+-+⋯+++++++⋯+- (1)[1(1)](20)[1(20)]22x x x x -+--+-=+222121399(242420)21210()224x x x x x =-+=-+=-+. 因为x N +∈,所以当10x =或11时,()f x 取最小值, (10)(11)100f f ==,即最小值是100.【过关测试】 一、单选题1.(2022·安徽·芜湖一中高一阶段练习)已知集合{}21A x x =-≤,{}1,2,3,4B =,则A B =( ) A .{}4 B .{}3,4 C .{}2,3,4 D .{}1,2,3【答案】D【解析】因为{}{}{}2112113A x x x x x x =-≤=-≤-≤=≤≤,故{}1,2,3A B =. 故选:D.2.(2022·江苏·扬州市邗江区蒋王中学高一阶段练习)设a ∈R ,若不等式22112480x x ax x x x-+++-+≥恒成立,则实数a 的取值范围是( ) A .[]1,5- B .[]1,6- C .[]2,6- D .[]2,2-【答案】C【解析】由题意可得()221142+++8a x x x x x-≤-,且0x ≠. 当0x >时,可得2211842+++a x x x x x-≤-, 由绝对值三角不等式可得222211811888++++++=2+22x x x x x x x x x x x x x x-≥-≥⋅, 当且仅当=2x 时,等号成立,所以,428a -≤,可得2a ≥-;当<0x 时,可得222211811842++a x x x x x x x x x x ⎛⎫⎛⎫-≥--+---=--+- ⎪ ⎪⎝⎭⎝⎭,因为()222211811888++2228x x x x x x x x x x x x x x--≥-++-=-+≥-⋅=--, 当且仅当=2x -时,等号成立,故428a -≥-,解得6a ≤.综上所述,26a -≤≤.故选:C.3.(2022·河南·新密市第一高级中学高一阶段练习)设a ,b 是实数,集合{}1,A x x a x R =-<∈,{}|||3,B x x b x R =->∈,且A B ⊆,则a b -的取值范围为( )A . []0,2B .[]0,4C .[)2,+∞D .[)4,+∞ 【答案】D【解析】集合{}{}1,|11A x x a x R x a x a =-<∈=-<<+,{}{3,|3B x x b x R x x b =-∈=<-或}3x b >+ 又A B ⊆,所以13a b +≤-或13a b -≥+即4a b -≤-或4a b -≥,即4a b -≥所以a b -的取值范围为[)4,+∞故选:D4.(2022·浙江·温州中学高一期中)已知函数()()122021122021f x x x x x x x x R =++++⋅⋅⋅+++-+-+⋅⋅⋅+-∈,且实数a 满足()()221f a a f a --=+,则实数a 的取值范围为( )A .3a =或1a =11315a --≤≤B .3a =或1a =C .3a =或1a =-D .3a =或1a =或1a =-【答案】A【解析】因为函数()f x 的定义域为R ,而()()f x f x -=,所以函数()f x 为偶函数,又112x x ++-≥,当且仅当11x -≤≤时取等号, 224x x ++-≥,当且仅当22x -≤≤时取等号,……202120214042x x ++-≥,当且仅当20212021x -≤≤时取等号,所以()()1220211220212122021f x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-≥+++,当且仅当11x -≤≤时取等号,当12x ≤≤时,()()122021122021=2222021f x x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-+++,当23x ≤≤时,()()122021122021=4232021f x x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-+++,…… 当20202021x ≤≤时,()122021122021=404022021f x x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-+⨯, 当2021x >时,()122021122021=4042f x x x x x x x x =++++⋅⋅⋅+++-+-+⋅⋅⋅+-,故函数()f x 在[)1,+∞上递增,再根据函数()f x 为偶函数,所以()f x 在(],1-∞-上递增,因此()()221f a a f a --=+可等价于221a a a --=+或()221a a a --=-+或2121111a a a ⎧-≤--≤⎨-≤+≤⎩,解得1a =-或3a =或1a =11315a --≤≤ 故选:A .5.(2022·江苏·海安高级中学高一阶段练习)若不等式21x x a +--≤对一切x R ∈恒成立.则实数a 的取值范围为( )A .3a >B .3a <C .3a ≥D .3a ≤【答案】C 【解析】设21y x x =+--,当21x -≤≤时,()2121y x x x =++-=+;当1x >时,()()213y x x =+--=;当<2x -时,()()213y x x =-++-=-, 故21y x x =+--有最大值3. 21x x a +--≤对一切x ∈R 恒成立,则a 必大于等于21y x x =+--的最大值3.故取值范围为[)3,+∞.故选:C .6.(2022·全国·高一课时练习)已知函数()()1,f x ax b a b R x =++∈,当1,22x ⎡⎤∈⎢⎥⎣⎦时,设()f x 的最大值为(),M a b ,则(),M a b 的最小值为( )A .18B .14C .12D .1【答案】B【解析】函数()()1,f x ax b a b R x =++∈,当1[2x ∈,2]时,()f x 的最大值为(,)M a b , 可得1(,)(2)|2|2M a b f a b ≥=++,11(,)()|2|22M a b f a b ≥=++,(,)(1)|1|M a b f a b ≥=++,可得1(3M a ,2)(3b M a +,)(b M a +,211124)1336333b a b a b a b ≥++++++++ 211124113363332a b a b a b ≥+++++---=, 即()12,2M a b ≥,即有()1,4M a b ≥,则(,)M a b 的最小值为14, 故选:B 7.(2022·浙江杭州·高一期末)当[1,1]x ∈-时,不等式2||||1ax b x c ++≤恒成立,则||||||a b c ++的最大值为( )A .18B .17C .16D .15【答案】B【解析】因为[1,1]x ∈-, 所以[0,1]x ∈, 当0x =时,可得1c ≤①, 当12x =时,可得142a b c ++≤②, 当1x =时,可得1a b c ++≤③, 由①②③可得114()()84222a b a c a b c c =++-++-≤, 134()()84244a b b c a b c c =++-++-≤, 所以88117a b c ++≤++=,故选:B8.(2022·江苏省太湖高级中学高一期中)设{}|22A x x =-≥,{}|1B x x a =-<,若A B ⋂=∅,则a 的取值范围为( )A .1a <B .01a <≤C .1a ≤D .03a <≤【答案】C 【解析】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+.当0a ≤时,B =∅,A B ⋂=∅,符合题意. 当0a >时,由于A B ⋂=∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤. 综上所述,a 的取值范围是1a ≤.故选:C9.(2022·辽宁·沈阳二中高一阶段练习)已知函数()1f x mx x =--(0m >),若关于x 的不等式()0f x <的解集中的整数恰有3个,则实数m 的取值范围为( )A .01m <≤B .4332m ≤<C .312m <<D .322m ≤< 【答案】B【解析】()0f x <可化为1mx x <-,作函数y mx =与函数1y x =-的图象如下,结合图象可知,关于x 的不等式()0f x <的解集中的3个整数解为0,1-,2-; 故只需使221331m m ⎧-<--⎪⎨-≥--⎪⎩,解得4332m ≤<; 故选:B .二、多选题10.(2022·黑龙江·哈尔滨三中高一期中)定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若函数{}2()min 33,|3|3f x x x x =-+--+,且()f x 在区间[,]m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[,]m n 长度可以是( ) A .74B .72C .114D .1【答案】AD 【解析】令23333x x x -+≤--+①,当3x ≥时,不等式可整理为2230x x --≤,解得13x -≤≤,故3x =符合要求,当3x <时,不等式可整理为2430x x -+≤,解得13x ≤≤,故13x ≤<,所以不等式①的解为13x ≤≤; 由上可得,不等式23333x x x -+>--+的解为1x <或3x >,所以()233,1333,13x x x f x x x x ⎧-+≤≤⎪=⎨--+⎪⎩或, 令23334x x -+=,解得32x =,令27334x x -+=,解得52x =或12,令3334x --+=,解得34x =或214,令7334x --+=,解得74x =或174,所以区间[],m n 的最小长度为1,最大长度为74. 故选:AD.11.(2022·江苏·靖江高级中学高一阶段练习)若R x ∃∈,使得|21||32|x x m +--<成立是假命题,则实数m 可能取值是( )A .5B .4C .4-D .5-【答案】CD【解析】因为R x ∃∈,使得|21||32|x x m +--<成立是假命题,所以R x ∀∈,都有|21||32|x x m +--≥.记()|21||32|f x x x =+--,只需()min m f x ≤. ()34,213=|2+1||32|=42,<2214,<2x f x x x x x x ≥----≤--⎧⎪⎪⎪⎨⎪⎪⎪⎩, 所以()min 4f x =-,所以4m ≤-.对照四个选项,C 、D 符合题意.故选:CD12.(2022·辽宁·沈阳市第五中学高一阶段练习)下面命题中正确的为( )A .不等式|1||2|3x x ++->的解集为RB .不等式|1||2|3x x ++-≥的解集为RC .不等式|1||2|5++->x x 的解集为(2,3)x ∈-D .不等式|1||2|5++->x x 的解集为(,2)(3,)x ∈-∞-⋃+∞【答案】BD【解析】对于A ,当0x =时,|1||2|3x x ++-=,故选项A 错误;对于B ,因为|1||2||(1)(2)|3x x x x ++-≥---=,即不等式|1||2|3x x ++-≥恒成立,所以不等式|1||2|3x x ++-≥的解集为R ,故选项B 正确;对于C ,不等式|1||2|5++->x x ,当1x <-时,则125x x --+->,解得<2x -;当12x -≤≤时,则125x x ++->,解得x ∈∅;当2x >时,则125x x ++->,解得3x >.综上所述,不等式|1||2|5++->x x 的解集为(,2)(3,)x ∈-∞-⋃+∞,故选项C 错误,D 正确.. 故选:BD.三、填空题13.(2022·天津市汇文中学高一阶段练习)关于x 的不等式|x -2|+|x +1|≤10的解集为___________.【答案】911,22⎡⎤-⎢⎥⎣⎦【解析】当x >2时,原不等式可化为:(x -2)+x +1≤10,解得2<x ≤112;当-1≤x ≤2时,原不等式可化为:-(x -2)+x +1≤10,即3≤10,所以-1≤x ≤2;当x <-1时,原不等式可化为:-(x -2)-(x +1)≤10,即-2x ≤9,解得92-≤x <-1. 综上所述,原不等式的解集是911,22⎡⎤-⎢⎥⎣⎦. 故答案为:911,22⎡⎤-⎢⎥⎣⎦.14.(2022·全国·高一专题练习)不等式122x x x -+-<+的解集为_________. 【答案】153x x ⎧⎫<<⎨⎬⎩⎭ 【解析】23,2121,1223,1x x x x x x x ->⎧⎪-+-=≤≤⎨⎪-+<⎩,|1||2|2x x x ∴-+-<+化为:2232x x x >⎧⎨-<+⎩或1212x x ≤≤⎧⎨<+⎩或1232x x x <⎧⎨-+<+⎩解得:25x <<或12x ≤≤或113x <<.∴不等式|1||2|2x x x -+-<+的解集为:153x x ⎧⎫<<⎨⎬⎩⎭故答案为:153x x ⎧⎫<<⎨⎬⎩⎭15.(2022·全国·高一专题练习)设1234T x x x x =-+-+-+-,如果x 可取任意实数值,那么T 的最小值是_____.【答案】4【解析】根据绝对值的几何意义可知,可转化为在数轴上有A B C D ,,,四点,其对应的值分别为1234,,,,求一点M ,使得MA MB MC MD +++最小,当M 在线段AD 上时,MA MD +的最小值为3,当M 在线段BC 上时,MB MC +的最小值为1, 故当M 在线段BC 上时,MA MB MC MD +++的最小值是4.故答案为:4.16.(2022·全国·高一专题练习)不等式12x x m -++≥恒成立,则m 的取值范围是_________.【答案】3m ≤ 【解析】12123y x x x x =-++≥---=,即函数的最小值是3,若不等式12x x m -++≥恒成立,则3m ≤.故答案为:3m ≤四、解答题17.(2022·广东实验中学附属天河学校高一阶段练习)已知集合{}|123A x x x =-+-<,{}2|4B x x ax =+≤,A B ⋂=∅,求a 的取值范围. 【解析】123x x -+-<表示数轴上的点x 到1与2的距离之和小于3,∴03x <<,∴()0,3A =,{}2|4B x x ax =+≤,A B ⋂=∅,∴24x ax +≤在()0,3上无解,即4≥+a x x 在()0,3上无解, ∴ ()0,3x ∀∈,4a x x <+恒成立, 444x x x x+≥⋅,当且仅当2x =时,等号成立,4a <, ∴a 的取值范围为(),4-∞18.(2022·湖北武汉·高一期中)已知函数()21f x x x =-++.(1)求不等式()4f x ≥的解集;(2)当R x ∈时,若()2f x m m ≥-恒成立,求实数m 的取值范围.【解析】(1)由于()21,1213,1221,2x x f x x x x x x -+≤-⎧⎪=-++=-<<⎨⎪-≥⎩,当1x <-时,214x -+≥,解得32x ≤-,此时32x ≤-; 当12x -≤<时,34≥不成立,此时无解;当2x ≥时,214x -≥,解得52x ≥,此时52x ≥. 综上:()4f x ≥的解集为35,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. (2)∵()()()21213f x x x x x =-++≥--+=,当且仅当[]1,2x ∈-时等号成立∴23m m -≤,即230m m --≤113113m -+≤≤ ∴m 的取值范围是113113⎡-+⎢⎣⎦. 19.(2022·四川·成都铁路中学高一阶段练习)已知函数()|1|||f x x x a =-+-(1)若函数()f x 的值域为[2,)+∞,求实数a 的值(2)若(2)(2)f a f -≥,求实数a 的取值范围.【解析】(1)函数()|1||||1()||1|f x x x a x x a a =-+----=-,当()()10x x a --≤时,等号成立,|1|2a ∴-=,解得=3a 或1a =-.(2)由(2)(2)f a f -≥,可得3121a a ---≥,则13(1)(2)1a a a ≤---≥⎧⎨⎩或1<23(1)(2)1a a a ≤---≥⎧⎨⎩或>23(1)(2)1a a a ⎧⎨---≥⎩, 解得:0a ≤或322a ≤≤或2a >.综上,a 的范围是:3(,0],2⎡⎫-∞+∞⎪⎢⎣⎭. 20.(2022·浙江·高一阶段练习)已知a ,b ,c ∈R ,函数2y ax bx c =++.(1)若1a =,关于x 的不等式222430ax bx c x x ++≤--对任意x ∈R 恒成立,求b ,c 的值; (2)若a ,*b ∈N ,1c =,关于x 的方程20ax bx c ++=有两个不相等的实根,且均大于1-小于0,求a b +的最小值.【解析】(1)由224300x x --=,解得5x =或3x =-,则当5x =或3x =-时,2550930a b c a b c ⎧++≤⎪⎨-+≤⎪⎩,即2550930a b c a b c ⎧++=⎪⎨-+=⎪⎩,由1a =,解得215b c =-⎧⎨=-⎩,∴2b =-,15c =-;(2)由题意得2Δ4010200b ac b a a b c c ⎧=->⎪⎪-<-<⎪⎨⎪-+>⎪>⎪⎩,∴2241ba b a a b⎧>⎪⎪⎪<⎨⎪+>⎪⎪⎩,由244b a >≥得3b ≥,若3b =,∴329413a a a ⎧>⎪⎪⎪<⎨⎪+>⎪⎪⎩,则924<<a ,无解,若4b =,∴2414aa a >⎧⎪<⎨⎪+>⎩,则34a <<,无解,若5b =,∴5225415a a a ⎧>⎪⎪⎪<⎨⎪+>⎪⎪⎩,则2544a <<,∴5a =或6a =,显然5a =时,a b +更小,为10,若6b ≥,由1a b +>,得2111a b b +>-≥,∴a b +的最小值为10,当5a =,5b =时取得.21.(2022·江苏省阜宁中学高一阶段练习)(1)求不等式2421x x x -++≥-的解集;(2)若不等式2321x x x mx ++--≥的解集包含(]0,1,求实数m 的取值范围;(3)已知2214x a x a -+-+≥在R x ∈时恒成立,求a 的取值范围.【解析】(1)①当1x ≥时不等式为2422x x x -++≥-解得:12x ≤≤②当1x <时,不等式为2422x x x -++≥-3171x -≤≤ 综上得:不等式的解集为:3172x x ⎧⎫-⎪⎪≤≤⎨⎬⎪⎪⎩⎭∣(2)2321x x x mx ++--≥的解集包含(]0,1,故原不等式转化为:231x x mx ++≥在(]0,1恒成立,即13x m x ++≥在(]0,1恒成立,而对勾函数13y x x =++在区间(]0,1上单调递减,∴当1x =时,13y x x =++有最小值5,5m ∴≤.(3)()()222212121x a x a x a x a a a -+-+≥---+=-+, 2214x a x a ∴-+-+≥恒成立化为:2214a a -+≥,解得3a ≥或1a ≤-.。
绝对值不等式练习题及答案精品文档绝对值不等式练习题及答案?考纲解读 ?理解不等式a?b?a?b?a?b?掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式;?知识梳理1.绝对值的意义 ?___,?????代数意义:a??___,??? ?___,?????几何意义:a是数轴上表示a的点____________。
2. 含绝对值的不等式的解法?a?0时,|f|?a?____________;|f|?a?____________;?去绝对值符号是解绝对值不等式的常用方法;?根据绝对值的几何意义,通过数形结合解绝对值不等式(?基础训练1.函数y?|x|?|x?3|的最大值为 ___________.2( 函数y?x?4?x?6的最小值为.23.已知方程x?ax?b?0的两根分别为1和2,则不等式ax?b?1的解集为____________ .4.不等式x?x?1?2的解集是 (1 / 13精品文档?典型例题例1 .解不等式5x?1?2?x例2. 解不等式x?1?x?2?5变式1:x?1?x?2?a有解,求a的取值范围变式2:2x?1?x?2?a有解,求a的取值范围变式3:x?1?x?2?a恒成立,求a的取值范围?能力提升1.若关于x的不等式|x?a|?a?2的解集为?x|2?x?4?,则实数a?2.不等式|2x?1|?|x?2|?4的解集为3(若f?x??x?t?5?x的最小值为3, 则实数t的值是________.4. 若不等式x?1x则实数?a?2?1对于一切非零实数x均成立,a的取值范围是_________________。
5(关于x的不等式x?1?x?2?a?a?1的解集为空集,则实数a的取值范围是____.6. 若关于x的不等式x?2?x?1?a的解集为R,则实数a的取值范围是_____________.第10课绝对值不等式?知识梳理1.? a,0,?a, ? 到原点的距离.2. ?f?a或f??a,?a?f?a ?基础训练2 / 13精品文档1. ,.,3. ?13??1?,.??,?,1?3????22??典型例题例1. 解:原不等式又化为5x?1?2?x或5x?1??解之得x?16或x??34? 原不等式的解集为{xx?16或x??34}例2. 解:分区间去绝对值: ?x?1?x?2?5?x??2?x????????5???2?x?1????5?x???x?1?x? ???5?? 原不等式的解集为?xx??3??或??x?2?变式1:解:设f?x?1?x?要使f?a有解,则a应该大于f的最小值,?f?x?1?x?2???3, 所以f的最小值为3,?a?3变式2:解:设f?2x?1?x?要使f?a有解,则a应该大于f的最小值,113?f?2x?1?x?2???,223 / 13精品文档所以f的最小值为32, ?a?32变式3:解:设f?x?1?x?要使f?a恒成立,则a应该小于f的最小值,?f?x?1?x?2???3, 所以f的最小值为3,?a?3?能力提升1. ,. ,.或,4. 1?a? ,6.a?3. .,含有绝对值的不等式A卷一、选择题1、设命题A:2,x,3,命题B:| x,|,1,那么11、不等式x+ | x |,6,0的解集是。
绝对值练习题六年级1. 梳理绝对值的概念绝对值是一个数距离零点的距离,用两个竖线 || 表示。
无论这个数是正数还是负数,计算出的绝对值都是正数。
2. 绝对值的计算方法绝对值的计算方法是将一切负号去掉,保留正号或不变,此即为绝对值。
例如:|-8| = 8 (去掉负号,保留正号)|5| = 5 (正数的绝对值就是其本身)3. 绝对值的性质a)|-a| = |a| (数的相反数的绝对值等于原数的绝对值)b)|a + b| ≤ |a| + |b| (绝对值的加法不等式)c)|a - b| ≥ ||a| - |b|| (绝对值的减法不等式)d)|a * b| = |a| * |b| (绝对值的乘法法则)4. 绝对值的应用将绝对值应用到实际问题中,帮助我们解决一些与数值大小相关的计算。
实例一:从家到学校的距离是8公里,小明骑自行车每小时骑行5公里,如果已经骑行了2个小时,他离学校还有多远?解法:设小明离学校的距离为x公里。
由于小明骑行了2个小时,所以距离学校的总距离应该是8 - 2 * 5 = -2公里。
但是距离不可能是负值,所以要计算绝对值。
所以,小明离学校的距离为|x| = |-2| = 2公里。
因此,小明离学校还有2公里的距离。
实例二:一位运动员高度为180cm,跳起后垂直上升的高度为-50cm。
他离地面的最高和最低点的距离分别是多少?解法:运动员离地面的最高和最低点,分别代表了他垂直上升和垂直下降的距离。
这个垂直上升和下降的距离我们要计算绝对值,因为距离不可能是负值。
运动员离地面最高点的距离为 |180 - (-50)| = |180 + 50| = |230| = 230cm.运动员离地面最低点的距离为 |180 - 50| = |130| = 130cm.所以,运动员离地面最高点的距离是230cm,离地面最低点的距离是130cm。
5. 根据绝对值的性质解决练习题利用绝对值的性质,我们可以更简单地解决一些复杂的绝对值计算题。
高三数学绝对值不等式试题1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.设函数.(1)求不等式的解集;(2)若存在实数,使得成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数的零点为或.所以将x分为三类即可得到不等式的解集.(2)存在实数,使得成立,即等价于函数的最大值大于.由柯西不等式放缩即可求得到的最大值,从而求得实数的取值范围,即可得结论.(1)当时,由得,所以;当时,由得,所以;当时,由得,所以. 2分综上不等式的解集. 3分(2), 4分由柯西不等式得,, 5分当且仅当时取“=”,的取值范围是. 7分【考点】1.绝对值不等式.2.柯西不等式.3.若存在实数使成立,则实数的取值范围_______【答案】【解析】由又因为存在实数使成立则,则【考点】绝对值不等式;存在性问题.4.已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1)求M;(2)当a,b M时,证明:2|a+b|<|4+ab|.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查绝对值不等式、不等式的证明等基础知识,意在考查考生的运算求解能力、利用综合法、分类讨论思想的解题能力.第一问,利用零点分段法分别去掉绝对值,解不等式;第二问,可先用分析法由所求证的结论入手,分析需要证明什么,再用综合法证明,要证2|a+b|<|4+ab|,需证明,展开,需证明,由已知入手,找到,,从而证出.试题解析:(1)由,即,当时,则,得,∴;当时,则,得,恒成立,∴;当时,则,得,∴;综上,. 5分(2)当时,则,.即:,,∴,∴,即,也就是,∴,即:,即. 10分【考点】绝对值不等式、不等式的证明.5.若不等式恒成立,则实数的取值范围为 _______;【答案】【解析】因为函数,不等式恒成立,即,所以实数的取值范围为.【考点】绝对值不等式的最值问题.6.设.(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生分析问题解决问题的能力,考查学生的转化能力和计算能力.第一问,利用绝对值不等式的解法,先解出的解,再利用是的子集,列不等式组,求解;第二问,先利用不等式的性质求出的最小值,将恒成立的表达式转化为,再解绝对值不等式,求出的取值范围.试题解析:(1),即.依题意,,由此得的取值范围是[0,2] .5分(2).当且仅当时取等号.解不等式,得.故a的最小值为. 10分【考点】1.绝对值不等式的解法;2.集合的子集关系;3.不等式的性质;4.恒成立问题.7.已知函数.(1)若不等式的解集为,求实数的值;(2)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由|2x a|+a≤6得|2x a|≤6 a,再利用绝对值不等式的解法去掉绝对值,结合条件得出a值;(2)由(1)知f(x)="|2x" 1|+1,令φ(n)=f(n)+f(n),化简φ(n)的解析式,若存在实数n使f(n)≤m f( n)成立,只须m大于等于φ(n)的最小值即可,从而求出实数m的取值范围.试题解析:(1)由解得则所以 5分(2)由(1)知则原不等式为+2所以 10分【考点】绝对值不等式的解法8.不等式的解集为_______________.【答案】【解析】当时,原不等式为恒成立;当时,原不等式为,解得,所以;当时,原不等式为,无解.综上可知,不等式的解集为.【考点】绝对值不等式的解法9.已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.【答案】(1);(2)或.【解析】本题考查绝对值不等式的解法和不等式的有解问题,考查学生运用函数零点分类讨论的解题思路和问题的转化能力.第一问,利用零点分段法进行分段,分别去掉绝对值,列出不等式组,求出每一个不等式的解,通过求交集、求并集得到原不等式的解集;第二问,先将不等式的解集非空,转化为,利用绝对值的运算性质,求出函数的最小值4,所以,再解绝对值不等式,得到的取值范围.试题解析:(Ⅰ)原不等式等价于或或 3分解得或或即不等式的解集为 5分(Ⅱ) 8分∴或. 10分【考点】1.绝对值的运算性质;2.绝对值不等式的解法.10.不等式对任意实数恒成立,则实数的取值范围是____________.【答案】或.【解析】,故的值域为,不等式对任意实数恒成立,即,解得或.【考点】绝对值不等式的解法,恒成立问题.11.若关于实数的不等式的解集是空集,则实数的取值范围是____________.【答案】【解析】使关于实数的不等式的解集是空集,则,由绝对值的几何意义可知,故,解得.【考点】极坐标系、绝对值不等式.12.不等式组的解集为 .【答案】【解析】,或,所以不等式组的解集为.【考点】1.绝对值不等式的解法;2.分式不等式的解法;3.集合的交集运算.13.若不等式对于一切非零实数均成立,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为,要使对于一切非零实数,恒成立,则,即,选C.【考点】1.函数最值;2.绝对值不等式.14.给出下列四个命题:①命题,则.②当时,不等式的解集为非空.③当时,有.④设复数z满足(1-i)z="2" i,则z=1-i其中真命题的个数是A.1B.2C.3D.4【答案】A.【解析】命题,则,故①错;当时,不等式的解集不是非空,②错;当时,,由均值不等式有,当且仅当时等号成立,③正确;复数z满足(1-i)z="2" i,设,则,所以,④错.所以真命题个数为1个,选A.【考点】1.否命题;2.绝对值不等式;3.均值不等式;4.复数的运算.15.已知函数.(Ⅰ)当a = 3时,求不等式的解集;(Ⅱ)若对恒成立,求实数a的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)将a = 3代入解绝对值不等式即可;(Ⅱ)由题知恒成立令,画出图象求解.试题解析:(Ⅰ)时,即求解①当时,②当时,③当时,综上,解集为(Ⅱ)即恒成立令则函数图象为,【考点】1.绝对值不等式;2.分段函数图象.16.已知实数组成的数组满足条件:①;②.(Ⅰ)当时,求,的值;(Ⅱ)当时,求证:;(Ⅲ)设,且,求证:.【答案】(1)或;(2)详见解析;(3)详见解析.【解析】(1)列出方程组求解;(2)应用绝对值不等式进行证明;(3)应用绝对值不等式可以证明.试题解析:(Ⅰ)解:由(1)得,再由(2)知,且.当时,.得,所以 2分当时,同理得 4分(Ⅱ)证明:当时,由已知,.所以. 9分(Ⅲ)证明:因为,且.所以,即. 11分). 14分.【考点】绝对值不等式.17.若不等式对一切实数恒成立,则实数的取值范围是 .【答案】【解析】有图像可知: 时,的图像的图像恒在的图像的下面.【考点】不等式恒成立问题.18.设(1)当,解不等式;(2)当时,若,使得不等式成立,求实数的取值范围.【答案】(I);(II).【解析】(I)绝对值不等式的解法,易知不等式的等价不等式组解出不等式解集; (II)存在性问题转化为函数最值问题,含绝对值的函数式去绝对值化为分段函数求得最值即可.试题解析:(I)时原不等式等价于即,所以解集为.(II)当时,,令,由图像知:当时,取得最小值,由题意知:,所以实数的取值范围为.【考点】1、绝对值不等式的解法; 2、函数最值问题.19.已知函数,.(Ⅰ)解不等式;(Ⅱ)若,试求的最小值.【答案】(Ⅰ)原不等式的解集为或;(Ⅱ)的最小值为.【解析】(Ⅰ)将原不等式表示出来,借助含绝对值不等式的解法进行求解;(Ⅱ)先将不等式配成柯西不等式的相关形式,然后利用柯西不等式求的最小值.试题解析:(Ⅰ)原不等式化为,或,即或,原不等式的解集为或. 3分(Ⅱ)由已知,得,由柯西不等式,得,, 5分当且仅当即时等号成立, 6分所以,的最小值为. 7分【考点】含绝对值不等式、柯西不等式20.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】,3≤x≤8【解析】即,即,配方得,,所以,直线与圆相交的弦长为。
解不等式练习题一、选择题1. 不等式123x -<<解为( )(A )102x -<<或x 31> (B )-31<x <0或0<x <21(C )x >31或x <-21(D )-31<x <212. 不等式(x +3)2(x -1)<0的解为( )(A )x <1 (B )x <1或x ≠-3 (C )x <1且x ≠-3 (D )x >1且x ≠-33. 不等式2113x x ->+的解集为( )(A )x <-3或x >4 (B ){x | x <-3或x >4} (C ){x | -3<x <4} (D ){x | -3<x <21}4.3x >-解集为( )(A ){x | 1<x <5} (B ){x | 3<x ≤5} (C ){x | 1≤x <3或3<x <5} (D ){x | 1≤x <5}5. 不等式9x +2·3x +1-16>0( )(A ){x | x >2或x <-8} (B ){x | x >log 32} (C ){x | x >log 23} (D ){x | 0<x <log 32}6. 不等式03232x x x x x >⎧⎪--⎨>⎪++⎩解集是( )(A ){x | 0<x <2} (B ){x | 0<x <25} (C ){x | 0<x <6} (D ){x | 0<x <3}7. 不等式|x 2-4|<x +2的解集为( )(A ){x | x <3} (B ){x | 1<x <3} (C ){x | -2<x <3} (D ){x | x >3或x <-2}8. 不等式|x +1|+|x -3|>5解集为( )(A ){x | x <-23或x >27} (B ){x| -23<x <27}(C ){x | x <-23} (D ){x | x >27}9. 当0<a <1时,不等式log a (1-1x )>1的解集为( )(A ){x| x >1或x <11a -} (B ){x | 0<x <11a -}(C ){x | 11a -<x <1} (D ){x | 1<x <11a -}10. 设A ={x||x -2|<3},B ={x||x -1|>1},则A ∩B 等于( )(A ){x| -1<x<5}(B ){x| x<0或x>2}(C ){x| -1<x<0或2<x<5}(D ){x| -1<x<0}11. 一元二次不等式x 2-7x +12<0, -2x 2+x -5>0, x 2+2>-2x 的解集分别是M 、N 、P ,则有()(A )N ⊆M ⊆P (B )M ⊆N ⊆P (C )N ⊆P ⊆M (D )M ⊆P ⊆N12. 抛物线y=ax 2+bx +c 与x 轴的两个交点为(-2, 0), (2, 0),则ax 2+bx +c>0的解集是( )(A )-2<x<2(B )x>2或x<-2 C )x ≠±2(D )不确定,与a 的符号有关13. 若不等式ax 2+8ax +21<0的解集是{x| -7<x<-1},那么a 的值是( )(A )1 (B )2 (C )3 (D )414. 不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b<0的解集是A ∩B ,那么a +b 等于( )(A )-3 (B )1 (C )-1 (D )315. 不等式(2―a)x 2―2(a ―2)x +4>0对于一切实数x 都成立,则( )(A ){a| -2<a<2} (B ){ a| -2<a ≤2} (C ){a| a<-2} (D ){a| a>2}16. 若二次方程2(kx -4)x -x 2+6=0无实根,则k 的最小整数值是( )(A )-1 (B )2 (C )3 (D )417. 不等式0)x 1)(x 1(>-+的解集是( )(A ){}1x 0x <≤ (B ){}1,0-≠<x x x 且(C ){}11<<-x x (D ){}1x ,1x x -≠<且18. 已知不等式|x -2|+|x -2|<m 的解集为空集,则实数m 的取值范围是( )(A )m<1 (B )m ≤1 (C )m ≤101 (D )m<101 二、解答题1. 解含绝对值的不等式(1)|3x +4|>-1; (2)|3x +4|>0; (3)|5x -3|<10; (4)1≤|1-2x |≤72.解下列一元二次方程(1)2x 2+x -3<0; (2)4x -x 2+12≥0; (3)2x -x 2-3≥03.解下列分式不等式(1)01x 5x >+-; (2)1x 21x 2-+≤0; (3)03x 4x 23>+-(4)15x 4x 23>+-; (5)03x 4x 43x 2>+--4.一元二次方程x 2+4x -m=0的两个实根之积的平方不大于36,试求m 的取值范围5.k 取何值时,不等式(k +1)x 2―2(k ―1)x +3(k -1)≥0对于任何x ∈R 都成立?6.解关于x 的不等式:x 2-ax -2a 2<0。
高中数学-绝对值不等式的解法练习一、选择题1.如果1x <2和|x |>13同时成立,那么实数x 的取值范围是( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13<x <12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-13,或x >13解析:解不等式1x <2,得x <0或x >12.解不等式|x |>13,得x >13或x <-13.∴实数x 的取值范围为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13.答案:B2.不等式2<|2x +3|≤4的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x ≤12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x <12C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x <-52或-12<x ≤12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x ≤-52或-12<x ≤12解析:由2<|2x +3|≤4,可得2<2x +3≤4或 -4≤2x +3<-2.解得-12<x ≤12或-72≤x <-52.答案:C3.关于x 的不等式⎪⎪⎪⎪⎪⎪ax -1x >a 的解集为集合M ,且2∉M ,则实数a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫14,+∞ B .⎣⎢⎡⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎦⎥⎤0,12 解析:因为2∉M ,所以2∈∁R M .所以⎪⎪⎪⎪⎪⎪2a -12≤a ,即-a ≤2a -12≤a .解得a ≥14.答案:B4.不等式|3-x |+|x +4|>8的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92或x >72 D .R解析:|3-x |+|x +4|>8⇔⎩⎪⎨⎪⎧x ≤-4,3-x -x -4>8或⎩⎪⎨⎪⎧-4<x <3,3-x +x +4>8或⎩⎪⎨⎪⎧x ≥3,x -3+x +4>8⇔⎩⎪⎨⎪⎧x ≤-4,-1-2x >8或⎩⎪⎨⎪⎧-4<x <3,7>8或⎩⎪⎨⎪⎧x ≥3,2x >7.∴x <-92或x >72.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-92或x >72.答案:C 二、填空题5.若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-53<x <13,则a =________. 解析:由原不等式的解集,可知-53,13为原不等式对应的方程|ax -2|=3的根,即⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪-53a -2=3,⎪⎪⎪⎪⎪⎪13a -2=3.解得a =-3. 答案:-36.已知函数f (x )=|2x -1|+x +3,若f (x )≤5,则实数x 的取值范围是________. 解析:由已知,有|2x -1|+x +3≤5,即|2x -1|≤2-x .所以x -2≤2x -1≤2-x ,即⎩⎪⎨⎪⎧2x -1≤2-x ,2x -1≥x -2,即⎩⎪⎨⎪⎧x ≤1,x ≥-1.所以-1≤x ≤1.答案:[-1,1]三、解答题7.已知一次函数f (x )=ax -2. (1)当a =3时,解不等式|f (x )|<4; (2)解关于x 的不等式|f (x )|<4;(3)若关于x 的不等式|f (x )|≤3对任意x ∈[0,1]恒成立,求实数a 的取值范围. 解:(1)当a =3时,f (x )=3x -2,所以|f (x )|<4⇔|3x -2|<4⇔-4<3x -2<4⇔ -2<3x <6⇔-23<x <2.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23<x <2. (2)|f (x )|<4⇔|ax -2|<4⇔-4<ax -2<4⇔-2<ax <6.当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2a <x <6a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6a <x <-2a . (3)|f (x )|≤3⇔|ax -2|≤3⇔-3≤ax -2≤3⇔-1≤ax ≤5⇔⎩⎪⎨⎪⎧ax ≤5,ax ≥-1.因为x ∈[0,1], 所以-1≤a ≤5.所以实数a 的取值范围为[-1,5].8.已知对区间⎝ ⎛⎦⎥⎤0,54内的一切实数a ,满足关于x 的不等式|x -a |<b 的x 也满足不等式|x -a 2|<12,试求实数b 的取值范围.解:设A ={x ||x -a |<b },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪|x -a 2|<12, 则A ={x |a -b <x <a +b ,b >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a 2-12<x <a 2+12. 由题意,知当0<a ≤54时,A ⊆B .所以⎩⎪⎨⎪⎧a -b ≥a 2-12,a +b ≤a 2+12,0<a ≤54.所以b ≤-a 2+a +12且b ≤a 2-a +12.因为0<a ≤54,所以-a 2+a +12=-a -122+34∈⎣⎢⎡⎦⎥⎤316,34,a 2-a +12=⎝ ⎛⎭⎪⎫a -122+14∈⎣⎢⎡⎦⎥⎤14,1316.所以b ≤316且b ≤14.从而b ≤316.故实数b 的取值范围为⎝ ⎛⎦⎥⎤0,316.一、选择题1.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3解析:由|x -a |<1,得a -1<x <a +1. 由|x -b |>2,得x <b -2或x >b +2. ∵A ⊆B ,∴a -1≥b +2或a +1≤b -2. ∴a -b ≥3或a -b ≤-3.∴|a -b |≥3. 答案:D2.若关于x 的不等式|2x +1|-|x -4|≥m 恒成立,则实数m 的取值范围为( ) A .(-∞,-1] B .⎝ ⎛⎦⎥⎤-∞,-52C .⎝⎛⎦⎥⎤-∞,-92 D .(-∞,-5] 解析:设F (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4.如图所示,F (x )min =-32-3=-92.故m ≤F (x )min =-92.答案:C二、填空题3.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则实数a 的取值范围是________.解析:∵关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,∴Δ=12-4⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪a -14+|a |≥0,即⎪⎪⎪⎪⎪⎪a -14+|a |≤14.根据绝对值的几何意义,知0≤a ≤14.答案:⎣⎢⎡⎦⎥⎤0,14 4.若函数f (x )是R 上的减函数,且函数f (x )的图像经过点A (0,3)和B (3,-1),则不等式|f (x +1)-1|<2的解集是________.解析:∵|f (x +1)-1|<2,∴-2<f (x +1)-1<2,即-1<f (x +1)<3.∴f (3)<f (x +1)<f (0).∵函数f (x )在R 上是减函数, ∴0<x +1<3.解得-1<x <2. 答案:{x |-1<x <2} 三、解答题5.如图所示,点O 为数轴的原点,A ,B ,M 为数轴上三点,C 为线段OM 上的动点.设x 表示点C 与原点的距离,y 表示点C 到点A 的距离的4倍与点C 到点B 的距离的6倍之和.(1)将y 表示为x 的函数;(2)要使y 的值不超过70,实数x 应该在什么范围内取值? 解:(1)依题意,得y =4|x -10|+6|x -20|,0≤x ≤30. (2)由题意,得x 满足⎩⎪⎨⎪⎧4|x -10|+6|x -20|≤70,0≤x ≤30.(*)当0≤x ≤10时,不等式组(*)化为 4(10-x )+6(20-x )≤70,解得9≤x ≤10. 当10<x <20时,不等式组(*)化为 4(x -10)+6(20-x )≤70,解得10<x <20. 当20≤x ≤30时,不等式组(*)化为 4(x -10)+6(x -20)≤70,解得20≤x ≤23. 综上,实数x 的取值范围是[9,23]. 6.已知函数f (x )=|x -a |.(1)若关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若关于x 的不等式f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:法一 (1)由f (x )≤3,得|x -a |≤3. 解得a -3≤x ≤a +3.又关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5.解得a =2.(2)由(1),得a =2,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5;当x>2时,g(x)>5.综上,函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].法二(1)同法一.(2)由(1),得a=2,f(x)=|x-2|.设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].。
例1.解方程∣x−2∣+∣2x+1∣=7例2.求方程∣x−∣2x+1∣∣=3的不同的解的个数。
例3.若关于x的方程∣∣x−2∣−1∣有三个整数解,则a的值是多少?例4.解方程组6321 34211x y x yx y x y⎧--+=⎪⎨+-+=⎪⎩例5.解不等式1<∣3x+4∣≤6 例6.解不等式∣x∣<∣x−1∣例7.解不等式∣2−3x∣+∣2x−1∣+∣4x−3∣<1 例8.解不等式∣2x−3∣>xA卷一、填空题01.∣x+2∣−∣x∣=x的解是__________。
02.方程∣3x−2∣=∣5x−3∣的解集是__________。
03.方程∣4x−5∣=7的解是__________。
04.方程∣2x−3∣−3x =1的解是__________。
05.不等式∣2x+5∣≤10的解集是__________。
06.不等式∣3x+1∣>2x的解集是__________。
07.不等式∣x −1∣>5的解集是__________。
08.若∣x −y ∣=y −x ,且∣x ∣=3,∣y ∣=−4,则(y −x )3=__________。
09.若0<x <10,则满足条件∣x −3∣=a 的所有整数a 的值的和为__________。
10.方程∣x −∣2x +l ∣∣=3的不同的解的个数是__________。
二、解答题11.解不等式∣x +3∣−∣2x −1∣<2x +112.已知方程∣x ∣=ax +1有一负根,且无正根,求a 的取值范围。
B 卷一、填空题01.a 、b 满足∣a +b ∣<∣a −b ∣,则a 、b 之间的关系是__________。
02.不等式16<∣x −10∣<20的整数解的个数为__________。
03.方程∣x +3∣−∣x −1∣=x +1的解集是__________。
04.方程∣x +2∣+∣2x ∣+∣x −2∣=0的解集是__________。
05.方程∣∣2x−1∣+4∣=8的解集是__________。
初一数学绝对值经典练习题2份题目1:解决绝对值方程和不等式的练习题1. 解方程:|2x-5|=9解:我们可以将这个绝对值方程分解为两个可能情况:1) 当2x-5>0时,我们有2x-5=9,解得x=7。
2) 当2x-5<0时,我们有-(2x-5)=9,解得2x-5=-9,解得x=-2。
因此,解集为{x=7,x=-2}。
2. 解不等式:|3x-4|<7解:我们可以将这个绝对值不等式分解为两个可能情况:1) 当3x-4>0时,我们有3x-4<7,解得3x<11,解得x<11/3。
2) 当3x-4<0时,我们有-(3x-4)<7,解得3x-4>-7,解得3x>-3,解得x>-1。
因此,解集为{-1<x<11/3}。
3. 解方程:|x+3|=5x-1解:我们可以将这个绝对值方程分解为两个可能情况:1) 当x+3>0时,我们有x+3=5x-1,解得4x=4,解得x=1。
2) 当x+3<0时,我们有-(x+3)=5x-1,解得-x-3=5x-1,解得6x=4,解得x=2/3。
因此,解集为{x=1,x=2/3}。
题目2:绝对值不等式的练习题1. 解不等式:|4-3x|>7解:我们可以将这个绝对值不等式分解为两个可能情况:1) 当4-3x>0时,我们有4-3x>7,解得-3x>3,解得x<-1。
2) 当4-3x<0时,我们有-(4-3x)>7,解得-4+3x>7,解得3x>11,解得x>11/3。
因此,解集为{x<-1或x>11/3}。
2. 解不等式:|2x-1|≥3解:我们可以将这个绝对值不等式分解为两个可能情况:1) 当2x-1>0时,我们有2x-1≥3,解得2x≥4,解得x≥2。
2) 当2x-1<0时,我们有-(2x-1)≥3,解得-2x+1≥3,解得-2x≥2,解得x≤-1。
高二数学绝对值不等式试题1.设函数.(1)解不等式;(2)若对一切实数均成立,求的取值范围.【答案】(1);(2)【解析】:(1)理解绝对值的几何意义,表示的是数轴的上点到原点离.(2)对于恒成立的问题,常用到以下两个结论:(1),(2)(3)的应用.(4)掌握一般不等式的解法:,.试题解析:(1)即,解得:。
解集为 5分(2)=10分【考点】(1)考察绝对值不等式的意义;(2)绝对值不等式的应用.2.已知的解集为,则实数等于()A.1B.2C.3D.4【答案】C【解析】因为的解集为,所以与是方程的两个根,所以,当时,,当时,无解,故选C.【考点】绝对值不等式.3.对于实数,若,则的最大值为()A.4B.6C.8D.10【答案】B【解析】因为又因为,可得,故选B.【考点】绝对值不等式.4.不等式的解集是 ( )A.B.C.D.【答案】D【解析】由得,即或,解得或【考点】解含绝对值不等式5.不等式选讲.设函数.(1)若解不等式;(2)如果关于的不等式有解,求的取值范围.【答案】(Ⅰ)原不等式的解为(Ⅱ)的取值范围为【解析】(Ⅰ)当时,由,得,①当时,不等式化为即所以,原不等式的解为②当时,不等式化为即所以,原不等式无解.③当时,不等式化为即所以,原不等式的解为综上,原不等式的解为 5分(说明:若考生按其它解法解答正确,相应给分)(Ⅱ)因为关于的不等式有解,所以,因为表示数轴上的点到与两点的距离之和,所以,解得,所以,的取值范围为 10分【考点】绝对值不等式的解法点评:中档题,绝对值不等式的解法,往往从“去”绝对值的符号入手,主要方法有“平方法”“分类讨论法”,有时利用绝对值的几何意义,会简化解题过程。
6.解不等式:【答案】或【解析】解:或或或【考点】绝对值不等式点评:解绝对值不等式,关键是去掉绝对值,这需要分布讨论。
7.若,使不等式在上的解集不是空集的的取值是A.B.C.D.以上均不对【答案】C【解析】不等式在上的解集不是空集,即不等式能够成立。
不等式练习题及解析不等式是数学中常见的一种运算关系,通过比较两个数的大小关系来描述数的大小范围。
在解不等式的过程中,需要灵活运用数学知识和运算规则。
本文将为您提供一些常见的不等式练习题,并给出详细的解析过程。
一、简单不等式1. 解方程组:{ x + 3 ≥ 5, 2x - 4 < 6 }解析:首先解第一个不等式:x + 3 ≥ 5将不等式两边同时减去3,得到:x ≥ 2然后解第二个不等式:2x - 4 < 6将不等式两边同时加上4,得到:2x < 10再将不等式两边同时除以2,得到:x < 5所以,该方程组的解为x ≥ 2 且 x < 5。
2. 解不等式:3x - 7 > 5解析:首先将不等式两边同时加上7,得到:3x > 12然后将不等式两边同时除以3,得到:x > 4所以,该不等式的解为 x > 4。
二、复合不等式1. 解不等式:2 < 4 - x ≤ 7解析:首先解第一个不等式:2 < 4 - x将不等式两边同时减去4,得到:-2 < -x然后将不等式两边同时取相反数并改变不等号方向,得到:2 > x 然后解第二个不等式:4 - x ≤ 7将不等式两边同时减去4,得到:-x ≤ 3再将不等式两边同时取相反数并改变不等号方向,得到:x ≥ -3所以,该复合不等式的解为 -3 ≤ x < 2。
2. 解不等式组:{ x - 2 > 0, 3x + 5 < 8 }解析:首先解第一个不等式:x - 2 > 0将不等式两边同时加上2,得到:x > 2然后解第二个不等式:3x + 5 < 8将不等式两边同时减去5,得到:3x < 3再将不等式两边同时除以3,得到:x < 1所以,该不等式组的解为 x > 2 且 x < 1。
三、绝对值不等式1. 解不等式:|2x - 1| ≥ 5解析:首先解第一个不等式:2x - 1 ≥ 5将不等式两边同时加上1,得到:2x ≥ 6再将不等式两边同时除以2,得到:x ≥ 3然后解第二个不等式:2x - 1 ≤ -5将不等式两边同时加上1,得到:2x ≤ -4再将不等式两边同时除以2,得到:x ≤ -2所以,该不等式的解为x ≤ -2 或 x ≥ 3。
高二数学绝对值不等式试题1.函数若不等式f(x)≥6的解集为(—∞,-2][4,+∞),则实数a的值为.【答案】3.【解析】∵a>0,故f(x)=|x+1|+|x-a|=,∴当x≤-1时,解-2x+a-1≥6得:x≤;当-1<x<a时,f(x)=1+a;当x≥a时,解2x+1-a≥6得:x≥;又f(x)≥6的解集为(-∞,-2]∪[4,+∞),∴=-2且=4且1+a∈[4,+∞),解得a=3.故应填入:3.【考点】绝对值不等式的解法.2.设函数(1)求不等式的解集;(2)若不等式(,,)恒成立,求实数的范围.【答案】(1);(2).【解析】(1)欲解不等式,需去掉绝对值,考虑到含有两个绝对值,因此分三段去,然后解.(2)要使不等式恒成立,则,考虑到不等式性质,不等式右侧可化简.试题解析:去绝对值,函数可化为,分三段解不等式,可得解集为:.由, 可得, 由(1)可解得:【考点】(1)含绝对不等会的解法;(2)恒成立问题(一般采用分离常数).3.已知.(1)求不等式的解集A;(2)若不等式对任何恒成立,求的取值范围.【答案】(1) (2)【解析】(1)把不等式转化为即可. (2) 恒成立转化为,即.(1)∴(2)恒成立对恒成立.∴取值范围是【考点】绝对值不等式的解法;简单的不等式恒成立的问题.4.不等式A.B.C.D.【答案】D【解析】因为,所以,,故不等式,选D。
【考点】绝对值不等式解法点评:简单题,绝对值不等式解法,通常以“去绝对值符号”为出发点。
有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等。
5.已知关于x的不等式的解集是非空集合,则的取值范围是【答案】【解析】根据题意,关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,即为存在y=|x+a|+|x-1|的图形在y=2013-a的下方. y=|x+a|+|x-1|的图形是一条有两个折点的折线.y=2013-a是一条平行于x轴的直线.a的取值范围是(-∞,1006);6所以答案为:(-∞,1006).【考点】绝对值不等式点评:(1)关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,等价于存在y=|x+a|+|x-1|的图形在y=2013-a的下方.与恒成立是有本质区别的.(2)y=|x+a|+|x+b|的图形为一条带有两个折点的直线.6.已知函数(1)当的解集(2)若的解集包含[1,2],求的取值范围【答案】(1)(2)[-3,0]【解析】解:(1)当,当无解,当,故(2)当,即由条件得,故满足条件的的取值范围为[-3,0]【考点】绝对值不等式点评:主要是考查了绝对值不等式的求解,以及运用不等式来得到参数的范围,属于中档题。
含绝对值的方程和不等式
一、方程、方程组
1、填空题
(1) 若05=x ,则x =
(2) 若12=x ,则x =
(3) 若2-=x ,则x
(4) 若1x a +=有两个不同的解,则a 的取值范围是
(5) 根据绝对值的非负性,若1240x y ++-=,则x y =
(6) 根据绝对值的非负性,若02633232=++++-y x y x ,则x+y =
2、解下列关于x 的方程
(1)2381x x =+-
(2) 0712=-+x
(3)1225x x +++=
(4)01552=+--x x
(5)952=++-x x (用代数和几何两种方法求解)
3、 解方程组
(1) ⎪⎩⎪⎨⎧-=-+=-+2
5196
217y x y x (2)⎩⎨⎧=-=+122y x y x
4、 解关于x 的方程:
(1)3548x -+=
(2)11110x ----=
二、不等式
1、填空题
(1) 若11x x -=-,则x 的取值范围是
(2) 若211n x x +⎛⎫= ⎪⎝⎭ (n 为正整数),则x 的取值范围是
(3) 若05>-x ,则x 的取值范围是
(4) 若05<-x ,则x 的取值范围是
(5) 若05>+x ,则x 的取值范围是
(6) 若关于x 的方程0x a -<无解,则a 的取值范围是
2、解下列关于x 的不等式
(1)
352-<x x (2)()374371027<⎥⎦⎤⎢⎣⎡--x
(3)321<-x
(4)0225≥--x
(5)解不等式:952>-+-x x
三、综合创新
1、(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;
(2)是否存在有理数x,使│x+1│+│x-3│=x?
(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.
2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.。