直线、平面垂直的判定和性质(二)
- 格式:ppt
- 大小:962.00 KB
- 文档页数:18
教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
第二讲直线、平面平行垂直的判定与性质【知识梳理】1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)l∥a,a⊂α,l⊄α⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(线面平行⇒线线平行)l∥α,l⊂β,α∩β=b⇒l∥b(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β).(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).【考点精炼】考点一:直线与平面平行的判定例1、(2019·陕西西安调研)如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.练习、如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的中点.(1)证明AD1∥平面BDC1;(2)证明BD∥平面AB1D1.练习、如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD ⊥AB.求证:四边形EFGH是矩形.【知识梳理】3.平面与平面平行的判定定理和性质定理(1)利用定义,即证两个平面没有公共点(不常用).(2)利用面面平行的判定定理(主要方法).(3)利用垂直于同一条直线的两平面平行(客观题可用).(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).【考点精炼】考点二:平面与平面平行的判定与性质例2、(2019年南宁月考)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[变式探究]在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 训练、如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.【知识梳理】5、重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【考点精炼】考点三:与线面平行相关的命题真假判断例3.(2019·山东日照月考)若m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若α⊥β,m⊥β,则m∥αB.若m∥α,n⊥m,则n⊥αC.若m∥α,n∥α,m⊂β,n⊂β,则α∥βD.若m∥β,m⊂α,α∩β=n,则m∥n练习.(全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()【知识梳理】6.直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.(2)直线与平面垂直的判定定理与性质定理:7.(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”. (3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”. (4)利用面面垂直的性质定理. 8.证明线线垂直的常用方法 (1)利用特殊图形中的垂直关系. (2)利用等腰三角形底边中线的性质. (3)利用勾股定理的逆定理. (4)利用直线与平面垂直的性质.【考点精炼】考点四:直线与平面垂直的判定与性质例4.(2019·湖南六校联考)已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下列给出的条件中一定能推出m ⊥β的是( )A .α⊥β且m ⊂αB .α⊥β且m ∥αC .m ∥n 且n ⊥βD .m ⊥n 且α∥β练习、(2019年潍坊月考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.求证:D′H⊥平面ABCD.【知识梳理】9.平面与平面垂直(1)平面与平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理:10.(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决.【考点精炼】考点五:面面垂直的判定与性质练习、(北京卷)如图,在三棱锥P-ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E-BCD的体积.[变式探究] 在本例条件下,证明:平面PBC ⊥平面P AB .练习、(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.考点六:平行、垂直中关系的证明例6、(2018·江苏卷)在平行六面体ABCD -A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证:(1)AB ∥平面A 1B 1C ; (2)平面ABB 1A 1⊥平面A 1BC .练习、(2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD ︵ 所在平面垂直,M 是CD ︵ 上异于C ,D的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.练习、(2019·山东潍坊模拟)如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为362,求a的值.。
垂直和平行线的性质和判定垂直和平行线是几何学中常用的概念,它们具有独特的性质和判定条件。
本文将介绍垂直和平行线的一些基本性质,并探讨如何判定两条线是否垂直或平行。
一、垂直线的性质和判定垂直线是指两条直线相互交于一点,且交角为90度的线段。
垂直线的性质如下:1. 垂直线与平面上的任意一条直线相交,所成的角都是90度。
根据这个性质,我们可以通过观察两条线段的交角来判断它们是否垂直。
如果两条线段交角为90度,则它们是垂直线。
2. 垂直线的斜率乘积为-1。
斜率是直线的一个重要属性,可以用斜率来判断两条直线是否垂直。
对于两条直线,如果它们的斜率乘积等于-1,则说明它们是垂直线。
3. 垂直线上的点到另一条直线的距离最短。
这是垂直线的特殊性质之一,垂直线上的任意一点到另一条直线的距离都是最短的。
二、平行线的性质和判定平行线是指在同一个平面内,没有相交点,且永远保持相同的距离的直线。
平行线的性质如下:1. 平行线的斜率相等。
这是判断两条线是否平行的最常用方法。
对于两条直线,如果它们的斜率相等,则说明它们是平行线。
2. 平行线上的对应角相等。
如果两条平行线被一条横截线相交,那么对应角也是相等的。
这是平行线性质中的重要定理之一。
3. 平行线上的任意两点到另一条直线的距离相等。
这是平行线的另一个重要特性,平行线上的任意两点到另一条直线的距离都是相等的。
三、垂直和平行线的判定方法1. 通过斜率判定通过比较两条线的斜率可以判断它们的关系。
如果两条线的斜率乘积为-1,则它们是垂直线;如果两条线的斜率相等且不为无穷大,则它们是平行线。
2. 通过角度关系判定如果两条直线相交的角度为90度,则它们是垂直线。
如果两条直线被一条横截线相交,且对应角相等,则它们是平行线。
3. 通过距离判定如果两条直线上的任意一点到另一条直线的距离相等,则说明它们是平行线。
如果垂直线上的任意一点到另一条直线的距离最短,则说明它们是垂直线。
综上所述,垂直和平行线具有各自独特的性质和判定条件。
2021年新高考数学总复习第八章《立体几何与空间向量》直线、平面垂直的判定与性质1.直线与平面垂直(1)定义如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α互相垂直,记作l⊥α,直线l叫做平面α的垂线,平面α叫做直线l的垂面.(2)判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b2.直线和平面所成的角(1)定义平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.(2)范围:⎣⎡⎦⎤0,π2.3.平面与平面垂直(1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.(2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α概念方法微思考1.若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示垂直.若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90°的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面.2.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示垂直.在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平行.由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该交线垂直于第三个平面.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.(×)(2)垂直于同一个平面的两平面平行.(×)(3)直线a⊥α,b⊥α,则a∥b.(√)(4)若α⊥β,a⊥β,则a∥α.(×)(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.(√)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)题组二教材改编2.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β。
直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直.我们就说直线与平面互相垂直.记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足。
要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”.这与“无数条直线”不同.注意区别。
(2)直线和平面垂直是直线和平面相交的一种特殊形式。
(3)若.则。
2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直.则该直线与此平面垂直。
符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语.不可忽视。
(2)要判定一条已知直线和一个平面是否垂直.取决于在这个平面内能否找出两条相交直线和已知直线垂直.至于这两条相交直线是否和已知直线有公共点.则无关紧要。
知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交.但不和这个平面垂直.这条直线叫做这个平面的斜线。
过斜线上斜足外的一点向平面引垂线.过垂足和斜足的直线叫做斜线在这个平面内的射影。
平面的一条斜线和它在平面上的射影所成的锐角.叫做这条直线和这个平面所成的角。
要点诠释:(1)直线与平面相交但不垂直.直线在平面的射影是一条直线。
(2)直线与平面垂直射影是点。
(3)斜线任一点在平面内的射影一定在斜线的射影上。
(4)一条直线垂直于平面.它们所成的角是直角;一条直线和平面平行或在平面内.它们所成的角是0°的角。
知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分.这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱.这两个半平面叫做二面角的面。
表示方法:棱为、面分别为的二面角记作二面角.有时为了方便.也可在内(棱以外的半平面部分)分别取点.将这个二面角记作二面角.如果棱记作.那么这个二面角记作二面角或。
直线、平面垂直的判定及其性质(二)(讲义)>知识点睛一、直线与平面垂直(线面垂直)性质定理:垂直于同一个平面的两条直线 ______________ .(Jb/ /■* b丄a.其他性质:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面;如果一条直线垂直于两个平行平面中的一个平面,那么这条直线也垂直于另一个平面•二、平面与平面垂直(面面垂直)性质定理:两个平面垂直,则一个平面内线与另一个平面垂直.其他性质:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面;如果一平面垂直于两平行平面中的一个平面,那么它必垂直于另一个平面.的直2 2精讲精练已知直线/垂直于直线AB 和AC.直线W 垂直于直线BC 和 AC.则直线/, /«的位置关系是( )A.平行B.异面 C •相交 m n 和平面6 0,能得出a 丄戶的一组条件是( .in//a^n//Par\p=in^ rtuan 邛、inca> /»丄0, «丄戶若川,心/是互不重合的直线,g 緘7是互不重合的平面, 给出下列命题:① 若a 丄0, «门0二川,② 若ct 〃0, a n y=zz/»③ 若m 不垂直于<z,④ 若《门0二"f,加〃“,且"E Q , «妙,则n//a 且《〃0;⑤ 若《门0二加,n y=n » aPl 尸/,且ct 丄0, a 丄y, 0丄y,贝J w 丄川丄/, «丄人其中正确命题的序号是 _________________ •边长为a对于直线, A. in//n, B- 川丄心 C. m//D- m//川丄心则《丄《或《丄0:0n 尸小则加〃”; 则加不可能垂直于a 内的无数条直线;D ・垂直A. C 6C. --- a D ・aD的正方形ABCD沿对角线BD折成直二面角,则AC 的长为(如图,以等腰直角三角形ABC 斜边BC 上的高AD 为折痕, 把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出 下列四个结论:① BD 丄AC^② 是等边三角形;③ 三棱锥DMBC 是正三棱锥;④ 平面ADC 丄平面ABC.其中正确的是(如图,在斜三棱柱ABC-AiBiCi中, 则C,在底面ABC 上的射影H必在()A.直线AB 上C.直线AC 上 已知直二面角0[-/-〃,点AEa. AC ■丄/,垂足为点C,点医0, BD 丄h 垂足为点D,若AB=2. AC=BD=i ,则CD 的长为3 CD. 1A.①②④B.①②③C.②③④ D-①③④ZBqC=90。
直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足。
要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同,注意区别。
(2)直线和平面垂直是直线和平面相交的一种特殊形式。
(3)若,则。
2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视。
(2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要。
知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线。
过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影。
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。
要点诠释:(1)直线与平面相交但不垂直,直线在平面的射影是一条直线。
(2)直线与平面垂直射影是点。
(3)斜线任一点在平面内的射影一定在斜线的射影上。
(4)一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角。
知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面。
表示方法:棱为、面分别为的二面角记作二面角.有时为了方便,也可在内(棱以外的半平面部分)分别取点,将这个二面角记作二面角.如果棱记作,那么这个二面角记作二面角或。
互动课堂疏导引导一、直线与平面垂直的判定1.直线与平面垂直的定义如果直线l 和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直.疑难疏引 (1)定义中的“任意一条直线”这一词组,它与“所有直线”是同义语,但与无数条直线不同,定义是说这条直线和平面内所有直线垂直.但不能说一条直线垂直于一个平面内的无数条直线,它就和这个平面垂直.(2)和平面垂直的直线是直线和平面相交的一种特殊形式.(3)虽然这样的定义给线面垂直的判定带来困难,但在直线和平面垂直时,却可以得到直线和平面内的任何一条直线都垂直,给判定两条直线垂直带来方便,如若a ⊥α,b ⊂α,则a ⊥b ,简述之,即“线面垂直,则线线垂直”,这是我们判定两条直线垂直时,经常使用的一种重要方法.画直线和水平平面垂直时,要把直线画成和表示平面的平行四边形的横边垂直.如果直线l 和平面α垂直,则记作l ⊥α.(4)在平面几何中,我们有命题:经过一点,有且只有一条直线与已知直线垂直,在本节,也有类似的命题.命题1:过一点有且只有一条直线和已知平面垂直.命题2:过一点有且只有一个平面和已知直线垂直.2.直线和平面垂直的判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个平面.用符号表示为ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⋂⊂⊂l n l m l B n m n m ,,.疑难疏引 关于定理的理解必须注意以下几点:(1)判定定理的条件中,“平面内的两条相交直线”是关键性词语,一定要抓牢.(2)命题1:如果一条直线垂直于平面内的两条直线,那么这条直线垂直于这个平面. 命题2:如果一条直线垂直于平面内的无数条直线,那么这条直线垂直于这个平面.以上两个命题都是错误的,因为对于这两个命题,都没有体现出两直线相交这一特性,无数条直线可以是一簇平行线,并不一定具备有两条相交直线和已知直线垂直,因此,也就不一定得出这一直线垂直于这个平面这一结论.(3)要判定一条已知直线和一个平面是否垂直.取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.(4)直线与平面垂直的判定与证明方法:①用线面垂直定义:若一直线垂直于平面内任一直线,这条直线垂直于该平面.②用线面垂直判定定理:若一直线与平面内两相交直线都垂直,这条直线与平面垂直. ③用线面垂直性质:两平行线之一垂直平面,则另一条也必垂直这个平面.④用面面垂直性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一平面. ⑤用面面平行性质:一直线垂直于两平行平面之一,则必垂直于另一平面.⑥用面面垂直性质:两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面. 这六条线面垂直的判定方法其实质仍是转化思想,它们是线线、线面、面面垂直的转化. 案例1 如图,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图(1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.(1)试举出一直线与一平面相互垂直的例子(不少于4例);(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.【探究】在正方体中,所有的棱都和与它相交的面垂直,利用中点也可产生与棱垂直的面.(1)例如AB⊥平面BCKJ〔如图(1)〕;例如EF⊥平面MPON〔如图(1)〕;例如NF⊥平面ADKJ〔如图(2)〕;例如IC⊥平面AJL〔如图(3)〕.(2)正方体的棱有12条,而每一条棱都与3个平面垂直,如图(1)中棱IJ与平面ID、平面NP 与平面JC都垂直,所以与正方体的棱相关的“垂直关系组”的个数是12×3=36.【规律总结】挖掘正方体本身潜藏的特征,将每一条棱的情况分析清楚,做到不重不漏.案例2 如图,已知P是△ABC所在平面外一点,PA、PB、PC两两垂直,H是△ABC的垂心,求证:PH⊥平面ABC.【探究】根据判定定理,要证线面垂直,需证直线和平面内的两条相交直线垂直,根据H 是△ABC的垂心,可知BC⊥AH,又PA、PB、PC两两垂直,得PA⊥面PBC,于是PA⊥BC,由此可知BC垂直于平面PAH内的相交直线PA和AH,结论得证.证明:∵H是△ABC的垂心,∴AH⊥BC.①∵PA⊥PB,PA⊥PC,∴PA⊥平面PBC.又∵BC 平面PBC,PA⊥BC,②由①②知,BC⊥PH,同理,AB⊥PH,∴PH⊥平面ABC.【规律总结】根据所求证的结论,寻求所需的已知条件,看题目是否已经直接给出,或者从题目所给条件,经过推理能够得出,这是分析问题的重要方法,称为执果索因;也可从条件出发,将这一条件可能得出的结论一一列出,从中选出我们证题所需要的结论,这种分析问题的方法称为由因导果,发散性较强.二、平面与平面垂直的判定1.二面角从一条直线出发的两个半平面所组成的图形,叫二面角.以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.疑难疏引 (1)二面角的平面角,则是用来刻画二面角大小的一个概念.它和两条异面直线所成的角以与直线和平面所成的角一样,都化归为用平面内两条相交直线所成的角来表示.但必须注意二面角的平面角所在平面应垂直于二面角的棱,二面角的平面角的两条边分别在二面角的两个面内.而二面角的平面角的大小是由二面角的两个面的相互位置所确定的,与二面角的平面角的顶点在棱a 上的位置无关.(2)二面角的计算方法①用定义作二面角的平面角——在棱上取一点,分别在两个面内作棱的垂线,这两条射线组成二面角的平面角.利用定义作二面角的平面角,关键在于找棱与棱上的特殊点.学习时要特别注意平移和补形方法的灵活运用.②用垂面法作二面角的平面角——作垂直于二面角的棱或二面角的两个半平面的垂面,则该垂面与二面角的两个半平面交线所成的角就是二面角的平面角.③面积法:如果一个多边形在一个平面内的射影是一个多边形,且这两个多边形所在平面所成的二面角为θ,则cosθ=原多边形面积射影多边形面积S S .案例3 已知四边形PABC 为空间四边形,∠PCA=90°,△ABC 是边长为32的正三角形,PC=2,D 、E 分别是PA 、AC 的中点,BD=10.试判断直线AC 与平面BDE 的位置关系,并且求出二面角P-AC-B 的大小.解:∵D 、E 分别是PA 、AC 的中点,∴DE ∥PC 且DE=21PC=1. ∵∠PCA=90°,∴AC ⊥DE.∵△ABC 是边长为32的正三角形,并且E 是AC 的中点,∴AC ⊥BE ,并且BE=3.∵DE∩BE=E ,∴直线AC 与平面DEB 垂直.∴∠DEB 为二面角P-AC-B 的平面角.在△BDE 中,由DE=1,BE=3,BD=10得DE 2+BE 2=BD 2,∴∠DEB=90°.综上所述,直线AC 与平面BDE 垂直,二面角P-AC-B 的大小为90°.【规律总结】 与二面角的棱垂直的平面和二面角的两个面相交的两条射线构成的角就是这个二面角的平面角.利用作与棱垂直的平面得到二面角的方法称为“垂面法”.案例4 已知△ABC 是正三角形,PA ⊥平面ABC ,且PA=AB=a ,求二面角A-PC-B 的正切值.【探究】 要求二面角的正切值,首先要在图形中构造出二面角的平面角,利用其平面角度量二面角的大小,过棱上一点,分别在两个面内作或证棱的垂线,即可产生二面角的平面角,充分利用三角函数定义求得正切值.解:取AC 的中点M ,连结BM ,作MN ⊥PC 于N ,连结BN.∵PA ⊥平面ABC ,∴平面PAC ⊥平面ABC.易证BM ⊥AC ,AC=平面PAC∩平面ABC.∴BM ⊥平面PAC(面面垂直的性质).∵MN ⊥PC ,∴NB ⊥PC.∴∠MNB 是二面角A-PC-B 的平面角.易知MN=a 42,BM=a 23. ∴tan ∠MNB=64223==a a MN BM . ∴二面角的正切值为6【规律总结】 度量二面角的大小是通过其平面角进行,所以在图形中构造出二面角的平面角,就能将空间问题转化为平面问题,利用直角三角形中锐角三角函数定义,有些问题也可用斜三角形中的直角三角形加以处理.2.两个平面互相垂直的判定常用的判定方法有:(1)定义法,即说明这两个平面所成的二面角是直二面角;(2)判定定理,即一个平面经过另一个平面的一条垂线,则这两个平面互相垂直;(3)两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.疑难疏引 两平面垂直的判定定理的特征:线面垂直面面垂直.它说明了线面垂直与面面垂直的密切关系,用符号表示为:若l ⊥α,l β,则α⊥β.利用判定定理证明两个平面垂直,关键是在其中的一个平面内寻找另一平面的垂线.案例5 如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°.求证:平面ABC ⊥平面BSC.【探究】 本题可以用两种方法来证明,一是作平面的垂线而后证明它在另一个平面内(证法一);二是在一个平面内找一条线段,证明它与另一个平面垂直(证法二).证法一:作AD ⊥平面BSC ,D 为垂足.∵∠ASB=∠ASC=60°,SA=SB=SC ,则AS=AB=AC ,∴D 为△BSC 的外心.又∠BSC=90°,∴D 为BC 的中点,即AD 在平面ABC 内.∴平面ABC ⊥平面BSC.证法二:取BC 的中点D ,连结AD 、SD ,易证AD ⊥BC.又△ABS 是正三角形,△BSC 为等腰直角三角形,∴BD=SD.∴AD 2+SD 2=AD 2+BD 2=AB 2=AS 2.由勾股定理的逆定理,知AD ⊥SD ,∴AD ⊥平面BSC.又AD ⊂平面ABC ,∴平面ABC ⊥平面BSC.【规律总结】 本题是证明面面垂直的典型例题,关键是将证明“面面垂直”的问题转化为证明“线面垂直”的问题.三、直线与平面垂直的性质直线与平面垂直的性质有:(1)一条直线垂直于一个平面,则这条直线垂直于该平面内的所有直线;(2)性质定理:垂直于同一平面的两条直线平行;(3)两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;(4)垂直于同一直线的两个平面平行.对于性质定理,它提供了一种证明线线平行的方法,揭示了“平行”与“垂直”的内在联系. 案例6 如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱AB 、BC 的中点,若点M 为棱B 1B 上的一点,当MBM B 1的值为多少时,能使D 1M ⊥平面EFB 1?并给出证明. 【探究】 本题属开放型问题,一般先猜后证.由于E 、F 为中点,所以猜想M 也是中点. 解:当11=MBM B 时,能使D 1M ⊥平面EFB 1,证明如下: 当M 为B 1B 中点时,在平面AA 1B 1B 内有△A 1MB 1≌△B 1EB ,∴∠B 1A 1M=∠BB 1E.而∠B 1MA 1+∠B 1A 1M=90°,∴∠B 1MA 1+∠BB 1E=90°.∴A 1M ⊥B 1E.∵D 1A 1⊥平面AA 1B 1B ,B 1E ⊂平面AA 1B 1B,∴D 1A 1⊥B 1E.由于A 1M∩D 1A 1=A 1,∴B 1E ⊥平面A 1MD 1.∵D 1M ⊂平面A 1MD 1,∴B 1E ⊥D 1M.同理,连结C 1M ,可证明B 1F ⊥D 1M.∵B 1E∩B 1F=B 1,∴D 1M ⊥平面EFB 1.【规律总结】 (1)猜想要和题目中的点的性质相联系.(2)平面内证两线垂直的方法可通过三角形中某两个角的和为直角来判断.四、两个平面垂直的性质两个平面垂直的性质有:(1)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直;(2)两个平面垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内. 疑难疏引 性质定理(1)成立要有两个条件:一是线在面内,二是线垂直于交线,才能线面垂直,这一定理也可简述为“面面垂直,则线面垂直”,它反映了面面垂直与线面垂直的密切关系;对于第二条性质,只要在其中一个平面内通过一点作另一平面垂线,那么这条垂线必在这个平面内,对点的位置,它既可以在交线上,也可以不在交线上.(2)运用两个平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.案例7 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面. 已知α⊥γ,β⊥γ,α∩β=l.求证:l ⊥γ.【探究一】在γ内取一点P ,作PA 垂直α与γ的交线于A ,PB 垂直β与γ的交线于B ,则PA ⊥α,PB ⊥β.∵l=α∩β,∴l ⊥PA,l ⊥PB.∵α与β相交,∴PA 与PB 相交.又PA ⊂γ,PB ⊂γ,∴l ⊥γ.【探究二】在α内作直线m 垂直于α与γ的交线,在β内作直线n 垂直于β与γ的交线,∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n.又n ⊂β,∴m ∥β.∴m ∥l,∴l ⊥γ.【探究三】在l 上取一点P ,过点P 作γ的垂线l′,l l l l l P P P l l P '=⋂⇒⎭⎬⎫⎩⎨⎧⊂'⊂'⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=''∈⊥⊥⎩⎨⎧∈∈⇒⎭⎬⎫=⋂∈βαβαγγβγαβαβα. 但α∩β=l,∴l 与l′重合.∴l ⊥γ.【规律总结】 探究一、探究二都是利用“两平面垂直时,在一个平面内垂直于两平面的交线的直线垂直于另一个平面”这一性质,添加了在一个平面内垂直于交线的直线这样的辅助线.这是两种证法的关键.探究三是利用“如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内”这一性质,添加了l′这条辅助线,这是关键.通过此例,应仔细体会两平面垂直时,添加辅助线的方法.五、几种转化关系1.线线垂直、线面垂直、面面垂直的相互转化.线线垂直、线面垂直、面面垂直是立体几何中的核心内容之一.首先由线面垂直的定义可知,若线面垂直则线和面内任何直线都垂直;根据线面垂直判定定理,若线垂直于面内的两条相交直线,则线面垂直,然后根据面面垂直的判定定理,若一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,我们可以简证为,线面垂直则面面垂直;同样根据面面垂直的性质定理,我们还可证得,若面面垂直则线面垂直.由上可得,利用线面垂直,可以证明线线垂直,也可以实现面面垂直的证明.因此,我们可以说线面垂直关系是线线垂直、面面垂直关系中的枢纽,通过线面垂直可以实现线线垂直和面面垂直关系的相互转化,即直线与直线垂直直线与平面垂直平面与平面垂直.2.空间直线、平面的平行与垂直的相互转化(1)线线、线面、面面平行与垂直位置关系的判定与证明是考查空间想象能力、逻辑推理能力的重点,这是我们作进一步的比较、串联、综合、力求达到巩固、提高的目的.(2)理解线线、线面、面面关系的转化.①不同层次的平行关系的转化.②不同层次的垂直关系的转化③平行与垂直的转化案例8 如图所示,已知PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.【探究】(1)要证明MN∥平面PAD,须证MN平行于平面PAD内某一条直线.注意到M,N分别为AB,PC的中点,可取PD的中点E,从而只须证明MN∥AE即可,证明如下:证明:取PD的中点E,连结AE 、EN.则EN 21CD 21AB AM , 故AMNE 为平行四边形,∴MN ∥AE.∵AE ⊂平面PAD ,MN ⊄平面PAD ,∴MN ∥平面PAD.(2)要证MN ⊥CD ,可证MN ⊥AB.由问(1)知,需证AE ⊥AB.∵PA ⊥平面ABCD.∴PA ⊥AB ,又AD ⊥AB ,∴AB ⊥平面PAD ,∴AB ⊥AE ,即AB ⊥MN.又CD ∥AB ,∴MN ⊥CD.(3)由问(2)知,MN ⊥CD ,即AE ⊥CD ,再证AE ⊥PD 即可.∵PA ⊥平面ABCD ,∴PA ⊥AD.又∠PDA=45°,E 为PD 的中点.∴AE ⊥PD,即MN ⊥PD.又MN ⊥CD.∴MN ⊥平面PCD.【规律总结】 本题是涉与线面垂直、线面平行、线线垂直诸知识点的一道综合题.题(1)的关键是选取PD 的中点E ,所作的辅助线使问题处理方向明朗化.线线垂直←线面垂直←线线垂直是转化规律.活学巧用1.判断题:正确的在括号内打“√”,不正确的打“×”.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.()(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.()(3)垂直于三角形两边的直线必垂直于第三边.()(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于a 的平面内.()(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解析:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”.(2)该命题的关键是这无数条直线具有怎样的位置关系.若为平行,则该命题应打“×”;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内这无数条直线的位置关系,则该命题应打“×”.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必须垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”.(5)三条共点直线两两垂直,设为a,b,c 有a,b,c 共点于O.∵a ⊥b,a ⊥c,b∩c=o,且b 、c 确定一平面,设为α,则a ⊥α.同理可知b 垂直于由a 、c 确定的平面,c 垂直于a 、b 确定的平面,∴该命题应打“√”.答案:(1)× (2)× (3)√ (4)√ (5)√2.直线l ⊥平面α,直线m ⊂α,则有()A.l 和m 异面B.l 和m 相交C.l ∥mD.l 不平行于m解析:直线l ⊥平面α,则l 和平面α有且只有一个交点即垂足P ,平面α内任一直线m 经过P 时,l 和m 相交,直线m 不经过P 时,由异面直线的判定定理知,l 和m 异面,故l 和m 不会平行.答案:D3.如图(1),在正方形SG 1G 2G 3中,E 、F 分别是边G 1G 2,G 2G 3的中点,D 是EF 的中点,现沿SE 、SF 与EF 把这个正方形折成一个几何体如图(2),使G 1、G 2、G 3三点重合于点G ,这样,下面结论成立的是( )A.SG ⊥平面EFGB.SD ⊥平面EFGC.GF ⊥平面SEFD.GD ⊥平面SEF解析:(1)(直接法)在图(1)中,SG 1⊥G 1E ,SG 3⊥G 3F ,右图(2)中,SG ⊥GE ,SG ⊥GF ,∴SG ⊥平面EFG.(2)(排除法)GF 即G 3F 不垂直于SF ,∴可以否定C ;在△GSD 中,GS=a(正方形边长),GD=a 42,SD=a 423, ∴SG 2≠SD 2+GD 2,∠SDG≠90°,从而否定B 和D.答案:A4.已知m 、n 为异面直线,m ∥平面α,n ∥α,直线l ⊥m,l ⊥n,则( )A.l ⊥αB.l 和α不垂直C.l 可能与α垂直D.以上都不对解析:在α内取一点P ,则m 和P 确定一个平面β,设β∩α=m′.∵m ∥α,∴m ∥m′.∵l ⊥m,∴l ⊥m′.n 和P 确定一个平面γ,设γ∩α=n′,∵n ∥α,∴n ∥n′. ∵l ⊥n,∴l ⊥n′.∵m 和n 是异面直线,∴m′和n′相交于P.∴l ⊥α.答案:A5.如图,BC 是Rt △ABC 的斜边,AP ⊥平面ABC ,连结PB 、PC ,作PD ⊥BC 于点D ,连结AD ,则图中共有直角三角形__________个.解析:Rt △PAB 、Rt △PAC 、Rt △ABC 、Rt △ADP.可证BC ⊥平面APD ,由BC ⊥AD ,BC ⊥PD可证Rt △PBD 、Rt △PDC 、Rt △ADB 、Rt △ADC 共8个.答案:86.如图,α∩β=CD,EA ⊥α,垂足A ,EB ⊥β,垂足B.求证:CD ⊥AB.解析:∵EA ⊥α,CD ⊆α,根据直线和平面垂直的定义,则有CD ⊥EA.同样∵EB ⊥β,CD ⊆β,则有EB ⊥CD.又EA∩EB=E ,根据直线和平面垂直判定定理,则有CD ⊥平面AEB.又∵AB ⊆平面AEB , ∴CD ⊥AB.7.在正方体ABCD-A 1B 1C 1D 1中,P 为DD 1的中点,O 为ABCD 的中心,求证:B 1O ⊥平面PAC.解析:使B 1O 垂直于平面PAC 中的两条相交直线.证明:连结AB 1、CB 1,设AB=1.因为AB 1=CB 1=2,AO=CO ,所以B 1O ⊥AC.连结PB 1.因为OB 12=OB 2+BB 12=23,PB 12=PD 12+B 1D 12=49,OP 2=PD 2+DO 2=43, 所以OB 12+OP 2=PB 12.所以B 1O ⊥PO.所以B 1O ⊥平面PAC.8.(1)二面角指的是( )A.两个平面相交所组成的角B.经过同一条直线的两个平面所组成的图形C.一条直线出发的两个半平面组成的图形D.两个平面所夹的不大于90°的角(2)下列说法错误的是( )A.过二面角的棱上某一特殊点,分别在两个半平面内引垂直于棱的射线,则这两条射线所成的角即为二面角的平面角B.和二面角的棱垂直的平面与二面角的两个半平面的交线所成的角即为二面角的平面角C.在二面角的一个面内引棱的垂线,该垂线与其在另一面内的射影所成的角是二面角的平面角D.二面角的平面角可以是一个锐角、一个直角或一个钝角解析:(1)根据二面角的定义讨论,故选C.(2)一一判断,可以发现应该选C.因为按C 中所给的方法,当二面角是一个锐角时,得到的确实是二面角的平面角;但当二面角是一个直二面角时,得到的是一个零度角;当二面角是一个钝角时,得到的是二面角平面角的一个补角.即C 中方法不具有普遍适用性.答案:(1)C (2)C9.如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角的大小关系是( )A.相等B.互补C.相等或互补D.大小关系不确定解析:如下图答案:C10.已知D 、E 分别是正三棱柱ABC —A 1B 1C 1的侧棱AA 1和BB 1上的点,且A 1D=2B 1E=B 1C 1.求过D 、E 、C 1的平面与棱柱的下底面A 1B 1C 1所成的二面角的大小.解析:如图,在平面AA 1B 1B 内延长DE 和A 1B 1交于点F ,则F 是面DEC 1与面A 1B 1C 1的公共点,C 1F 为这两个平面的交线,∴所求二面角就是D C 1F A 1的平面角.∵A 1D ∥B 1E ,且A 1D=2B 1E ,∴E 、B 1分别为DF 和A 1F 的中点.∵A 1B 1=B 1C 1=A 1C 1,∴FC 1⊥A 1C 1.又面AA 1C 1C ⊥A 1B 1C 1,FC 1⊂面A 1B 1C 1,∴FC 1⊥面AA 1C 1C ,而DC 1⊂面AA 1C 1C ,∴FC 1⊥DC 1.∴∠DC 1A 1是二面角D-FC 1-A 1的平面角,由已知A 1D=B 1C 1=A 1C 1,∴∠DC 1A 1=4π. 故所求二面角的大小为4π. 11.河堤斜面与水平面所成的二面角为60°,堤面上有一条直道CD ,它与堤脚的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走1033 m 时人升高了_________米( ) B.5.5 C解析:取CD 上一点E ,设CE=103 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.作EF ⊥AB 于F ,则EG=EFsin60°=CE·sin30°sin60° =5.72152321310==⨯⨯ (m).答案:D12.如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )A.平面PAB与平面PBC、平面PAD都垂直B.它们两两都垂直C.平面PAB与平面PBC垂直、与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直解析:在平面PAB中,∵AD⊥AB,AD⊥PA且AB,PA⊂面PAB∴AD⊥面PAB∴面PAD⊥面PAB∵BC∥AD∴BC⊥面PAB∴面PBC⊥面PAB答案:A13.已知m、l是直线,a、β是平面,给出下列命题:(1)若l垂直于α内两条相交直线,则l⊥α;(2)若l平行于α,则l平行于α内的所有直线;(3)若m⊂α,l⊂β,且l⊥m,则α⊥β;(4)若l⊂β,且l⊥α,则α⊥β;(5)若m⊂α,l⊂β,且α∥β,则l∥m.其中正确的命题的序号是( )解析:本题考查线与线、线与面、面与面的位置关系.命题(1)是线面垂直的判定定理,所以正确;命题(2),l∥α,但l不能平行于α内所有直线;命题(3),l⊥m,不能保证l⊥α,即分别包含l与m的平面α、β可能平行也可能相交而不垂直;命题(4),为面面垂直的判定定理,所以正确;命题(5),α∥β,但分别在α、β内的直线l与m可能平行,也可能异面.答案:(1)、(4)14.在空间,下列哪些命题是正确的( )①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于同一个平面的两条直线互相平行A.仅②不正确B.仅①④正确C.仅①正确D.四个命题都正确解析:①该命题就是平行公理,因此该命题是正确的.②如图(1),直线a⊥平面α,b⊆α,c⊆α,且b∩c=A,则a⊥b,a⊥c,即平面α内两条相交直线b,c都垂直于同一条直线a,但b,c的位置关系并不是平行,另外,b,c的位置关系也可以是异面,如果把直线b平移到平面α外,此时,与a的位置关系仍是垂直,但此时b,c的位置关系是异面.③如图(2),在正方体ABCD—A1B1C1D1中,易知A1B1平面ABCD,A1D1∥平面ABCD,但A1B1∩A1D1=A1,因此该命题是错误的,④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.(1) (2)答案:B15.课本在证明直线与平面垂直的性质定理时采用的方法是反证法.请思考在什么情况下我们要使用反证法,它的步骤是什么?答:反证法一般用于从正面入手很难考虑的时候,如题目中有“不可能”、“没有”、“至少”、“至多”等词语时,很难直接应用定理或公式,这时它们的反面往往只有一种情况,只要将这一种情况否定了,命题便得到证明.反证法的证题步骤是:(1)假设命题结论的反面成立;(2)从这个假设出发,一步步推导出与某个定理、公式或已知条件相矛盾的结论;(3)肯定原命题结论正确.16.判断下列命题的真假①两个平面垂直,过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面;②两个平面垂直,分别在这两个平面内且互相垂直的两直线,一定分别与另一平面垂直;③两平面垂直,分别在这两个平面内的两直线互相垂直.解析:①若该点在两个平面的交线上,则命题是错误的,如图(1),正方体AC1中,平面AC⊥平面AD1,平面AC∩平面AD1=AD,在AD上取点A,连结AB1,则AB1⊥AD,即过棱上一点A的直线AB1与棱垂直,但AB1与平面ABCD不垂直,其错误的原因是AB1没有保证在平面ADD1A1内.可以看出:线在面内这一条件的重要性.②该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图(2),在正方体AC1中,平面AD1⊥平面AC,AD1⊆平面ADD1A1,AB⊆平面ABCD,且AB⊥AD1,即AB与AD1相互垂直,但AD1与平面ABCD不垂直;③如图(2),正方体AC1中,平面ADD1A1⊥平面ABCD,AD1⊆平面ADD1A1,AC⊂平面ABCD,AD1与AC所成的角为60°,即AD1与AC不垂直.答案:①假②假③假17.在下列命题中,假命题是( )A.若平面α内的一条直线垂直于平面β内的任一直线,则α⊥βB.若平面α内任一直线平行于平面β,则α∥βC.若平面α⊥平面β,任取直线l⊂α,则必有l⊥βD.若平面α∥平面β,任取直线l⊂α,则必有l∥β解析:A中,直线l⊥β,l⊂α,所以α⊥β,A为真命题;B中,在α内取两相交直线,则此二直线平行于β,则α∥β,B为真命题;D为两平面平行的性质,为真命题;C为假命题,l。
线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解例1题图决问题的关键.【例2】 已知:M ∩N =AB ,PQ ⊥M 于Q ,PO ⊥N 于O ,OR ⊥M 于R ,求证:QR ⊥AB .【解前点津】 由求证想判定,欲证线线垂直,方法有(1)a ∥b ,a ⊥c ⇒b ⊥c ;(2)a ⊥α,b ⊂α⇒a ⊥b ;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】 处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】 已知如图(1)所示,矩形纸片AA ′A ′1A 1,B 、C 、B 1、C 1 分别为AA ′,A 1A ′的三等分点,将矩形纸片沿BB 1,CC 1折成如图(2)形状(正三棱柱),若面对角线AB 1⊥BC 1,求证:A 1C ⊥AB 1.【解前点津】 题设主要条件是AB 1⊥BC ,而结论是AB 1⊥A 1C,题设,题断有对答性,可在例3题图解(1)ABB 1A 1上作文章,只要取A 1B 1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A 1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断AB 1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A 1D 垂直于AB 1,事实上DBD 1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段AB ,BC ,CD ,AB ⊥BC ,BC ⊥CD ,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,CD 1=6,AD 1的长是AD 的最小值,其中AH ⊥CD 1,AH =BC =4,HD 1=3,∴AD 1=5;在直角△AHD 2中,CD 2=6,AD 2是AD 的最大值为974)36(22222=++=+AH HD例4题图【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.●对应训练 分阶提升一、基础夯实1.设M 表示平面,a 、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①②B.①②③C.②③④D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( )A.DP ⊥平面PEFB.DM ⊥平面PEFC.PM ⊥平面DEFD.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直C.过a 一定可以作一个平面与b 垂直D.过a 一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有 ( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ6.AB 是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P 到AB 的距离为 ( )A.1B.2C.552D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;第3题图③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1C.2D.38.d 是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是 ( )A.α与β必相交且交线m ∥d 或m 与d 重合B.α与β必相交且交线m ∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③C.②与④D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是.12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC所成角的大小.第11题图 第12题图 第13题图15.如图所示,P A ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面P AD .(2)求证:MN ⊥CD .(3)若∠PDA =45°,求证:MN ⊥平面PCD .16.如图所示,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,∠BAD =60°,AB =4,AD =2,侧棱PB =15,PD =3.(1)求证:BD ⊥平面P AD .(2)若PD 与底面ABCD 成60°的角,试求二面角P —BC —A 的大小.17.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,求证:AB 1⊥A 1M .第15题图第16题图18.如图所示,正方体ABCD —A ′B ′C ′D ′的棱长为a ,M 是AD 的中点,N 是BD ′上一点,且D ′N ∶NB =1∶2,MC 与BD 交于P .(1)求证:NP ⊥平面ABCD .(2)求平面PNC 与平面CC ′D ′D 所成的角.(3)求点C 到平面D ′MB 的距离.第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,DP ⊥PF ,PE ⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a ,b ′确定的平面与直线b 平行.5.A ,m ⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l ⊥m ,故选A.6.D P 作PD ⊥AB 于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l ⊥α,∴l ⊥m 11.23cm 2 设正三角A ′B ′C ′的边长为a . ∴AC 2=a 2+1,BC 2=a 2+1,AB 2=a 2+4,第18题图又AC 2+BC 2=AB 2,∴a 2=2.S △A ′B ′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D 1—ABCD 中当底面四边形ABCD 满足条件AC ⊥BD (或任何能推导出这个条件的其它条件,例如ABCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB .14.(1)证明:∵H 为△VBC 的垂心,∴VC ⊥BE ,又AH ⊥平面VBC ,∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥AB ,VC ⊥BE ,∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC ,∴AB ⊥面DEC .∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,∴∠EDC =30°,∵AB ⊥平面VCD ,∴VC 在底面ABC 上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE ,∴VC ⊥面ABE ,∴VC ⊥DE ,∴∠CED =90°,故∠ECD=60°,∴VC 与面ABC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE .∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面P AD .(2)∵P A ⊥平面ABCD ,∴P A ⊥AB .又AD ⊥AB ,∴AB ⊥平面P AD .∴AB ⊥AE ,即AB ⊥MN .又CD ∥AB ,∴MN ⊥CD .(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面PCD .16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°,故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12. 第15题图解又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,即AD ⊥BD .在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D ,∴BD ⊥平面P AD .(2)由BD ⊥平面P AD ,BD 平面ABCD .∴平面P AD ⊥平面ABCD .作PE ⊥AD 于E ,又PE 平面P AD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD 所成的角.∴∠PDE =60°,∴PE =PD sin60°=23233=⨯. 作EF ⊥BC 于F ,连PF ,则PF ⊥BF ,∴∠PFE 是二面角P —BC —A 的平面角.又EF =BD =12,在Rt △PEF 中, tan ∠PFE =433223==EF PE . 故二面角P —BC —A 的大小为arctan 43. 17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°.∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵NP ∥DD ′∥CC ′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △MCD 中可知∠MCD =arctan 21,即为所求二面角的大小. (3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S aS h =⋅=。
直线、平面垂直的判定与性质讲义(2)课前双击巩固1.直线与平面垂直(1)定义:如果直线l与平面α内的都垂直,就称直线l与平面α互相垂直,记作l⊥α.直线l叫作平面α的,平面α叫作直线l的.(2)直线与平面垂直的判定与性质类别语言表述图形表示符号表示应用判定根据定义,证明一条直线垂直于一个平面内的任意一条直线b是平面α内任意一条直线,b⊂α,a⊥b}⇒a⊥α证明直线和平面垂直一条直线与一个平面内的都垂直,则该直线与此平面垂直a,b⊂α,a⋂b=O,l⊥a,l⊥b}⇒l⊥α如果两条平行直线中的垂直于一个平面,那么也垂直于同一个平面a⊥α,a∥b}⇒b⊥α性质如果一条直线和一个平面垂直,那么这条直线和这个平面内的都垂直b⊂α,a⊥α}⇒a⊥b 证明两条直线垂直垂直于同一个的两条直线平行a⊥α,b⊥α}⇒a∥b 证明两条直线平行2.两个平面垂直(1)定义:两个平面相交,如果它们所成的二面角是,就说这两个平面互相垂直.(2)两个平面垂直的判定和性质类别语言表述图形表示符号表示应用判 定 根据定义,证明两平面所成的二面角是∠AOB 是二面角α-l-β的平面角,且 ,则α⊥β证明 两平 面垂 直如果一个平面经过另一个平面的一条 ,那么这两个平面互相垂直l ⊂β,l ⊥α}⇒α⊥β 性 质如果两个平面垂直,那么它们所成 是直角α⊥β,∠AOB 是二面角α-l-β的平面角,则证明两条 直线 垂直 如果两个平面垂直,那么在一个平面内垂直于它们 的直线垂直于α⊥β,l ⊂β,α⋂β=a,l ⊥a }⇒l ⊥α证明 直线 与平 面垂 直常用结论1.与线面垂直相关的两个常用结论:(1)两平行线中的一条与平面垂直,则另一条也与这个平面垂直;(2)一条直线垂直于两平行平面中的一个,则与另一个平面也垂直.2.三种垂直关系的转化:线线垂直线面垂直面面垂直题组一 常识题1.[教材改编] 已知直线a ,b 和平面α,且a ⊥α,b ∥α,则a 与b 的位置关系为 .2.[教材改编] 已知三棱锥P-ABC 的三条侧棱都相等,顶点P 在底面ABC 上的射影为O ,则O 是△ABC 的 心.3.[教材改编] 如图7-43-1所示,在三棱锥P-ABC 中,PA ⊥底面ABC ,∠BAC=90°,F 是AC 的中点,E 是PC 上的点,且EF ⊥BC ,则PEEC = .图7-43-14.[教材改编]如图7-43-2所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,平面ADC⊥平面.图7-43-2题组二常错题◆索引:忽略线面垂直的条件致误;忽视平面到空间的变化致误.5. “直线a与平面α内的无数条直线都垂直”是“直线a与平面α垂直”的条件.6.已知直线a,b,c,若a⊥b,b⊥c,则a与c的位置关系为.7.已知直线a和平面α,β,若α⊥β,a⊥β,则a与α的位置关系为.8.已知互相垂直的平面α,β交于直线l,若直线n满足n⊥β,则n与l 的位置关系是.课堂考点探究探究点一垂直关系的基本问题1 (1)设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个说法中错误的是( )A.若a⊥b,a⊥α,b⊄α,则b∥αB.若a∥α,a⊥β,则α⊥βC.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β(2)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC[总结反思]解决空间中线面、面面垂直的问题有以下三种方法:(1)依据相关定理得出结论;(2)结合符合题意的模型(如构造正方体、长方体)作出判断;(3)否定命题时只需举一个反例即可.式题(1)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列四个说法中错误的是( )A.若m∥α,m∥β,α∩β=n,则m∥nB.若α⊥β,m⊥α,n⊥β,则m⊥nC.若α⊥β,α⊥γ,β∩γ=m,则m⊥αD.若α∥β,m∥α,则m∥β(2)若空间中四个不重合的平面α1,α2,α3,α4满足α1⊥α2,α2⊥α3,α3⊥α4,则下列结论一定正确的是( )A.α1⊥α4B.α1∥α4C.α1与α4既不垂直也不平行D.α1与α4的位置关系不确定探究点二线面垂直的判定与性质2在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,AB=2AD,E是AB 的一个三等分点(靠近点A),CE的延长线与DA的延长线交于点F,连接PF.证明:(1)CD⊥PF;(2)在线段PC,PD上可以分别找到两点A',A″,使得直线PC⊥平面AA'A″.图7-43-3[总结反思](1)解决直线与平面垂直问题的常用方法:①利用线面垂直的定义;②利用线面垂直的判定定理;③利用线面垂直的性质;④利用面面垂直的判定定理;⑤利用面面垂直的性质.(2)由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着“线面垂直”这个核心展开,这是化解空间垂直关系问题难点的技巧所在.式题如图7-43-4所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E,F分别是棱BC,CC1的中点.证明:(1)AB⊥平面AA1C1C;(2)EF⊥A1C.图7-43-4探究点三面面垂直的判定与性质3在四棱锥P -ABCD中,平面PAD⊥平面ABCD,AB∥CD,△PAD是等边三角形,已知AD=2,BD=2√3,AB=2CD=4.(1)设M是PC上一点,求证:平面MBD⊥平面PAD.(2)求四棱锥P -ABCD的体积.图7-43-5[总结反思](1)证明面面垂直的常用方法:①利用面面垂直的定义;②利用面面垂直的判定定理,转化为从现有直线中(或作辅助线)寻找平面的垂线,即证明线面垂直.(2)两个平面垂直问题,通常是通过“线线垂直→线面垂直→面面垂直”的过程来实现的.式题如图7-43-6,在三棱柱ABC - A1B1C1中,AC=AA1,AB=BC,∠AA1C1=60°,平面ABC1⊥平面AA1C1C.求证:BC1⊥平面AA1C1C.图7-43-6探究点四平行与垂直的综合问题考向1平行与垂直关系的证明4 如图7-43-7,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.图7-43-7[总结反思]处理空间图形中的平行与垂直问题,一般考虑判定定理和性质的应用,当满足相关定理的条件时,可直接使用相关定理得出结论.考向2探索性问题中的平行与垂直关系AD.5 如图7-43-8所示,在四棱锥P - ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD.图7-43-8[总结反思]处理空间中平行或垂直的探索性问题,一般是先根据条件猜测点或直线的位置再给出证明.点一般为中点或三等分点,直线一般为中位线.考向3折叠问题中的平行与垂直关系6 如图7-43-9(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC于点F,将△ABD沿BD折起,得到三棱锥A1-BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.图7-43-9[总结反思]证明折叠问题中的平行与垂直,关键是分清折叠前后图形的位置和数量关系的变与不变.一般地,折叠前位于“折痕”同侧的点、线间的位置和数量关系折叠后不变,而折叠前位于“折痕”两侧的点、线间的位置关系折叠后会发生变化.对于不变的关系可在平面图形中处理,而对于变化的关系则要在立体图形中解决.强化演练1.【考向1】在三棱锥S - ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,给出以下结论:①异面直线SB与AC所成的角为90°;②直线SB⊥平面ABC;③平面SBC⊥平面ABC;a.④点C到平面SAB的距离是12其中正确结论的个数是( )A.1B.2C.3D.4图7-43-102.【考向1】对于四面体ABCD,给出下列四个说法:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中正确的说法是( )A.①②B.②③C.②④D.①④3.【考向3】如图7-43-11,以等腰直角三角形ABC的斜边BC上的高AD为折痕,翻折△ABD和△ACD,使得平面ABD⊥平面ACD.给出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D - ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的结论是( )图7-43-11A.①②④B.①②③C.②③④D.①③④4.【考向2】如图7-43-12,在四棱锥P - ABCD中,PA⊥平面ABCD,底面ABCD为菱形,AB=1,∠,E为PD的中点,PA=1.ABC=π3(1)求证:PB∥平面AEC.(2)在棱PC上是否存在点M,使得直线PC⊥平面BMD?若存在,求出点M的位置;若不存在,说明理由.图7-43-12课时作业1.[2019昆明市高考模拟]已知直线l⊥平面α,直线m⊂平面β,则“α∥β”是“l⊥m”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2. [2019河南八市重点高中联考]《九章算术》中,将四个面都为直角三角形的四面体称为“鳖臑”.在如图8 - 4 - 1所示的四棱锥P - ABCD中,PD⊥平面ABCD,底面ABCD是正方形,且PD=CD,点E,F 分别为PC,PD的中点,图8 - 4 - 1则图中的鳖臑有( )A.2个B.3个C.4个D.5个3.[2019辽宁五校联考]在正方体ABCD - A1B1C1D1中,M,N分别是BC1,CD1的中点,则( )A.MN∥C1D1B.MN⊥BC1C.MN⊥平面ACD1D.MN⊥平面ACC14.[2020惠州市二调]如图8 - 4 - 2,AB为圆O的直径,点E,F 在圆O上,AB∥EF ,矩形ABCD所在平面和圆O所在平面互相垂直,已知AB=3,EF =1.(1)求证:平面DAF ⊥平面CBF .(2)设几何体F - ABCD,F - BCE的体积分别为V1,V2,求V1∶V2的值.图8 - 4 - 25.[2020安徽省示范高中名校联考]图8 - 4 - 3是由正方形ABCG,直角梯形ABED,三角形BCF 组成的一个平面图形,其中AB=2DE=2,BE=BF =CF =√3,将其沿AB,BC折起使得BE与BF 重合,连接DG,如图8 - 4 - 4.(1)证明:图8 - 4 - 4中的D,E,C,G四点共面,且平面ABD⊥平面DEC.(2)求图8 - 4 - 4中点A到平面BCE的距离.图8 - 4 - 3图8 - 4 - 46.[2019辽宁五校联考]在如图8 - 4 - 5所示的几何体中,DE∥AC,AC⊥平面BCD,AC=2DE=4,BC=2,DC=1,∠BCD=60°.(1)证明:BD⊥平面ACDE.(2)过点D作一平行于平面ABE的截面,画出该截面,说明理由,并求夹在该截面与平面ABE之间的几何体的体积.图8 - 4 - 5。
线面垂直、线面夹角1.线面垂直:如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 推论:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面. 推论:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面. 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.4.线面角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角;求线面角:“一作,二证,三计算”。
①平面的平行线与平面所成的角:规定为0。
②平面的垂线与平面所成的角:规定为90。
线线垂直⇒线面垂直 (线面垂直⇒线线垂直) 例1.如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证: PAC BC 平面⊥例 2. 三棱柱111ABC A B C -的侧棱1A A 垂直于底面ABC ,12A A =,1AC CB ==,90BCA ︒∠=,M 、N 分别是AB 、1A A 的中点.(1)求BN 的长;(2)求证:1A B CM ⊥.例3. 如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点(1)求证:CD ⊥AE ;(2)求证:PD ⊥面ABE. 线面角例4. 在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为 .例5. 如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 是BC 1的中点,则直线DE 与平面ABCD 所成角的正切值为 _________ .例6. 在正三棱柱ABC ﹣A 1B 1C 1中,侧棱长为,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 ________例7.a 是平面α的斜线,b α⊂,a 与b 成3π角,b 与a 在α内的射影成4π角,则a 与α所成角的大小为 。
直线与平面垂直的判定和性质(二)1.空间四边形ABCD 的四条边相等,那么它的两条对角线AC 和BD 的关系是( ).A .相交且垂直B .相交但不垂直C .不相交也不垂直D .不相交但垂直2.已知a 、b 是异面直线,那么经过b 的所在平面中( ).A .只有一个平面与a 平行B .有无数个平面与a 平行C .只有一个平面与a 垂直D .有无数个平面与a 垂直3.若直线l 与平面α 所成角为3π,直线a 在平面α 内,且与直线l 异面,则直线l 与直线a 所成的角的取值范围是( ). A .⎥⎦⎤⎢⎣⎡π32 0, B .⎥⎦⎤⎢⎣⎡3π 0, C .⎥⎦⎤⎢⎣⎡2π 3π, D .⎥⎦⎤⎢⎣⎡π32 3π, 4.直线a 、b 均在平面α 外,若a 、b 在平面α 上的射影是两条相交直线,则a 和b 的位置关系是( ).A .异面直线B .相交直线C .平行直线D .相交或异面直线5.ABCD 是平面α 内的一个四边形,P 是平面α 外的一点,则△P AB 、△PBC 、△PCD 、△PDA 中是直角三角形的最多有( ).A .1个B .2个C .3个D .4个6.已知直线PG ⊥平面α 于G ,直线EF α ,且PF ⊥EF 于F ,那么线段PE 、PF 、PG 的关系是( ).A .PE >PG >PFB .PG >PF >PEC .PE >PF >PGD .PF >PE >PG7.直线l 是平面α 的斜线,l 在α 内的射影为l '.若直线m ⊥l ,l m '⊥,则直线m 和平面α 的位置关系是( ).A .m αB .m αC .m ∥αD .m ∥α,或m α8.下列命题中正确的是( ).A .若a 是平面α 的斜线,直线b 垂直于a 在平面α 内的射影为a ',则a ⊥bB .若a 是平面α 的斜线,平面β 内的直线b 垂直于a 在平面α 内的射影为a ',则a ⊥bC .若a 是平面α 的斜线,直线b 平行于平面α ,且b 垂直于a 在平面α 内的射影a ',则a ⊥bD .若a 是平面α 的斜线,b 是平面α 内的直线,且b 垂直于a 在另一个平面β 内的射影a ',则a ⊥b9.如图9-28,已知PE 垂直于⊙O 所在平面,EF 是⊙O 的直径,点G 为圆周上异于E 、F 的一点,则下列结论中,不正确的是( ).A .FG ⊥平面PEGB .PG ⊥FGC .PF 与平面PEG 所成角为∠FPGD .EG ⊥PF图9-2810.设正方体1111D C B A ABCD -的棱长为1,则(1)A 到C B 1的距离等于________;(2)A 到1BD 的距离等于________;(3)A 到平面CD B A 11的距离等于________;(4)AB 到平面CD B A 11的距离等于________.11.已知正方体1111D C B A ABCD -.则(1)1AD 与平面ABCD 所成的角等于________;(2)1AC 与平面ABCD 所成的角的正切值等于________;(3)1AD 与平面C C BB 11所成的角等于________ ;(4)11C D 与平面C C BB 11所成的角等于________;(5)C B 1与平面D D BB 11所成的角等于________.12.如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点.求证:MN ⊥AB .图9-2913.如图9-30,直线a 、b 是异面直线,它们所成角为30°,A A '为a 、b 的公垂线段,cm 4='A A .另有B 在直线a 上,且BA =2cm ,求点B 到直线b 的距离.图9-3014.如图9-31,SA 、SB 、SC 三条直线两两垂直,点H 是S 在平面ABC 上的射影,求证:H 是△ABC 的垂心.图9-3115.如图9-32,△ABD 和△ACD 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:图9-32(1)BD ⊥平面ADC ;(2)若H 是△ABC 的垂心,则H 为D 在平面ABC 内的射影.16.P A 、PB 、PC 是从点P 出发的三条射线,每两条射线的夹角为60°,求直线PC 与平面P AB 所成的角的余弦值.参考答案1.D .取BD 中点O ,则BD ⊥AO ,BD ⊥CO ,故BD ⊥平面ACO ,因此BD ⊥AC .2.A .过b 上任一点P 作直线a a //',由a '和b 确定的平面α 与a 平行,这个平面是过b 且平行于a 的唯一一个平面.故排除B .当a 与b 不垂直时,假设存在平面β ,使b β ,且a ⊥β ,则a ⊥b ,这与a 、b 不垂直矛盾,所以当a 、b 不垂直时,不存在经过b 且与a 垂直的平面,当a 、b 垂直时,过b 且与a 垂直的平面是唯一的,设a 、b 的公垂线为c ,则由c 和b 所确定的平面与a 垂直,且唯一.3.C .因为直线l 是平面的斜线,斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角,故a 与l 所成的角大于或等于3π;又因为异面直线所成的角不大于2π,故选C . 4.D .5.D .作矩形ABCD ,P A ⊥平面AC ,则所有的三角形都是直角三角形.6.C .如图答9-17.PG ⊥α ,EF α ,PF ⊥EF ,则GF ⊥EF .在Rt △PGF 中,PF 为斜边,PG 为直角边,PF >PG .在Rt △PFE 中,PF 为直角边,PE 为斜边,PE >PF ,所以有PE >PF >PG .图答9-177.D .8.C .如图答9-18,直线b 垂直于a 在平面α 内的射影,但不能得出a ⊥b 的结论.排除A .令β 是直线a 与其在α 内的射影a '确定的平面,在β 内取垂直于a '的直线为b ,不能得出a ⊥b 的结论.排除B .同理排除D .如图答9-19,在α 内任取点P ,∵ b P ∉,则过b 与P 确定平面γ ,设b '=αγ ,因为b ∥α ,则b b '//.∵ a b '⊥,∴ a b '⊥'.∴ a b ⊥',∴ b ⊥a .于是C 正确.图答9-18 图答9-199.D .G 是⊙O 圆周上一点,则FG ⊥EG .∵ PE ⊥平面EFG ,∴ PE ⊥FG .)()(正确平面正确平面 B A PG FG PEG PG PEG FG PE FG EG FG ⊥⇒⎪⎭⎪⎬⎫≠⊂⊥⇒⎭⎬⎫⊥⊥ 假设EG ⊥PF ,又∵ EG ⊥FG ,∴ FG ⊥平面PFG .∴ EG ⊥PG .∵ PE ⊥EG ,P 、E 、G 共面,∴ PE ∥PG .这与PE ,PG 交于一点P 矛盾,∴ “EG ⊥PF ”不成立.10.(1)连接1AB ,AC ,则AC AB =1,取C B 1的中点E ,连结AE ,则C B AE 1⊥. ∴ AE 为点A 到直线C B 1的距离,在Rt △ACE 中,2=AC ,221211==C B CE , ∴ =2AE 23212)22()2(22=-=-,∴ 26=AE .即A 到1B 、C 的距离等于26. (2)连结1AD .∵ AB ⊥平面11A ADD ,∴ 1AD AB ⊥.在Rt △1ABD 中,AB =1,21=AD ,31=BD ,设A 到1BD 的距离为h ,则112121BD h AD AB ⋅=⋅⋅.即=⨯⨯2121321⋅h ,∴ 3632==h ,即点A 到1BD 的距离为36. (3)连结1AD 交D A 1于F ,则D A AF 1⊥.∵ CD ⊥平面D D AA 11,且AF 平面D D AA 11,∴ CD ⊥AF .∵ CD ∩AD =D ,∴ AF ⊥平面CD B A 11.∴ AF 为点A 到平面CD B A 11的距离.∵ 21=AD ,∴ 22211==AD AF . (4)∵ AB ∥CD ,∴ AB ∥平面CD B A 11,∴ AB 到平面CD B A 11的距离等于A 点到平面CD B A 11的距离,等于22. 11.(1)∵ D D 1⊥平面ABCD ,∴ AD D 1∠为1AD 与平面ABCD 所成的角,AD D 1∠ =45°.(2)∵ C C 1⊥平面ABCD ,∴ AC C 1∠为1AC 与平面ABCD 所成的角.设11=CC ,则2=AC ,∴ .2221t a n 11===∠AC CC AC C(3)∵ 1AD 平面C C BB 11,11//AD C B ,∴ 1AD ∥平面C C BB 11,∴ 1AD 与平面C C BB 11所成的角为0°.(4)∵ 11C D ⊥平面C C BB 11,∴ 11C D 与平面C C BB 11所成的角为90°.(5)连结AC ,交AD 于H .连结H B 1,∵ B B 1⊥平面ABCD ,CH 平面ABCD , ∴ CH B B ⊥1,又∵ CH ⊥BD ,∴ CH ⊥平面D D BB 11.∴ H B 1为C B 1在平面D D BB 11内的射影.∴ H CB 1∠为C B 1与平面D D BB 11所成的角.设正方体棱长为1,则21=C B ,2221==AC CH ,∴ ︒=∠301H CB ,即C B 1与平面D D BB 11所成的角为30°.12.连结AC ,取AC 中点O ,连结OM ,ON .由OM ∥BC ,得OM ⊥A B .又NO ∥P A ,且P A ⊥AB ,故NO ⊥AB .由此可得AB ⊥平面OMN .因此MN ⊥AB .13.如图答9-A '作a a //',则a '与b 确定平面α .作a BC '⊥于C ,在平面α 内作CD ⊥b 于D ,连结B D .∵ a A A ⊥'∴ a A A '⊥'. ∵ b A A ⊥',A b a '=' ,∴α⊥'A A .∵ A A BC '//,∴ BC ⊥α .∵ CD ⊥b ,∴ BD ⊥b (三垂线定理),即BD 为B 点到b 的距离.∵ a a '//,∴ D A C '∠为异面直线a 与b 所成的角,∴ ︒='∠30D A C .∵ 2=='AB C A ,︒='∠90A CD ,∴ CD =1.在Rt △BCD 中,4='=A A BC ,CD =1,∠BCD =90°,∴ 171422222=+=+=CD BC BD ,∴ 17=BD .图答9- 14.∵ SC ⊥SA ,SC ⊥SB ,且SA ∩SB =S ,∴ SC ⊥平面SAB ,∴ AB ⊥SC .∵ H 是S 在平面ABC 上的射影,∴ SH ⊥平面ABC .连结CH ,CH 为SC 在平面ABC 上的射影,∵ AB ⊥SC ,由三垂线定理的逆定理可知CH ⊥AB ,即CH 为AB 的垂线.同理AH ⊥BC ,即AH 为BC 边的垂线.H 为△ABC 两条垂线的交点,∴ H 为△ABC 垂心.15.(1)设AD =BD =CD =a ,则a AC AB 2==.∵ ∠BAC =60°,∴ a BC 2=.由勾股定理可知,∠BDC =90°.即BD ⊥DC ,又∵ BD ⊥AD ,AD ∩DC =D ,∴ BD ⊥平面ADC .(2)如图答9-21,要证H 是D 在平面ABC 上的射影,只需证DH ⊥平面ABD .连结HA 、HB 、HC .∵ H 是△ABC 的垂心,∴ CH ⊥AB .∵ CD ⊥DA ,CD ⊥BD ,∴ CD ⊥平面ABD ,∴ CD ⊥AB .∵ CH ∩CD =C ,∴ AB ⊥平面DCH . ∵ DH 平面DCH ,∴ AB ⊥DH ,即DH ⊥AB ,同理DH ⊥BC .∵ AB ∩BC =B ,∴ DH ⊥平面ABC .图答9-2116.如图答9-22,在PC 上任取一点D ,作DH ⊥平面P AB 于H ,则∠DPH 为PC 与平面P AB 所成的角.作HE ⊥P A 于E ,HF ⊥PB 于F ,连结PH ,DE ,DF .∵ EH 、FH 分别为DE 、DF 在平面P AB 内的射影,由三垂线定理可得DE ⊥P A .DF ⊥PB .∵ ∠DPE =∠DPF ,∴ △DPE ≌△DPF .∴ PE =PF .∴ Rt △HPE ≌Rt △HPF ,∴ HE =HF ,∴ PH 是∠APB 的平分线.设EH =a ,则PH =2EH =2a ,a PE 3=.在Rt △PDE 中,∠DPE =60°,DE ⊥P A ,∴ a PE DP 322==.在Rt △DPH 中,DH ⊥HP ,PH =2a ,a DP 32=,∴ .33322c o s ===∠a a DP PH DPH图答9-22。