磁场极值与边界
- 格式:doc
- 大小:587.00 KB
- 文档页数:9
带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v0从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d,板长为d,O点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e,质量为m).2.偏角的极值问题例2 在真空中,半径r=3×10-2 m的圆形区域内有匀强磁场,方向如图所示,磁感应强度B=0.2 T,一个带正电的粒子以初速度v0=1×106 m/s从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷qm=1×108 C/kg,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时v0与ab的夹角θ及粒子的最大偏转角.3.时间的极值问题例3如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:;(1)两板间电压的最大值U(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
高中物理求解带电粒子在有界匀强磁场中运动的临界与极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。
然后应用数学知识和相应物理规律分析求解。
1、两种思路一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。
2、两种方法一是物理方法:(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。
二是数学方法:(1)利用三角函数求极值;(2)利用二次方程的判别式求极值;(3)利用不等式的性质求极值;(4)利用图像法等。
3、从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示。
审题时,一定要抓住这些特定的词语挖掘其隐藏的规律。
例1、如图1所示,一带正电的质子从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场,已知两板之间距离为d,板长为d,O 点是板的正中间,为使粒子能射出两板间,试求磁感应强度B的大小(质子的带电量为e,质量为m)。
图1解析:第一种极端情况从M点射出,此时轨道的圆心为O′点,由平面几何知识可得而带电粒子在磁场中的轨道半径,第二种极端情况是粒子从N点射出,此时粒子正好走了半个圆,其轨道半径为。
综合上述两种情况,得。
例2、如图2所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,现从矩形区域ad边的中点O处,垂直磁场射入一速度方向与ad边夹角为30°、大小为的带电粒子。
§X3.5带电粒子在磁场中的运动(三)一、带电粒子在有界磁场中运动的极值问题:注意下列结论,再借助数学方法分析:1、刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
2、当速度v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长。
3、注意圆周运动中有关对称规律:如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
二、洛仑兹力的多解问题带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,使问题形成多解,多解形成原因一般包含下述几个方面。
(1)带电粒子电性不确定形成多解(2)磁场方向不确定形成多解(3)临界状态不唯一形成多解(4)运动的重复性形成多解【典型例题】1、求带电粒子在有界磁场中运动的速度例1、如图所示,宽为d的有界匀强磁场的边界为PQ、MN,一个质量为m,带电量为-q的微粒子沿图示方向以速度v0垂直射入磁场,磁感应强度为B,要使粒子不能从边界MN射出,粒子的入射速度v0的最大值是多大?2、求带电粒子通过磁场的最大偏转角例2、如图所示,r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标O处相切,磁感应强度B=0.332T,方向垂直纸面向外,在O处有一放射源S,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子,已知m a=6.64×10-27kg,q=3.2×10-19C,则α粒子通过磁场最大偏转角等于多少?例3、某电子以固定的正电荷为圆心在匀强磁场中做匀速圆周运动,磁场方向垂直它的运动平面,电子所受电场力恰是磁场对它的作用力的3倍,若电子电荷量为e ,质量为m ,磁感应强度为B ,那么,电子运动的可能角速度是( )A 、4eB/mB 、3 eB/mC 、2 eB/mD 、eB/m【针对训练】1、如图所示一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域,为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感强度为B 的匀强磁场,若此磁场仅分布在一圆形区域内,试求该圆形区域的最小半径(粒子重力不计)。
磁场边界条件磁场边界条件是电磁学中的重要概念之一,它描述了磁场在介质或空间中的传播和转换规律。
磁场边界条件在解决电磁问题时起着关键作用,能帮助我们理解和分析各种电磁现象。
一、磁场边界条件的基本概念磁场边界条件是指在两个不同介质或空间中,磁场在界面上的行为规律。
根据不同的情况,可以有不同的磁场边界条件,主要包括磁感应强度的切向连续性和法向连续性。
1. 磁感应强度的切向连续性:在两个介质或空间的界面上,磁感应强度的切向分量在界面上是连续的。
这意味着磁场的切向分量在穿过界面时保持不变,不会发生跳跃或间断现象。
2. 磁感应强度的法向连续性:在两个介质或空间的界面上,磁感应强度的法向分量在界面上也是连续的。
这意味着磁场的法向分量在穿过界面时也保持不变,不会有突变或断裂。
二、常见的磁场边界条件根据具体情况,磁场边界条件可以有不同的形式和表达方式。
下面介绍几种常见的磁场边界条件。
1. 自由磁场边界条件:在自由空间中,磁场边界条件可以简化为磁感应强度的法向分量为零。
这意味着磁场在自由空间的边界上不存在法向分量,也就是说磁场不会通过自由空间的边界。
2. 介质边界条件:当磁场从一种介质进入另一种介质时,磁场边界条件可以表示为磁感应强度的法向分量和切向分量在界面上的关系。
根据不同介质的特性,可以有不同的表达形式。
3. 导体边界条件:当磁场与导体相互作用时,磁场边界条件可以表示为磁感应强度的切向分量在导体表面上为零。
这意味着磁场在导体表面的切向分量为零,也就是说磁场不会穿透导体。
4. 磁壁边界条件:在磁壁上,磁感应强度的切向分量和法向分量都为零。
这意味着磁场在磁壁上既没有切向分量,也没有法向分量,也就是说磁场在磁壁上完全消失。
三、磁场边界条件的应用磁场边界条件在电磁学中的应用非常广泛,可以帮助我们解决各种与磁场有关的问题。
以下是磁场边界条件的一些常见应用。
1. 磁场传播问题:当磁场在不同介质中传播时,磁场边界条件可以帮助我们确定磁场的传播方向和传播规律。
带电粒子在匀强磁场中的运动---临界问题、极值问题与多解问题一、带电粒子在有界磁场中运动的临界和极值问题带电粒子在有界磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速率v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长;(3)当速率v变化时,圆心角大的,运动时间越长。
【例1】如图所示真空中狭长区域的匀强磁场的磁感应强度为B,方向垂直纸面向里,宽度为d,速度为v的电子从边界CD外侧垂直射入磁场,入射方向与CD间夹角为θ.电子质量为m、电量为q.为使电子从磁场的另一侧边界EF射出,则电子的速度v应为多大?二、带电粒子在有界磁场中运动的多解问题1. 带电粒子电性不确定形成多解.受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度下,正负粒子在磁场中的运动轨迹不同,形成多解.2. 磁场方向不确定形成多解.3. 临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧形的,它可能穿过去,也可能转过180°从磁场的入射边界边反向飞出,于是形成多解.4. 运动的重复性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有重复性,形成多解.【例2】 长为L ,间距也为L 的两平行金属板间有垂直向里的匀强磁场,如图所示,磁感应强度为B ,今有质量为m 、带电量为q 的正离子从平行板左端中点以平行于金属板的方向射入磁场。
物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
电磁场理论中的边界条件与边值问题解析研究引言:电磁场理论是物理学中的重要分支,广泛应用于电磁波传播、电路分析等领域。
其中,边界条件和边值问题是电磁场理论中的核心概念,对于解析研究电磁场的性质和行为具有重要意义。
本文将就电磁场理论中的边界条件与边值问题进行探讨。
一、边界条件的概念与分类边界条件是指电磁场在两个不同介质的交界面上需要满足的条件。
根据边界条件的不同形式,可以将其分为电场边界条件和磁场边界条件。
1. 电场边界条件电场边界条件是指电场在介质交界面上满足的条件。
其中,最基本的电场边界条件是法向分量的连续性条件,即电场的法向分量在两个介质交界面上的值相等。
此外,还有切向分量的连续性条件和切向分量的不连续性条件等。
2. 磁场边界条件磁场边界条件是指磁场在介质交界面上满足的条件。
与电场边界条件类似,磁场的法向分量在两个介质交界面上的值相等,即磁场的法向分量是连续的。
此外,磁场的切向分量也需要满足一定的条件,如切向分量的连续性条件和切向分量的不连续性条件等。
二、边值问题的解析研究边值问题是指在给定边界条件的情况下,求解电磁场的数学模型。
在电磁场理论中,边值问题的解析研究是十分重要的,可以帮助我们深入理解电磁场的行为和性质。
1. 边值问题的数学模型边值问题的数学模型是由麦克斯韦方程组和边界条件共同构成的。
通过求解这个数学模型,我们可以得到电磁场的解析解,从而揭示电磁场的基本特性。
2. 边值问题的解析方法边值问题的解析方法主要有分离变量法、格林函数法和辐射条件法等。
其中,分离变量法是应用最广泛的一种方法,它将电磁场分解为多个独立的分量,并通过求解每个分量的方程来得到整个电磁场的解析解。
格林函数法则是通过引入格林函数,将边值问题转化为积分方程的形式,从而求解电磁场的解析解。
辐射条件法则是在边界条件已知的情况下,通过辐射条件来求解电磁场的解析解。
三、边界条件与边值问题的应用边界条件与边值问题在电磁场理论的应用中起着重要的作用,可以帮助我们研究电磁波的传播、电路的分析等问题。
带电粒子在磁场中运动的临界和极值问题动态放缩法的分析和应用摘要:带电粒子在磁场中运动的临界和极值问题是高中磁场部分教学中的难点,在高考中考查的频率很高,本知识点既联系了匀速圆周运动的内容,又承接带电粒子在磁场中所受洛伦兹力的内容,既是力学知识和电磁学知识的综合体现,又是临界极值问题的全新知识模型的建构,对学生的思维能力要求较高,可以很好地考察学生的核心素养。
由于带电粒子往往是在有界磁场中的运动的,粒子在磁场中只运动一段圆弧就飞出磁场,其轨迹不是完整的圆。
这类问题往往根据带电粒子的运动轨迹做出相关图示去寻找几何关系,分析临界条件,然后应用数学知识和相应的物理规律分析求解。
关键词:有界磁场;动态放缩法;临界问题;极值问题1.动态放缩法在空间内存在一个无限大的匀强磁场。
一个带负电的粒子以某一速度垂直进入该磁场,那么该粒子就会在洛伦兹力的作用下做匀速圆周运动。
根据洛伦兹力提供向心力就可以得出R=mv/qB,当粒子速度增大时,轨道半径不断增大,轨迹圆不断变大。
那如果现在限定这个磁场是一个有界磁场。
则粒子在磁场中的运动就存在了临界极值问题。
比如,当磁场边界缩小到与运动轨迹相切时,那么轨迹与边界的切点便是粒子运动的临界点或极值点。
当带电粒子在有界磁场中运动,粒子速度同向不同速时,其做圆周运动的圆心都在磁场边界上,v的大小或者B变化时,轨道半径随即变化。
可以入射点为定点做出半径不同的一系列轨迹。
当轨迹与右边界相切时,粒子恰好能从左边界射出磁场,即恰好不能从右边界射出磁场。
这种以入射点为定点做出半径不同的一系列轨迹,来确定粒子运动的临界和极值问题的方法称为动态放缩法。
画出与边界相切的临界轨迹、找到临界点、极值点,根据几何关系确定临界极值条件是解决问题的关键。
2.双边界磁场的临界极值问题如图1,不同速率的带点粒子垂直进入有界磁场,根据左手定则可以判断带电粒子在磁场中做圆周运动的圆心都在它所受到的洛伦兹力的方向上。
粒子速率不同、轨道半径就不同,磁感应强度B的大小不同、轨道半径也不同,动态放缩法就是以入射点为定点,在磁场中做出半径不同的一系列轨迹圆,尤其要关注的是与磁场边界相切的轨迹圆,切点往往粒子运动的临界和极值点。
考点4.6 临界与极值问题考点4.6.1 “放缩圆”方法解决极值问题1、圆的“放缩”当带电粒子射入磁场的方向确定,但射入时的速度v 大小或磁场的强弱B 变化时,粒子做圆周运动的轨道半径r 随之变化.在确定粒子运动的临界情景时,可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.如图所示,粒子进入长方形边界OABC 形成的临界情景为②和④.1. (多选)如图所示,左、右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电荷量为q的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.(2+2)Bqd mC.(2-2)Bqd mD.2Bqd 2m2. (2016·全国卷Ⅲ,18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O 的距离为( )A.mv 2qBB.3mv qBC.2mv qBD.4mv qB3. (多选)长为L 的水平极板间,有垂直纸面向内的匀强磁场,如下图所示,磁感应强度为B ,板间距离也为L ,板不带电,现有质量为m ,电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A 、使粒子的速度v <BqL 4m B 、使粒子的速度v >5BqL 4m C 、使粒子的速度v >BqL m D 、使粒子速度BqL 4m <v <5BqL 4m4. 如图所示,边长为L 的正方形ABCD 区域内存在磁感应强度方向垂直于纸面向里、大小为B 的匀强磁场,一质量为m 、带电荷量为-q 的粒子从AB 边的中点处垂直于磁感应强度方向射入磁场,速度方向与AB 边的夹角为30°.若要求该粒子不从AD 边射出磁场,则其速度大小应满足( )A .v ≤2qBL mB .v ≥2qBL mC .v ≤qBL mD .v ≥qBL m5. 如图所示,条形区域AA ′、BB ′中存在方向垂直于纸面向外的匀强磁场,磁感应强度为B ,AA ′、BB ′为磁场边界,它们相互平行,条形区域的长度足够长,宽度为d .一束带正电的某种粒子从AA ′上的O 点以大小不同的速度沿着AA ′成60°角方向射入磁场,当粒子的速度小于某一值v 0时,粒子在磁场区域内的运动时间为定值t 0;当粒子速度为v 1时,刚好垂直边界BB ′射出磁场.不计粒子所受重力.求:(1) 粒子的比荷q m;(2) 带电粒子的速度v 0和v 1.6. 如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m ,带电荷量为q ,假设粒子速度方向都和纸面平行.(1) 图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 点,则初速度的大小是多少?(2) 要使粒子不穿出环形区域,则粒子的初速度不能超过多少?7.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.8.如图所示,OP曲线的方程为:y=1-0.4 6.25-x(x,y单位均为m),在OPM区域存在水平向右的匀强电场,场强大小E1=200N/C(设为I区),PQ右边存在范围足够大的垂直纸面向内的匀强磁场,磁感应强度为B=0.1T(设为Ⅱ区),与x轴平行的刚上方(包括PN存在竖直向上的匀强电场,场强大小E2=100N/C(设为Ⅲ区),PN的上方h=3.125m处有一足够长的紧靠y轴水平放置的荧光屏AB,OM的长度为a=6.25m。
带电粒子在磁场中运动的极值问题1 如图7所示, 匀强磁场 的磁感应强度为B,宽度为d,边界为CD 和EF.一电子从CD 边界外侧以速率v0垂直匀强磁场射入,入射方向与CD 边界间夹角为θ.已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF 射 出,求电子的速率v 0至少多大?2、如图所示,环状匀强磁场围成的中空区域内具有自由运动的带电粒子,但由于环状磁场的束缚,只要速度不很大,都不会穿出磁场的外边缘,设环状磁场的内半径R 1=0.5m ,外半径R 2=1.0m ,磁场的磁感应强度B=1.0T ,若被束缚的带电粒子的荷质比为 m q 4×107C/kg ,中空区域中带电粒子具有各个方向的速度。
试计算:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度;(2)所有粒子不能穿越磁场的最大速度。
3、如图所示一足够长的矩形区域abcd 内充满磁感应强度为B ,垂直纸面向里的匀强磁场,现从矩形区域ad 边的中点O 处,垂直磁场射入一速度方向与ad 边夹角30°,大小为v 0-的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为l ,重力影响不计。
(1)试求粒子能从ab 边上射出磁场的v 0的大小范围。
(2)粒子在磁场中运动的最长时间是多少?b4、在真空中,半径r=3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感强度B=0.2T ,一个带正电的粒子,以初速度v 0=106m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷=mq 108C/kg ,不计粒子重力,求:(1)粒子在磁场中作匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0方向与ab 的夹角θ及粒子的最大偏转角β。
5、M 、N 两极板相距为d ,板长均为5d ,两板未带电,板间有垂直纸面的匀强磁场,如图所示,一大群电子沿平行于板的方向从各处位置以速度v 射入板间,为了使电子都不从板间穿出,求磁感应强度B 的范围。
4.一质量m 、带电q 的粒子以速度V 0从A 点沿等边三角形ABC 的AB 方向射入强度为B 的垂直于纸面的圆形匀强磁场区域中,要使该粒子飞出磁场后沿BC 射出,求圆形磁场区域的最小面积。
4.一匀强磁场,磁场方向垂直于xy 平面,在xy 平面上,磁场分布在以O 为中心的一个圆形区域内。
一个质量为m 、电荷量为q 的带电粒子,由原点O 开始运动,初速为v ,方向沿x 正方向。
后来,粒子经过y 轴上的P 点,此时速度方向与y 轴的夹角为30°,P 到O 的距离为L ,如图所示。
不计重力的影响。
求磁场的磁感应强度B 的大小和xy 平面上磁场区域的半径R 。
分析:由题知P 点在磁场之外,且粒子在磁场中作匀速圆周运动,半径为r ,则 rvmqvB2= ①过P 沿速度方向作延长线,交x 轴与Q 点。
粒子在磁场中的轨迹应与OQ 、PQ 相切,且圆心在y 轴上,如图所示,则C 为圆心,A 为粒子离开磁场的位置。
由图中几何关系得 r L 3= ②联立①②求得 qL mv B3= ③OA 为圆形磁场区域的半径,由几何关系得 LR33=④14.如图所示,一质量为m ,带电荷量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图所示。
粒子的重力不计,试求:(1)圆形匀强磁场的最小面积。
(2)c 点到b 点的距离s 。
14.解析:(1)粒子在磁场中做匀速圆周运动, 轨迹半径为R ,则有R=0m v q B粒子经过磁场区域速度偏转角为120°,这表明在磁场区域中轨迹为半径为R 的13圆弧,此圆弧应与入射和出射方向相切。
作出粒子运动轨迹如图中实线所示。
带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点. 找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v 0从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d ,板长为d ,O 点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e ,质量为m ).2.偏角的极值问题例2 在真空中,半径r =3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=1×106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q m=1×108C/kg ,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.3.时间的极值问题例3 如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值Um;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4 如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
专题41 带电粒子运动的临界与极值问题1.临界问题的分析思路临界问题的分析对象是临界状态,临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件则称为临界条件,临界条件是解决临界问题的突破点.带电体进入有界磁场区域,一般存在临界问题,处理的方法是寻找临界状态,画出临界轨迹:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零.(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切.临界问题的一般解题模式为:(1)找出临界状态及临界条件;(2)总结临界点的规律;(3)解出临界量;(4)分析临界量列出公式.2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:一是根据题给条件列出函数关系式进行分析、讨论;二是借助于几何图形进行直观分析(一般涉及相切,最大弦长和最小弦长).例题1、(2011·浙江·20)利用如图13所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( BC )A .粒子带正电B .射出粒子的最大速度为qB (3d +L )2mC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析 利用左手定则可判定只有负电荷进入磁场时才向右偏,故选项A 错误.利用q v B =m v 2r 知r =m v qB ,能射出的粒子满足L 2≤r ≤L +3d 2,因此对应射出粒子的最大速度v max =qBr max m =qB (3d +L )2m,选项B 正确.v min =qBr min m =qBL 2m ,Δv =v max -v min =3qBd 2m,由此式可判定选项C 正确,选项D 错误. 例题2、 如图12所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角为θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中的区域的长度s ;(3)粒子在磁场中运动的最长时间t m .解析 (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示,CH =QC =L 故半径r 1=L又因为q v 1B =m v 21r 1 且qU m =12m v 21 所以U m =qB 2L 22m. (2)设粒子在磁场中运动的轨迹与CD 板相切于K 点,此轨迹的半径为r 2,设圆心为A ,在△AKC 中:sin 45°=r 2L -r 2解得r 2=(2-1)L 即KC =r 2=(2-1)L 所以CD 板上可能被粒子打中的区域的长度s =HK ,即s =r 1-r 2=(2-2)L .(3)打在QE 间的粒子在磁场中运动的时间最长,均为半个周期,所以t m =T 2=πm Bq . 答案 (1)qB 2L 22m (2)(2-2)L (3)πm Bq例题3、如图6所示,在铅板AB 上有一个放射源S ,可向各个方向射出速率v=2.04×107m/s的β射线.CD 为荧光屏(足够大),AB 、CD 间距d=10cm ,其中存在磁感应强度B=6.0×10-4T的匀强磁场,方向垂直纸面向里.已知β粒子的荷质比e/m=1.7×1011C/kg ,试求这时在竖直方向上能观察到荧光屏亮斑区的长度.解析 粒子进入匀强磁场后,满足qv 0B=m ,则 R==0.2m由于β粒子可向各个方向射出,容易看出向上方射出的β粒子及向右方射出的β粒子打在荧光屏上的位置P 、Q 之间即为亮斑区,这是求解本题之关键.由图7知PO=OQ ,故在竖直方向上能观察到荧光屏亮斑区的长度为PQ=2PO=2=0.2≈0.35m.例题5、如图所示一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域,为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感强度为B 的匀强磁场,若此磁场仅分布在一圆形区域内,试求该圆形区域的最小半径(粒子重力不计)。
带电粒子在磁场中偏转的边界极值问题带电粒子在磁场中的偏转问题可以很好地考察学生物理过程分析、空间想象和应用数学知识解决物理问题的能力,因此一直受到高考命题专家的青睐,成为历年的热门考题,且常作为压轴题出现。
对于带电粒子在已知边界的有界磁场中偏转的问题较为常见,其解题思路(先由几何知识作出带电粒子的运动轨迹圆心,然后求其圆心角,进而确定带电粒子在磁场中的运动时间)大家较为熟悉。
而对带电粒子在“待定”边界的最小有界磁场中偏转的问题则较为少见,这类问题灵活性较强,能更有效地考查学生的发散性思维和灵活应变能力,具有很好的区分度。
通常可采用几何作图方法直接进行求解;当边界较为复杂时也可借助解析法进行求解。
本文首先通过剖析典型的高考真题总结出该类问题的一般解题规律,并针对性地设计创新例题进行训练,从而使学生达到举一反三,融会贯通。
1.例题精选例1:如图1所示,一带电质点,质量为m ,电量为 q,以平行于ox 轴的速度v从y 轴上的a 点射入图中第一象限所示的区域,为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场,若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。
(重力忽略不计)解析:质点在磁场中作半径为R的圆周运动,洛伦兹里提供向心力,则,可得质点在磁场中作圆周运动的半径为定值。
由题设的质点在有界磁场区域中入射点和出射点方向垂直的条件,可判定带电粒子在磁场中的运动轨迹是半径为R的圆周的1/4圆弧,这段圆弧与粒子射入和射出磁场时的速度方向相切。
过点a作平行于x轴的直线,过b点作平行于y轴的直线,则与这两直线aM、bN相距均为R的点即为带点粒子在磁场中运动轨迹的圆心,图2中虚线圆弧即为带点粒子在有界圆形磁场中运动的轨迹。
由几何关系知:过M、N两点的不同圆周中面积最小的是以MN连线为直径的圆周,所以本题所求的圆形磁场区域的最小半径为例2:(创新迁移)如图3所示,一质量为m、带电量为q的粒子以速度从A点沿等边三角形ABC的AB方向射入磁感应强度为B。
4.一质量m 、带电q 的粒子以速度V 0从A 点沿等边三角形ABC 的AB 方向射入强度为B 的垂直于纸面的圆形匀强磁场区域中,要使该粒子飞出磁场后沿BC 射出,求圆形磁场区域的最小面积。
4.一匀强磁场,磁场方向垂直于xy 平面,在xy 平面上,磁场分布在以O 为中心的一个圆形区域内。
一个质量为m 、电荷量为q 的带电粒子,由原点O 开始运动,初速为v ,方向沿x 正方向。
后来,粒子经过y 轴上的P 点,此时速度方向与y 轴的夹角为30°,P 到O 的距离为L ,如图所示。
不计重力的影响。
求磁场的磁感应强度B 的大小和xy 平面上磁场区域的半径R 。
分析:由题知P 点在磁场之外,且粒子在磁场中作匀速圆周运动,半径为r ,则 rvmqvB2= ①过P 沿速度方向作延长线,交x 轴与Q 点。
粒子在磁场中的轨迹应与OQ 、PQ 相切,且圆心在y 轴上,如图所示,则C 为圆心,A 为粒子离开磁场的位置。
由图中几何关系得rL 3= ②联立①②求得 qL mv B 3= ③OA 为圆形磁场区域的半径,由几何关系得 LR33=④14.如图所示,一质量为m ,带电荷量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图所示。
粒子的重力不计,试求:(1)圆形匀强磁场的最小面积。
(2)c 点到b 点的距离s 。
14.解析:(1)粒子在磁场中做匀速圆周运动, 轨迹半径为R ,则有R=0m v qB粒子经过磁场区域速度偏转角为120°,这表明在磁场区域中轨迹为半径为R 的13圆弧,此圆弧应与入射和出射方向相切。
作出粒子运动轨迹如图中实线所示。
轨迹MN 为以O ′为圆心、R 为半径,且与两速度方向相切的13圆弧,M 、N 两点还应在所求磁场区域的边界上。
在过M 、N 两点的不同圆周中,最小的一个是以MN 为直径的圆周,所求圆形磁场区域的最小半径为16022r M N R Sin qB==︒=面积为S=2222234m v r q Bππ=(2)粒子进入电场做类平抛运动设从b 到c 垂直电场方向位移x ′,沿电场方向位 移y ′,所用时间为t 。
则有x ′=v 0t 221122qE y at t m'==又cot 60x y '=︒'解得 x ′=02/Eqy ′=6mv 02/Eqd ∴==7.放射源P 放出质量是m ,电荷量是q 的正粒子。
粒子的初速度大小为v ,方向在xOy 平面内,匀强磁场垂直纸面向里,磁感应强度为B ,若将放射源置于x 、y 坐标系的原点,如图9-18所示。
图9-18(1)试画出粒子所能达到的区域;yNMO30° Ebcx(2)若在Bqmv x =处放置一档板MN ,则挡板上多大范围内有粒子到达;(3)若磁场限制在x >0区域,则上述挡板上多大范围内有粒子到达。
*7.(1)见答图9-1;(2)Bqmv )31(+;(3)Bqmv 28、如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场区域,一质量为m 、电荷量为e 的电子从y 轴上a(0,L)点以初速度v 0平行于x 轴正方向射入磁场,经磁场偏转后从x 轴上的b 点射出磁场,此时速度的方向与x 轴正方向的夹角为60°,且此磁场区域恰好是满足此电子偏转的最小圆形磁场区域(此最小圆形磁场未画出),下列说法正确的是: A .此圆形磁场区域边界不会经过原点OD .电子在磁场中做圆周运动的圆心坐标为(0,-2L)图14所示为圆形区域的匀强磁场,磁感应强度为B 、方向垂直纸面向里,边界跟y 轴相切于坐标原点O. O点处有一放射源,沿纸面向各方向射出速率均为v 的某种带电粒子,带电粒子在磁场中做圆周运动的半径是圆形磁场区域半径的两倍.已知该带电粒子的质量为m 、电荷量为q ,不考虑带电粒子的重力.(1)推导带电粒子在磁场空间做圆周运动的轨道半径; (2)求带电粒子通过磁场空间的最大偏转角;(3)沿磁场边界放置绝缘弹性挡板,使粒子与挡板碰撞后以原速率弹回,且其电荷量保持不变.若从O点沿x 轴正方向射入磁场的粒子速度已减小为2v ,求该粒子第一次回到O点经历的时间.解:(1)带电粒子进入磁场后,受洛伦兹力作用,由牛顿第二定律得: rmBq 2υυ=……………………………………2分Bqm r υ=……………………………1分(2)设粒子飞出和进入磁场的速度方向夹角为ϕ,则yy图14sin,22x rϕ=x 是粒子在磁场中轨迹的两端点的直线距离.x 最大值为2R ,对应的就是ϕ最大值.且2R =r 所以m axm ax 1sin,60.22R r ϕϕ===︒…………………3分(3)当粒子的速度减小为2v 时,在磁场中作匀速圆周运动的半径为 R qBmv r ==21…………………………1分故粒子转过四分之一圆周,对应圆心角为︒90时与边界相撞弹回,由对称性知粒子经过四个这样的过程后第一次回到O点,亦即经历时间为一个周期.……………1分粒子在磁场中做匀速圆周运动的周期Bqm T π2=.所以从O 点沿x 轴正方向射出的粒子第一次回到O 点经历的时间是 Bqm t π2=……………………………1分(全国卷2)26(21分)图中左边有一对平行金属板,两板相距为d ,电压为V;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。
图中右边有一边长为a 的正三角形区域EFG(EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。
假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。
不计重力(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。
(2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为34a ,求离子乙的质量。
(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。
解析:(1)在粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v ,电场的场强为E 0,根据平衡条件得00E q B qv = ① 0V E d=②由①②化简得0V v B d=③粒子甲垂直边界EF进入磁场,又垂直边界EF穿出磁场,则轨迹圆心在EF上。
粒子运动中经过EG,说明圆轨迹与EG相切,在如图的三角形中半径为R=acos30°tan15°④tan15°=1cos302sin30-︒=-︒⑤联立④⑤化简得3)2R a=⑥在磁场中粒子所需向心力由洛伦磁力提供,根据牛顿第二定律得203)2m vB qva=⑦联立③⑦化简得3)2qadBBmV=⑧(2)由于1点将EG边按1比3等分,根据三角形的性质说明此轨迹的弦与EG垂直,在如图的三角形中,有1cos30sin302cos304aaR︒︒⨯==︒⑨同理4qadB BmV=(10)(3)最轻离子的质量是甲的一半,根据半径公式mv R Bq=离子的轨迹半径与离子质量呈正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF 穿出磁场,甲最远离H 的距离为(3)a ,最轻离子最近离H 的距离为3)2a ,所以在离H 的距离为3)a -到3)2a 之间的EF 边界上有离子穿出磁场。
如图所示,在0≤x≤a 、o≤y≤2a 范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B 。
坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~90°范围内.己知粒子在磁场中做圆周运动的半径介于2a 到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的:(1)速度大小;(2)速度方向与y 轴正方向夹角正弦。
解析:设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦磁力公式,得2m v qvB R=,解得:mv R qB=当2a <R <a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意,4T t =时,2O C A π∠=设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系可得:sin ,sin cos 2a R R R a R ααα=-=-再加上22sin cos 1αα+=,解得:(2,(2,sin 2210aqB R a v m α=-=-=如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
0t =时,一带正电、质量为m 的微粒从左边界上的1N 点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的2N 点。
Q 为线段12N N 的中点,重力加速度为g 。
上述d 、0E 、m 、v 、g 为已知量。
(1)求微粒所带电荷量q 和磁感应强度B 的大小; (2)求电场变化的周期T ;(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值。
解析:(1)微粒作直线运动,则0mg qE qvB += ①微粒作圆周运动,则 0m g qE = ② 联立①②得 0m g q E =③02E B v=④(2)设粒子从N 1运动到Q 的时间为t 1,作圆周运动的周期为t 2,则12d vt = ⑤2vqvB mR= ⑥22R vt π= ⑦联立③④⑤⑥⑦得 12;2d v t t v gπ==⑧电场变化的周期 122d v T t t v gπ=+==+⑨(3)若粒子能完成题述的运动过程,要求d ≥2R (10) 联立③④⑥得 22vR g=(11)设N 1Q 段直线运动的最短时间为t min ,由⑤(10)(11)得 min 2v t g=因t 2不变,T 的最小值min min 2(21)2v T t t g π+=+=如图,ABCD 是边长为a 的正方形。
质量为m 、电荷量为e 的电子以大小为0v 的初速度沿纸面垂直于BC 变射入正方形区域。