第9章-蒸馏
- 格式:ppt
- 大小:6.36 MB
- 文档页数:48
化⼯原理-第九章-液体精馏化⼯原理-第九章-液体精馏(⼀)测试⼀⼀.选择题1.蒸馏是利⽤各组分()不同的特性实现分离的⽬的。
CA 溶解度;B 等规度;C 挥发度;D 调和度。
2.在⼆元混合液中,沸点低的组分称为()组分。
CA 可挥发;B 不挥发;C 易挥发;D 难挥发。
3.()是保证精馏过程连续稳定操作的必不可少的条件之⼀。
AA 液相回流;B 进料;C 侧线抽出;D 产品提纯。
4.在()中溶液部分⽓化⽽产⽣上升蒸⽓,是精馏得以连续稳定操作的⼀个必不可少条件。
CA 冷凝器;B 蒸发器;C 再沸器;D 换热器。
5.再沸器的作⽤是提供⼀定量的()流。
DA 上升物料;B 上升组分;C 上升产品;D 上升蒸⽓。
6.冷凝器的作⽤是提供()产品及保证有适宜的液相回流。
BA 塔顶⽓相;B 塔顶液相;C 塔底⽓相;D 塔底液相。
7.冷凝器的作⽤是提供塔顶液相产品及保证有适宜的()回流。
BA ⽓相;B 液相;C 固相;D 混合相。
8.在精馏塔中,原料液进⼊的那层板称为()。
CA 浮阀板;B 喷射板;C 加料板;D 分离板。
9.在精馏塔中,加料板以下的塔段(包括加料板)称为()。
BA 精馏段;B 提馏段;C 进料段;D 混合段。
10.某⼆元混合物,进料量为100 kmol/h ,x F = 0.6,要求塔顶x D 不⼩于0.9,则塔顶最⼤产量为()。
(则W=0) BA 60 kmol/h ;B 66.7 kmol/h ;C 90 kmol/h ;D 100 kmol/h 。
11.精馏分离某⼆元混合物,规定分离要求为D x 、w x 。
如进料分别为1F x 、2F x 时,其相应的最⼩回流⽐分别为1min R 、2min R 。
当21F F x x >时,则()。
AA .2min 1min R R <;B .2min 1min R R =;C .2min 1min R R >;D .min R 的⼤⼩⽆法确定12.精馏的操作线为直线,主要是因为()。
第9章液体精馏知识要点液体精馏是将挥发度不同的组分组成的混合液,在精馏塔中同时进行多次部分气化和部分冷凝,使其实现高纯度分离的过程。
实现精馏需要3个条件:①设备条件:精馏塔;②回流条件:塔底气相回流,塔顶液相回流;③相平衡条件:组分的挥发度有差异。
本章讨论重点为双组分精馏过程的计算,主要应掌握的内容包括:相平衡关系的表达和应用;精馏塔的物料衡算和操作关系;回流比的确定;理论板数的求法;影响精馏过程主要因素的分析等。
本章主要知识点间的联系图见下:图9-1 液体精馏一章主要知识点联系图1. 二元物系的气液相平衡关系气液相平衡是蒸馏过程的热力学基础,传质的极限状态。
根据相平衡可以判断过程进行的可能性。
(1) 恒压下二元物系气液相平衡的特点●液相组成与温度一一对应⇔x=f(t)●气相组成与温度一一对应⇔y= f(t)●气液两相组成一一对应⇔y=f(x)(2) 理想物系含义:指由理想气体与理想溶液构成的物系。
它满足理想气体状态方程、道尔顿分压定律和拉乌尔定律。
拉乌尔定律相对挥发度/1/1A A A B B B p x y xp x y xναν-===⋅- (9-1)11y xy xα-=⋅- (气相服从道尔顿分压定律) 相对挥发度α愈是大于1 ,则y 愈是大于x ,物系愈容易分离。
● 泡点方程x -toB ooA Bp p x p p -=- (9-2) ● 露点方程y -to A BA A Bp p p y p p p -=⋅- (9-3) ● 相平衡方程y-x()11xy xαα=+- (9-4)● t -y (x )相图两端点A 与B :端点A 代表纯易挥发组分A(x =1),端点B 代表纯难挥发组分B(x =0)。
两线:t -x 线为泡点线,泡点与组成x 有关;t-y 线为露点线,露点与组成y 有关。
3区:t -x 线以下为过冷液体区;t-y 线以上为过热蒸汽区;在t-x 与t -y 线之间的区域为气液共存区,只有体系落在气液共存区才能实现一定程度的分离。
第9章 精馏 典型例题例1:逐板法求理论板的基本思想有一常压连续操作的精馏塔用来分离苯-甲苯混合液,塔顶设有一平衡分凝器,自塔顶逸出的蒸汽经分凝器后,液相摩尔数为汽相摩尔数的二倍,所得液相全部在泡点下回流于塔,所得汽相经全凝器冷凝后作为产品。
已知产品中含苯0.95(摩尔分率),苯对甲苯的相对挥发度可取为2.5 。
试计算从塔顶向下数第二块理论板的上升蒸汽组成。
解: 884.095.05.15.295.05.115.20000=⨯-=→=+=x x x x y DR=L/D=2905.03/95.0884.0323/95.032:11=+⨯=+=+y x y n n 精馏段方程845.03/95.0793.032793.0905.05.15.2905.05.15.22111=+⨯==⨯-=-=y y y x例2:板数较少塔的操作型计算拟用一 3 块理论板的(含塔釜)的精馏塔分离含苯50%(摩尔分率,下同)的苯-氯苯混合物。
处理量F=100 Kmol/h ,要求 D=45 Kmol/h 且 x D >84%。
若精馏条件为:回流比R=1 ,泡点进料,加料位置在第二块理论板,α=4.10 ,问能否完成上述分离任务? 解:W=55kmol/h精馏段操作线方程:y n+1=0.5x n +0.42提馏段的操作线方程:Fq D R Wx x F q D R qFRD y w )1()1()1()1(--+---++=将相关数据代入得提馏段操作线方程:134.061.1-=x y 逐板计算:y 1=x D =0.84y 2=0.5×0.56+0.42=0.7057.0134.036.061.13=-⨯=y.22.05584.04550=⨯-=-=WDx Fx x Df w ()56.084.01.31.484.01111=⨯-=--=y y x αα36.07.01.31.470.02=⨯-=x22.024.057.01.31.457.03≥=⨯-=x所以不能完成任务。
第六章 蒸 馏1、质量分数与摩尔分数的相互换算:(1) 甲醇-水溶液中,甲醇(CH 3OH )的摩尔分数为0.45,试求其质量分数。
(2) 苯-甲苯混合液中,苯的质量分数为0.21,试求其摩尔分数。
解:(1)因为 x A =0.45所以(2)因为 w A =0.21所以2、在压强为101.3kPa 下,正己烷-正庚烷物系的平衡数据如下:t,℃ 30 36 40 46 50 56 58 x 1.0 0.715 0.524 0.374 0.214 0.091 0 y1.00.8560.7700.6250.4490.228试求:(1)正己烷组成为0.5(摩尔分数)的溶液的泡点温度及其平衡蒸汽的组成;(2)将该溶液加热到45℃时,溶液处于什么状态?各相的组成是多少?(3)将溶液加热到什么温度才能全部气化为饱和蒸汽?这时蒸汽的组成是多少?解:由所给平衡数据做t-x-y 图(见本题附图)。
(1)当x A =0.5时,由图中读得泡点温度t s =41℃,其平衡瞬间蒸汽组成y A =0.75;(2)当t =45℃时,溶液处于气液共存状态,此时x A ‘=0.38 ,y A ’=0.64 ; (3)由图知,将溶液加热到49℃时,才能全部汽化为饱和蒸汽,蒸汽组成为0.5 。
3、在常压下将某原料液组成为0.6(易挥发组分的摩尔分数)的两组分溶液分别进行简单蒸馏和平衡蒸馏,若汽化率为1/3,试求两种情况下的釜液和馏出液组成。
假设在操作范围内气液平衡关系可表示为y =0.46x +0.549 。
解:(1)简单蒸馏时 因为 D /F =1/3 所以 W /F =2/3 将y =0.46x +0.549直接代入式(6-20)593.018)45.01(3245.03245.0=⨯-+⨯⨯=+=BB AA AA A Mx Mx M x w 239.092/)21.01(78/21.078/21.0///=-+=+=BB A A AA A Mw Mw M wx解之x w =0.498由式(6-22)其中所以(2)平衡蒸馏时 由Fx F =Dy +Wx得与y =0.46x +0.549 联立求解,得到x =0.509 ,y =0.7834、在连续精馏塔中分离由二硫化碳和四氯化碳所组成的混合液。
第9章蒸馏1.在苯-甲苯的精馏中,(1)已知塔顶温度为82℃,塔顶蒸气组成为苯0.95,甲苯0.05(摩尔分数),求塔顶操作压力;(2)若塔顶压力不变而塔顶温度变为85℃,求塔顶蒸气的组成。
已知苯和甲苯的蒸气压方程分别如下:其中压强的单位为kPa,温度的单位为℃。
解:(1)由蒸气压方程求82℃时苯和甲苯作为纯组分时的蒸气压:由露点方程:①②联立求解式①、式②两式可得:x=0.880p=99.67kPa(2)由蒸气压方程求85℃时苯和甲苯作为纯组分时的蒸气压:由泡点方程求液相组成:由露点方程求气相组成:2.苯-甲苯混合液(理想溶液)中,苯的质量分数=0.3。
求体系总压分别为109.86kPa 和5.332kPa时的泡点温度和相对挥发度,并预测相应的气相组成。
(蒸气压方程如上题所示)解:将苯的质量分数转化为摩尔分数:(1)总压为109.86kPa时试差:设泡点温度为100℃,由蒸气压方程求得:由泡点方程计算苯的摩尔分数:计算值与假定值足够接近,以上计算有效,溶液泡点温度为100℃。
相对挥发度:由相平衡方程预测气相组成:(2)总压为5.332kPa时,同理,可以试差求得体系的泡点温度为20℃。
在试差过程中已求得20℃苯的饱和蒸气压为:由露点方程求气相组成:相对挥发度:3.某混合液含易挥发组分0.30(摩尔分数,下同),以饱和液体状态连续送入精馏塔,塔顶馏出液组成为0.93,釜液组成为0.05。
气、液相在塔内满足恒摩尔流假定条件。
试求:(1)回流比为2.3时精馏段的液-气比和提馏段的气-液比及这两段的操作线方程;(2)回流比为4.0时精馏段的液-气比和提馏段的气-液比。
解:塔顶产品的采出率:(1)R=2.3时,精馏段液气比:精馏段操作线方程:将R=2.3、代入得:y=0.697x+0.282泡点进料,q=1提馏段气液比:提馏段操作线方程:将D/F=0.284、R=2.3及代入上式可得y=1.764x-0.038(2)R=4时,精馏段液气比:提馏段的气液比为:4.某二元混合物以10kmol/h 的流量连续加入某精馏塔,塔内气、液两相满足恒摩尔流假定。
第9章 精馏 典型例题例1:逐板法求理论板的基本思想有一常压连续操作的精馏塔用来分离苯-甲苯混合液,塔顶设有一平衡分凝器,自塔顶逸出的蒸汽经分凝器后,液相摩尔数为汽相摩尔数的二倍,所得液相全部在泡点下回流于塔,所得汽相经全凝器冷凝后作为产品。
已知产品中含苯0.95(摩尔分率),苯对甲苯的相对挥发度可取为2.5 。
试计算从塔顶向下数第二块理论板的上升蒸汽组成。
解: 884.095.05.15.295.05.115.20000=⨯-=→=+=x x x x y DR=L/D=2905.03/95.0884.0323/95.032:11=+⨯=+=+y x y n n 精馏段方程845.03/95.0793.032793.0905.05.15.2905.05.15.22111=+⨯==⨯-=-=y y y x例2:板数较少塔的操作型计算拟用一 3 块理论板的(含塔釜)的精馏塔分离含苯50%(摩尔分率,下同)的苯-氯苯混合物。
处理量F=100 Kmol/h ,要求 D=45 Kmol/h 且 x D >84%。
若精馏条件为:回流比R=1 ,泡点进料,加料位置在第二块理论板,α=4.10 ,问能否完成上述分离任务? 解:W=55kmol/h精馏段操作线方程:y n+1=0.5x n +0.42提馏段的操作线方程:Fq D R Wx x F q D R qFRD y w )1()1()1()1(--+---++=将相关数据代入得提馏段操作线方程:134.061.1-=x y 逐板计算:y 1=x D =0.84y 2=0.5×0.56+0.42=0.7057.0134.036.061.13=-⨯=y.22.05584.04550=⨯-=-=WDx Fx x Df w ()56.084.01.31.484.01111=⨯-=--=y y x αα36.07.01.31.470.02=⨯-=x22.024.057.01.31.457.03≥=⨯-=x所以不能完成任务。
第九章 蒸馏1.在密闭容器中将A 、B 两组分的理想溶液升温至82 ℃,在该温度下,两组分的饱和蒸气压分别为*A p = kPa 及*B p = kPa ,取样测得液面上方气相中组分A 的摩尔分数为。
试求平衡的液相组成及容器中液面上方总压。
解:本题可用露点及泡点方程求解。
()()()()95.085.416.10785.416.107总总*B*A 总*B 总*A A 总*AA =-=--==p p p p p p p p x p p y - 解得 76.99=总p kPa8808.085.416.10785.4176.99*B*A *B =--=--=p p p p x 总本题也可通过相对挥发度求解571.285.416.107*B *A ===p p α由气液平衡方程得()()8808.095.01571.295.095.01=-+=-+=y y y x α()()[]kPa 76.99kPa 8808.0185.418808.06.1071A *BA *A =-+⨯=-+x p x p p =总 2.试分别计算含苯(摩尔分数)的苯—甲苯混合液在总压100 kPa 和10 kPa 的相对挥发度和平衡的气相组成。
苯(A )和甲苯(B )的饱和蒸气压和温度的关系为24.22035.1206032.6lg *A +-=t p58.21994.1343078.6lg *B +-=t p 式中p ﹡的单位为kPa ,t 的单位为℃。
苯—甲苯混合液可视为理想溶液。
(作为试差起点,100 kPa 和10 kPa对应的泡点分别取94.6 ℃和31.5 ℃)解:本题需试差计算 (1)总压p 总=100 kPa 初设泡点为94.6℃,则191.224.2206.9435.1206032.6lg *A =+-=p 得 37.155*A =p kPa同理 80.158.2196.9494.1343078.6lg *B =+-=p 15.63*B =p kPa4.03996.015.6337.15515.63100A ≈=--=x或 ()kPa04.100kPa 15.636.037.1554.0=⨯+⨯=总p则 46.215.6337.155*B *A ===p p α 6212.04.046.114.046.2)1(1=⨯+⨯=-+=x x y αα(2)总压为p 总=10 kPa通过试差,泡点为31.5℃,*A p =,*B p =203.3313.502.17==α 681.04.0203.214.0203.3=⨯+⨯=y随压力降低,α增大,气相组成提高。
蒸馏化工生产中经常要处理由若干组分所组成的混合物,其中大部分是均相物系。
生产中为了满足贮存、运输、加工和使用的要求,时常需要将这些混合物分离成为较纯净或几乎纯态的物质或组分。
蒸馏是分离液体混合物的典型单元操作。
这种操作是将液体混合物部分气化,利用其中各组分挥发度不同的特性以实现分离的目的。
它是通过液相和气相间的质量传递来实现的。
蒸馏过程可以按不同方法分类。
按照操作方式可分为间歇和连续蒸馏。
按蒸馏方法可分为简单蒸馏、平衡蒸馏(闪蒸)、精馏和特殊精馏等。
当一般较易分离的物系或对分离要求不高时,可采用简单蒸馏或闪蒸,较难分离的可采用精馏,很难分离的或用普通精馏不能分离的可采用特殊精馏。
工业中以精馏的应用最为广泛。
按操作压强可分为常压、加压和减压精馏。
按待分离混合物中组分的数目可以分为两(双)组分和多组分精馏。
因两组分精馏计算较为简单,故常以两组分溶液的精馏原理为计算基础,然后引申用于多组分精馏的计算中。
在本章中将着重讨论常压下两组分连续精馏。
蒸馏在化学工业中应用十分广泛,其历史也最为悠久,因此它是分离(传质)过程中最重要的单元操作之一。
在前面我们已经知道,蒸馏是气液两相间的传质过程,因此常用组分在两相中的浓度(组成)偏离平衡的程度来衡量传质推动力的大小。
传质过程是以两相达到相平衡为极限的。
由此可见,气液相平衡关系是分析蒸馏原理和进行设备计算的理论基础,故在讨论精馏过程的计算前,首先简述相平衡关系。
相平衡是《物理化学》课程的基本内容,本章侧重于论述其在化学工程中的应用,且讨论的只限于两组分理想溶液。
本节包含四个部分的内容:拉乌尔定律相律相图相对挥发度。
拉乌尔定律根据溶液中同分子间的与异分子间的作用力的差异,可将溶液分为理想溶液和非理想溶液两种。
实验表明,理想溶液的气液平衡关系遵循拉乌尔定律(Raoult's Law),即:式中溶液上方组分的平衡分压,Pa;同温度下纯组分的饱和蒸气压,Pa;(下标A表示易挥发组分、B表示难挥发组分)通常略去上式中的下标,习惯上以线x表示液相中易挥发组分的摩尔分率,以(1-x)表示难挥发组分的摩尔分率;以y表示气相中易挥发组分的摩尔分率,以(1-y)表示难挥发组分的摩尔分率。
化工原理学–蒸馏引言蒸馏是化工过程中常用的一种分离技术,通过对混合物进行加热使其产生蒸汽,再将蒸汽冷凝得到纯净物质的方法。
在化工领域,蒸馏广泛应用于石油和化学工业中,用于分离液体混合物中的组分。
蒸馏原理蒸馏是基于物质的不同沸点而进行的分离技术。
在一种混合物中,不同成分具有不同的沸点,通过加热可以将低沸点成分转变为蒸汽,然后再通过冷凝将蒸汽转变为液体,从而实现纯度较高的分离。
在蒸馏过程中,需要一个蒸馏塔来进行操作。
蒸馏塔通常由一个加热器、塔板和冷凝器组成。
混合物首先被加热,在塔板上产生蒸汽。
蒸汽在塔板上与冷凝液进行接触,使其冷凝并收集。
这样,高沸点成分留在塔板上,而低沸点成分则以蒸汽的形式进入上层。
通过逐层重复这个过程,可以实现对混合物中各成分的分离。
蒸馏的分类蒸馏可以根据不同的条件和原理进行分类。
常见的蒸馏方法包括常压蒸馏、减压蒸馏、真空蒸馏等。
1.常压蒸馏:常压蒸馏是在常压条件下进行的蒸馏过程。
常压蒸馏适用于沸点较低的液体混合物,其中低沸点成分可以轻松转化为蒸汽。
2.减压蒸馏:减压蒸馏是在降低环境压力的条件下进行的蒸馏过程。
通过降低环境压力,可以使高沸点成分在较低温度下转化为蒸汽,从而减少热量的需求。
3.真空蒸馏:真空蒸馏是在低于大气压的条件下进行的蒸馏过程。
真空蒸馏适用于高沸点液体或易分解的物质,可以避免在较高温度下进行加热,从而减少热敏感成分的损失。
蒸馏的应用蒸馏作为一种常用的分离技术,广泛应用于石油炼制、化学工业、食品工业等领域。
1.石油炼制:蒸馏在石油炼制过程中起到了至关重要的作用。
通过蒸馏,可以将原油中的各种成分分离出来,例如汽油、柴油、润滑油和残渣等。
这种蒸馏过程被称为石油精馏。
2.化学工业:在化学工业中,蒸馏被广泛用于分离和纯化化学品。
例如,通过蒸馏可以从反应产物中分离出目标产品,并去除杂质。
3.食品工业:蒸馏也在食品工业中得到应用。
例如,酿酒过程中的蒸馏可以用于分离酒精和水,从而提高酒精的浓度。