2012年全国研究生数学建模竞赛优秀论文C4
- 格式:pdf
- 大小:683.64 KB
- 文档页数:23
参赛密码(由组委会填写)第九届“华为杯”全国研究生数学建模竞赛学校山东-青岛科技大学参赛队号C10426015队员姓名1.刘邵星2.荆禄旭3.韩梦参赛密码(由组委会填写)第九届“华为杯”全国研究生数学建模竞赛题目有杆抽油系统的数学建模及诊断摘要:本文主要研究有杆抽油系统的数学建模及诊断问题。
针对问题一,本文从有杆抽油系统四连杆结构的几何关系和运动特点出发,首先建立了游梁的摆动方程,进而求得了悬点E运动的数学模型(式(19)),并根据题给数据对模型进行了求解并得到了运动规律曲线(如图3),最后与有荷载的附件1的悬点位移数据进行了比较(见表1)。
针对问题二,首先利用分离变量法将Gibbs波动方程拆分为位移函数和荷载函数,并对其进行傅里叶级数展开,得出了悬点处随时间变化的位移和荷载函数,求得了泵随时间变化的位移和荷载函数,进而计算出两口油井的泵功图数据(表3、表4),绘制出了两油井的悬点示功图和泵功图(图5、图6)。
针对问题三,本文选择对第2问(泵内气体判断)进行研究。
首先对泵内气体影响情况进行了分析,然后给出了有效冲程的计算方法,在此基础上提出了泵内是否充气的判别算法,并根据所给数据求解判断出口井1泵内有气,口井7泵内无气。
针对问题四,第一问中,首先分析了Gibbs波动方程建立的过程,认为Gibbs 模型忽略了重力的影响,在Gibbs模型的基础上加入了重力因素加以改进,得到了相应的位移和荷载函数(式71、式72)。
第二问中,通过抽油杆柱的摩擦功率得到了阻尼系数的求解公式,并给出了迭代求解阻尼系数的算法和迭代流程图(图9)。
本问题的研究对提高抽油机泵效和产油量有重要的意义。
关键词:Gibbss模型,阻尼系数,傅里叶系数,有效冲程1.问题重述目前,开采原油广泛使用的是有杆抽油系统(垂直井,如图1)。
电机旋转运动转化为抽油杆上下往返周期运动,带动设置在杆下端的泵的两个阀的相继开闭,从而将地下上千米深处蕴藏的原油抽到地面上来。
问题1:汽车保险公司为了降低车辆出险率,鼓励保户续保,发展潜在保户,通常都会对满足一定要求的保户或者投保人给与一定比例的保费浮动优惠,就是通常所说的保费折扣。
请根据附件中的参考数据,以及第一阶段中对于影响续保率因素的分析,给出一套较为合理的保费浮动方案。
问题2:一些大型的保险公司要在全国很多地区设立分公司。
总公司每年要对分公司的业绩情况进行考核,考核结果直接影响分公司领导班子的去留。
传统的考核方法就是计算分公司的保费收入和理赔支出的差额。
一些分公司为了提高自己的考核成绩,会使用受理一些风险较大的投保或者故意拖延理赔的处理时间等方法。
因此,很多保险公司开始考虑引入风险评估机制来对分公司进行考核,潜在风险较低的分公司会得到较高的考核成绩,请建立合理的模型对参考数据中的汽车保险公司进行潜在风险的评估,并通过对模型的深入分析对该公司今后的风险控制提出建议。
1010车辆出现次数与续保率有着密切关系,通常出现次数越多续保费用也就越高,续保率也就越低。
平安保险公司:出险三次以上要按原价1.3倍购买商业险平安保险广西区南宁分公司表示:对在前一年未发生交通事故的车主第二年购买交强险时,可享受续保费率下浮10%的优惠,连续三年未发生交通事故的可下浮30%。
对于出险次数达到三次以上的车主,平安保险一般不会拒保,只会相应调高费率,第二年购买商业险的时候要按原价的1.3倍来购买。
华安保险公司:出险次数达到八次,不能购买其它车辆商业险能否购买到其他商业险,华安保险公司表示要根据车主的出险档次来定。
一年内出险次数达到八次,第二年在华安保险续保时只能买到交强险、第三者,其他商业保险就购买不到了。
所以说上面提到的那位网友也不能在华安保险买到其它商业险。
安邦保险公司:出险达到五次,第二年有有可能买不到其他商业险。
安邦保险公司:去年出险达到三次以上的,第二年交强险续保的时候公司要按车型来理算上浮费率。
如果出险次数达到五次,第二年只能买到交强险、第三者,其它商业保险可能买不到了。
脑卒中发病环境因素分析及干预摘要本文主要讨论脑卒中发病环境因素分析及干预问题。
根据题中所给出的数据,利用SPSS20 软件进行相关性统计分析,分别对各气象因素进行单因素分析,进而建立后退法线性回归分析模型,得到脑卒中与气压、气温、相对湿度之间的关系。
同时在广泛收集各种资料并综合考虑环境因素,对脑卒中高危人群提出预警和干预的建议方案。
首先,利用SPSS20软件,从患病人群的性别、年龄、职业进行统计分析,得到2007-2010年男性患病人数高于女性,且男性所占比例有逐年下降趋势,女性则有上升趋势,因此,性别比例呈减小趋势。
分析不同年龄段患病人数,得到患病高峰期为75-77岁之间,且青少年比例逐年呈增长趋势,可见患病比例趋于年轻化。
同时在不同的职业中,农民发病人数最多,教师,渔民,医务人员,职工,离退人员的发病人数较少。
其次,由题中所给数据先进行单因素分析,剔除对脑卒中影响不显著的因素,得出气温、气压、相对湿度对脑卒中的影响程度大小,进而采用后退法线性回归分析建立模型,利用SPSS20对数据进行分析,求得脑卒中发病率与气温、气压、相对湿度之间的关系。
即发病率与平均温度成正相关,与最高温度成负相关,发病率与平均气压成正相关,与最低气压成负相关,与平均相对湿度成负相关,与最小相对湿度成正相关。
最后,通过查找资料发现,影响脑卒中的因素有两类,一类是不可干预因素,如年龄、性别、家族史,另一类是可干预因素,如高血压、高血脂、糖尿病、肥胖、抽烟、酗酒等因素。
分析这些因素,建立双变量因素分析模型,并结合问题1和问题2,对高危人群提出预警和干预的建议方案。
关键词脑卒中单因素分析后退法线性回归分析双变量因素分析一问题的重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。
这种疾病的诱发已经被证实与环境因素,包括气温、湿度之间存在密切的关系。
对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。
2012高教社杯全国大学生数学建模竞赛题解经过2天的努力终于把结果弄出来,希望能帮到大家!2012高教社杯全国大学生数学建模竞赛论文承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的电子文件名:所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):C题脑卒中发病环境因素分析及干预数据(见Appendix-C1)来源于中国某城市各家医院2007年1月至2010年12月的脑卒中发病病例信息以及相应期间当地的逐日气象资料(Appendix-C2)。
请你们根据题目提供的数据,回答以下问题:1.根据病人基本信息,对发病人群进行统计描述。
2.建立数学模型研究脑卒中发病率与气温、气压、相对湿度间的关系。
3.查阅和搜集文献中有关脑卒中高危人群的重要特征和关键指标,结合1、2中所得结论,对高危人群提出预警和干预的建议方案。
经过2天的努力终于把结果弄出来,希望能帮到大家!解题思路及高分技巧:问题1:脑卒中数据分析matlAB图:脑卒中气泡分析法matlAB结果图:由matlAB分析结果得知发病人群的统计描述。
封一答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):论文题目:C组别:本科生参赛队员信息(必填):姓名参赛队员1 沈倩参赛队员2 王青原参赛队员3 付新新参赛学校:黑龙江工程学院封二答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):评阅情况(学校评阅专家填写):学校评阅1.学校评阅2.学校评阅3.评阅情况(联赛评阅专家填写):联赛评阅1.联赛评阅2.联赛评阅3.2012年“深圳杯”全国大学生数学建模夏令营C题:3D仿真机房建模问题分析摘要随着经济的发展、计算机的普及,人们对数据的处理越来越多。
机房的设计问题也越来越受到人们的关注,如何在满足工作的前提条件下,做到最低的消耗,成了很多公司发现商机的、创造价值的有利方向。
通过对机房设计,得到相应的实验数据,建立确定的数学模型,找到最佳的设计方案成了人们关注的焦点。
建立模型的出发点,影响因素有距空调的位置,高度,机柜摆放方式,任务量,空调送风速度。
对于第一问,根据分析附件1的数据,用MATLAB软件进行插值,绘出冷、热通道的热分布及流场分布图(共四幅),并且确定出室内最高温度位置。
对于第二问,利用附表2提供的数据,经过分析发现当固定其中某一个物理量时,其他的未知量之间会成现出特定的曲线关系。
通过MATLAB软件拟合出各个影响因素与温度之间的图像发现特定关系,通过多元非线性回归解得函数关系。
建立热分布的数学模型及算法,同时与测试案例进行比较。
对于第三问,结合前两问的结论,通过分析在不同任务量时绘制出的热分布图确定最优任务的分配方案,并且找到室内最高温度。
分析附表2中改变任务量对通道3的温度影响,从而假设实际任务量为0.8和0.5的分配方案,再通过问题二中得到论证。
对于第四问,按照《电子信息系统机房设计规范》C级要求,在任务量一定的情况下,热点温度超过规范要求时,通过调节出风槽风速或出风槽温度从而降低温度,保证服务器的健康工作。
通过多元线性回归找到热点温度与出风槽温度之间的间接关系,从而进行调节,实现任务量的合理使用和降低机房内热点温度的节能目的。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):太阳能小屋的设计摘要本文针对光伏建筑设计时对外表面光伏电池板优化铺设及逆变器选用优化问题,建立太阳辐射模型、多目标优化模型,并引入运筹学中松弛约束、动态规划、启发式算法、等步长探索思想求解优化模型,解决不同安装方式下(贴附、架空)光伏电池阵列最优排布并合理选择逆变器的问题,达到优化目标。
继而,在计算求得电池板最佳倾角的基础上,提出了一套合理化太阳能小屋建设方案。
光伏电池发电原理为光电效应,能量来源为太阳能。
模型I对经典太阳辐射模型进行适当改进,以求不同方位角γ和水平倾角β下倾斜平面接收的太阳辐射能量。
借助Matlab软件编程求解,得到位于大同地区的小屋朝南倾斜屋顶和东、南、西、北立面接收的年太阳辐射量分别为1564.49、594.21、1050.16、881.23、261.47(单位:kw·h/㎡)。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):A1614所属学校(请填写完整的全名):福州大学参赛队员(打印并签名) :1. 黄剑飞2. 夏李波3. 钱斌海指导教师或指导教师组负责人(打印并签名):日期: 2011 年 9 月 11 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):城市表层土壤重金属污染分析摘要本题主要通过对重金属污染浓度的分析,画出浓度的空间分布图,建立相关的模型,得出该地区的重金属污染程度、污染原因以及污染源的所在位置。
针对不同重金属具有不同的污染源,对不同区域重金属元素浓度值进行分析。
运用克拉格差值法,画出各重金属的浓度等高线图。
从水平和垂直方向考虑浓度分布,在水平面与海拔上对金属浓度分别分析,得出在三维空间内浓度的分布状况。
考虑到区域内各种重金属元素污染程度,及不同区域内元素的综合污染状况不同,先运用地积累法,对各区域内不同元素分别考虑其污染程度,再对每个区域用内梅罗综合污染指数法得出该地区综合污染程度。
根据给出的样本数据对各种重金属元素之间的相关性进行分析,得出相关性矩阵,对于相关性比较明显的重金属,我们可以认为其来源大致相同,即有相同的污染源。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):机器人避障问题摘要本文研究了处在原点O(0,0)的机器人在一个存在12个不同形状障碍物的800⨯800的平面区域内避障的最短路径及最短时间路径问题。
首先用距离障碍物10个单位的包络线(直线或圆弧)画出机器人行走的危险区域,找到了36个可用的凸顶点,得到了出发点、目标点及拐点间的所有连线(其中可用的线附权值1,不可用的线附权值0),利用图论中的Dijsktra 算法,获得了机器人避障的最佳路线,然后对最佳路线进行平滑处理,即在凸顶点处取以凸顶点为心、以10个单位为半径的圆与相邻两条包络线的切点间的部分,并通过maple 软件求最短路径、最短时间路径及切点的坐标。
对问题一,建立了最优化模型:∑∑==+=nj jm i i l d L 11min⎩⎨⎧≥≥=1010.k t s ρ。
基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。
针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染模型:2/12max22⎪⎪⎭⎫ ⎝⎛+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,max P 为土壤环境中针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。
同时城市人口密度,土地利用率,机动车密度也是造成重金属污染的原因。
针对问题三,我们从两个方面考虑建模即以点为传染源和以线为传染源。
针对以点为传染源我们建立了两个模型:无约束优化模型()[]()[]()22y i y x i x m D -+-=,得到污染源的位置坐标()6782,5567;有衰减的扩散过程模型得位置坐标(8500,5500),模型为:u k zu c y u b x u a h u 2222222222-∂∂+∂∂+∂∂=∂∂, 针对以线为传染源我们建立了l c be u Y ∆-+=0模型,并通过线性拟合分析线性污染源的位置。
针对问题四,我们在已有信息的基础上,还应收集不同时间内的样点对应的浓度以及各污染源重金属的产生率。
根据高斯浓度模型建立高斯修正模型,得到浓度关于时间和空间的表达式ut e C C -⋅=0。
葡萄酒的评价摘要随着人民生活水平的提高,葡萄酒开始走进千家万户,而葡萄酒的优劣评定也成了人们热议的话题。
葡萄酒的优劣评价一般通过聘请有经验的评酒员进行品评并做出评分。
本文围绕葡萄酒的评价问题进行研究分析。
针对问题一,首先我们对附录1数据进行整理分析。
先利用matlab编程对数据进行正态性检验,得出样本均满足正态分布这一条件之后进一步运用SPSS对数据进行配对样本T检验,检验得出的两组p值都小于标准0.05,判定两组品酒员的评价结果存在显著性差异。
接着,对所给评分数据进行方差分析,并进一步运用组间离均平方和方法比较第一、二组P值和F值的波动性,并最终得出结论:第二组评酒员所给的评分更为可信。
针对问题二,我们结合原问题附件中的数据,先采用因子分析方法提炼出对葡萄总体理化指标有显著影响的因子,分红葡萄和白葡萄两类之后采用聚类分析方法将葡萄分为五类。
在问题一的基础上,利用可信度高的品酒员所评分数作为葡萄酒质量的衡量标准,为五类葡萄划分好坏。
最终我们将红白葡萄都分为五个级别,分别是A级(极好),B级(较好),C级(普通),D级(较差),E级(最差)。
图-红葡萄的分类针对问题三,由于葡萄的理化指标众多,首先利用sas软件分析葡萄与葡萄酒的理化指标之间的相关系数,选取与葡萄酒理化指标相关性较显著的葡萄理化指标,做典型相关分析。
并对典型相关分析的结果进行分析。
红葡萄和红葡萄酒间的典型相关分析结果说明:两组变量间,花色苷、苹果酸、褐变度、色泽L*相关密切,特别是葡萄与葡萄酒间的花色苷指标可见显著相关;白葡萄与白葡萄酒的结果说明:白葡萄指标的黄酮醇、褐变度、单宁指标与白葡萄酒的总黄酮、单宁、总酚可见显著相关。
针对问题四,针对问题四,利用酿酒葡萄和葡萄酒的理化指标与葡萄酒的质量构建多元线性回归模型,从而分析出哪些理化指标对葡萄酒的质量有显著影响。
在最后,我们将酿酒葡萄和葡萄酒的感官指标当作变量引入回归方程,得到回归方程的拟合度为98.62%,而没加上感官指标时的拟合度为78.89%,所以加上感官指标后回归方程的拟合度明显变高,而且各个参数都通过了显著性检验,论证了不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。
葡萄酒的评价摘要对于葡萄酒的评价那我们主要是通过感官品评来确定葡萄酒的质量。
人的主观因素占有和酿酒葡萄的好坏与所酿葡萄酒酿的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标也会在一定程度上反映葡萄酒的葡萄的质量。
本文针对品酒员评分,酿酒葡萄和葡萄酒理化指标的分析,采用配对样本T检验法,置信区间法,方差分析,显著性分析,灰色关联度分析,辅助MATLAB,SPSS软件解决如下几个问题:问题一:通过置信区间法对不同品酒员对酒样品评分进行转换得出总评分,经检验符合正态分布,然后使用SPSS软件对同一酒样品两组品酒员进行显著性检验,然后经过多次检验结果进行统计分析得如下结论:酒品种显著性差异红葡萄酒差异较大白葡萄酒差异较小我们用方差分析得出二组评委的评价总体可信度高。
问题二:我们用统计中的主成分分析对附件二中的酿酒葡萄的理化指标分析,选出主要影响葡萄质量的10中元素,然后运用SPSS软件对红色酿酒葡萄和白色酿酒葡萄分类。
最后运用置信区间法,得到可信度高的评酒员,然后运用其评分得出所有酒品的质量,再和分类的葡萄对比,对葡萄分级。
红色酿酒葡萄分级情况为得到第一级12,18,7,4,6,10,27,25,15号葡萄样品是最好的,第二级11,16,14,19,13,22号葡萄样品是较好的,第四级24,27,7,18,6,15,1324,27,7,18,6,15,13一般,第三级5,17,24,20,26号葡萄样品最差。
问题三:对附件二中葡萄酒的理化指标同样运用主成分分析,得到对葡萄酒质量影响较大的理化指标,与问题二中得到的酿酒葡萄的主成分运用灰色关联度分析,得到酿酒葡萄理化指标与葡萄酒理化指标的关联矩阵,经分析计算得到超过80%的相关系数超过0.85,所以酿酒葡萄与葡萄酒理化指标有很大的关联性。
问题四:把葡萄酒的理化一级指标和葡萄理化指标的一级指标作为自变量,葡萄酒质量作为应变量,通过SPSS软件进行多元线性回归分析得到酿酒葡萄和葡萄酒的理化指标对葡萄酒质量之间的线性关系并对其关系系数进行检验,得出可以用葡萄和葡萄酒的理化指标来评价葡萄酒的质量,而葡萄得理化指标不能用来评价葡萄酒的质量关键词:配对样本T检验法、置信区间法、灰色关联度分析、相关性分析、主成分分析聚类分析、多元线性分析、MATLAB、SPSS一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):02011所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1. 汪榕2. 田睿3. 韩旺指导教师或指导教师组负责人(打印并签名):王长有日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):.....编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题葡萄酒的评价摘要本文研究的是关于葡萄酒的评价问题,通过分析题目所给出的数据建立了样本错误!未找到引用源。
检验模型、可靠性分析模型、主成份综合评价模型、变量相关分析模型以及回归分析模型,利用SPSS软件和MATLAB软件对上述模型进行了逐一求解,分别回答了题目提出的所有问题。
针对问题一,首先利用SPSS软件判断出样品酒的评分服从正态分布,再对葡萄酒外观、香气、口感等指标分别利用F和t检验进行显著性分析,最终得出结果为:两组评酒师对红葡萄酒的所有指标的评分都有显著性差异;对白葡萄酒外观的评分数据有显著性差异,而对白葡萄酒的其余指标的评分均无显著性差异。