滑坡稳定性定量分析法(最新)
- 格式:docx
- 大小:266.29 KB
- 文档页数:4
堆积体滑坡稳定性的实时定量评价法摘要:介绍一种以钻孔倾斜仪深部变形监测为基础的评价堆积体滑坡完整性程度(破坏程度)的完整性指标Si(破坏性指标Sf)的方法,该方法可以在施工过程中根据孔口累计变形中滑带和滑坡体累计变形的各自变化关系计算出Si和Sf指标值,实时定量评价滑坡施工过程中滑带自下而上渐进破坏过程中稳定性的变化。
破坏采用相对变形峰值标准,根据这种破坏标准可以看到,滑坡以滑带破坏为标志,滑带破坏则以滑带上盘破坏为标志。
滑坡完整时对应Si=1,Sf=0;滑坡完全破坏时Si=0和Sf=1,不同破坏程度对应于[0,1]之间的某一值。
工程实例表明,该方法不仅行之有效,而且非常方便。
关键词:边坡工程;堆积体滑坡;稳定性;实时定量评价;深部变形;监测中图分类号:P642.22文献标识码:A文章编号:1000–6915(2008)10–2146–07REAL-TIMEQUANTITATIVEASSESSMENTMETHODOFSTABILITY FORTALUSLANDSLIDELIDi,ZHANGMan,LIYiming1,LIYundong211(1.ResearchCenteronWaterEngineeringSafetyandDisasterPreve ntionoftheMinistryofWaterResourcesofthePeople′sRepublicof China,YangtzeRiverScientificResearchInstitute,Wuhan,Hubei430019,China;2.ChangjiangInstituteofSurvey,Planning andResearch,ChangjiangWaterResourcesCommission,Wuhan,Hubei430010,China)Abstract:Themechanicalparametersandboundaryconditionsoflandslide oftenchangewithtimeduringtheprocessofconstruction.Traditio nalquantitativeassessingmethodsoflandslidestability,suchaslimitequilibriummethod,finiteelementmethodetc.,areprettydifficulttosimulatethedynamicmechanicalbehaviorofl andslideduringtheprocessofconstructionatthepresenttime,soitcannotachievethereal-timequantitativeassessmentforlands lidestability.Areal-timequantitativeassessingmethodoflandslid estabilityinperiodofconstrictionisproposed.Thenewmethodbas edondeformationmonitoringatdepthoflandslidemayavoidthee rrorscausedbythenodeterminacyofcalculatingmodels,mechanicalparametersandboundaryconditionsetc.Accordingt otherespectiverelationshipoftheaccumulateddeformationofsli dingsurfaceandslipmass,bycalculatingthevalueofSiandSf,thereal-timequantitativeassessingthestabilityofslidingsurfacefr ombelowtoaboveintheprogressofconstructionisconducted.Th efailurecriterionisthepeakvalueofrelativedeformation.Accordin gtothecriterion,thesymboloflandsideinstabilityisthefailureofslidingzonewhichi smarkedbythedestroyofslidingzone′shangingwall.WhenSi=1or Sf=0,thelandsideiscompletestability;whenSi=0orSf=1,thelandslideiseventualfailure.Differentdestructivecorresponda valuebetween0and1.Moreover,itshowsthatthemethodiseasytouseandveryefficientinapplicatio n.Keywords:slopeengineering;taluslandslide;stability;real-timequantitativeassessment;deformationoflandslideindepth;monitoring收稿日期:2008–06–12;修回日期:2008–07–28基金项目:国家自然科学基金资助项目(40772193);中央级公益科研院所基金资助项目(YWF200817)作者简介:李迪(1937–),男,1961年毕业于武汉大学数学系,现任教授级高级工程师,主要从事岩石力学试验和大坝安全监测方面的研究工作。
滑坡的稳定度分析方法(假日专题)在国内进行多次培训班讲课时,很多人都非常关心滑坡的参数的反算。
因此,我就归纳一下,供大家参考。
滑面参数的反算,滑坡的稳定度合理确定是第一步。
稳定度的合理选取是滑面参数反算的基础,对滑坡下滑力(潜在下滑力)计算具有直接的影响,是滑坡防治的关键参数之一。
根据滑坡各个阶段的不同稳定度特征,可将滑坡划分为稳定阶段、基本稳定阶段、欠稳定阶段、失稳阶段和压密阶段五个阶段。
其中欠稳定阶段、失稳阶段作为滑坡防治的研究重点,又将欠稳定阶段细分为蠕动阶段、挤压阶段,失稳阶段细分为微滑阶段和剧滑阶段。
1)稳定阶段:坡体的坡形坡率符合岩土体的强度条件,无地下水,坡体的整体或局部稳定系数均符合要求,坡体没有任何变形,稳定系数K≥1.15。
2)基本稳定阶段:坡体的坡形坡率符合岩土体的强度条件,少有地下水,坡体的整体和局部均稳定,但坡面有冲沟、剥落、落石等,稳定系数1.15>K≥1.10。
3)欠稳定阶段:坡体受地下水影响岩土强度降低,坡体产生不同形态的裂缝和局部坍滑,稳定系数1.10>K≥1.0。
①蠕变阶段:滑坡后缘出现断续状裂缝,随着时间推移,裂缝逐渐由断续状向贯通状发展,宽度不断加大。
此阶段坡体变形主要集中在滑坡上部,滑坡的变形是局部的,主滑面还没有形成,滑坡的整体稳定系数1.10>K≥1.05。
②挤压阶段:滑坡后缘的拉张裂缝向滑坡两侧逐渐延伸,形成了较为明显的圈椅状主拉裂缝,滑坡两侧界裂缝向下逐渐贯通,且裂缝两侧出现雁列状排列的羽状裂缝,滑坡前缘出现放射状挤压裂缝及鼓胀裂缝,滑坡的整体稳定系数1.05>K≥1.0。
4)失稳阶段:滑坡形坡率不符合岩土强度条件,滑体发生整体较大距离的变形,稳定系数K<1.0。
①微滑阶段:滑坡的滑面及四周不同性质的裂缝已完全贯通,滑坡发生整体滑动变形,滑坡的阻力参数已由坡体的内摩擦转换为外摩擦,滑坡的整体稳定系数约在1.0>K≥0.95。
②剧滑阶段:滑坡出现明显的变形滑移,滑体脱离依附的滑面向前发生滑动,能量充分释放,有些大型滑坡在滑动过程中,往往伴随着气浪、巨响等现象,滑坡稳定系数K<0.95。
对最不利滑移横断面进行各种工况稳定性分析计算,计算过程如下:一、天然工况滑坡剩余下滑力计算计算项目:滑坡推力计算 1===================================================================== 原始条件:滑动体重度= 19.000(kN/m3)滑动体饱和重度= 25.000(kN/m3)安全系数= 1.250不考虑动水压力和浮托力不考虑承压水的浮托力不考虑坡面外的静水压力的作用不考虑地震力坡面线段数: 6, 起始点标高 4.000(m)段号投影Dx(m) 投影Dy(m) 附加力数1 13.600 0.700 02 12.250 7.000 03 2.000 0.000 04 12.000 8.000 05 24.500 0.500 06 127.000 27.000 0水面线段数: 1, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m)1 0.000 0.000滑动面线段数: 5, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度)1 12.000 0.600 10.000 14.5002 9.900 1.300 10.000 14.5003 28.000 9.000 10.000 14.5004 8.400 2.800 10.000 14.5005 117.000 29.000 10.000 14.500计算目标:按指定滑面计算推力-------------------------------------------------------------- 第 1 块滑体上块传递推力 = 0.000(kN) 推力角度 = 0.000(度)剩余下滑力传递系数 = 1.033本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 372.160(m2) 浸水部分面积 = 0.000(m2)本块总重 = 7071.031(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 120.540(m)下滑力 = 2126.464(kN)滑床反力 R= 6863.345(kN) 滑面抗滑力 = 1774.982(kN) 粘聚力抗滑力=1205.405(kN)--------------------------本块剩余下滑力 = -853.922(kN)本块下滑力角度 = 13.921(度)第 2 块滑体上块传递推力 = 0.000(kN) 推力角度 = 13.921(度)剩余下滑力传递系数 = 1.017本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 64.603(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1227.455(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 8.854(m)下滑力 = 485.194(kN)滑床反力 R= 1164.466(kN) 滑面抗滑力 = 301.151(kN) 粘聚力抗滑力 =88.544(kN) --------------------------本块剩余下滑力 = 95.499(kN)本块下滑力角度 = 18.435(度)第 3 块滑体上块传递推力 = 95.499(kN) 推力角度 = 18.435(度)剩余下滑力传递系数 = 0.997本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 273.373(m2) 浸水部分面积 = 0.000(m2)本块总重 = 5194.084(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 29.411(m)下滑力 = 2082.290(kN)滑床反力 R= 4945.943(kN) 滑面抗滑力 = 1279.108(kN) 粘聚力抗滑力=294.109(kN)--------------------------本块剩余下滑力 = 509.073(kN)本块下滑力角度 = 17.819(度)第 4 块滑体上块传递推力 = 509.073(kN) 推力角度 = 17.819(度)剩余下滑力传递系数 = 0.937本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 53.772(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1021.667(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 9.985(m)下滑力 = 667.080(kN)滑床反力 R= 1104.327(kN) 滑面抗滑力 = 285.598(kN) 粘聚力抗滑力 =99.850(kN) --------------------------本块剩余下滑力 = 281.631(kN)本块下滑力角度 = 7.481(度)第 5 块滑体上块传递推力 = 281.631(kN) 推力角度 = 7.481(度)剩余下滑力传递系数 = 0.976本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 48.106(m2) 浸水部分面积 = 0.000(m2)本块总重 = 914.012(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 12.015(m)下滑力 = 337.771(kN)滑床反力 R= 935.548(kN) 滑面抗滑力 = 241.949(kN) 粘聚力抗滑力 =120.150(kN) --------------------------本块剩余下滑力 = -24.328(kN) < 0本块下滑力角度 = 2.862(度)二、暴雨工况滑坡剩余下滑力计算计算项目:滑坡推力计算 1===================================================================== 原始条件:滑动体重度= 22.000(kN/m3)滑动体饱和重度= 25.000(kN/m3)安全系数= 1.150不考虑动水压力和浮托力不考虑承压水的浮托力不考虑坡面外的静水压力的作用不考虑地震力坡面线段数: 6, 起始点标高 4.000(m)段号投影Dx(m) 投影Dy(m) 附加力数1 13.600 0.700 02 12.250 7.000 03 2.000 0.000 04 12.000 8.000 05 24.500 0.500 06 127.000 27.000 0水面线段数: 1, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m)1 0.000 0.000滑动面线段数: 5, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度)1 12.000 0.600 8.500 12.0002 9.900 1.300 8.500 12.0003 28.000 9.000 8.500 12.0004 8.400 2.800 8.500 12.0005 117.000 29.000 8.500 12.000计算目标:按指定滑面计算推力-------------------------------------------------------------- 第 1 块滑体上块传递推力 = 0.000(kN) 推力角度 = 0.000(度)剩余下滑力传递系数 = 1.022本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 372.160(m2) 浸水部分面积 = 0.000(m2)本块总重 = 8187.511(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 120.540(m)下滑力 = 2265.243(kN)滑床反力 R= 7947.032(kN) 滑面抗滑力 = 1689.194(kN) 粘聚力抗滑力=1024.594(kN)--------------------------本块剩余下滑力 = -448.544(kN)本块下滑力角度 = 13.921(度)第 2 块滑体上块传递推力 = 0.000(kN) 推力角度 = 13.921(度)剩余下滑力传递系数 = 1.014本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 64.603(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1421.263(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 8.854(m)下滑力 = 516.859(kN)滑床反力 R= 1348.329(kN) 滑面抗滑力 = 286.596(kN) 粘聚力抗滑力 =75.262(kN) --------------------------本块剩余下滑力 = 155.001(kN)本块下滑力角度 = 18.435(度)第 3 块滑体上块传递推力 = 155.001(kN) 推力角度 = 18.435(度)剩余下滑力传递系数 = 0.998本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 273.373(m2) 浸水部分面积 = 0.000(m2)本块总重 = 6014.202(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 29.411(m)下滑力 = 2271.453(kN)滑床反力 R= 5727.359(kN) 滑面抗滑力 = 1217.388(kN) 粘聚力抗滑力=249.993(kN)--------------------------本块剩余下滑力 = 804.073(kN)本块下滑力角度 = 17.819(度)第 4 块滑体上块传递推力 = 804.073(kN) 推力角度 = 17.819(度)剩余下滑力传递系数 = 0.946本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 53.772(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1182.983(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 9.985(m)下滑力 = 968.142(kN)滑床反力 R= 1317.209(kN) 滑面抗滑力 = 279.981(kN) 粘聚力抗滑力 =84.872(kN) --------------------------本块剩余下滑力 = 603.288(kN)本块下滑力角度 = 7.481(度)第 5 块滑体上块传递推力 = 603.288(kN) 推力角度 = 7.481(度)剩余下滑力传递系数 = 0.980本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 48.106(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1058.329(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 12.015(m)下滑力 = 662.107(kN)滑床反力 R= 1105.586(kN) 滑面抗滑力 = 235.000(kN) 粘聚力抗滑力=102.127(kN)--------------------------本块剩余下滑力 = 324.980(kN) > 0本块下滑力角度 = 2.862(度)三、地震工况滑坡剩余下滑力计算计算项目:滑坡推力计算 1===================================================================== 原始条件:滑动体重度= 19.000(kN/m3)滑动体饱和重度= 25.000(kN/m3)安全系数= 1.150不考虑动水压力和浮托力不考虑承压水的浮托力不考虑坡面外的静水压力的作用考虑地震力,地震烈度为7度地震力计算综合系数 = 0.250地震力计算重要性系数 = 1.300坡面线段数: 6, 起始点标高 4.000(m)段号投影Dx(m) 投影Dy(m) 附加力数1 13.600 0.700 02 12.250 7.000 03 2.000 0.000 04 12.000 8.000 05 24.500 0.500 06 127.000 27.000 0水面线段数: 1, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m)1 0.000 0.000滑动面线段数: 5, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度)1 12.000 0.600 10.000 14.5002 9.900 1.300 10.000 14.5003 28.000 9.000 10.000 14.5004 8.400 2.800 10.000 14.5005 117.000 29.000 10.000 14.500计算目标:按指定滑面计算推力--------------------------------------------------------------第 1 块滑体上块传递推力 = 0.000(kN) 推力角度 = 0.000(度)剩余下滑力传递系数 = 1.033本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 372.160(m2) 浸水部分面积 = 0.000(m2)本块总重 = 7071.031(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 229.809(kN)有效的滑动面长度 = 120.540(m)下滑力 = 2220.626(kN)滑床反力 R= 6863.345(kN) 滑面抗滑力 = 1774.982(kN) 粘聚力抗滑力=1205.405(kN)--------------------------本块剩余下滑力 = -759.760(kN)本块下滑力角度 = 13.921(度)第 2 块滑体上块传递推力 = 0.000(kN) 推力角度 = 13.921(度)剩余下滑力传递系数 = 1.017本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 64.603(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1227.455(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 39.892(kN)有效的滑动面长度 = 8.854(m)下滑力 = 492.255(kN)滑床反力 R= 1164.466(kN) 滑面抗滑力 = 301.151(kN) 粘聚力抗滑力 =88.544(kN) --------------------------本块剩余下滑力 = 102.560(kN)本块下滑力角度 = 18.435(度)第 3 块滑体上块传递推力 = 102.560(kN) 推力角度 = 18.435(度)剩余下滑力传递系数 = 0.997本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 273.373(m2) 浸水部分面积 = 0.000(m2)本块总重 = 5194.084(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 168.808(kN)有效的滑动面长度 = 29.411(m)下滑力 = 2124.535(kN)滑床反力 R= 4946.019(kN) 滑面抗滑力 = 1279.127(kN) 粘聚力抗滑力=294.109(kN)--------------------------本块剩余下滑力 = 551.299(kN)本块下滑力角度 = 17.819(度)第 4 块滑体上块传递推力 = 551.299(kN) 推力角度 = 17.819(度)剩余下滑力传递系数 = 0.937本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 53.772(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1021.667(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 33.204(kN)有效的滑动面长度 = 9.985(m)下滑力 = 733.503(kN)滑床反力 R= 1111.905(kN) 滑面抗滑力 = 287.558(kN) 粘聚力抗滑力 =99.850(kN) --------------------------本块剩余下滑力 = 346.095(kN)本块下滑力角度 = 7.481(度)第 5 块滑体上块传递推力 = 346.095(kN) 推力角度 = 7.481(度)剩余下滑力传递系数 = 0.976本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 48.106(m2) 浸水部分面积 = 0.000(m2)本块总重 = 914.012(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 29.705(kN)有效的滑动面长度 = 12.015(m)下滑力 = 431.623(kN)滑床反力 R= 940.739(kN) 滑面抗滑力 = 243.292(kN) 粘聚力抗滑力 =120.150(kN) --------------------------本块剩余下滑力 = 68.181(kN) > 0本块下滑力角度 = 2.862(度)计算结果显示,在暴雨工况下滑移体剩余下滑力最大,为324.980 kN。
滑坡稳定性及滑坡防治工程的稳定性分析滑坡是一类比较严重的自然灾害,给人类的生活和生产带来很大的危害,尤其是在西南地区,由于地形地貌条件的制约,滑坡的发生是比较频繁的,为了能够减少滑坡灾害给人们的生命财产带来的巨大损失,研究滑坡的稳定性,探究滑坡防治工程的稳定性意义重大。
本文通过分析滑坡灾害形成的理论基础,对滑坡灾害的特征进行分析,探究滑坡的种类,并通过实例,分析滑坡的稳定性,并探究增强滑坡防治工程稳定性的有效措施,从而能够有效地防治滑坡灾害对人类造成的不良影响。
标签:滑坡稳定性滑坡防治工程稳定性分析在西南边区,滑坡灾害是一种危害极大的自然灾害,其造成的不良后果仅次于地震、火山、泥石流,滑坡带来的灾害是异常严重的。
现在,随着人们的生产活动越来越频繁,山区的滑坡问题也越来越严重。
滑坡给当地造成了严重的财产损失,给当地居民的生活和生产造成了巨大影响。
1滑坡灾害形成的机理和灾害特征1.1滑坡灾害的形成机理分析滑坡是指斜坡上的土体或者岩体,受河流冲刷、地下水活动、雨水浸泡、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱面或者软弱带,整体或者分散地顺坡向下滑动的自然现象。
滑坡灾害是在地质条件的作用下对人类的生活和生产造成严重灾害的一类地质灾害,会破坏人类生态的平衡。
滑坡的形成是由天然因素和人为因素形成的,天然因素主要有滑坡体本身的岩土体类型、地质构造条件、地形地貌条件、水文地质条件。
主要表现为:1.1.1岩土类型岩土体是产生滑坡的物质基础。
一般说,各类岩、土都有可能构成滑坡体,其中结构松散,抗剪强度和抗风化能力较低,在水的作用下其性质能发生变化的岩、土,如松散覆盖层、黄土、红粘土、页岩、泥岩、煤系地层、凝灰岩、片岩、板岩、千枚岩等及软硬相间的岩层所构成的斜坡易发生滑坡。
1.1.2地质构造条件组成斜坡的岩、土体只有被各种构造面切割分离成不连续状态时,才有可能向下滑动的条件。
同时、构造面又为降雨等水流进入斜坡提供了通道。
边坡稳定性的定量分析方法【学员问题】边坡稳定性的定量分析方法?【解答】1.刚体极限平衡分析法极限平衡法是根据边坡上的滑体分块的力学平衡原理(即静力平衡原理)分析边坡各种破坏模式下的受力状态以及边坡滑体上的抗滑力和下滑力之间的关系来评价边坡的稳定性。
工程中常用的有Fellenius法、Bishop法、Janbu法、Morgenstern-Price法、Spencer 法、传递系数法、Janbu法、契形体法、Sarma法等;此外还可采用Hovland法和Leshchinsky 法等对滑坡进行三维极限平衡分析。
2.数值分析法数值分析方法是目前使用最普遍的分析方法。
(1)有限元(FEM)法该方法在边坡稳定性分析中得到最早(1967年)应用,是目前广泛使用的一种数值分析方法。
但它不能很好地求解大变形和位移不连续等问题,对于无限域、应力集中问题等的求解还不理想。
(2)边界元(BEM)法与有限元方法不同,它只对研究区的边界进行离散,因而数据输入量较少。
该方法对处理无限域和半无限域问题较理想。
在处理材料的非线性、不均匀性、模拟分步开挖等方面远不如有限元法,同样不能求解大变形问题。
(3)流形法此方法以拓扑流形和微分流形为基础,在分析域内建立可相互重叠、相交的数学覆盖和覆盖材料全域的物理覆盖,在每一物理覆盖上建立独立的位移函数。
在几个覆盖的公共区域内将其所有覆盖上的独立位移函数加权求和既可形成适应于该域的总体位移函数,以次建立岩土工程中连续与不连续介质、动力与静力、大位移与小变形等问题的求解格式,是一种通用的数值分析方法。
(4)快速Lagrangian分析(FLAC)为克服有限元等数值分析法不能求解岩土大变形问题的缺陷,人们根据显式有限差分原理,提出了FLAC数值分析方法。
该方法较有限元方法能更好地考虑岩土体的不连续性和大变形特征,求解速度较快。
其缺点是同有限元方法一样,计算边界、单元网格的划分带有很大的随意性。
(5)离散元(DEM)法离散元法是由CundallPA(1971年)首先提出并应用于岩土体稳定性分析的一种数值分析方法。
1.边坡稳定性定性分析坡率法按照《建筑边坡工程技术规范》(GB50330-2002)表12.2.2,Ⅲ类微风化岩质边坡的坡率允许值为1:0.5~1:0.75,按1:0.5的高值比较,对应的坡率为63°,按1:0.75的低值比较,对应的坡率为53°,可研设计的终了台阶坡面角均为55°,接近规范规定的允许值的低值,远小于规范规定允许值的高值。
该边坡的坡率允许值理应按规定的低值确定,故可研设计的终了台阶坡面角接近正常值,即边坡处于稳定状态。
2.边坡稳定性定量计算(1)计算方法由于破坏形式主要为沿外倾结构面造成平面、楔形剪切破坏,按《建筑边坡工程技术规范》(GB50330—2002)中推荐的方法,采用赤平极射投影及极限平衡法分别对《铜陵上峰水泥股份有限公司铜陵县小冲矿区水泥配料用砂页岩矿开采终了平面图》提供的1-1'、I-I'线剖面(见图1-1)南北侧、东西侧边坡分别进行稳定性计算,安全系数取1.35。
图1-1 1-1'线开采终了剖面图(2)计算参数的选取计算参数的选取主要依据室内物理力学试验、并结合经验参数值进行反算。
计算参数综合取值见表1-1、表1-2、表1-3、表1-4。
(3)计算1)赤平极射投影①南北侧边坡赤平极射投影以Ⅲ类微风化白云岩为崩滑体,层面、构造裂隙面为潜在滑动面,呈平面或楔形崩滑。
计算结果见图1-1、图片1-2:a.北侧边坡岩质边坡赤平投影:图1-2 北侧边坡岩质边坡赤平投影表1-1 Ⅲ类岩体计算条件b.南侧边坡岩质边坡赤平投影:图1-3 南侧边坡岩质边坡赤平投影表1-2 Ⅲ类岩体计算条件从赤平投影计结果中可以看出,南侧边坡虽然存在顺向结构面(层面),但没有滑动的可能;北侧边坡结构面倾向坡外,故对边坡稳定无影响。
②东西侧边坡赤平极射投影以Ⅲ类微风化白云岩为崩滑体,层面、构造裂隙面为潜在滑动面,呈平面或楔形崩滑。
计算结果见图片1-6、图片1-7:图1-4 I-I'线开采终了剖面图a.西侧边坡岩质边坡赤平投影:图1-4 西侧边坡岩质边坡赤平投影表1-3 Ⅲ类岩体计算条件c.东侧边坡岩质边坡赤平投影:图1-4 东侧边坡岩质边坡赤平投影表1-4 Ⅲ类岩体计算条件从赤平投影计结果中可以看出,西侧边坡由于存在节理切割边坡,有近于直立走向,有滑动的可能;东侧边坡结构面也存在节理切割边坡,有近于直立走向,有滑动的可能。
论述滑坡稳定性评价方法滑坡稳定性分析方法包括定性分析法、定量分析法和非确定分析方法。
定性分析方法主要是通过工程地质勘察,对影响滑坡稳定性的主要因素、可能的变形破坏方式及失稳的力学机制等的分析,对己变形地质体的成因及演化史进行分析,从而给出被评价滑坡稳定性状况及可能发展趋势的定性的解释,其优点是能综合考虑影响滑坡稳定性的多种因素,对滑坡稳定状况及发展趋势快速做出评价。
常用的方法主要有:历史成因分析法、工程地质类比法、滑坡稳定性分析数据库和专家系统、图解法。
定量分析方法主要达到两个目的:一是计算已知滑面上的稳定系数;二是搜索对应最小稳定系数的临界滑动面。
定量分析方法主要包括:极限平衡分析法((LEM)和数值分析法。
极限平衡理论是经典的确定性分析方法,在工程界应用非常广泛。
极限平衡法基本原理是:设结构的稳定系数为Fx.,当结构材料的抗剪参数降低Fs倍后,结构内某一最危险滑面上的滑体将处于失稳的极限平衡状态。
极限平衡法在进行计算时的具体作法是,将滑动趋势范围内的滑坡岩土体按某种规则划分为一个个小块体,通过块体的平衡条件来建立整个滑坡平衡方程,以此为基础进行边坡分析。
计算机技术的发展使得采用全面满足静力许可、应变相容和材料本构关系,同时可以不受边坡几何形状不规则和材料不均匀限制的滑坡的稳定性分析方法成为可能,这就是数值分析方法。
数值分析方法可用于连续介质和不连续介质。
数值分析法主要有:有限单元法((FEM),、边界单元法((BEM)、块体理论和(BT)不连续变形分析方法((DDA)、快速拉格朗日法等。
不确定性分析方法在滑坡稳定分析中应用最早大约出现在20世纪70年代初。
一方面是由于一些新理论和方法如可靠度、人工智能等的出现;另一方面是由于在边坡工程设计和分析中涉及有大量不确定因素越来越被人们认识到,如岩体性质、荷载等物理方面的不确定性、取样、试验的统计不确定性,计算模型的不确定性和人为过失造成的不确定性等,这些不确定性造成的影响尽管通过提高岩石测试和计算技术的精度能在一定程度上减少,但局部试验的精确性、确定性并不能消除岩石形状宏观判断上的随意性和模糊性,而且不可能无限度提高单项试验的精度、规模和完善确定性计算方法,因此用较简单的测试手段来提高对岩石工程质量状态判断的精度,就显得十分必要。
土木工程中边坡稳定性分析方法在土木工程领域,边坡稳定性是一个至关重要的问题。
边坡的失稳可能会导致严重的人员伤亡和财产损失,因此,准确分析边坡的稳定性对于工程的安全和成功实施具有重要意义。
本文将探讨几种常见的土木工程中边坡稳定性分析方法。
一、定性分析方法1、工程地质类比法这是一种基于经验和对比的方法。
通过对已有的类似地质条件和边坡工程的研究和经验总结,来对新的边坡稳定性进行初步判断。
这种方法虽然简单快捷,但依赖于丰富的工程经验和大量的案例数据。
2、历史分析法通过研究边坡地区的历史地质活动、自然灾害记录以及以往的边坡变形破坏情况,来推断当前边坡的稳定性。
然而,这种方法受到历史资料完整性和准确性的限制。
二、定量分析方法1、极限平衡法这是目前应用较为广泛的一种方法。
它基于静力平衡原理,将边坡划分为若干个垂直条块,通过分析条块之间的力和力矩平衡,计算出边坡的安全系数。
常见的极限平衡法有瑞典条分法、毕肖普法等。
瑞典条分法假设滑动面为圆弧,不考虑条块间的作用力,计算较为简单,但结果相对保守。
毕肖普法考虑了条块间的水平作用力,计算结果更为精确,但计算过程相对复杂。
2、数值分析方法(1)有限元法将边坡离散为有限个单元,通过求解每个单元的应力和位移,来分析边坡的稳定性。
它可以考虑复杂的边界条件和材料非线性特性,能够更真实地模拟边坡的力学行为。
(2)有限差分法与有限元法类似,但采用差分格式来近似求解偏微分方程。
在处理大变形和复杂边界问题时具有一定的优势。
(3)离散元法特别适用于分析节理岩体等非连续介质的边坡稳定性。
它能够模拟块体之间的分离、滑动和碰撞等行为。
三、监测分析方法1、地表位移监测通过设置测量点,使用全站仪、GPS 等仪器定期测量边坡表面的位移变化。
当位移量超过一定的阈值时,提示边坡可能存在失稳风险。
2、深部变形监测采用钻孔倾斜仪、多点位移计等设备,监测边坡内部的深部变形情况。
这种方法能够更早地发现潜在的滑动面。
滑坡稳定性定量分析方法定量分析法是指通过对滑坡体滑动力矩的定量计算,确定滑坡体的稳定系数k,进而判断滑坡体的稳定性。
常用的方法主要有一下几种:1、恢复山体极限平衡状态法对于新发生的哈up哦,将山坡轮廓开始滑动瞬间的状态,认为此时山体处于极限平衡状态,而其稳定系数为k=1;按测定的滑面形状反求滑面上的综合抗剪强度值,然后将此值用于目前滑动后的山坡状态稳定计算,得出相应的稳定系数k值进行稳定性判断,由于全部滑带土强度指标按平均值考虑,其精度较差,用于滑体内土质均匀且滑动面抗滑强度指标变化不大时较准确。
根据滑带土的组成成分不同分为以下三种方法:(1)综合单位粘聚力法:适用于滑带土的组成成分以黏性土为主且土质较均匀、滑带饱水且滑动中排水困难的情况。
(2)综合内摩擦角法:适用于滑带土的组成成分以粗粒岩层或残积物为主,且在滑动中可排出滑带水的情形,一般是折线形滑动面。
(3)兼有综合内摩擦角法与综合粘聚力法:适用于滑动土的组成成分为含量接近的粘性土和岩层碎粒时的情况,可利用当地两个不同断面的核算联立方程进行反求,一般为折线形滑面。
2、斜坡当前稳定程度核算法对于老滑坡体,恢复其开始滑动瞬间的极限状态很困难,只有根据当前所处的状态,利用量测、实验等方法取得需要的计算指标,并考虑今后可能发生的变化与最不利的影响因素组合条件,加以分析调整,作为稳定性计算用,进而判断滑坡的稳定性。
滑带岩土的强度指标常因所处的部位的差异及滑坡所处的发展阶段的不同而有差别,所以滑带的各部分岩土的强度指标根据岩土的特性和含水条件加以细分。
分为以下两种。
(1)滑体大致等厚、滑床坡度的倾斜平面的层面滑坡。
(2)滑体厚度不等,滑床为多个坡度组成的折线型倾斜平面的滑坡。
3、坡脚应力与坡脚岩土强度对比法根据不同情况,可分为以下两种情况:(1)对于由相对较坚实的岩土所组成的山坡,其下伏地层为软弱层时,易产生深层滑坡,其滑带位置在下伏松散软弱层中,当松散软弱层受到上层山坡的荷载后,产生塑形变形区,区内剪应力增大到超过岩土的抗剪强度时,就连贯成一破裂面,滑体同此破裂面滑出。
滑坡稳定性分析方法综述滑坡是地质灾害中非常常见且危险的一种类型,对人类和环境都会造成严重影响。
因此,对滑坡稳定性进行分析并采取相应的防治措施是非常重要的。
本文将综述几种常用的滑坡稳定性分析方法。
1.传统方法:传统的滑坡稳定性分析方法主要基于力学原理,如库仑法和别尔斯原理。
库仑法是根据摩擦力和相对密度之间的关系来评估滑坡稳定性的方法。
别尔斯原理则是通过判断滑坡体上端是否具有抵抗力来评估稳定性。
这些传统方法适用于一些简单的滑坡情况,但在复杂的地质环境中效果较差。
2.数值模拟方法:随着计算机技术的发展,数值模拟方法逐渐成为滑坡稳定性分析的主要手段之一、数值模拟方法可以根据滑坡地质环境的具体情况,考虑多种因素,如地质构造、地形地貌、水文地质条件等。
常用的数值模拟方法包括有限元法、有限差分法和边界元法等。
这些方法能够提供较为准确的滑坡稳定性评估结果,对于复杂的工程项目尤为重要,但其需要较强的计算机运算能力和专业知识。
3.统计学方法:随着大数据和机器学习的快速发展,统计学方法在滑坡稳定性分析中也得到了广泛应用。
常见的统计学方法包括聚类分析、回归分析和人工神经网络等。
这些方法可以通过分析大量的历史滑坡数据,找出滑坡发生的规律和潜在的危险因素,从而为滑坡的预防和防治提供科学依据。
统计学方法的优势在于能够处理大量的数据,并较好地适应复杂的非线性关系。
4.案例研究方法:除了传统方法、数值模拟方法和统计学方法外,案例研究方法也是滑坡稳定性分析的重要手段之一、通过对历史滑坡案例的研究,可以总结出滑坡发生的一些共性和规律,并提供实际防治措施的参考。
案例研究方法能够充分发挥经验和实践的价值,对于缺乏数据的地区尤为重要。
综上所述,滑坡稳定性分析方法可以根据具体情况选择传统方法、数值模拟方法、统计学方法或案例研究方法。
不同的方法各有优劣,需要综合考虑滑坡地质环境、数据和计算条件等因素来选择适合的方法。
未来,随着科学技术的不断发展,滑坡稳定性分析方法将会变得更加精确和高效,以提供更好的预测和防治策略。
滑坡防治工程稳定性分析与评估方法滑坡是一种常见的地质灾害,对人们的生命财产安全和社会经济发展造成了严重威胁。
为了有效预防和应对滑坡灾害,进行滑坡防治工程的稳定性分析与评估是必不可少的工作。
本文将介绍滑坡防治工程稳定性分析与评估的方法。
1. 滑坡稳定性分析方法滑坡的稳定性分析是确定滑坡发生与发展的趋势,以及其对工程和人类的威胁程度的评估。
常用的滑坡稳定性分析方法包括:(1)力学分析法:基于力学原理和稳定性理论,通过计算和模拟滑坡体所受的各种力的作用,确定滑坡体的稳定性。
常用的力学分析方法有切片法、平衡法、有限元法等。
(2)统计分析法:通过统计不同地质条件下滑坡发生的概率,来评估滑坡的稳定性。
常用的统计分析方法有贝叶斯法、蒙特卡洛法等。
(3)数值模拟法:通过建立滑坡体的物理力学模型,并通过数值计算方法求解,得到滑坡体的稳定性评估。
常用的数值模拟方法有有限元法、边值法等。
2. 滑坡防治工程评估方法滑坡防治工程评估是为了评估滑坡防治工程的有效性和可行性,以及工程对环境的影响。
常用的滑坡防治工程评估方法包括:(1)效益评估法:通过对滑坡防治工程的经济收益、社会效益和环境效益等进行评估,确定工程的可行性和效益。
常用的效益评估方法有成本效益分析法、生命周期评估法等。
(2)风险评估法:通过对滑坡防治工程的风险进行评估,包括滑坡的潜在风险和滑坡防治工程的风险。
常用的风险评估方法有风险识别与分析法、风险影响评估法等。
(3)环境评估法:通过对滑坡防治工程对环境的影响进行评估,包括水土流失、土壤侵蚀、生态破坏等。
常用的环境评估方法有环境影响评价法、生态影响评估法等。
3. 滑坡防治工程稳定性分析与评估方法的应用滑坡防治工程稳定性分析与评估方法的应用可以提供科学的依据和技术支持,有效预防和应对滑坡灾害。
其应用包括以下方面:(1)滑坡治理方案的选择:根据滑坡稳定性分析和滑坡防治工程评估的结果,选择合适的滑坡治理方案,包括加固措施、引导水位措施等。
滑坡的稳定度分析方法滑坡是指在山坡、河滩、边坡等地表上,由于地质结构、地下水位、地震等因素的影响,导致地表土壤发生破坏和失稳而发生的滑动现象。
滑坡不仅对人类造成了巨大的经济和生命安全风险,同时也对环境造成了破坏。
因此,对滑坡的稳定度进行准确的分析和评估,对于防灾减灾工作具有重要意义。
一、定性稳定性评价:定性稳定性评价是指通过对滑坡区的地表观察、地质调查和室内试验等手段,根据工程经验和地质判断,对滑坡的稳定性进行判断和评价。
这种方法主要采用专家判断和经验总结的方式,对滑坡区的地质构造、岩土体物理性质、地下水情况等进行综合分析,从而对滑坡的稳定性进行初步评估。
虽然这种方法运用简单,但是其结果受人员经验和主观因素的影响较大,对于复杂的滑坡情况,并不具备精确性。
二、定量稳定度分析:定量稳定度分析是指通过一系列参数和定量计算方法,对滑坡的稳定性进行准确量化。
该方法主要采用地质力学原理和岩土力学参数,通过稳定方程的推导和求解,得出滑坡稳定判断的定量结果。
常用的定量稳定度分析方法包括贝克公式、斯拉美公式和古德曼公式等。
1.贝克公式:贝克公式用来计算边坡受剪切力和抗剪强度之间的平衡关系。
根据公式计算得到的边坡稳定度(FS)大于1时表示边坡稳定。
FS = c / W + tan(φ) × (W - U)其中,c为间接剪切强度;W为边坡的重力作用;U为上部地表的重力反作用;tan(φ)为滑动面的摩擦角。
2.斯拉美公式:斯拉美公式基于拉普拉斯变换和松弛法,可以计算出位移场和应力场。
通过反复迭代计算,得到最终的稳定结果。
FS=τ/c'其中,τ为剪切应力;c'为剪切强度。
3.古德曼公式:古德曼公式适用于岩石的稳定性分析,其基本流程是确定剪切面的类型、确定力学参数、推导出滑动面的破坏准则,并应用稳定分析原理进行计算。
FS = (τ / σ) - (C / σ) × tan(φ) × ((1 - sin(α)) / (1+ sin(α)))其中,τ为剪切应力;σ为正应力;C为岩石的内聚力;φ为滑动面的内摩擦角;α为滑动面的倾角。
【专业知识】边坡稳定性的定量分析方法【学员问题】边坡稳定性的定量分析方法?【解答】1.刚体极限平衡分析法极限平衡法是根据边坡上的滑体分块的力学平衡原理(即静力平衡原理)分析边坡各种破坏模式下的受力状态以及边坡滑体上的抗滑力和下滑力之间的关系来评价边坡的稳定性。
工程中常用的有Fellenius法、Bishop法、Janbu法、Morgenstern-Price 法、Spencer法、传递系数法、Janbu法、契形体法、Sarma法等;此外还可采用Hovland 法和Leshchinsky法等对滑坡进行三维极限平衡分析。
2.数值分析法数值分析方法是目前使用最普遍的分析方法。
(1)有限元(FEM)法该方法在边坡稳定性分析中得到最早(1967年)应用,是目前广泛使用的一种数值分析方法。
但它不能很好地求解大变形和位移不连续等问题,对于无限域、应力集中问题等的求解还不理想。
(2)边界元(BEM)法与有限元方法不同,它只对研究区的边界进行离散,因而数据输入量较少。
该方法对处理无限域和半无限域问题较理想。
在处理材料的非线性、不均匀性、模拟分步开挖等方面远不如有限元法,同样不能求解大变形问题。
(3)流形法此方法以拓扑流形和微分流形为基础,在分析域内建立可相互重叠、相交的数学覆盖和覆盖材料全域的物理覆盖,在每一物理覆盖上建立独立的位移函数。
在几个覆盖的公共区域内将其所有覆盖上的独立位移函数加权求和既可形成适应于该域的总体位移函数,以次建立岩土工程中连续与不连续介质、动力与静力、大位移与小变形等问题的求解格式,是一种通用的数值分析方法。
(4)快速Lagrangian分析(FLAC)为克服有限元等数值分析法不能求解岩土大变形问题的缺陷,人们根据显式有限差分原理,提出了FLAC数值分析方法。
该方法较有限元方法能更好地考虑岩土体的不连续性和大变形特征,求解速度较快。
其缺点是同有限元方法一样,计算边界、单元网格的划分带有很大的随意性。
打造最便宜
滑坡稳定性定量分析方法
目前,滑坡稳定性分析和工程治理主要是依据工程地质类比、自然历史分析、工程地质力学分析、极限平衡力学计算、弹塑性有限元计算等进行的,且在一定的程度上都有一定的实效性和可靠性。
滑坡是一个复杂的、非线性的动态系统,且大型滑坡规模大、机制复杂、破坏性强,不仅失稳影响范围广,而且防治难度高、治理措施复杂。
采用工程地质类比、历史反演和地质力学分析,需弄清地层结构、地质构造、地壳演化历史等问题。
通过对滑坡形成的地质环境条件、影响因素、变形破坏及形成机制等特征的综合性分析,滑坡堆积体在天然状态下处于稳定状态, 在连续降雨、暴雨影响下处于基本稳定状态。
在连续降雨、暴雨及地震等影响下处于欠稳定状态。
一、传统的稳定系数法。
稳定系数预测法是最早的滑坡空间预测方法,它是基于极限平衡法理论提出来的,是将有滑动趋势范围内的边坡土体沿某一滑动面切成若干竖条或斜条,在分析条块受力的基础上建立整个滑动土体的力
或力矩平衡方程,并以此为基础确定边坡的稳定安全系数。
这些方法均假设土体沿着一个潜在的滑动面发生刚性滑动或转动。
简化的极限平衡法有瑞典法,Bishop法、Spencer法,Janbu法, Sarma法等。
通过计算滑坡体的安全系数Fs,来预测边坡的稳定性。
Fs=F抗滑力/F下滑力
当Fs<1.0,不稳定状态;
当Fs=1.0,临界状态;
当Fs>1.0,稳定状态。
二、数值分析方法。
①有限单元法
有限元法是目前使用最广泛的一种数值分析方法。
优点是部分地考虑了边坡岩体的非均质和不连续性,可以给出岩体的应力、应变大小与分布;避免了极限平衡分析法中将滑体视为刚体而过于简化的缺点;能近似地从应力应变去分析边坡的变形破坏机制,分析最先、最容易发生屈服破坏的部位和需要首先进行加固的部位等。
但是对于大的变形和位移不连续问题的求解还不理想。
②离散单元法
离散单元法是处理结构控制型岩体工程问题较成熟方法。
该程序不但允许有限位移和离散体的转动及脱离,而且在计算过程中可以自动判别块体之间可能出现新的接触关系,因此它可以方便地实现对复杂结构体变形破坏的模拟,可以将所研究的区域划分为一个个多边块体单元,单元之间通过接触关系,建立位移和力的相互作用规律,通过迭代使得每一个块体都达到平衡状态。
在稳定分析中,它的功能在于反映岩块之间接触的滑移、分离和倾翻等大位移的同时,又能计算岩块内部的变形与应力,该法的另一个优点是利用显式时间差分解求解动力平衡方程,可方便地求解非线性大位移和动力稳定。
③统计分析方法。
这是目前国内外研究人员研究滑坡稳定性使用较多的一类方法。
统计分析方法建立在对滑坡影响因子和滑坡分布关系的分析之上,因此,它能最大程度反映滑坡分布与致灾因子之间的关系,使地质灾害危险性评价更加趋近于客观现实。
包括信息量法、多元统计方法、聚类分析方法等。
三、瑞典法的基本理论
瑞典圆弧滑动法是条分法中最古老而又最简单的方法。
除了假定滑裂面是个圆柱面外, 在求条底反力时忽略了条间力的作用, 且在求安全系数时仅考虑对同一点的力矩平衡。
其安全系数方程为:
再将求出得到安全系数与设计安全系数对比,从而分析出该系统的安全性。
四、有限元强度折减法
边坡稳定性分析的有限元强度折减法是通过不断降低边坡岩土体抗剪强度参数直至达到极限破坏状态为止, 程序自动根据弹塑性有限元计算结果得到滑动破坏面, 同时得到边坡的强度储备安全系数。
e.若滑体未充水,而在地震作用下滑动时,则稳定系数为:
⑵滑动面为折线时
大多数滑坡的滑动面为若干平面的组合,在主轴断面上呈折线,如图2.3。
对于这种类型的滑坡,稳定性计算又有若干简化假定:
①.假定以主轴断面1m宽土条代表整个滑坡,土条侧面的摩擦力不计;
值; ②.由于各段滑面的物质构成和含水状态不尽相同,故分别取各段不同的抗剪强度指标(参数)C、
③.以不同倾斜角度的滑面为依据将滑体分为若干块,块与块的相互作用简化为平行于滑面的推力,如图
2.3的E1和E3。