椭圆总结(全)
- 格式:doc
- 大小:1.25 MB
- 文档页数:24
椭圆总结整版(非常好)椭 圆题型一:利用椭圆的定义解题 知识总结:(1)椭圆的定义:12122(2PF PF a a F F +=>(2)椭圆的标准方程:焦点在x 轴:12222=+by ax (a >b >0);焦点在y 轴:12222=+bx ay(a >b >0);(3)椭圆的标准方程判别方法:看分母的大小,即: 如果2x 项的分母大于2y 项的分母,则焦点在x 轴上;如果2y 项的分母大于2x 项的分母,则焦点在y 轴上;(4)字母,,a b c 的关系:222b c a +=(5)焦距:122F F c = 例题分析1、写出椭圆221(1)mx y m +=>的焦点坐标;变式:已知方程221(0)mx y m +=≥,对不同范围内的m 值分别指出方程所代表的曲线类型; 2、椭圆2215x y m+=的焦距为2,则m = ; 椭圆2215x ym+=的焦距为6,则m = ;变式:已知椭圆22sin cos 1(02)x y αααπ-=≤<的焦点在y轴上,则α的取值范围是3、已知P 为椭圆221259x y +=上一点,12,F F 为椭圆两焦点,1P F =4,求2P F 的长;变式1:已知P 为椭圆259+一点,12,F F 为椭12P F P F •的最大值;变式2:,已知P 为椭圆221259x y+=上一点,12,F F 为椭圆两焦点,线段1PF 上,求12P FP F的值;变式3:已知(3,3)B 221259x y +=内一点,2F 右焦点,M 求2M FM B-的最大值213)4:已知(3,3)B -为椭圆259+内一点,2(4,0)F 是椭圆,M 是椭圆上的动点,求2M M B+的最大值x 轴上椭圆方程为122+b a (a >b >0).a x a -<<;b y b -<< x 轴、关于原点中心1(,0)A a -、2(,0)A a 、1(0,)B b -、122A A a = 短轴:122B B b=长半轴长:a 短半轴长:b(4)离心率:a ce = 意义:表示椭圆的扁平程度离心率取值范围:01e << 离心率大小对扁平程度的影响:如果e 越接近于1,则c 越大,b 越小,椭圆越扁; 如果e 越接近于0,则c 越大,b 越小,椭圆越圆; 题型分析:1、根据条件求椭圆的标准方程(1)已知10a b +=,25b =椭圆的标准方程;(2)长轴长为短轴长的2倍,且椭圆过点(2,4)--;(3)已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程;(4)求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程;(设方程122=+ny mx )(5)一短轴的一个顶点B 与焦点12,F F 组成三角形周长为423+且21BF F ∠=32π,求椭圆方程;2、焦点三角形问题(面积问题)方法原理:①余弦定理②椭圆定义③C ab Ssin 21=∆(1)已知椭圆方程()012222>>=+b a b y a x ,焦点为1F ,2F ,P 是椭圆上一点,α=∠21PFF .求:21PF F ∆的面积(用a 、b 、α表示);分析:由余弦定理知:221F F 2221PF PF +=12PF -·224cos cPF=α①由椭圆定义知:aPF PF 221=+ ②则-①②2得αcos 12221+=⋅b PF PF .故αsin 212121PF PF S PF F ⋅=∆212sin 21cos b αα=⨯+2tan2b α=. 焦点三角形面积:12212tan()2MF F S b F MF θθ∆==∠1、若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求△21PF F 的面积 ;2、已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若21||||2121=⋅PF PF ,求△21PF F 的面积;3、已知椭圆191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,求点P 到x 轴的距离;练习: 1、椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( )A. 20B. 22C. 28D. 242、椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF ⋅的值为( )A. 0B. 1C. 3D. 6 3、椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF ⋅的值为( )A. 0B. 2C. 4D.2-4、已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上,直线1PF 与2PF 倾斜角的差为︒90,△21PF F 的面积是20,离心率为35,求椭圆的方程;5、点P 为椭圆)(=+0b a 116y 25x 22>>上一点,21F ,F 是左右焦点;(1)求||||21PF PF ⋅的最大值(2)若21PF PF⊥,求21F PF ∆的面积(3)若ο60PFF 21=∠,求21F PF ∆的面积3、离心率:c e a=常见类型:①直接求出,a c 的值;②直接求出,a c 的比值;③解齐次方程求ca 的值; ④解齐次不等式求c a 的范围;(一)直接求出,a c 的值或直接求出,a c 的比值;(1)已知椭圆的长轴是短轴长的2倍,求椭圆的离心率;(2)若椭圆)0(,12222>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥,求椭圆的离心率;(3)已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当11PF F A⊥,PO ∥AB (O 为椭圆中心)时,求椭圆的离心率;(答22)(4)已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若οο75,151221=∠=∠F PF F PF , 求椭圆的离心率; 63) (提示:正玄定理、积化和差公式)(二)解齐次方程求ca 的值(1)点P是椭圆22a x+22b y =1(0a b >>)上一点,21F F 、是椭圆的左右焦点,已知,2,1221αα=∠=∠F PF F PF,321α=∠PF F 求椭圆的离心率;(答案:13-)(2)椭圆的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过焦点,求椭圆的离心率;(答案:215-)(3)已知直线L 过椭圆12222=+by a x (0a b >>)的顶点A (,0)a 、B (0,)b ,如果坐标原点到直线L 的距离为2a ,求椭圆的离心率;(答63)(4)以椭圆12222=+b yax的右焦点2F为圆心作圆,使该圆过椭圆的中心且与椭圆交于,M N 两点,椭圆左焦点为1F ,直线1MF 与圆相切,求椭圆的离心率;(答案:13-) (5)以椭圆12222=+b yax 的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于N M 、两点,如果MO MF =,求椭圆的离心率;(答案:13-)(6)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,求椭圆的离心率e =38. (7)设椭圆12222=+b yax 的两个焦点分别为21F F 、,过点2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,求椭圆的离心率;(答21)(8)已知21F F 、是椭圆12222=+by ax的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆ 是正三角形,求椭圆的离心率;(答案:33)(三)解齐次不等式求ca的范围(1)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,求离心率的范围;答案2(0,2(2)已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且ο9021=∠PF F ,求离心率e 的范围;答案:⎪⎪⎭⎫⎢⎣⎡1,22(3)已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且ο6021=∠PF F ,求椭圆离心率范围;答案:⎪⎭⎫⎢⎣⎡1,21(4)设椭圆12222=+by ax的两焦点为21F F 、,若椭圆上存在一点Q ,使021120=∠QF F ,求离心率范围;(参考答案136<≤e )题型三:直线与椭圆的位置关系※联立222210y x a bAx By C ⎧-=⎪⎨⎪++=⎩得到一元二次方程:则① ②③①当0∆>⇒两个焦点⇒相交; ②当0∆=⇒一个焦点⇒相切; ③当0∆<⇒没有焦点⇒相离; 1、直线x =2与椭圆13422=+y x 的交点个数为( )(A )0个 (B )1个 (C ) 2个 (D ) 3个 2、直线1+=mx y 与椭圆1422=+y x有且只有一个交点,则2m 的值为( )(A )21 (B )32(C ) 43 (D ) 543、椭圆13422=+y x 的长轴端点为NM 、,不同于N M 、的点P 在椭圆上,则PN PM 、的斜率之积为( )(A )-43 (B )-34(C ) 43 (D ) 34 4、若直线)(1R k kx y ∈+=与椭圆xyO2F 1F xyO2F 1F x yO2F 1F1522=+my x 恒有公共点,求实数m的取值范围;题型四:直线与椭圆相交的弦长公式①221212()()AB x x y y =-+-(两点之间的距离)②]4)[()1(1212212122x x x x k x x k AB -+•+=-⋅+= ③221121222111(1)[()4]AB y y y y y y k k=+-++-通径:过焦点坐标且垂直于焦点所在轴的线段长度 ①222b AF BF a ==②22b AB a=1、判断直线01=+-y x 与椭圆141622=+y x 的位置关系,如果相交,求相交弦的弦长;2、已知椭圆11222=+y x 的左右焦点分别为21F F 、,若过点)2,0(-P 及1F 的直线交椭圆于B A 、两点,求AB;xyO 2F 1F B A3、已知21,F F 分别是椭圆2212x y+=的左右焦点,过1F 作倾斜角为4π的直线与椭圆交于Q P 、两点,则PQ F 2∆的面积;4、已知椭圆1422=+y x及直线mx y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程;5、已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线1+=x y 与该椭圆交于P 和Q ,且OQOP ⊥,210=PQ ,求椭圆方程;题型五:直线与椭圆的距离问题1、点P 椭圆141622=+y x 上的一点,求点P 到直线022=-+y x 的最大、最小距离;2、已知椭圆195222=+y x , 直线:45400l x y -+=,椭圆上是否存在一点P ,它到直线的距离最小?最小距离是多少?题型六:中点弦问题(韦达定理法与点差法)1、已知椭圆1922=+y x ,过左焦点F作倾斜角为6π的直线交椭圆于B A ,两点,求弦AB 的中点坐标及弦长;2、椭圆E :141622=+y x 内有一点P(2,1),求经过P 并且以P 为中点的弦所在直线方程;3、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程;变式1:已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标;变式2:已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程;变式3:(2013新课标(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) A .2214536x y += B .2213627x y +=C .2212718x y +=D .221189x y +=题型七:最值问题1、 设椭圆方程为18422=+y x ,过原点且倾斜角为θ和)20(πθθπ<<-的两条直线分别交椭圆于C A 、和D B 、两点;(1)用θ表示四边形ABCD 的面积;(2)当)4,0(πθ∈时,求S 的最大值;题型八:对称问题1、已知椭圆13422=+y x C :,试确定m的取值范围,使得对于直线mx y l +=4:,椭圆C 上有不同的两点关于该直线对称;。
(完整版)椭圆知识点归纳总结1. 椭圆的定义椭圆是平面上到两个给定点的距离之和等于常数的点的集合。
这两个给定点称为焦点,而常数称为离心率。
椭圆的形状由焦点之间的距离决定,离心率的大小则决定了椭圆的扁平程度。
2. 椭圆的基本性质- 椭圆的长轴是焦点之间的距离,短轴是长轴的垂直中垂线。
- 椭圆的离心率介于0和1之间,且离心率为0时为圆。
- 椭圆有两个对称轴,分别是长轴和短轴的中垂线。
- 椭圆的焦点和任意一点的距离和等于离心率与该点到椭圆两个焦点的距离之和。
- 椭圆的面积为π * a * b,其中a和b分别是长轴和短轴的一半。
3. 椭圆的方程普通椭圆的方程为:(x-h)²/a² + (y-k)²/b² = 1其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半。
4. 椭圆的参数方程椭圆的参数方程为:x = h + a * cos(t)y = k + b * sin(t)其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半,t是参数。
5. 椭圆的焦点与直径- 焦点到定点的距离等于椭圆的常数离心率。
- 椭圆的两个焦点与椭圆的直径的交点相同。
6. 椭圆与其他几何图形关系- 椭圆与直线的关系:给定一条直线,椭圆上离直线距离之和最小的点在直线的垂直线上。
- 椭圆与双曲线的关系:双曲线可以看作是离心率大于1的椭圆。
- 椭圆与抛物线的关系:抛物线可以看作是离心率等于1的椭圆。
7. 椭圆的应用椭圆在现实生活中有广泛的应用,例如:- 天体运动:行星、卫星等的轨道可以近似看作是椭圆。
- 椭圆滤波器:在信号处理中用于清除噪音。
- 光学器件:如折射球面镜、椭圆镜等。
以上是关于椭圆的常见知识点的归纳总结,希望能对你有所帮助。
完整版)椭圆基本知识点总结椭圆是平面内一个动点P到两个定点F1、F2的距离之和等于常数(即PF1+PF2=2a>F1F2)时,动点P的轨迹。
这两个定点叫做椭圆的焦点,两焦点的距离叫作椭圆的焦距。
需要注意的是,若PF1+PF2=F1F2,则动点P的轨迹为线段F1F2;若PF1+PF2<F1F2,则动点P的轨迹无图形。
椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0),或者y^2/a^2+x^2/b^2=1(a>b>0)。
其中a和b分别为椭圆的长轴和短轴长,c为焦距满足a^2=b^2+c^2.椭圆的焦点为F1(-c,0),F2(c,0)或者F1(0,-c),F2(0,c)。
椭圆关于x轴、y轴和原点对称。
椭圆的顶点为(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率e=c/a(0<e<1)。
椭圆上任意一点P到焦点的距离之和等于2a,即PF1+PF2=2a。
最大角为当P是椭圆的短轴端点时,∠F1PF2为最大角。
求椭圆标准方程的方法是先判断椭圆的焦点在x轴上还是在y轴上,然后设方程为x^2/a^2+y^2/b^2=1(a>b>0)或y^2/a^2+x^2/b^2=1(a>b>0),在不能确定焦点位置的情况下也可设mx^2+ny^2=1(m>0,n>0且m≠n),接着根据已知条件,建立关于a,b,c或m,n的方程组,最后解方程组,代入所设方程即可得到所求的椭圆标准方程。
点与椭圆的位置关系为,若点在椭圆内,则x^2/a^2+y^2/b^21.最后,直线与椭圆的位置关系需要根据直线的斜率和截距来判断。
若直线与椭圆相交,则有两个交点;若直线与椭圆相切,则有一个交点;若直线与椭圆不相交也不相切,则没有交点。
本文介绍了在解决圆锥曲线问题时常用的两个公式:关于直线和椭圆的一元二次方程和弦长公式,以及点差法的步骤。
椭圆知识点总结(精选4篇)椭圆形面积公式篇一圆锥曲线的定义(1)你知道椭圆、双曲线、抛物线的第一定义吗?作答:______________________(2)椭圆、双曲线、抛物线的第二定义你掌握了吗?作答:______________________(1)平面内与两个定点f1,f2的距离之和等于常数(大于f1f2)的点的轨迹叫做椭圆;与两个定点f1,f2的距离之差的绝对值等于常数(小于f1f2)的点的轨迹叫做双曲线;与一个定点f和一条定直线l(l不经过点f)距离相等的点的轨迹叫做抛物线。
(2)已知点f是平面上的一个定点,l是平面上不过点f的一条定直线,动点p到点f 的距离和它到直线l的距离之比是一个常数e.当01时,动点p的轨迹是双曲线;当e=1时,动点p的轨迹是抛物线.椭圆的几何性质(1)你知道椭圆的焦半径公式吗?焦点弦公式还记得吗?作答:______________________(2)如何计算椭圆的焦点三角形的面积?作答:______________________(3)你知道如何求解椭圆的切线方程吗?作答:______________________以方程■+■=1(ab0)为例.(1)①设p(x0,y0),f1,f2分别为其左、右焦点,则pf1=a+ex0,pf2=a-ex0;②过点f1(-c,0)的弦ab长为ab=2a+e(xa+xb),过点f2(c,0)的弦ab长为ab=2a-e (xa+xb),其中xa,xb分别为a,b两点的横坐标.(2)设p点是椭圆上一点,f1,f2分别为其左、右焦点,则s■=b2tan■(θ为pf1,pf2的夹角).特别地,若pf1pf2,此三角形面积为b2.(3)过椭圆■+■=1上一点p(x0,y0)处的切线方程是■+■=1;过椭圆■+■=1外一点p (x0,y0)所引两条切线的切点弦方程是■+■=1.双曲线的几何性质(1)双曲线的焦半径公式还会用吗?作答:______________________(2)如何计算双曲线的焦点三角形的面积?作答:______________________(3)与已知双曲线有同一条渐近线的双曲线方程如何表示?作答:______________________(4)你知道如何求解双曲线的切线方程吗?作答:______________________以方程■-■=1(a0,b0)为例.(1)设p(x0,y0),f1,f2分别为其左、右焦点。
九年级下册《椭圆》知识点总结
1.椭圆的定义
椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
2.椭圆的性质
长轴和短轴:椭圆的两个轴分别为长轴和短轴,长轴的长度大于短轴的长度。
焦点和准线:椭圆的两个焦点是确定椭圆形状的关键点,准线是与焦点垂直且通过椭圆中心的直线。
离心率:椭圆的离心率表示椭圆形状的圆心偏离焦点的程度。
3.椭圆的方程
椭圆的标准方程:(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1,其中 (h。
k) 是椭圆中心的坐标,a 和 b 分别是长轴和短轴的半径长度。
4.椭圆的图像特点
椭圆的图像是一个闭合的曲线,呈现出拉伸的圆形。
焦点在椭圆的长轴上,并且与准线对称。
椭圆的离心率小于1,且离心率越小,椭圆形状越接近圆形。
5.椭圆的应用
椭圆曲线加密:椭圆曲线加密算法是一种公钥加密算法,广泛应用于信息安全领域。
太阳能聚焦器:通过椭圆形状的反射面将太阳光聚焦在一个点上,实现能量的集中利用。
以上是九年级下册《椭圆》的知识点总结。
椭圆是数学中重要的几何图形,在应用中有广泛的用途和意义。
椭圆知识点总结椭圆学问点总结1学问点一椭圆的定义平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。
两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
依据椭圆的定义可知:椭圆上的点M满意集合,,且都为常数。
当即时,集合P为椭圆。
当即时,集合P为线段。
当即时,集合P为空集。
学问点二椭圆的标准方程(1),焦点在轴上时,焦点为,焦点。
(2),焦点在轴上时,焦点为,焦点。
学问点三椭圆方程的一般式这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较便利,在此供应出来,作为参考:(其中为同号且不为零的常数,),它包含焦点在轴或轴上两种情形。
方程可变形为。
当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。
一般式,通常也设为,应特殊留意均大于0,标准方程为。
学问点四椭圆标准方程的求法1.定义法椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,肯定要留意使实际问题有意义,因此要恰当地表示椭圆的范围。
例1、在△ABC中,A、B、C所对三边分别为,且B(1,0)C(1,0),求满意,且成等差数列时,顶点A的曲线方程。
变式练习1.在△ABC中,点B(6,0)、C(0,8),且成等差数列。
(1)求证:顶点A在一个椭圆上运动。
(2)指出这个椭圆的焦点坐标以及焦距。
2.待定系数法首先确定标准方程的类型,并将其用有关参数表示出来,然后结合问题的条件,建立参数满意的等式,求得的值,再代入所设方程,即肯定性,二定量,最终写方程。
例2、已知椭圆的中心在原点,且经过点P(3,0),=3b,求椭圆的标准方程。
例3、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程。
变式练习2.求适合以下条件的椭圆的方程;(1)两个焦点分别是(3,0),(3,0)且经过点(5,0).(2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.3.已知椭圆经过点和点,求椭圆的标准方程。
椭圆:1、(第一)定义:12122PF PFa F F +=>;2、椭圆标准方程及离心率:焦点在x轴上的椭圆标准方程为:22221(0)x ya ba b+=>>;:a长半轴;b:短半轴;:c半焦距 .椭圆中a,b,c的关系:222a b c=+;椭圆的离心率(0,1)cea=∈ .3、弦长公式: 直线:l y kx b =+与椭圆2222:1()x y C m n m n+=≠交于两点11(,)M x y ,22(,)N x y ,则相交时的弦长1212MN x x y y =-=- .弦长公式是由两点距离公式与两点斜率公式推导出来,故适用性比较广。
4、中点弦结论(点差法): 椭圆2222:1()x y C m n m n+=≠上的两点11(,)M x y ,22(,)N x y ,弦MN 的中点1212(,)22x x y yP ++, 则22MNOPn kk m⋅=- .5、焦点三角形面积: 椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F 、2F ,点P 是椭圆C 上除左、右端点外的一点,令12F PF θ∠=,则:122tan2PF F S b θ∆=⋅ . 该公式是由三角形面积公式、椭圆第一定义、余弦定理结合三角恒等变换推导出来。
6、直线与椭圆位置关系: 联立:0l Ax By C ++=与椭圆2222:1()x y C m n m n +=≠,消去y (或x )得一元二次方程,24b ac ∆=-, 相离⇔0∆<;相切⇔0∆=;相交⇔0∆>;7、与点坐标相关的面积公式: (0,0)O ,11(,)A x y ,22(,)B x y ,点O ,A ,B 不在一条直线上, 则:122112OAB S x y x y ∆=-.该公式是由三角形面积公式、余弦定理结合三角恒等式推导出。
椭圆知识点归纳总结椭圆的定义可以用数学表达式表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中a和b分别表示椭圆的主轴长度和次轴长度,椭圆的标准方程为椭圆定点到F1、F2的距离之和等于常数2a的定点轨迹的数学描述。
椭圆是一种非常基本的几何图形,具有许多独特的性质和特点。
本文将对椭圆的性质、参数方程、焦点、直径、离心率、焦距、渐近线、面积等方面进行归纳总结。
第一部分:椭圆的基本性质1.1 椭圆的定义和参数1.2 椭圆的性质1.3 椭圆的对称性1.4 椭圆的离心率和焦点第二部分:椭圆的参数方程和一般方程2.1 参数方程和一般方程的含义2.2 椭圆的参数方程2.3 椭圆的一般方程第三部分:椭圆的焦点、直径和离心率3.1 椭圆的焦点特点3.2 椭圆的直径特点3.3 椭圆的离心率特点第四部分:椭圆的焦距和渐近线4.1 椭圆的焦距含义4.2 椭圆的渐近线含义4.3 椭圆的焦距和渐近线的性质第五部分:椭圆的面积和周长5.1 椭圆的面积公式5.2 椭圆的周长公式5.3 椭圆的面积和周长的计算方法第六部分:椭圆的相关定理和实例分析6.1 椭圆的凸性定理和实例分析6.2 椭圆的垂直切线定理和实例分析6.3 椭圆的切线与法线定理和实例分析结论部分:椭圆的应用和拓展7.1 椭圆在日常生活中的应用7.2 椭圆的拓展和推广第一部分:椭圆的基本性质1.1 椭圆的定义和参数椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。
这两个定点称为焦点,常数2a称为椭圆的主轴长度。
椭圆的主轴长度决定了椭圆的大小和形状。
椭圆的参数包括主轴长度a、次轴长度b、焦距2c、离心率e等。
其中焦距2c和主轴长度a之间有关系:c^2 = a^2 - b^2。
离心率e的计算公式为:e = c/a。
主轴长度a和次轴长度b决定了椭圆的形状,焦距2c和离心率e描述了椭圆与焦点之间的距离关系。
1.2 椭圆的性质椭圆具有许多特殊的性质,如平行轴定理、离心角定理、矩形椭圆定理等。
一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当10<<e 时,点的轨迹是椭圆. 椭圆上一点到焦点的距离可以转化为到准线的距离.椭圆定义的表达式:()0222121>>=+F F a a PF PF ;(){}.02,22121>>=+=F F a a PF PF P M 二、1. 椭圆的标准方程:焦点在x 轴:()012222>>=+b a by a x ;焦点在y 轴:()012222>>=+b a bx a y . a 是长半轴长,b 是短半轴长,即焦点在长轴所在的数轴上,且满足.222c b a +=2. 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:上式化为122=+CBy C Ax ,122=+BC y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当B C A C >时,椭圆的焦点在x 轴上;当BC A C <时,椭圆的焦点在y 轴上. 三、椭圆的几何性质(以()012222>>=+b a by a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率 (1)椭圆焦距与长轴的比ac e =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆.6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为ab 22. 7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.。
椭圆知识点总结【椭圆】一、椭圆的定义 1、椭圆的第一定义:平面内一个动点到两个定点、的距离之和等于常数,这个动点的轨迹叫椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形。
二、椭圆的方程 1、椭圆的标准方程(端点为a、b,焦点为c)(1)当焦点在轴上时,椭圆的标准方程:,其中;(2)当焦点在轴上时,椭圆的标准方程:,其中;2、两种标准方程可用一般形式表示:或者 mx2+ny2=1 三、椭圆的性质(以为例) 1、对称性:对于椭圆标准方程:是以轴、轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2、范围:椭圆上所有的点都位于直线和所围成的矩形内,所以椭圆上点的坐标满足,。
3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为,,,。
③线段,分别叫做椭圆的长轴和短轴,,。
和分别叫做椭圆的长半轴长和短半轴长。
4、离心率:① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用表示,记作。
② 因为,所以的取值范围是。
越接近1,则就越接近,从而越小,因此椭圆越扁;反之,越接近于0,就越接近0,从而越接近于,这时椭圆就越接近于圆。
当且仅当时,,这时两个焦点重合,图形变为圆,方程为。
③ 离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
注意:椭圆的图像中线段的几何特征(如下图):5、椭圆的第二定义:平面内与一个定点(焦点)和一条定直线(准线)的距离的比为常数e,(0<e<1)的点的轨迹为椭圆()。
即:到焦点的距离与到准线的距离的比为离心率的点所构成的图形,也即上图中有。
①焦点在x轴上:(a>b>0)准线方程:②焦点在y轴上:(a>b>0)准线方程:6、椭圆的内外部(1)点在椭圆的内部(2)点在椭圆的外部四、椭圆的两个标准方程的区别和联系标准方程图形性质焦点,,焦距范围,,对称性关于轴、轴和原点对称顶点,,轴长长轴长=,短轴长= 离心率准线方程焦半径,,五、其他结论 1、若在椭圆上,则过的椭圆的切线方程是2、若在椭圆外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是3、椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为4、椭圆(a>b>0)的焦半径公式:,( , )5、设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF。
椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 223.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。
4.焦点三角形的面积2tan221θb S F PF =∆,其中21PF F ∠=θ5. 用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述判断设方程为2222by a x +=1)0(>>b a 或2222a y b x +=1)0(>>b a②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2222b y a x +>1, 点在椭圆外。
椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。
(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:= 对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。
椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
椭圆知识点总结框架一、椭圆的定义1. 椭圆的几何定义2. 椭圆的代数定义3. 参数方程和极坐标方程二、椭圆的性质1. 椭圆的焦点和直径2. 椭圆的离心率3. 椭圆的直角坐标方程4. 椭圆的极坐标方程5. 椭圆的对称性6. 椭圆的形状7. 椭圆的周长和面积三、椭圆的方程1. 椭圆标准方程2. 椭圆的变换方程3. 椭圆的参数方程4. 椭圆的极坐标方程四、椭圆的图形1. 椭圆的图像特征2. 椭圆的几何分析3. 椭圆的轴和焦点4. 椭圆的绘制方法五、椭圆的应用1. 椭圆在天文学中的应用2. 椭圆在机械工程中的应用3. 椭圆在工程测量中的应用4. 椭圆在地理学中的应用5. 椭圆在其他领域中的应用六、椭圆与其他几何图形的关系1. 椭圆与圆的关系2. 椭圆与抛物线的关系3. 椭圆与双曲线的关系4. 椭圆与直线的关系七、椭圆的数学推导1. 椭圆的性质证明2. 椭圆的相关公式推导3. 椭圆的参数化方程推导4. 椭圆的极坐标方程推导八、椭圆的计算题1. 椭圆的周长计算2. 椭圆的面积计算3. 椭圆的焦点坐标计算4. 椭圆的离心率计算以上是关于椭圆的知识点总结框架,接下来我们将对每个知识点进行详细讲解。
一、椭圆的定义1. 椭圆的几何定义椭圆是平面上到两个定点F1,F2的距离之和等于常数2a的点P的集合,这个常数2a称为椭圆的长轴,两个定点F1,F2称为椭圆的焦点。
椭圆的几何定义可以简单理解为平面上到两个固定点的距离之和等于常数的点的轨迹。
2. 椭圆的代数定义设椭圆的两个焦点为F1(-c,0),F2(c,0), 两个焦点到椭圆上任意点P(x,y)的距离之和等于椭圆的长轴长2a,则有|PF1|+|PF2|=2a。
根据勾股定理可以得到椭圆的代数方程:(x+c)^2+y^2+(x-c)^2+y^2=4a^2。
3. 参数方程和极坐标方程椭圆的参数方程是x=a*cos(t),y=b*sin(t), 其中a,b分别为椭圆的长短半轴。
椭圆的经典知识总结椭圆是一个非常重要的几何形状,广泛应用于数学、物理和工程等领域。
下面将对椭圆的经典知识进行总结,涵盖椭圆的定义、性质以及一些常见的应用。
一、定义和性质:1.椭圆定义:椭圆是平面上到两个给定点(焦点)距离之和等于一定常数(长轴)的点的集合。
2.主要要素:(1)焦点:椭圆的两个焦点是确定椭圆形状的关键要素。
(2)长轴和短轴:椭圆的长轴是连接两个焦点的线段,短轴则是垂直于长轴并通过中心点的线段。
长轴的长度称为椭圆的主轴,短轴的长度则称为次轴。
(3)中心:椭圆的中心是指长轴和短轴的交点。
(4)半焦距:则是焦点到中心的距离。
(5)离心率:椭圆的离心率是一个用来衡量椭圆形状的值,定义为离心距(焦点到中心的距离)与主轴长度之比。
3.离心率和几何性质:(1)离心率的取值范围为0到1之间,当离心率为0时,椭圆退化为一个点;当离心率为1时,椭圆退化为一个抛物线。
(2)在椭圆上的任意一点,到焦点的距离之和等于常数,称为焦散性质。
(3)椭圆的两个焦点到任意一点的距离之差等于长轴的长度。
4.椭圆的方程:椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆中心点的坐标,a和b分别为长轴和短轴的长度,并且a>b。
二、椭圆的性质和应用:1.对称性:(1)椭圆具有对称性,关于中心对称,即中心点是对称中心。
(2)长轴和短轴也是椭圆的对称轴。
2.焦点与直线的关系:(1)焦点到椭圆上的任意一点的距离之和等于该点到椭圆的任意一条切线的长度。
(2)椭圆上的任意一条切线与焦点之间的两条线段的夹角相等。
3.切线和法线:(1)切线是与椭圆一点相切且垂直于切线的直线。
(2)法线是与切线垂直且通过椭圆上切点的直线。
4.面积公式:椭圆的面积为πab,其中a和b分别为长轴和短轴的长度。
5.椭圆的应用:(1)椭圆在天文学中被用来描述行星、彗星和其他天体的轨道。
(2)椭圆也广泛应用于工程学、建筑学和设计中,例如椭圆形的天花板和门窗等。
椭圆一.知识清单 1.椭圆的两种定义:①平面与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
②平面一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。
(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。
|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0;|PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0 c a PF c a PF -=+=min max , ,左加右减,上减下加⑥通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆通径,通径最短=ab 22 平面几何性质:⑦离心率:e=ca==()1,0∈;e 越大越扁,0=e 是圆。
⑧焦准距c b p 2=;准线间距ca 22=⑨两个最大角()()221max 21221max 21,A B A PA A F B F PF F ∠=∠∠=∠焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0)的性质可类似的给出。
6.焦点三角形应注意以下关系:(1) 定义:r 1+r 2=2a (2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |= c | y 0 |=2tan2b θ⋅(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)7.共焦点的椭圆系设法:把椭圆12222=+b y a x (a >b >0)的共焦点椭圆设为222221()x y b a b λλλ+=>-++8.特别注意:椭圆方程中的a,b,c,e 与坐标系无关,而焦点坐标,准线方程,顶点坐标,与坐 标系有关.因此确定椭圆方程需要三个条件:两个定形条件a,b,一个定位条件焦点坐标或准线方程.9.弦长公式:1212AB x y =-=-= 1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩(a,b,c 为方程的系数考点1 椭圆定义及标准方程 题型1:椭圆定义的运用[例1 ] (部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况:(1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 【名师指引】考虑小球的运行路径要全面 【新题导练】1.短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( )A.3B.6C.12D.24[解析]C. 长半轴a=3,△ABF 2的周长为4a=122.已知P 为椭圆2212516x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为( )A . 5B . 7C .13D . 15[解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程[例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程.【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来[解析]设椭圆的方程为12222=+b y a x 或)0(12222>>=+b a ay b x ,则⎪⎩⎪⎨⎧+=-=-=222)12(4c b a c a c b , 解之得:24=a ,b =c =4.则所求的椭圆的方程为1163222=+y x 或1321622=+y x . 【名师指引】准确把握图形特征,正确转化出参数c b a ,,的数量关系. [警示]易漏焦点在y 轴上的情况. 【新题导练】3. 如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值围是____________.[解析](0,1). 椭圆方程化为22x +ky 22=1. 焦点在y 轴上,则k 2>2,即k <1.又k >0,∴0<k <1.4.已知方程),0(,1sin cos 22πθθθ∈=+y x ,讨论方程表示的曲线的形状 [解析]当)4,0(πθ∈时,θθcos sin <,方程表示焦点在y 轴上的椭圆,当4πθ=时,θθcos sin =,方程表示圆心在原点的圆,当)2,4(ππθ∈时,θθcos sin >,方程表示焦点在x 轴上的椭圆 5. 椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,求这个椭圆方程.[解析] ⇒⎩⎨⎧==-c a c a 23⎪⎩⎪⎨⎧==332c a ,3=∴b ,所求方程为122x +92y =1或92x +122y =1.考点2 椭圆的几何性质 题型1:求椭圆的离心率(或围)[例3 ] 在ABC △中,3,2||,300===∠∆ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .【解题思路】由条件知三角形可解,然后用定义即可求出离心率 [解析] 3sin ||||21=⋅=∆A AC AB S ABC , 32||=∴AC ,2cos ||||2||||||22=⋅-+=A AC AB AC AB BC2132322||||||-=+=+=BC AC AB e 【名师指引】(1)离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也随之确定(2)只要列出c b a 、、的齐次关系式,就能求出离心率(或围) (3)“焦点三角形”应给予足够关注 【新题导练】6.如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为 A .45 B .23 C .22 D .21[解析]选B7.已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆122=+ny m x 的离心率为 [解析]由⇒⎪⎩⎪⎨⎧≠=+=02222mn n m n nm n ⎩⎨⎧==42n m ,椭圆122=+n y m x 的离心率为22 题型2:椭圆的其他几何性质的运用(围、对称性等)[例4 ] 已知实数y x ,满足12422=+y x ,求x y x -+22的最大值与最小值 【解题思路】 把x y x -+22看作x 的函数[解析] 由12422=+y x 得22212x y -=, 2202122≤≤-∴≥-∴x x ]2,2[,23)1(212212222-∈+-=+-=-+∴x x x x x y x 当1=x 时,x y x -+22取得最小值23,当2-=x 时,x y x -+22取得最大值6 【新题导练】9.已知点B A ,是椭圆22221x y m n+=(0m >,0n >)上两点,且BO AO λ=,则λ=[解析] 由BO AO λ=知点B O A ,,共线,因椭圆关于原点对称,1-=∴λ10.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点则1234567PF P F P F P F P F P F P F ++++++=________________ [解析]由椭圆的对称性知:352536271==+=+=+a F P F P F P F P F P F P .考点3 椭圆的最值问题[例5 ]椭圆191622=+y x 上的点到直线l:09=-+y x 的距离的最小值为___________. 【解题思路】把动点到直线的距离表示为某个变量的函数[解析]在椭圆上任取一点P,设P(θθsin 3,cos 4). 那么点P 到直线l 的距离为:|9)sin(5|2211|12sin 3cos 4|22-+=+-+ϕθθθ.22≥ 【名师指引】也可以直接设点),(y x P ,用x 表示y 后,把动点到直线的距离表示为x 的函数,关键是要具有“函数思想” 【新题导练】11.椭圆191622=+y x 的接矩形的面积的最大值为 [解析]设接矩形的一个顶点为)sin 3,cos 4(θθ, 矩形的面积242sin 24cos sin 48≤==θθθS12. P 是椭圆12222=+by a x 上一点,1F 、2F 是椭圆的两个焦点,求||||21PF PF ⋅的最大值与最小值[解析] ],[||,)|(||)|2(||||||12211121c a c a PF a a PF PF a PF PF PF +-∈+--=-=⋅ 当a PF =||1时,||||21PF PF ⋅取得最大值2a , 当c a PF ±=||1时,||||21PF PF ⋅取得最小值2b13.已知点P 是椭圆1422=+y x 上的在第一象限的点,又)0,2(A 、)1,0(B , O 是原点,则四边形OAPB 的面积的最大值是_________.[解析] 设)2,0(),sin ,cos 2(πθθθ∈P ,则θθcos 221sin 21⋅+⋅=+=∆∆OB OA S S S OPB OPA OAPB 2cos sin ≤+=θθ考点4 椭圆的综合应用题型:椭圆与向量、解三角形的交汇问题[例 6 ] 已知椭圆C 的中心为坐标原点O ,一个长轴端点为()0,1,短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且PB AP 3=. (1)求椭圆方程; (2)求m 的取值围.【解题思路】通过PB AP 3=,沟通A 、B 两点的坐标关系,再利用判别式和根与系数关系得到一个关于m 的不等式[解析](1)由题意可知椭圆C 为焦点在y 轴上的椭圆,可设2222:1(0)y x C a b a b+=>>由条件知1a =且b c =,又有222a b c =+,解得 1,a b c ===故椭圆C 的离心率为2c e a ==,其标准方程为:12122=+x y (2)设l 与椭圆C 交点为A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧y =kx +m 2x 2+y 2=1得(k 2+2)x 2+2kmx +(m 2-1)=0Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0 (*) x 1+x 2=-2km k 2+2, x 1x 2=m 2-1k 2+2∵AP =3PB∴-x 1=3x 2 ∴⎩⎪⎨⎪⎧x 1+x 2=-2x 2x 1x 2=-3x 22消去x 2,得3(x 1+x 2)2+4x 1x 2=0,∴3(-2km k 2+2)2+4m 2-1k 2+2=0整理得4k 2m 2+2m 2-k 2-2=0m 2=14时,上式不成立;m 2≠14时,k 2=2-2m24m 2-1,因λ=3 ∴k ≠0 ∴k 2=2-2m 24m 2-1>0,∴-1<m <-12 或 12<m <1容易验证k 2>2m 2-2成立,所以(*)成立 即所求m 的取值围为(-1,-12)∪(12,1)【名师指引】椭圆与向量、解三角形的交汇问题是高考热点之一,应充分重视向量的功能例7.椭圆22221(0)x y a b a b+=>>上一点P 向x 轴引垂线,垂足恰为椭圆的左焦点1F ,A 为椭圆的右顶点,B 是椭圆的上顶点,且(0)AB OP λλ=>.⑴、求该椭圆的离心率.⑵、若该椭圆的准线方程是x =±. [解析] ⑴、AB OP λ=,AB ∴∥OP ,∴△1PF O ∽△BOA ,111PF FO c bcPF BO OA a a∴==⇒=, 又2211222(,)1PF c b P c y PF a b a-⇒+=⇒=,b c ∴=,而222a b c =+2222a c e ∴=⇒=. ⑵、25x =±22a a c∴=⇒=,由222222105a a b c b a b c ⎧=⎧=⎪⎪=⇒⎨⎨=⎪⎩⎪=+⎩. ∴所求椭圆方程为221105x y +=. 【新题导练】14.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=⋅AB OQ ,则P 点的轨迹方程是( ) A.()0,0132322>>=+y x y x B. ()0,0132322>>=-y x y x C. ()0,0123322>>=-y x y x D. ()0,0123322>>=+y x y x [解析] ),(),3,23(y x OQ y x AB -=-=132322=+∴y x ,选A. 15. 如图,在Rt △ABC 中,∠CAB=90°,AB=2,AC=22。