质子非卢瑟福背散射测量气溶胶样品中氢、碳、氮和氧的含量
- 格式:pdf
- 大小:152.98 KB
- 文档页数:5
卢瑟福背散【摘要】卢瑟福背散射分析(RBS )是一种对离子束进行分析的方法,其主要优点是能对材料表层的成分作纵向分析,并且无需材料的标准样品就能作定量分析。
本报告主要介绍了RBS 的分析原理、实验装置,并且对实验谱图和数据作了简单分析,重点是对实验谱图进行了能量刻度的标定以及计算薄膜的厚度。
【关键词】RBS 分析原理【引言】背散射分析就是在一束单能的质子、粒子或其他重离子束轰击固体表面时,通过探测卢瑟福背散射(库伦弹性散射、散射角大于90度)离子产额随能量的分布(能谱)确定样品中元素的种类(质量数)、含量及深度分布。
因此背散射分析通常被称为卢瑟福背散射谱学RBS (Rutherford Backscattering Spectrometry).【实验原理】当比靶核轻的入射离子能量amu MeV E amu keV /1/100≤≤范围,靶原子核外电子对入射离子的屏蔽作用不大,且离子和靶原子核的短程相互作用(核力)影响也可以忽略时,离子在固体中沿直线运动,离子主要通过与电子相互作用而损失能量,直到与原子核发生库仑碰撞被散射后又沿直线回到表面。
这个过程就称为离子的背散射过程。
描述离子背散射过程的三个基本物理概念主要有两体弹性碰撞的运动学因子、微分散射截面、固体的阻止截面。
一. 运动学因子和质量分辨率:运动学因子的定义:01E E K =其中0E 是入射粒子能量(动能),1E 是散射粒子能量(动能)。
根据动量与能量守恒定律,可以推导得到:212111⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-==M mM m cos θM m sin θE E K (1-1)由运动学因子公式可以看出:当入射离子种类(m ),能量(0E )和探测角度(θ)一定时,1E 与M 成单值函数关系。
所以,通过测量一定角度散射离子的能量就可以确定靶原子的质量数M 。
这就是背散射定性分析靶元素种类的基本原理。
实验室生物气溶胶检测方法实验室生物气溶胶检测方法是用于检测实验室环境中的生物气溶胶污染物的方法。
下面是关于实验室生物气溶胶检测方法的10条详细描述:1. 频谱法:频谱法是通过收集气溶胶样品,并使用合适的设备进行分析,例如使用质谱仪、红外光谱仪等,来确定气溶胶中生物成分的种类和浓度。
这种方法能够提供详细的气溶胶组分信息,但需要昂贵的设备和专业的技术操作。
2. 收集器法:收集器法是将空气中的气溶胶颗粒收集到固体基质上,然后通过分析基质上的生物成分来确定气溶胶中的生物污染物。
常用的收集器包括旋转提取器、电滤器、液滴捕集器等,可以根据需要选择合适的收集器。
3. 培养法:培养法是将采集到的气溶胶样品接种到适当的培养基上,并在特定条件下培养生长,最后通过观察和计数生长的微生物来确定气溶胶中的生物污染物。
这种方法简单易用,但需要较长的培养时间,且只能检测可培养的微生物。
4. PCR法:PCR法是通过提取气溶胶样品中的核酸,并使用特定的引物和酶进行反应,最后通过放大特定的基因片段来确定气溶胶中的生物成分。
PCR法不仅能快速检测气溶胶样品中的微生物,还可以区分不同微生物菌种。
5. 实时荧光PCR法:实时荧光PCR法是PCR法的升级版,它利用荧光探针的发光信号来实时监测PCR反应的进行,从而快速准确地确定气溶胶中的生物成分。
实时荧光PCR法具有高灵敏度和特异性,适用于快速大批量的气溶胶检测。
6. 流式细胞术:流式细胞术是一种将气溶胶样品注入流式细胞仪中进行分析的方法。
流式细胞仪能够快速准确地计数和鉴定气溶胶中的微生物,并可根据不同的细胞指标进行分类和分析。
7. 蛋白质质谱法:蛋白质质谱法是通过将气溶胶样品中的蛋白质提取出来,并使用质谱仪进行分析,从而确定气溶胶中的生物成分。
这种方法可以提供气溶胶中蛋白质的种类和浓度信息,适用于检测复杂的生物气溶胶样品。
8. 免疫学方法:免疫学方法是利用抗体与气溶胶样品中的生物成分进行特异性反应,并通过观察抗原-抗体反应产生的信号来确定气溶胶中的生物污染物。
ICS19A 20江苏省石墨烯检测技术重点实验室标准Q/JSGL 005—2014石墨烯材料碳、氮、氢、硫、氧元素含量的测定方法Graphene materials Test method for determination of element content of cabon,nitrogen, hydrogen , sulfur and oxygen2014-08-20发布2014-10-01实施前言本标准遵循GB/T 1.1—2009《标准化工作导则第1部分:标准的结构和编写》的规则。
本标准由江苏省石墨烯检测技术重点实验室提出。
本标准负责起草的单位:江苏省特种设备安全监督检验研究院无锡分院。
本标准主要起草人:百坚毅、邓宏康、王勤生、崔黎、刘渊、金玲、杨永强、王伟娜。
本标准为首次发布。
石墨烯材料碳、氮、氢、硫、氧元素含量的测定方法1 范围本标准规定了测定石墨烯材料中碳、氮、氢、硫、氧元素分析方法的原理、仪器与试剂材料、测量步骤、数据精密度和最低检出限。
本标准适用于石墨烯材料的碳、氮、氢、硫、氧含量的测定。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
JY/T 017 元素分析仪方法通则3 原理样品在富氧的环境下进行高温燃烧,生成二氧化碳、水蒸气、氮氧化物。
以氦气为载体,将这些混合气体通过热铜管除去剩余的氧,将氮氧化物还原成氮气,三氧化硫还原成二氧化硫。
然后这些混合气体通过加热的吸附解吸附柱或通过合适的吸收方法分离出CO2、N2、H2O、SO2,再通过检测器检测并分别计算得出碳、氮、氢、硫的含量。
氧含量的测定是通过高温裂解的方法,使样品中的氧原子与碳结合成一氧化碳,再通过检测器检测并计算出氧的含量。
4 仪器与试剂材料4.1 仪器4.1.1 元素分析仪:一种能同时分析碳、氮、氢、硫、氧元素的检测仪器,由加样器、载气、催化剂加热炉、反应管、混合气体分离部件、检测器等部分组成,性能要求参照JY/T 017。
卢瑟福背散射分析(RBS)实验吴玉龙核科学与技术学院201121220011一、实验目的1.了解RBS分析原理,认识实验装置2.通过对选定的样品进行分析实验,初步掌握RBS分析方法,谱图分析及相关的应用二、实验装置RBS实验装置主要由四部分组成:1.加速器(一定能量离子束的的产生装置)2.靶室(离子散射和探测的地方)3.背散射离子的探测和能量分析装置4.放射源RBS三、实验原理背散射分析就是在一束单能的质子、(粒子或其他重离子束轰击固体表面时,通过探测卢瑟福背散射(弹性、散射角大于90度)离子的能量分布(能谱)和产额确定样品中元素的种类(质量数)、含量及深度分布。
当入射离子能量远大于靶中原子的结合能(约10ev量级),并低于与靶原子发生核反应的能量(一般100kev<E<1Mev)时,离子在固体中沿直线运动,入射离子主要通过与电子相互作用而损失能量,直到与原子核发生库仑碰撞被散射后又沿直线回到表面。
在这个背散射过程中包含四个基本物理概念。
它们是:两体弹性碰撞的运动学因子K、微分散射截面、固体的阻止截面、能量歧离,这四个基本概念是背散射分析的理论基础和应用的出发点也是限制其应用的最终因素。
1)运动学因子和质量分辨率运动学因子K=E1/E0,其中E0是入射粒子能量,E1是散射粒子能量。
由于库仑散射是弹性散射,则根据动量守恒和能量守恒可得,22011cos sin 121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎟⎟⎠⎞⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛−==M m M m M m E E K θθ由运动学因子公式可以看出:当入射离子种类(m ),能量(E 0)和探测角度(θ)一定时,E 1与M 成单值函数关系。
所以,通过测量一定角度散射离子的能量就可以确定靶原子的质量数M 。
这就是背散射定性分析靶元素种类的基本原理。
质量分辨率ΔM 定义1011011()(−∆=∆•=∆•=∆dMdK E E E KE d dM E dE dM M RBS 的质量分辨率10)(−=dM dK E E M δδ,δE 是RBS 探测器系统的能量分辨率,也就是可分辨的背散射离子最小的能量差别。
习题答案核技术及应用概述1、核技术是以核物理、核武器物理、辐射物理、放射化学、辐射化学和辐射与物质相互作用为基础,以加速器、反应堆、核武器装置、核辐射探测器和核电子学为支撑而发展起来的综合性现代技术学科。
2、广义地说,核技术可分为六大类:核能利用与核武器、核分析技术、放射性示踪技术,辐射照射技术、核检测技术、核成像技术。
3、主要是利用核裂变和核聚变反应释放出能量的原理,开发出能源或动力装置和核武器,主要应用有:核电站、核潜艇、原子弹、氢弹和中子弹。
4、在痕量元素的含量和分布的分析研究中,利用核探测技术、粒子加速技术和核物理实验方法的一大类分析测试技术,统称为核分析技术。
特点:1.灵敏度高。
比如,可达百万分之一,即10-6,或记为1ppm;甚至可达十亿分之一,即10-9,或记为1ppb。
个别的灵敏度可能更高。
2.准确。
3.快速。
4.不破坏样品。
5.样品用量极少。
比如,可以少到微克数量级。
5、定义:应用放射性同位素对普通原子或分子加以标记,利用高灵敏,无干扰的放射性测量技术研究被标记物所显示的性质和运动规律,揭示用其他方法不能分辨的内在联系,此技术称放射性同位素示踪技术。
有三种示踪方式:1)用示踪原子标记待研究的物质,追踪其化学变化或在有机体内的运动规律。
2)将示踪原子与待研究物质完全混合。
3)将示踪原子加入待研究对象中,然后跟踪。
6、放射性示踪7、核检测技术: 是以核辐射与物质相互作用原理为基础而产生的辐射测量方法和仪器。
特点:1)非接触式测量;2)环境因素影响甚无;3)无破坏性:4)易于实现多个参数同时检测和自动化测量。
8、辐射照射技术:是利用射线与物质的相互作用,将物质置于辐射场中,使物质的性质发生有利改变的技术。
辐射交联的聚乙烯有什么优点:热收缩、耐热、机械强度大为提高、耐有机溶剂、不易被溶解、电绝缘性能很好,且不怕潮湿。
9、X射线断层扫描(XCT)、核磁共振显像仪(NMR-CT)、正电子发射显像仪(PECT),同位素单光子发射显像仪(SPECT)和康普顿散射显像仪(CST);10、核医学是当今产值最大、发展最快的核辐射设备。
实验报告卢瑟福背散射分析(RBS)实验姓名:学号:院系:物理学系实验报告一、实验名称卢瑟福背散射分析(RBS)实验二、实验目的1、了解RBS实验原理、仪器工作结构及应用;2、通过对选定的样品的实验,初步掌握RBS实验方法及谱图分析;3、学习背散射实验的操作方法。
三、RBS实验装置主要包括四个部分:1、一定能量离子束的的产生装置----加速器2、离子散射和探测的地方----靶室3、背散射离子的探测和能量分析装置4、放射源RBS图1 背散射分析设备示意图1.离子源2.加速器主体3.聚焦系统4. 磁分析器5.光栅6. 靶室7.样品8.真空泵9.探测器10.前置放大器11.主放大器12. 多道分析器13. 输出四、实验原理当一束具有一定能量的离子入射到靶物质时,大部分离子沿入射方向穿透进去,并与靶原子电子碰撞逐渐损失其能量,只有离子束中极小部分离子与靶原子核发生大角度库仑散射而离开原来的入射方向。
入射离子与靶原子核之间的大角度库仑散射称为卢瑟福背散射(记为RBS)。
用探测器对这些背散射粒子进行侧量,能获得有关靶原子的质量、含量和深度分布等信息。
入射离子与靶原子碰撞的运动学因子、散射截面和能量损失因子是背散射分析中的三个主要参数。
图 3 大角度散射示意图(实验室坐标系)图2 弹性散射(质心坐标系)1、 运动因子K 和质量分辨率 1)运动学因子K当一定能量(对应于一定速度)的离子射到靶上时,入射离子和靶原子发生弹性碰撞,人射离子的部分能量传给了被撞的靶原子,它本身则被散射,散射的方向随一些参量而变化,如图2(质心坐标系)所示.设Z 1, Z 2分别为入射离子及靶原子的原子序数,m 、 M 分别为它们的原子质量,e 为单位电子电荷量,v 0为入射离子的速度,b 为碰撞参量或瞄准距离(即入射轨迹延伸线与靶原子核的距离),x 为散射角.由分析力学可以推导出。
此式实际上不是一个入射离子而是一束禽子,且b 值有大有小。
本科毕业论文(设计)论文(设计)题目:卢瑟福背散射(RBS)测量数据的拟合学院:理学院专业:电子科学与技术班级:电技071学号:************学生姓名:***指导教师:***2011年 6 月14 日贵州大学本科毕业论文(设计)诚信责任书本人郑重声明:本人呈交和毕业论文(设计),是在导师的指导下独立进行研究所完成。
毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已注明出处。
特此声明。
论文(设计)作者签名:日期:目录摘要 (III)Abstract (IV)第一章绪论 (1)1.1 卢瑟福散射实验的简介 (1)1.2 卢瑟福散射实验的原理 (1)1.2.1库仑散射偏转角公式 (1)1.2.2卢瑟福散射公式 (3)1.3 卢瑟福散射实验的验证方法 (5)1.4 卢瑟福散射实验的装置 (6)1.4.1 散射真空室的结构 (6)1.4.2 电子学系统结构 (6)1.4.3 步进电机及其控制系统 (7)第二章卢瑟福背散射分析介绍 (8)2.1 卢瑟福背散射概述 (8)2.2 卢瑟福背散射基本原理 (9)2.2.1 运动学关系 (9)2.2.2 能量损失 (11)2.2.3 散射截面 (12)2.2.4 质量分辨率 (14)2.2.5 深度分辨率 (16)2.2.6 分析灵敏度 (16)2.2.7 背散射产额和能谱 (17)2.3 卢瑟福背散射(RBS)实验设备 (18)2.3.1 真空系统与靶室 (19)2.3.2 数据获取系统 (20)2.4 卢瑟福背散射(RBS)数据处理 (21)2.5 卢瑟福背散射(RBS)最佳试验条件选择和样品要求 (22)2.5.1 卢瑟福背散射(RBS)最佳试验条件选择 (22)2.5.2 卢瑟福背散射(RBS)样品要求 (23)第三章卢瑟福背散射的应用及拟合 (24)3.1 卢瑟福背散射应用的简介 (24)3.2 薄膜分析 (24)3.2.1 厚度测定 (24)3.2.2 组分分析 (26)3.2.3 薄膜反应、界面原子迁移 (27)3.3 杂质分析 (27)3.3.1 表面杂质浓度分析 (27)3.3.2 离子注入杂质层分析 (28)3.4 在其他方面的应用 (29)3.4.1 离子能量损失和能量歧离测量 (29)3.4.2 与沟道技术配合,研究单晶样品 (29)第四章卢瑟福背散射的发展 (30)4.1 用重离子弹性反冲轻质元素 (30)4.2 高能量入射离子的非卢瑟福散射 (30)4.3 杂质原子精确定位的沟道技术 (30)第五章结语 (31)参考文献 (32)致谢 (33)附录 (34)卢瑟福背散射(RBS)测量数据的拟合摘要本文对卢瑟福背散射分析的基本原理作了概要的介绍。
题目:元素深度分布的卢瑟福背散射(RBS)分析元素深度分布的卢瑟福背散射(RBS)分析摘要卢瑟福背散射(RBS)分析是一种应用非常广泛的离子束分析技术。
1. 前言卢瑟福背散射分析是固体表面层和薄膜的简便、定量、可靠、非破坏性分析方法,是诸多的离子束分析技术中应用最为广泛的一种微分析技术。
其理论基础是在Rutherford、Gerger和Marsden发现了新原子模型(1909-1913)以后的一些年份里逐渐形成的。
在早期的应用中,背散射分析技术主要是用在一些与原子核有关的研究中,一般是通过分析背散射离子束来检测靶的玷污。
1967年背散射技术首次成功的应用于月球土壤成分分析,这是在非核领域第一个公开发表的实际应用例子。
发展至今,背散射技术已经成为一种十分成熟的离子分析技术。
它具有方法简单、可靠、快速(一般只需要30分钟)、无需标准样品就能得到定量分析结果、不必破坏样品宏观结构就能得到深度分布信息等独特优点。
背散射分析技术在固体物理、表面物理、材料科学、微电子学等领域得到广泛应用。
它是分析薄膜界面特性、固体表面层元素成分、杂质含量和元素深度分布以及化合物的化学配比不可缺少的分析手段。
此外,背散射分析与其他核核分析方法组合应用于同一样品,能获得更多的信息。
我国自七十年代起开始这方面的研究。
随着不断发展,背散射分析技术的应用范围也在不断的扩大。
例如,在考古领域,背散射分析可以研究一些大气中对环境不利的因素。
T.Huthwelker等提高利用卢瑟福背散射分析来研究大气浮质中痕量酸性气体(如HCl,HBr,SO2)的相互作用,这种相互作用与全球变暖、臭氧层耗损、酸雨等环境污染问题有很大的关系。
Ulrich K.Krieger等曾利用卢瑟福背散射测量易发挥物质在近表面层区的元素分布。
背散射分析技术分析速度快,能得出表面下不同种类原子的深度分布,并能进行定量分析。
结合沟道效应还能研究单晶样品的晶体完美性。
但它的深度分辨率不够高(一般为100~200埃),因而不能对最表面的原子层进行研究。
卢瑟福背散射谱法
卢瑟福背散射谱法
英文名称:Rutherford back scattering spectroscopy 定义:以兆电子伏特级的高能氢元素离子通过针形电极(探针)以掠射方式射入试样,大部分离子由于试样原子核的库仑作用产生卢瑟福散射,改变了运动方向而形成背散射。
测量背散射离子的能量、数量,分析试样所含有元素、含量和晶格的方法。
卢瑟福背散射光谱(RBS)是一种离子散射技术,用于薄膜成份分析。
RBS在量化而不需要参考标准方面是独一无二的。
在RBS测量中,高能量(MeV)He+离子指向样品,这样给定角度下背向散射He离子产生的能量及分布情况被记录下来。
因为每种元素的背向散射截面已知,就有可能从RBS谱内获得定量深度剖析(薄膜要小于1毫米厚).
1、RBS分析的理想用途
薄膜组成成份/厚度
区域浓度测定
薄膜密度测的(已知厚度)
2、RBS分析的相关产业
航天航空国防显示器半导体通信
3、RBS分析的优势
非破坏性成分分析无标准定量分析整个晶圆分析(150, 200, 300 mm)以及非常规大样品导体和绝缘体分析氢元素测量
4、RBS分析的局限性
大面积分析(~2 mm)
有用信息局限于top ~1 μm。
卢瑟福背散射能谱分析卢瑟福背散射能谱分析Ernest Rutherford1908年诺贝尔化学奖30 August 1871 –19 October 1937卢瑟福背散射能谱分析卢瑟福背散射(Rutherford Backscattering Spectrometry,简称RBS)的理论卢福背散射简称的论基础是入射离子与靶原子核之间的大角度库仑散射。
入射离子一般用MeV量级的 粒子,。
(1)入射离子与靶原子核发生弹性碰撞,损失一些能量,通过对散射离子的能量的测定可定性确定靶原子的质量;(2)发生碰撞时,靶的原子浓度和散射截面决定了散射离子的产额,测定散射离子的产额可确定靶的原子浓度;(3)入射离子在散射前、后穿透靶物质要损失一些能量,测定散射离子的能谱,可以确定靶原子沿着深度的分布。
离子能量低于靶原子发生核反应阈能条件下,入射离子和靶原子核之间发生弹性碰撞而被散射。
通过测定散射离子的能谱,即可对样品中所含元素作定性、定量和深度分析。
散射还与晶体的好坏有关,通过测定沟道谱可以对样品的晶体性进行判断,进行缺陷测定等等。
卢瑟福背散射能谱分析RBS分析设备包括离子源、加速装置、离子束筛选装置、聚焦装装置离子束筛选装置聚焦装置、样品室、探测器等等。
离子束产生后经过加速、筛选和聚焦后达到样品上被散射,经过探测器得到RBS能谱。
卢瑟福背散射能谱分析RBS分析设备包括离子源、加速装置、离子束筛选装置、聚焦装装置离子束筛选装置聚焦装置、样品室、探测器等等。
离子束产生后经过加速、筛选和聚焦后达到样品上被散射,经过探测器得到RBS能谱。
卢瑟福背散射能谱分析RBS analysis of a thin GaAs layer on a Si substrate,by alpha particles with an f ll h f b k d l denergy of typically 2‐3MeV .The energy of backscattered particles determine the mass of the target atom.Particles scattered from below the surface lose energy at a measurable rate;hence the energy scale yields the depth of the scattering of the particle.The peak width of the Ga or As signal is proportional to the areal density or thickness of the GaAs film .卢瑟福背散射能谱分析RBS分析的优点:1、提供深度信息。
模式中气溶胶表征方法引言气溶胶是大气中悬浮的微小颗粒物质,具有复杂的化学组成和多样的来源。
对气溶胶的准确表征对于了解大气污染、气候变化以及人类健康等方面具有重要意义。
本文将介绍模式中气溶胶的表征方法,包括气溶胶的物理性质、化学成分以及来源的分析方法。
气溶胶的物理性质表征方法气溶胶的物理性质包括粒径分布、粒子浓度、光学特性等。
以下是常用的气溶胶物理性质表征方法:1. 粒径分布测量方法•激光粒度仪:通过激光散射原理,测量气溶胶颗粒的粒径分布。
•电动力学分析仪:利用电场对气溶胶颗粒进行分选和测量,得到粒径分布信息。
2. 粒子浓度测量方法•激光散射法:利用激光束与气溶胶颗粒的相互作用,测量气溶胶的浓度。
•冲击器法:通过将气溶胶颗粒冲击到固体表面,再用显微镜观察和计数颗粒。
3. 光学特性测量方法•反射光谱法:通过测量气溶胶对入射光的反射率,估算其光学特性。
•透射光谱法:测量气溶胶对入射光的透射率,进一步了解其光学特性。
气溶胶的化学成分表征方法气溶胶的化学成分分析可以帮助我们了解气溶胶的来源、组成以及对环境和健康的影响。
以下是常用的气溶胶化学成分表征方法:1. 元素分析方法•X射线荧光光谱法:通过测量气溶胶中元素的荧光信号强度,分析气溶胶的元素组成。
•原子吸收光谱法:利用原子吸收的特性,测量气溶胶中金属元素的含量。
2. 化学组分分析方法•气相色谱-质谱联用法:将气溶胶中的有机物通过气相色谱分离,再用质谱进行鉴定和定量分析。
•高效液相色谱法:适用于分离和分析气溶胶中的水溶性有机物。
3. 离子分析方法•离子色谱法:通过离子交换柱将气溶胶中的离子分离,再用导电检测器进行定量分析。
•中子活化分析法:利用中子激发产生的放射性同位素,测量气溶胶中离子的含量。
气溶胶来源的分析方法气溶胶的来源多样,包括自然来源(如植物挥发物、海洋气溶胶)和人为来源(如工业排放、交通排放)。
以下是常用的气溶胶来源分析方法:1. 同位素分析方法•碳同位素分析法:通过测量气溶胶中碳同位素的比值,区分不同来源的气溶胶。
卢瑟福散射实验第一篇:卢瑟福散射实验卢瑟福散射实验实验目的:本实验通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:1库伦偏转角:当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E和L,由能量和动量守恒定律可知:2Ze2m⎛•22•2⎫(1)E=⋅+r+rϕ⎪⎪4πε0r2⎝⎭mrϕ=mνb=L(2)2••由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b有如下关系:ctgθ=4πε02Eb(3)22Zeθ2b2Ze2设a=,则ctg=2a4πε0E⎛1dσ(θ)dn2.卢瑟福散射公式:==dΩnN0tdΩ⎝4πε0⎫⎪⎪⎭⎛2Ze 4E⎝⎫1⎪⎪4⎭sin所以角度与P的关系:Y Axis TitleX Axis Title(2)角度和N的关系图:Y Axis TitleX Axis Title(3)研究性内容应用多道分析器可将输入的脉冲按其不同幅度送入相对应的道址中,而在实验中,是将一定脉冲幅度范围内的脉冲当成同幅度的脉冲进行计数的,因而可以保证在脉冲数较少的情况下的计数,而多道分析器由于将脉冲幅度分的较细,因此在脉冲数较少的情况下,测出的能谱图并不能有较明显的峰,因此应用多道分析器时,应使计数的时间长一些。
实验误差分析:实验数据与理论值存在较大误差。
理论上在真空条件下测量不同θ角度P=N sin4()应该是一个常数,但图中显然不是。
2分析误差:散射真空室并非真正的真空状态,用抽气机抽气可以抽去真空室内部分空气,但离真正的真空差的还很远。
2.我们在同一偏转角度和相同时间段的情况下,两次读数差别明显,这与α粒子源辐射粒子的随机性也有关。
同时,我们组仪器的α粒子源单位时间放出的α粒子较少,这在一定程度上也会增大误差,如果延长实验时间,可以在一定程度上减少误差。
3.可能与α粒子的不停衰变有关,考虑到半衰期,应该不是重要原因。
卢瑟福散射卢瑟福散射实验是近代物理科学发展史中最具有影响力的重要实验之一。
本世纪初,人们虽然知道了物质由原子构成,并且由气体性质和热力学理论也知道了原子的大概尺寸,约为10-8cm 。
1897年,汤姆生(J.J.Thomson )发现了电子,而且知道了电子是原子的组成部分,但原子的内部结构却仍处于假想阶段。
由于原子是中性的,电子带有负电荷,所以原子中还应有带正电的部分。
汤姆生提出一种原子模型,认为正电荷均匀地分布在整个原子球内,一定数目的电子“镶嵌”在这个球内或球面上。
电子可以在它们的平衡位置附近振动,从而发出特定频率的电磁波,这就是汤姆生的原子模型。
这似乎可以解释当时已观察到的原子光谱,但事实很快否定了这一模型。
1909年,卢瑟福(Lord Ernest Rutherford )和其合作者盖革(H.Geiger )与马斯顿(E.Marsden )所进行的α粒子散射实验则为另一种原子模型,即原子的核式模型(又称“行星模型”)的建立奠定了基础。
卢瑟福散射实验最重要的结果是发现大约有1/8000的α粒子散射角大于900,甚至接近1800,即发现存在大角度散射。
当卢瑟福试图用汤姆生模型解释这个实验结果时,他发现大角度上的散射截面是不能被解释的。
在汤姆生模型中,正电荷分布于整个原子,因而在原子内部的任何位置上都不可能有足够强的电场使α粒子发生大角度散射。
为了证实该实验结果,卢瑟福认为原子中的正电荷不得不更紧密地集中在一起。
通过他对物理现象深刻的洞察力,最终提出了原子的核式模型。
在核式模型中,原子核的半径近似为10-13cm ,约为原子半径的1/105。
卢瑟福散射实验给了我们正确的有关原子结构的图像,是现代核物理的基石。
一、原理1. 瞄准距离与散射角的关系卢瑟福把α粒子和原子都当做点电荷,并且假设两者之间的静电斥力是唯一的相互作用力。
设一个α粒子以速度v 0沿AT 方向入射,由于受到核电荷的库仑作用,α粒子将沿轨道ABC 出射。
第十二章物质的微观结构参考资料1.电子的发现对原子内部结构的认识是20世纪最伟大的发现之一,这是从1897年英国物理学家J.J.汤姆孙发现电子开始的。
电子的发现是与阴极射线的实验研究联系在一起的,而阴极射线的发现和研究又是从真空管放电现象开始的。
早在1858年,德国物理学家普吕克在利用放电管研究气体放电时就发现了阴极射线。
普吕克利用真空泵,发现随着玻璃管内空气稀薄到一定程度时,管内放电逐渐消失,这时在阴极对面的玻璃管壁上出现了绿色荧光。
当改变管外所加的磁场时,荧光的位置也会发生变化。
可见,这种荧光是从阴极所发出的射线撞击玻璃管壁所产生的。
阴极射线究竟是什么呢?在19世纪30年代,许多物理学家投入了研究。
当时英国物理学家克鲁克斯等人已经根据阴极射线在磁场中偏转的事实,提出阴极射线是带负电的微粒,并根据偏转角度算出阴极射线粒子的比荷(em),要比氢离子的比荷大1 000倍之多。
当时,赫兹和他的学生勒纳德在阴极射线管中加了一个垂直于阴极射线的电场,企图观察它在电场中的偏转,为此他们认为阴极射线不带电。
实际上当时是由于真空度还不高,建立不起静电场。
J.J.汤姆孙设计了新的阴极射线管(图1),在电场作用下由阴极C发出的阴极射线,通过A和B聚焦,从另一对电极D和E间的电场中穿过。
右侧管壁上贴有供测量偏转用的标尺。
他重复了赫兹的电场偏转实验,开始也没有看见任何偏转。
但他分析了不发生偏转的原因可能是电场建立不起来。
于是,他利用当时最先进的真空技术获得高真空,终于使阴极射线在电场中发生了稳定的偏转,根据偏转方向可明确判断阴极射线是带负电的粒子。
他还在管外加上了一个与电场和射线速度方向都垂直的磁场(此磁场由管外线圈产生),当电场力eE与磁场的洛伦兹力evB相等时,可以使射线不发生偏转而打到管壁中央。
经推算可知,阴极射线粒子的比荷em≈1011C/kg。
通过进一步的实验,汤姆孙发现用不同的物质材料或改变管内气体种类,测得射线粒子的比荷em保持不变,可见这种粒子是各种材料中的普适成分。