高中数学(人教版a版必修一)配套课时作业:第二章 基本初等函数 (ⅰ) 2.1.2(一) word版含解析
- 格式:doc
- 大小:348.50 KB
- 文档页数:8
§2.1 习题课一、选择题1.(1 22-⎡⎤⎢⎥⎣⎦的值为( ) A.2B.- 2C.22D.-222.化简3a-b3+a-2b2的结果是( )A.3b-2a B.2a-3b C.b或2a-3b D.b3.若0<x<1,则2x,(12)x,0.2x之间的大小关系是( )A.2x<0.2x<(12)x B.2x<(12)x<0.2xC.(12)x<0.2x<2x D.0.2x<(12)x<2x4.若函数则f(-3)的值为( )A.18 B.12C.2D.85.函数f(x)=a x-b的图象如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<06.函数f(x)=4x+12x的图象( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:120.064--(-14)0+160.75+120.01-=___________________________________.8.已知10m=4,10n=9,则3210m n-=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4;(3)1332⎛⎫⎪⎝⎭和2332⎛⎫⎪⎝⎭;(4)π-2和(13)-1.3.11.函数f(x)=a x(a>0,且a≠1)在区间[1,2]上的最大值比最小值大a2,求a的值.能力提升12.已知f(x)=aa2-1(a x-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图象,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§2.1 习题课作业设计1.C [原式=122-=12=22.] 2.C [原式=(a -b )+|a -2b |=⎩⎨⎧ b , a ≤2b ,2a -3b ,a >2b .]3.D [当0<x <1时,2x >1,(12)x <1, 对于(12)x ,(0.2)x ,不妨令x =12, 则有0.5>0.2.] 4.A [f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=2-3=18.]5.D [f(x)=a x-b的图象是由y=a x的图象左右平移|b|个单位得到的,由图象可知f(x)在R上是递减函数,所以0<a<1,由y=a x过点(0,1)得知y=a x的图象向左平移|b|个单位得f(x)的图象,所以b<0.]6.D [f(-x)=4-x+12-x=1+4x2x=f(x),∴f(x)是偶函数,图象关于y轴对称.]7.48 5=0.4-1-1+23+0.1=52-1+8+110=485.8.8 39.[-8,2 3 ]解析因为y=3x是R上的单调增函数,所以当x∈[-1,2]时,3x∈[3-1,32],即-3x∈[-9,-13],所以y=1-3x∈[-8,23].10.解(1)考查函数y=0.6x.因为0<0.6<1,所以函数y=0.6x在实数集R上是单调减函数.又因为3.5<3.7,所以0.63.5>0.63.7.(2)考查函数y=(2)x.因为2>1,所以函数y=(2)x在实数集R上是单调增函数.又因为-1.2>-1.4,所以(2)-1.2>(2)-1.4.(3)考查函数y=(32)x.因为32>1,所以函数y=(32)x在实数集R上是单调增函数.又因为13<23,所以1332⎛⎫⎪⎝⎭<2332⎛⎫⎪⎝⎭.(4)∵π-2=(1π)2<1,(13)-1.3=31.3>1,∴π-2<(13)-1.3.11.解(1)若a>1,则f(x)在[1,2]上递增,∴a2-a=a 2,即a=32或a=0(舍去).(2)若0<a<1,则f(x)在[1,2]上递减,∴a-a2=a2,即a=12或a=0(舍去).综上所述,所求a的值为12或32.12.解∵f(x)=aa2-1(a x-1a x),∴函数定义域为R,设x1,x2∈(-∞,+∞)且x1<x2,∴当a>1时,ax1<ax2,aa2-1>0∴f(x1)-f(x2)<0,f(x1)<f(x2),f(x)为增函数,当0<a<1时,,aa2-1<0∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)为增函数,综上,f(x)在R上为增函数.13.解函数y=|2x-1|的图象可由指数函数y=2x的图象先向下平移一个单位长度,然后再作x轴下方的部分关于x轴的对称图形,如图所示.函数y=m的图象是与x轴平行的直线,观察两图象的关系可知:当m<0时,两函数图象没有公共点,此时方程|2x-1|=m无解;当m=0或m≥1时,两函数图象只有一个公共点,此时方程|2x-1|=m有一解;当0<m<1时,两函数图象有两个公共点,此时方程|2x-1|=m有两解.。
§2.3 幂函数一、选择题1.下列函数中不是幂函数的是( )A.y=x B.y=x3C.y=2x D.y=x-12.幂函数f(x)的图象过点(4,12),那么f(8)的值为( )A.24B.64C.22D.1 643.下列是y=23x的图象的是( )4.图中曲线是幂函数y=x n在第一象限的图象,已知n取±2,±12四个值,则相应于曲线C1,C2,C3,C4的n依次为( )A.-2,-12,12,2B.2,12,-12,-2C.-12,-2,2,12D.2,12,-2,-125.设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是( )A.a>c>b B.a>b>cC.c>a>b D.b>c>a6.函数f(x)=xα,x∈(-1,0)∪(0,1),若不等式f(x)>|x|成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是( )A.0B.2C.3D.4二、填空题7.给出以下结论:①当α=0时,函数y=xα的图象是一条直线;②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大;④幂函数的图象不可能在第四象限,但可能在第二象限.则正确结论的序号为________.8.函数y=12x+x-1的定义域是____________.9.已知函数y=x-2m-3的图象过原点,则实数m的取值范围是____________________.三、解答题10.比较1.121、121.4、131.1的大小,并说明理由.11.如图,幂函数y =x3m -7(m ∈N )的图象关于y 轴对称,且与x 轴、y 轴均无交点,求此函数的解析式.能力提升12.已知函数f (x )=(m 2+2m )·21m m x +-,m 为何值时,函数f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.13.点(2,2)在幂函数f (x )的图象上,点(-2,14)在幂函数g (x )的图象上,问当x 为何值时,有:(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).§2.3 幂函数作业设计1.C [根据幂函数的定义:形如y =x α的函数称为幂函数,选项C 中自变量x 的系数是2,不符合幂函数的定义,所以C 不是幂函数.]2.A [设幂函数为y=xα,依题意,12=4α,即22α=2-1,∴α=-1 2 .∴幂函数为y=12x-,∴f(8)=128-=18=122=24.]3.B [y=23x=3x2,∴x∈R,y≥0,f(-x)=3-x2=3x2=f(x),即y=23x是偶函数,又∵23<1,∴图象上凸.]4.B [作直线x=t(t>1)与各个图象相交,则交点自上而下的排列顺序恰好是按幂指数的降幂排列的.]5.A [根据幂函数与指数函数的单调性直接可以判断出来,y=25x在x>0时是增函数,所以a>c;y=(25)x在x>0时是减函数,所以c>b.]6.B [因为x∈(-1,0)∪(0,1),所以0<|x|<1.要使f(x)=xα>|x|,xα在(-1,0)∪(0,1)上应大于0,所以α=-1,1显然是不成立的.当α=0时,f(x)=1>|x|;当α=2时,f(x)=x2=|x|2<|x|;当α=-2时,f(x)=x-2=|x|-2>1>|x|.综上,α的可能取值为0或-2,共2个.]7.④解析当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},故①不正确;当α<0时,函数y=xα的图象不过(0,0)点,故②不正确;幂函数y=x-1的图象关于原点对称,但其在定义域内不是增函数,故③不正确.④正确.8.(0,+∞)解析y=12x的定义域是[0,+∞),y=x-1的定义域是(-∞,0)∪(0,+∞),再取交集.9.m<-3 2解析 由幂函数的性质知-2m -3>0, 故m <-32.10.解 考查函数y =1.1x ,∵1.1>1, ∴它在(0,+∞)上是增函数.又∵12>13,∴121.1>131.1.再考查函数y =12x ,∵12>0,∴它在(0,+∞)上是增函数. 又∵1.4>1.1,∴121.4>121.1, ∴121.4>121.1>131.1.11.解 由题意,得3m -7<0. ∴m <73.∵m ∈N ,∴m =0,1或2, ∵幂函数的图象关于y 轴对称, ∴3m -7为偶数. ∵m =0时,3m -7=-7,m =1时,3m -7=-4, m =2时,3m -7=-1.故当m =1时,y =x -4符合题意.即y =x -4. 12.解 (1)若f (x )为正比例函数, 则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0⇒m =1.(2)若f (x )为反比例函数, 则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0⇒m =-1.(3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2,m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1, ∴m =-1± 2.13.解 设f (x )=x α,则由题意,得 2=(2)α,∴α=2,即f (x )=x 2. 设g (x )=x β,由题意,得14=(-2)β,∴β=-2,即g (x )=x -2.在同一平面直角坐标系中作出f (x )与g (x )的图象,如图所示. 由图象可知:(1)当x >1或x <-1时,f (x )>g (x );(2)当x =±1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ).。
第二章 2.1 指数函数2.1.1 指数与指数幂的运算(二)学习目标1.学会根式与分数指数幂之间的相互转化;2.掌握用有理数指数幂的运算性质化简求值;3.了解无理数指数幂的意义.问题导学题型探究达标检测问题导学 新知探究 点点落实知识点一 分数指数幂思考 根据n次方根的定义和数的运算,得出以下式子,你能从中总结出怎样的规律?答案 当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式.一般地,分数指数幂定义:(1)规定正数的正分数指数幂的意义是:= (a>0,m,n∈N*,且n>1);(2)规定正数的负分数指数幂的意义是:= (a>0,m,n∈N*,且n>1);0没有意义(3)0的正分数指数幂等于 ,0的负分数指数幂 .知识点二 有理数指数幂的运算性质思考 规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质对于有理数指数幂是否还适用?答案 由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的.整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)a r a s=a r+s(a>0,r,s∈Q);(2)(a r)s=a rs(a>0,r,s∈Q);(3)(ab)r=a r b r(a>0,b>0,r∈Q).知识点三 无理数指数幂实数一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的 .有理数指数幂的运算性质同样适用于无理数指数幂.题型探究 重点难点 个个击破类型一 根式与分数指数幂之间的相互转化例1 用分数指数幂形式表示下列各式(式中a>0,x>0,y>0):跟踪训练1 把下列根式化成分数指数幂:解 解 解 类型二 用指数幂运算公式化简求值例2 计算下列各式(式中字母都是正数):解 解 =4ab0=4a;原式解 解 原式=解 类型三 运用指数幂运算公式解方程例3 已知a>0,b>0,且a b=b a,b=9a,求a的值.解 方法一 ∵a>0,b>0,又a b=b a,方法二 因为a b=b a,b=9a,所以a9a=(9a)a,达标检测 451231.化简 的值为( )BA.2B.4C.6D.8DCDB5.计算 的结果是( )A.32B.16C.64D.128规律与方法1.指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.2.根据一般先转化成分数指数幂,然后再利用有理数指数幂的运算性质进行运算.在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解.。
§2.1习题课课时目标 1.提高学生对指数与指数幂的运算能力.2.进一步加深对指数函数及其性质的理解.3.提高对指数函数及其性质的应用能力.1.下列函数中,指数函数的个数是()①y=2·3x;②y=3x+1;③y=3x;④y=x3.A.0B.1C.2D.32.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于()A.-3B.-1C.1D.33.对于每一个实数x,f(x)是y=2x与y=-x+1这两个函数中的较小者,则f(x)的最大值是()A.1B.0C.-1D.无最大值4.将22化成指数式为________.5.已知a=40.2,b=80.1,c=(12)-0.5,则a,b,c的大小顺序为______________.6.已知12x+12x =3,求x+1x的值.一、选择题1.(122-⎡⎤⎢⎥⎣⎦的值为( )A.2B .- 2 C.22D .-222.化简3(a -b )3+(a -2b )2的结果是( ) A .3b -2a B .2a -3b C .b 或2a -3b D .b3.若0<x <1,则2x ,(12)x,0.2x 之间的大小关系是( ) A .2x <0.2x <(12)x B .2x <(12)x <0.2x C .(12)x <0.2x <2x D .0.2x <(12)x <2x 4.若函数则f (-3)的值为( )A.18B.12 C .2D .85.函数f (x )=a x -b 的图象如图所示,其中a ,b 均为常数,则下列结论正确的是( )A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <06.函数f (x )=4x +12x 的图象( ) A .关于原点对称 B .关于直线y =x 对称C.关于x轴对称D.关于y轴对称二、填空题7.计算:120.064--(-14)0+160.75+120.01-=___________________________________.8.已知10m=4,10n=9,则3210m n-=________.9.函数y=1-3x(x∈[-1,2])的值域是________.三、解答题10.比较下列各组中两个数的大小:(1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4;(3)1332⎛⎫⎪⎝⎭和2332⎛⎫⎪⎝⎭;(4)π-2和(13)-1.3.11.函数f(x)=a x(a>0,且a≠1)在区间[1,2]上的最大值比最小值大a2,求a的值.能力提升12.已知f(x)=aa2-1(a x-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图象,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?§2.1习题课双基演练1.B[只有③中y=3x是指数函数.]2.A[因f(x)为定义在R上的奇函数,所以f(0)=0,即1+b=0,b=-1.所以f(-1)=-f(1)=-(2+2-1)=-3.]3.A[当x≤0时,f(x)=2x;当x>0时,f(x)=-x+1.显然,其最大值是1.]4.23 4解析5.b<a<c解析a=20.4,b=20.3,c=20.5.又指数函数y=2x在R上是增函数,∴b<a<c.则x+x-1=7,即x+1x=7.作业设计1.C [原式=122-=12=22.] 2.C [原式=(a -b )+|a -2b |=⎩⎨⎧b , a ≤2b ,2a -3b ,a >2b .]3.D [当0<x <1时,2x >1,(12)x <1, 对于(12)x ,(0.2)x ,不妨令x =12, 则有0.5>0.2.]4.A [f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=2-3=18.] 5.D [f (x )=a x -b 的图象是由y =a x 的图象左右平移|b |个单位得到的,由图象可知f (x )在R 上是递减函数,所以0<a <1,由y =a x 过点(0,1)得知y =a x 的图象向左平移|b |个单位得f (x )的图象,所以b <0.] 6.D [f (-x )=4-x +12-x =1+4x2x =f (x ),∴f (x )是偶函数,图象关于y 轴对称.] 7.485=0.4-1-1+23+0.1=52-1+8+110=485. 8.839.[-8,23]解析 因为y =3x 是R 上的单调增函数,所以当x ∈[-1,2]时,3x ∈[3-1,32],即-3x ∈[-9,-13],所以y =1-3x ∈[-8,23].10.解 (1)考查函数y =0.6x .因为0<0.6<1,所以函数y =0.6x 在实数集R 上是单调减函数.又因为3.5<3.7,所以0.63.5>0.63.7.(2)考查函数y =(2)x .因为2>1,所以函数y =(2)x 在实数集R 上是单调增函数.又因为-1.2>-1.4,所以(2)-1.2>(2)-1.4.(3)考查函数y =(32)x .因为32>1,所以函数y =(32)x在实数集R 上是单调增函数.又因为13<23,所以1332⎛⎫ ⎪⎝⎭<2332⎛⎫ ⎪⎝⎭.(4)∵π-2=(1π)2<1,(13)-1.3=31.3>1, ∴π-2<(13)-1.3.11.解 (1)若a >1,则f (x )在[1,2]上递增, ∴a 2-a =a2,即a =32或a =0(舍去).(2)若0<a <1,则f (x )在[1,2]上递减, ∴a -a 2=a 2,即a =12或a =0(舍去).综上所述,所求a 的值为12或32. 12.解 ∵f (x )=a a 2-1(a x -1a x ), ∴函数定义域为R ,设x 1,x 2∈(-∞,+∞)且x 1<x 2,∴当a>1时,ax1<ax2,aa2-1>0∴f(x1)-f(x2)<0,f(x1)<f(x2),f(x)为增函数,当0<a<1时,,aa2-1<0∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)为增函数,综上,f(x)在R上为增函数.13.解函数y=|2x-1|的图象可由指数函数y=2x的图象先向下平移一个单位长度,然后再作x轴下方的部分关于x轴的对称图形,如图所示.函数y=m的图象是与x轴平行的直线,观察两图象的关系可知:当m<0时,两函数图象没有公共点,此时方程|2x-1|=m无解;当m=0或m≥1时,两函数图象只有一个公共点,此时方程|2x-1|=m有一解;当0<m<1时,两函数图象有两个公共点,此时方程|2x-1|=m有两解.。
2.1.2 指数函数及其性质(二) 课时目标 1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.1.下列一定是指数函数的是( )A .y =-3xB .y =x x (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x2.指数函数y =a x 与y =b x 的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12) 5.设13<(13)b <(13)a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a6.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( )A .a <2B .a >2C .-1<a <0D .0<a <1一、选择题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则( )A .Q PB .Q PC .P ∩Q ={2,4}D .P ∩Q ={(2,4)}2.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)3.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( )A .6B .1C .3D.324.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数5.函数y =f (x )的图象与函数g (x )=e x +2的图象关于原点对称,则f (x )的表达式为( )A .f (x )=-e x -2B .f (x )=-e -x +2C .f (x )=-e -x -2D .f (x )=e -x +26.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫ ⎪⎝⎭,c =1243-⎛⎫ ⎪⎝⎭,则a ,b ,c 三个数的大小关系是( ) A .c <a <b B .c <b <aC .a <b <cD .b <a <c 题 号 1 2 3 4 5 6答 案二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________________.9.函数y =2212x x -+⎛⎫ ⎪⎝⎭的单调递增区间是________.三、解答题 10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试判断f (x )的单调性;(2)求函数y =2212xx --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为[-12,12].(1)设t =2x ,求t 的取值范围;(2)求函数f (x )的值域.能力提升12.函数y=2x-x2的图象大致是()13.已知函数f(x)=2x-1 2x+1.(1)求f[f(0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.1.比较两个指数式值的大小主要有以下方法:(1)比较形如a m与a n的大小,可运用指数函数y=a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c”,若a m<c且c<b n,则a m<b n;若a m>c且c>b n,则a m>b n.2.了解由y=f(u)及u=φ(x)的单调性探求y=f[φ(x)]的单调性的一般方法.2.1.2指数函数及其性质(二)知识梳理1.C 2.C 3.A4.B[∵函数y=(12)x在R上为减函数,∴2a+1>3-2a,∴a>1 2.]5.C[由已知条件得0<a<b<1,∴a b<a a,a a<b a,∴a b<a a<b a.]6.C作业设计1.B[因为P={y|y≥0},Q={y|y>0},所以Q P.]2.C[∵4x>0,∴0≤16-4x<16,∴16-4x∈[0,4).]3.C[函数y=a x在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,y max=3.]4.B[∵f(-x)=3-x+3x=f(x),g (-x )=3-x -3x =-g (x ).]5.C [∵y =f (x )的图象与g (x )=e x +2的图象关于原点对称,∴f (x )=-g (-x )=-(e -x +2)=-e -x -2.]6.A [∵y =(35)x 是减函数,-13>-12,∴b >a >1.又0<c <1,∴c <a <b .]7.19解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半.8.(-∞,-1)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (0)=0<-12不成立; 当x <0时,由2x -1<-12,2x <2-1,得x <-1.综上可知x ∈(-∞,-1).9.[1,+∞)解析 利用复合函数同增异减的判断方法去判断.令u =-x 2+2x ,则y =(12)u 在u ∈R 上为减函数,问题转化为求u =-x 2+2x 的单调递减区间,即为x ∈[1,+∞).10.解 (1)设x 1<x 2,则g (x 1)<g (x 2).又由y =2u 的增减性得,即f (x 1)<f (x 2),所以f (x )为R 上的增函数.(2)令u =x 2-2x -1=(x -1)2-2,则u 在区间[1,+∞)上为增函数.根据(1)可知y =在[1,+∞)上为增函数.同理可得函数y 在(-∞,1]上为单调减函数.即函数y 的增区间为[1,+∞),减区间为(-∞,1].11.解 (1)∵t =2x 在x ∈[-12,12]上单调递增, ∴t ∈[22,2].(2)函数可化为:f (x )=g (t )=t 2-2t +3,g (t )在[22,1]上递减,在[1,2]上递增,比较得g (22)<g (2).∴f (x )min =g (1)=2,f (x )max =g (2)=5-2 2.∴函数的值域为[2,5-22].12.A [当x →-∞时,2x →0,所以y =2x -x 2→-∞,所以排除C 、D.当x =3时,y =-1,所以排除B.故选A.]13.(1)解 ∵f (0)=20-120+1=0, ∴f [f (0)+4]=f (0+4)=f (4)=24-124+1=1517. (2)证明 设x 1,x 2∈R 且x 1<x 2,则22x >12x >0,22x -12x >0,即f (x 1)<f (x 2),所以f (x )在R 上是增函数.(3)解 由0<f (x -2)<1517得f (0)<f (x -2)<f (4),又f (x )在R 上是增函数,∴0<x -2<4,即2<x <6,所以不等式的解集是{x |2<x <6}.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
§2.2习题课课时目标 1.巩固对数的概念及对数的运算.2.提高对对数函数及其性质的综合应用能力.1.已知m=0.95.1,n=5.10.9,p=log0.95.1,则这三个数的大小关系是() A.m<n<p B.m<p<nC.p<m<n D.p<n<m2.已知0<a<1,log a m<log a n<0,则()A.1<n<m B.1<m<nC.m<n<1 D.n<m<13.函数y=x-1+1lg(2-x)的定义域是()A.(1,2) B.[1,4] C.[1,2) D.(1,2]4.给定函数①y=12x,②y=()12log1x+,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④5.设函数f(x)=log a|x|,则f(a+1)与f(2)的大小关系是________________________.6.若log32=a,则log38-2log36=________.一、选择题1.下列不等号连接错误的一组是()A.log0.52.7>log0.52.8 B.log34>log65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C.2D .43.设函数若f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12) 5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)二、填空题7.已知log a(ab)=1p,则log abab=________.8.若log236=a,log210=b,则log215=________.9.设函数若f(a)=18,则f(a+6)=________.三、解答题10.已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求实数a的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.3010)能力提升12.设a>0,a≠1,函数f(x)=log a(x2-2x+3)有最小值,求不等式log a(x-1)>0的解集.13.已知函数f(x)=log a(1+x),其中a>1.(1)比较12[f(0)+f(1)]与f(12)的大小;(2)探索12[f(x1-1)+f(x2-1)]≤f(x1+x22-1)对任意x1>0,x2>0恒成立.1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y=x对称.§2.2习题课双基演练1.C [0<m <1,n >1,p <0,故p <m <n .]2.A [∵0<a <1,∴y =log a x 是减函数.由log a m <log a n <0=log a 1,得m >n >1.]3.A [由题意得:⎩⎨⎧ x -1≥0,2-x >0,lg (2-x )≠0,解得:1<x <2.]4.B [①y =x 在(0,1)上为单调递增函数,∴①不符合题意,排除A ,D.④y =2x +1在(0,1)上也是单调递增函数,排除C ,故选B.]5.f (a +1)>f (2)解析 当a >1时,f (x )在(0,+∞)上递增,又∵a +1>2,∴f (a +1)>f (2);当0<a <1时,f (x )在(0,+∞)上递减;又∵a +1<2,∴f (a +1)>f (2).综上可知,f (a +1)>f (2).6.a -2解析 log 38-2log 36=log 323-2(1+log 32)=3a -2-2a =a -2.作业设计1.D [对A ,根据y =log 0.5x 为单调减函数易知正确.对B ,由log 34>log 33=1=log 55>log 65可知正确.对C ,由log 34=1+log 343>1+log 365>1+log 565=log 56可知正确.对D ,由π>e>1可知,log e π>1>log πe 错误.]2.B [左边=lg7lg3·2lg3lg2·lg m 2lg7=lg m lg2,右边=-lg22lg2=-12,∴lg m =lg2-12=lg 22,∴m =22.]3.A [∵f (3)=2,∴log a (3+1)=2,解得a =2,又f (-2)=0,∴4-4+b =0,b =0.]4.D [令y =2x 2+x ,其图象的对称轴x =-14<0, 所以(0,12)为y 的增区间,所以0<y <1,又因f (x )在区间(0,12)内恒有f (x )>0,所以0<a <1.f (x )的定义域为2x 2+x >0的解集,即{x |x >0或x <-12}, 由x =-14>-12得,(-∞,-12)为y =2x 2+x 的递减区间,又由0<a <1,所以f (x )的递增区间为(-∞,-12).]5.C [①若a >0,则f (a )=log 2a ,f (-a )=12log a ,∴log 2a >12log a =log 21a∴a >1a ,∴a >1.②若a <0,则f (a )=12log (-a ),f (-a )=log 2(-a ),∴12log (-a )>log 2(-a )=12log (-1a ),∴-a <-1a ,∴-1<a <0,由①②可知,-1<a <0或a >1.]6.C [∵f (x )在(0,+∞)上是增函数,且f (13)=0,在(0,+∞)上f (18log x )<0⇒f (18log x )<f (13)⇒0<18log x <13⇒18log 1<18log x <18log 1318⎛⎫ ⎪⎝⎭⇒12<x <1;同理可求f (x )在(-∞,0)上是增函数,且f (-13)=0,得x >2.综上所述,x ∈(12,1)∪(2,+∞).]7.2p -1解析 ∵log ab a =p ,log ab b =log ab ab a =1-p ,∴log ab a b =log ab a -log ab b=p -(1-p )=2p -1.8.12a +b -2解析 因为log 236=a ,log 210=b ,所以2+2log 23=a,1+log 25=b .即log 23=12(a -2),log 25=b -1,所以log 215=log 23+log 25=12(a -2)+b -1=12a +b -2.9.-3解析 (1)当a ≤4时,2a -4=18,解得a =1,此时f (a +6)=f (7)=-3;(2)当a >4时,-log 2(a +1)=18,无解.10.解 由log 4(x +a )<1,得0<x +a <4,解得-a <x <4-a ,即B ={x |-a <x <4-a }.∵A ∩B =∅,∴⎩⎨⎧-a ≥-2,4-a ≤3,解得1≤a ≤2, 即实数a 的取值范围是[1,2].11.解 设至少抽n 次才符合条件,则a ·(1-60%)n <0.1%·a (设原来容器中的空气体积为a ).即0.4n <0.001,两边取常用对数,得n ·lg 0.4<lg 0.001,所以n >lg 0.001lg 0.4.所以n >-32lg2-1≈7.5. 故至少需要抽8次,才能使容器内的空气少于原来的0.1%.12.解 设u (x )=x 2-2x +3,则u (x )在定义域内有最小值. 由于f (x )在定义域内有最小值,所以a >1.所以log a (x -1)>0⇒x -1>1⇒x >2,所以不等式log a (x -1)>0的解集为{x |x >2}.13.解 (1)∵12[f (0)+f (1)]=12(log a 1+log a 2)=log a 2,又∵f (12)=log a 32,且32>2,由a >1知函数y =log a x 为增函数,所以log a 2<log a 32. 即12[f (0)+f (1)]<f (12).(2)由(1)知,当x 1=1,x 2=2时,不等式成立.接下来探索不等号左右两边的关系:12[f (x 1-1)+f (x 2-1)]=log a x 1x 2,f (x 1+x 22-1)=log a x 1+x 22,因为x 1>0,x 2>0,所以x 1+x 22-x 1x 2=(x 1-x 2)22≥0, 即x 1+x 22≥x 1x 2. 又a >1, 所以log a x 1+x 22≥log a x 1x 2,即12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1).综上可知,不等式对任意x1>0,x2>0恒成立.。
§2.3幂函数课时目标 1.通过具体问题,了解幂函数的概念.2.从描点作图入手,画出y=x,y=x2,y=x3,y=12x,y=x-1的图象,总结出幂函数的共性,巩固并会加以应用.1.一般地,______________叫做幂函数,其中x是自变量,α是常数.2.在同一平面直角坐标系中,画出幂函数y=x,y=x2,y=x3,y=12x,y=x-1的图象.3.结合2中图象,填空.(1)所有的幂函数图象都过点________,在(0,+∞)上都有定义.(2)若α>0时,幂函数图象过点____________,且在第一象限内______;当0<α<1时,图象上凸,当α>1时,图象______.(3)若α<0,则幂函数图象过点________,并且在第一象限内单调______,在第一象限内,当x从+∞趋向于原点时,函数在y轴右方无限地逼近于y轴,当x趋于+∞时,图象在x轴上方无限逼近x轴.(4)当α为奇数时,幂函数图象关于______对称;当α为偶数时,幂函数图象关于______对称.(5)幂函数在第____象限无图象.一、选择题1.下列函数中不是幂函数的是( ) A .y =x B .y =x 3 C .y =2x D .y =x -12.幂函数f (x )的图象过点(4,12),那么f (8)的值为( ) A.24B .64 C .22D.1643.下列是y =23x 的图象的是( )4.图中曲线是幂函数y =x n在第一象限的图象,已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 依次为( ) A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12 D .2,12,-2,-125.设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是()A.a>c>b B.a>b>cC.c>a>b D.b>c>a6.函数f(x)=xα,x∈(-1,0)∪(0,1),若不等式f(x)>|x|成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是()A.0B.2C.3D.4二、填空题7.给出以下结论:①当α=0时,函数y=xα的图象是一条直线;②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大;④幂函数的图象不可能在第四象限,但可能在第二象限.则正确结论的序号为________.8.函数y=12x+x-1的定义域是____________.9.已知函数y=x-2m-3的图象过原点,则实数m的取值范围是____________________.三、解答题10.比较1.121、121.4、131.1的大小,并说明理由.11.如图,幂函数y =x 3m -7(m ∈N )的图象关于y 轴对称,且与x 轴、y 轴均无交点,求此函数的解析式.能力提升12.已知函数f (x )=(m 2+2m )·21m m x +-,m 为何值时,函数f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.13.点(2,2)在幂函数f(x)的图象上,点(-2,14)在幂函数g(x)的图象上,问当x为何值时,有:(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).1.幂函数在第一象限内指数变化规律:在第一象限内直线x=1的右侧,图象从上到下,相应的指数由大变小;在直线x=1的左侧,图象从下到上,相应的指数由大变小.2.求幂函数的定义域时要看指数的正负和指数nm中的m是否为偶数;判断幂函数的奇偶性时要看指数nm中的m、n是奇数还是偶数.y=xα,当α=nm(m、n∈N*,m、n互质)时,有:§2.3 幂函数知识梳理1.函数y =x α 3.(1)(1,1) (2)(0,0),(1,1) 递增 下凸 (3)(1,1) 递减 (4)原点 y 轴 (5)四 作业设计1.C [根据幂函数的定义:形如y =x α的函数称为幂函数,选项C 中自变量x 的系数是2,不符合幂函数的定义,所以C 不是幂函数.] 2.A [设幂函数为y =x α,依题意,12=4α, 即22α=2-1,∴α=-12.∴幂函数为y =12x -,∴f (8)=128-=18=122=24.] 3.B [y =23x =3x 2,∴x ∈R ,y ≥0,f (-x )=3(-x )2=3x 2 =f (x ),即y =23x 是偶函数,又∵23<1,∴图象上凸.]4.B [作直线x =t (t >1)与各个图象相交,则交点自上而下的排列顺序恰好是按幂指数的降幂排列的.]5.A [根据幂函数与指数函数的单调性直接可以判断出来,y =25x 在x >0时是增函数,所以a >c ;y =(25)x 在x >0时是减函数,所以c >b .] 6.B [因为x ∈(-1,0)∪(0,1),所以0<|x |<1. 要使f (x )=x α>|x |,x α在(-1,0)∪(0,1)上应大于0, 所以α=-1,1显然是不成立的.当α=0时,f(x)=1>|x|;当α=2时,f(x)=x2=|x|2<|x|;当α=-2时,f(x)=x-2=|x|-2>1>|x|.综上,α的可能取值为0或-2,共2个.]7.④解析当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},故①不正确;当α<0时,函数y=xα的图象不过(0,0)点,故②不正确;幂函数y=x-1的图象关于原点对称,但其在定义域内不是增函数,故③不正确.④正确.8.(0,+∞)解析y=12x的定义域是[0,+∞),y=x-1的定义域是(-∞,0)∪(0,+∞),再取交集.9.m<-3 2解析由幂函数的性质知-2m-3>0,故m<-3 2.10.解考查函数y=1.1x,∵1.1>1,∴它在(0,+∞)上是增函数.又∵12>13,∴121.1>131.1.再考查函数y=12x,∵12>0,∴它在(0,+∞)上是增函数.又∵1.4>1.1,∴121.4>121.1,∴121.4>121.1>131.1.11.解由题意,得3m-7<0.∴m<7 3.∵m∈N,∴m=0,1或2,∵幂函数的图象关于y轴对称,∴3m-7为偶数.∵m =0时,3m -7=-7, m =1时,3m -7=-4, m =2时,3m -7=-1.故当m =1时,y =x -4符合题意.即y =x -4. 12.解 (1)若f (x )为正比例函数, 则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数, 则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则 ⎩⎨⎧m 2+m -1=2,m 2+2m ≠0⇒m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1, ∴m =-1±2.13.解 设f (x )=x α,则由题意,得 2=(2)α,∴α=2,即f (x )=x 2. 设g (x )=x β,由题意,得14=(-2)β,∴β=-2,即g (x )=x -2.在同一平面直角坐标系中作出f (x )与g (x )的图象,如图所示. 由图象可知:(1)当x >1或x <-1时, f (x )>g (x );(2)当x =±1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ).小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
2.1.2 指数函数及其性质(二)1.下列一定是指数函数的是( )A.y=-3x B.y=x x(x>0,且x≠1)C.y=(a-2)x(a>3) D.y=(1-2)x2.指数函数y=a x与y=b x的图象如图,则( )A.a<0,b<0B.a<0,b>0C.0<a<1,b>1D.0<a<1,0<b<13.函数y=πx的值域是( )A.(0,+∞) B.[0,+∞)C.R D.(-∞,0)4.若(12)2a+1<(12)3-2a,则实数a的取值范围是( )A.(1,+∞) B.(12,+∞)C.(-∞,1) D.(-∞,1 2 )5.设13<(13)b<(13)a<1,则( )A.a a<a b<b a B.a a<b a<a bC.a b<a a<b a D.a b<b a<a a6.若指数函数f(x)=(a+1)x是R上的减函数,那么a的取值范围为( ) A.a<2 B.a>2C.-1<a<0 D.0<a<1一、选择题1.设P={y|y=x2,x∈R},Q={y|y=2x,x∈R},则( )A.Q P B.Q PC.P∩Q={2,4}D.P∩Q={(2,4)}2.函数y=16-4x的值域是( )A.[0,+∞) B.[0,4]C.[0,4) D.(0,4)3.函数y=a x在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是( )A.6B.1C.3D.3 24.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数5.函数y=f(x)的图象与函数g(x)=e x+2的图象关于原点对称,则f(x)的表达式为( )A.f(x)=-e x-2B.f(x)=-e-x+2C.f(x)=-e-x-2D.f(x)=e-x+26.已知a=1335-⎛⎫⎪⎝⎭,b=1235-⎛⎫⎪⎝⎭,c=1243-⎛⎫⎪⎝⎭,则a,b,c三个数的大小关系是( )A.c<a<b B.c<b<a C.a<b<c D.b<a<c二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-12的解集是________________.9.函数y=2212x x-+⎛⎫⎪⎝⎭的单调递增区间是________.三、解答题10.(1)设f(x)=2u,u=g(x),g(x)是R上的单调增函数,试判断f(x)的单调性;(2)求函数y=2212x x--的单调区间.11.函数f(x)=4x-2x+1+3的定义域为[-12,12].(1)设t=2x,求t的取值范围;(2)求函数f(x)的值域.能力提升12.函数y=2x-x2的图象大致是( )2.1.2 指数函数及其性质(二) 知识梳理1.C 2.C 3.A4.B [∵函数y=(12)x在R上为减函数,∴2a+1>3-2a,∴a>12 .]5.C [由已知条件得0<a<b<1,∴a b<a a,a a<b a,∴a b<a a<b a.]6.C作业设计1.B [因为P={y|y≥0},Q={y|y>0},所以Q P.]2.C [∵4x>0,∴0≤16-4x<16,∴16-4x∈[0,4).]3.C [函数y=a x在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,y max=3.]4.B [∵f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x).]5.C [∵y=f(x)的图象与g(x)=e x+2的图象关于原点对称,∴f(x)=-g(-x)=-(e-x+2)=-e-x-2.]6.A [∵y=(35)x是减函数,-13>-12,∴b>a>1.又0<c<1,∴c<a<b.]7.19解析假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y与生长时间的函数关系为y=2x-1,当x=20时,长满水面,所以生长19天时,荷叶布满水面一半.8.(-∞,-1)解析∵f(x)是定义在R上的奇函数,∴f(0)=0.当x<0时,f(x)=-f(-x)=-(1-2x)=2x-1.当x>0时,由1-2-x<-12,(12)x>32,得x∈∅;当x=0时,f(0)=0<-12不成立;当x<0时,由2x-1<-12,2x<2-1,得x<-1.综上可知x∈(-∞,-1).9.[1,+∞)解析利用复合函数同增异减的判断方法去判断.令u=-x2+2x,则y=(12)u在u∈R上为减函数,问题转化为求u=-x2+2x的单调递减区间,即为x∈[1,+∞).10.解(1)设x1<x2,则g(x1)<g(x2).又由y=2u的增减性得,即f(x1)<f(x2),所以f(x)为R上的增函数.(2)令u=x2-2x-1=(x-1)2-2,则u在区间[1,+∞)上为增函数.根据(1)可知y=在[1,+∞)上为增函数.同理可得函数y在(-∞,1]上为单调减函数.即函数y的增区间为[1,+∞),减区间为(-∞,1].11.解(1)∵t=2x在x∈[-12,12]上单调递增,∴t∈[22,2].(2)函数可化为:f(x)=g(t)=t2-2t+3,g(t)在[22,1]上递减,在[1,2]上递增,比较得g(22)<g(2).∴f(x)min=g(1)=2,f(x)=g(2)=5-2 2.max∴函数的值域为[2,5-22].12.A [当x→-∞时,2x→0,所以y=2x-x2→-∞,所以排除C、D.当x=3时,y=-1,所以排除B.故选A.]。
2.1.2指数函数及其性质(一)课时目标 1.理解指数函数的概念,会判断一个函数是否为指数函数.2.掌握指数函数的图象和性质.1.指数函数的概念一般地,__________________叫做指数函数,其中x是自变量,函数的定义域是____.2.指数函数y=a x(a>0,且a≠1)的图象和性质a>10<a<1图象定义域R值域(0,+∞)性质过定点过点______,即x=____时,y=____函数值的变化当x>0时,________;当x<0时,________当x>0时,________;当x<0时,________单调性是R上的__________是R上的__________一、选择题1.下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=πxC.y=-4x D.y=a x+2(a>0且a≠1)2.函数f(x)=(a2-3a+3)a x是指数函数,则有()A.a=1或a=2B.a=1C.a=2D.a>0且a≠13.函数y=a|x|(a>1)的图象是()4.已知f(x)为R上的奇函数,当x<0时,f(x)=3x,那么f(2)的值为()A.-9B.1 9C.-19D.95.右图是指数函数①y=a x;②y=b x;③y=c x;④y=d x的图象,则a、b、c、d与1的大小关系是()A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c6.函数y=(12)x-2的图象必过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限题号12345 6二、填空题7.函数f(x)=a x的图象经过点(2,4),则f(-3)的值为________.8.若函数y=a x-(b-1)(a>0,a≠1)的图象不经过第二象限,则a,b必满足条件________________.9.函数y=8-23-x(x≥0)的值域是________.三、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭;(3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50000m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,并回答下列问题.1 50000×2 2 50000×22… … n50000×2n(1) (2)根据报纸所述的信息,你估计3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图象(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么?能力提升12.定义运算a ⊕b =⎩⎨⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图象是( )13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ).(1)求f(1)的值;(2)若f(12)>0,解不等式f(ax)>0.(其中字母a为常数).1.函数y=f(x)与函数y=f(-x)的图象关于y轴对称;函数y=f(x)与函数y=-f(x)的图象关于x轴对称;函数y=f(x)与函数y=-f(-x)的图象关于原点对称.2.函数图象的平移变换是一种基本的图象变换.一般地,函数y =f (x -a )的图象可由函数y =f (x )的图象向右(a >0)或向左(a <0)平移|a |个单位得到.2.1.2 指数函数及其性质(一)知识梳理1.函数y =a x (a >0,且a ≠1) R 2.(0,1) 0 1 y >1 0<y <1 0<y <1 y >1 增函数 减函数 作业设计1.B [A 中-4<0,不满足指数函数底数的要求,C 中因有负号,也不是指数函数,D 中的函数可化为y =a 2·a x ,a x 的系数不是1,故也不是指数函数.]2.C [由题意得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1.解得a =2.]3.B [该函数是偶函数.可先画出x ≥0时,y =a x 的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.]4.C [当x >0时,-x <0,∴f (-x )=3-x , 即-f (x )=(13)x, ∴f (x )=-(13)x .因此有f (2)=-(13)2=-19.]5.B [作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系.]6.D [函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x -2的图象,所以观察y =(12)x -2的图象知选D.]7.18解析 由题意a 2=4,∴a =2.f (-3)=2-3=18.8.a >1,b ≥2解析 函数y =a x -(b -1)的图象可以看作由函数y =a x 的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x 的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x 的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2. 9.[0,8) 解析 y =8-23-x=8-23·2-x =8-8·(12)x=8[1-(12)x ]. ∵x ≥0,∴0<(12)x ≤1, ∴-1≤-(12)x <0,从而有0≤1-(12)x <1,因此0≤y <8. 10.解 (1)考查函数y =0.2x . 因为0<0.2<1,所以函数y =0.2x 在实数集R 上是单调减函数. 又因为-1.5>-1.7, 所以0.2-1.5<0.2-1.7.(2)考查函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数. 又因为13<23,所以(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2, 所以2-1.5<30.2.11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50000×28=12800000(m 3).(2)根据报纸所述的信息,估计3年前垃圾的体积是50000×2-1=25000(m 3).(3)如果n =-2,这时的n 表示6年前,V 表示6年前垃圾的体积. (4)n 与V 的函数关系式是V =50000×2n ,图象如图所示.(5)因为对任意的整数n,2n >0,所以V =50000×2n >0,因此曲线不可能与横轴相交.12.A [由题意f (x )=1⊕2x =⎩⎪⎨⎪⎧1, x ≥0;2x ,x <0.]13.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0. (2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t , 且s >t ,又f (12)>0, ∴f (x 1)-f (x 2)=f [(12)s ]-f [(12)t ] =sf (12)-tf (12)=(s -t )f (12)>0, ∴f (x 1)>f (x 2).故f(x)在(0,+∞)上是减函数.又∵f(ax)>0,x>0,f(1)=0,∴0<ax<1,当a=0时,x∈∅,当a>0时,0<x<1a,当a<0时,1a<x<0,不合题意.故x∈∅. 综上:a≤0时,x∈∅;a>0时,不等式解集为{x|0<x<1 a}.。
第2课时对数的运算课时目标 1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.3.了解换底公式并能用换底公式将一般对数化成自然对数和常用对数.1.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=____________________;(2)log a MN=____________________;(3)log a M n=__________(n∈R).2.对数换底公式log a b=log c blog c a(a>0,且a≠1,b>0,c>0,且c≠1);特别地:log a b·log b a=____(a>0,且a≠1,b>0,且b≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)()A.log a x·log a y=log a(x+y)B.(log a x)n=n log a xC.log a xn=log anxD.log a xlog a y=log a x-log a y2.计算:log916·log881的值为()A.18B.118C.83D.383.若log 513·log 36·log 6x =2,则x 等于( ) A .9B.19C .25D.1254.已知3a =5b =A ,若1a +1b =2,则A 等于( ) A .15B.15 C .±15D .2255.已知log 89=a ,log 25=b ,则lg3等于( ) A.a b -1B.32(b -1)C.3a2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab )2的值等于( ) A .2B.12C .4D.14二、填空题7.2log 510+log 50.25+(325-125)÷425=_____________________________________. 8.(lg5)2+lg2·lg50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg12.5-log 89·log 34; (2)已知3a =4b =36,求2a +1b 的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x与10x的七组近似对应值:组.()A.二B.四C.五D.七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg2≈0.3010,lg3≈0.4771)1.在运算过程中避免出现以下错误:log a(MN)=log a M·log a N.log a MN=log a Mlog a N.log a N n=(log a N)n.log a M±log a N=log a(M±N).2.根据对数的定义和运算法则可以得到对数换底公式:知识梳理1.(1)log a M +log a N (2)log a M -log a N (3)n log a M 2.1 作业设计 1.C2.C [log 916·log 881=lg16lg9·lg81lg8=4lg22lg3·4lg33lg2=83.] 3.D [由换底公式,得-lg3lg5·lg6lg3·lg xlg6=2,lg x =-2lg5,x =5-2=125.] 4.B [∵3a =5b =A >0, ∴a =log 3A ,b =log 5A .由1a +1b =log A 3+log A 5=log A 15=2, 得A 2=15,A =15.]5.C [∵log 89=a ,∴lg9lg8=a . ∴log 23=32a .lg3=log 23log 210=log 231+log 25=3a 2(b +1).]6.A [由根与系数的关系可知lg a +lg b =2, lg a lg b =12.于是(lg ab )2=(lg a -lg b )2=(lg a +lg b )2-4lg a lg b =22-4×12=2.] 7.65-3解析 原式=2(log 510+log 50.5)+(325425-125425)=2log 5(10×0.5)+2131322255---=2+165-5=65-3. 8.1解析 (lg5)2+lg2·lg50=(lg5)2+lg2(lg5+lg10) =(lg5)2+lg2·lg5+lg2=lg5(lg5+lg2)+lg2 =lg5+lg2=1. 9.1000解析 设里氏8.0级、6.0级地震释放的能量分别为E 2、E 1, 则8-6=23(lg E 2-lg E 1),即lg E 2E 1=3.∴E 2E 1=103=1000,即汶川大地震所释放的能量相当于1000颗广岛原子弹. 10.解 (1)方法一 lg 12-lg 58+lg12.5-log 89·log 34 =lg(12×85×12.5)-2lg33lg2·2lg2lg3=1-43=-13. 方法二 lg 12-lg 58+lg12.5-log 89·log 34 =lg 12-lg 58+lg 252-lg9lg8·lg4lg3=-lg2-lg5+3lg2+(2lg5-lg2)-2lg33lg2·2lg2lg3 =(lg2+lg5)-43=1-43=-13.(2)方法一 由3a =4b =36得:a =log 336,b =log 436, 所以2a +1b =2log 363+log 364=log 36(32×4)=1. 方法二 因为3a =4b=36,所以136a =3,136b=4,所以(136a)2·136b=32×4, 即2136a b+=36,故2a +1b =1.11.解 原方程可化为2(lg x )2-4lg x +1=0. 设t =lg x ,则方程化为2t 2-4t +1=0, ∴t 1+t 2=2,t 1·t 2=12.又∵a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根, ∴t 1=lg a ,t 2=lg b , 即lg a +lg b =2,lg a ·lg b =12. ∴lg(ab )·(log a b +log b a ) =(lg a +lg b )·(lg b lg a +lg a lg b )=(lg a +lg b )·(lg b )2+(lg a )2lg a ·lg b =(lg a +lg b )·(lg a +lg b )2-2lg a ·lg blg a ·lg b=2×22-2×1212=12,即lg(ab )·(log a b +log b a )=12.12.A [由指数式与对数式的互化可知, 10x =N ⇔x =lg N , 将已知表格转化为下表:∵lg2+lg5=0.30103+0.69897=1,∴第一组、第三组对应值正确.又显然第六组正确,∵lg8=3lg2=3×0.30103=0.90309,∴第五组对应值正确.∵lg12=lg2+lg6=0.30103+0.77815=1.07918,∴第四组、第七组对应值正确.∴只有第二组错误.]13.解设这种放射性物质最初的质量是1,经过x年后,剩余量是y,则有y=0.75x.依题意,得13=0.75x,即x=lg13lg0.75=-lg3lg3-lg4=lg32lg2-lg3=0.47712×0.3010-0.4771≈4.∴估计约经过4年,该物质的剩余量是原来的1 3.。
第二章基本初等函数(Ⅰ)§2.1指数函数2.1.1指数与指数幂的运算课时目标 1.了解指数函数模型的实际背景,体会引入有理数指数幂的必要性.2.理解有理数指数幂的含义,知道实数指数幂的意义,掌握幂的运算.1.如果____________________,那么x叫做a的n次方根.2.式子na叫做________,这里n叫做__________,a叫做____________.3.(1)n∈N*时,(na)n=____.(2)n为正奇数时,na n=____;n为正偶数时,na n=______.4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:mna=__________(a>0,m、n∈N*,且n>1);(2)规定正数的负分数指数幂的意义是:mna =_______________(a>0,m、n∈N*,且n>1);(3)0的正分数指数幂等于____,0的负分数指数幂________________.5.有理数指数幂的运算性质:(1)a r a s=______(a>0,r、s∈Q);(2)(a r)s=______(a>0,r、s∈Q);(3)(ab)r=______(a>0,b>0,r∈Q).一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n为大于1的奇数时,na对任意a∈R都有意义;④当n为大于1的偶数时,na只有当a≥0时才有意义.其中正确的是() A.①③④B.②③④C.②③D.③④2.若2<a<3,化简(2-a)2+4(3-a)4的结果是()A.5-2a B.2a-5 C.1D.-13.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是()A.(-12)-1B.122-C.1212-⎛⎫⎪⎝⎭D.2-14.化简3a a的结果是()A.a B.1 2 aC.a2D.1 3 a5.下列各式成立的是()A.3m2+n2=()23m n+B.(ba)2=12a12bC.6(-3)2=()133- D.34=1326.下列结论中,正确的个数是() ①当a<0时,()322a=a3;②na n=|a|(n>0);③函数y=()122x--(3x-7)0的定义域是(2,+∞);④若100a =5,10b =2,则2a +b =1. A .0B .1 C .2D .3二、填空题 7.614-3338+30.125的值为________.8.若a >0,且a x =3,a y =5,则22y x a+=________.9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________. 三、解答题 10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0);(2)计算:122-+(-4)02+12-1-(1-5)0·238-.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升 12.化简:4133223384a a b b a-+÷(1-23b a )×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy 的值.1.n a n 与(na )n 的区别(1)na n 是实数a n 的n 次方根,是一个恒有意义的式子,不受n 的奇偶性限制,a ∈R ,但这个式子的值受n 的奇偶性限制:当n 为大于1的奇数时,na n =a ;当n 为大于1的偶数时,na n =|a |.(2)(na )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定:当n 为大于1的奇数时,(n a )n =a ,a ∈R ;当n 为大于1的偶数时,(n a )n =a ,a ≥0,由此看只要(n a )n 有意义,其值恒等于a ,即(na )n =a . 2.有理指数幂运算的一般思路化负指数为正指数,化根式为分数指数幂,化小数为分数,灵活运用指数幂的运算性质.同时要注意运用整体的观点、方程的观点处理问题,或利用已知的公式、换元等简化运算过程. 3.有关指数幂的几个结论 (1)a >0时,a b >0; (2)a ≠0时,a 0=1; (3)若a r =a s ,则r =s ;(4)a ±212a 12b +b =(12a ±12b )2(a >0,b >0); (5)(12a +12b )(12a -12b )=a -b (a >0,b >0).第二章 基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算知识梳理1.x n =a(n>1,且n ∈N *) 2.根式 根指数 被开方数 3.(1)a (2)a |a | 4.(1)na m (2)1a m n (3)0 没有意义5.(1)a r +s (2)a rs (3)a r b r 作业设计1.D [①错,∵(±2)4=16, ∴16的4次方根是±2; ②错,416=2,而±416=±2.] 2.C [原式=|2-a |+|3-a |, ∵2<a <3,∴原式=a -2+3-a =1.]3.C [∵(-12)-1=-2,122-=22,1212-⎛⎫ ⎪⎝⎭=2,2-1=12,∵2>22>12>-2,∴1212-⎛⎫⎪⎝⎭>122->2-1>(-12)-1.] 4.B [12a =.]5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a 2,B 选项错;6(-3)2>0,()133-<0,C 选项错.故选D.]6.B [①中,当a <0时,()()3312222a a ⎡⎤=⎢⎥⎣⎦=(-a )3=-a 3,∴①不正确;②中,若a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不正确; ③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10,即102a +b =10.∴2a +b =1.④正确.] 7.32解析 原式=(52)2-3(32)3+3(12)3=52-32+12=32. 8.9 5 解析 22y x a+=(a x )2·()12y a=32·125=9 5. 9.-23解析 原式=412x -33-412x +4=-23.10.解 (1)原式=()()11132122xy xyxy -⎡⎤⎢⎥⎣⎦·(xy )-1=13x ·2111136622y x yxy---=13x ·13x-=⎩⎨⎧1, x >0-1,x <0. (2)原式=12+12+2+1-22 =22-3.11.解 原式=(x -1)2-(x +3)2=|x-1|-|x+3|,∵-3<x<3,∴当-3<x<1时,原式=-(x-1)-(x+3)=-2x-2;当1≤x<3时,原式=(x-1)-(x+3)=-4.∴原式=⎩⎨⎧-2x-2(-3<x<1)-4(1≤x<3).12.解原式=()111333212133338242a ab a bb a a a--÷++×13a13.解∵x-xy-2y=0,x>0,y>0,∴(x)2-xy-2(y)2=0,∴(x+y)(x-2y)=0,由x>0,y>0得x+y>0,∴x-2y=0,∴x=4y,∴2x-xyy+2xy=8y-2yy+4y=65.。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列函数是对数函数的是( )A.y=loga(2x) B.y=log22xC.y=log2x+1 D.y=lg x解析:选项A、B、C中的函数都不具有“y=logax(a>0且a≠1)”的形式,只有D选项符合.答案: D2.对数函数的图象过点M(16,4),则此对数函数的解析式为( )A.y=log4x B.y=log14xC.y=log 12x D.y=log2x解析:由于对数函数的图象过点M(16,4),所以4=loga16,得a=2.所以对数函数的解析式为y=log2x,故选D.答案: D3.函数y=log2x的定义域是[1,64),则值域是( )A.R B.[0,+∞)C.[0,6) D.[0,64)解析:∵y=log2x在[1,64)上是增函数,∴log21≤y<log264.即0≤y<6.故选C.答案: C4.函数f(x)=1ln(x+1)+4-x2的定义域为( )A.[-2,0)∪(0,2] B.(-1,0)∪(0,2] C.[-2,2] D.(-1,2]解析:要使函数有意义,则有⎩⎨⎧x +1>0.ln (x +1)≠0,4-x 2≥0,即⎩⎨⎧x>-1,x ≠0,-2≤x ≤2,即-1<x<0或0<x ≤2,故选B.答案: B二、填空题(每小题5分,共15分)5.若a>0且a ≠1,则函数y =log a (x -1)+2的图象恒过定点________. 解析: 当x -1=1时,log a (2-1)=0, ∴函数过定点(2,2),函数f(x)=log a (x -1)+2恒过定点(2,2). 答案: (2,2)6.若对数函数f(x)=log a x +(a 2-4a -5),则a =________. 解析: 由对数函数的定义可知,⎩⎨⎧a 2-4a -5=0,a>0,a ≠1,解得a =5.答案: 57.已知函数f(x)=log 5x ,则f(3)+f ⎝ ⎛⎭⎪⎫253=________.解析: f(3)+f ⎝ ⎛⎭⎪⎫253=log 53+log 5253=log 5⎝ ⎛⎭⎪⎫3×253=log 525=2.答案: 2三、解答题(每小题10分,共20分) 8.求下列函数的定义域. (1)f(x)=lg (4-x )x -3;(2)y =log 0.1(4x -3). 解析: (1)由⎩⎨⎧4-x>0,x -3≠0,得x<4且x ≠3,∴函数的定义域为{x|x<4且x ≠3}. (2)由⎩⎨⎧4x -3>0,log 0.1(4x -3)≥0,得⎩⎨⎧4x -3>0,4x -3≤1.∴34<x≤1,∴函数的定义域为⎩⎨⎧⎭⎬⎫x⎪⎪⎪34<x≤1.9.已知f(x)=log3x.(1)作出这个函数的图象;(2)若f(a)<f(2),利用图象求a的取值范围.解析:(1)作出函数y=log3x的图象如图所示,(2)令f(x)=f(2),即log3x=log32,解得x=2.由图象知:当0<a<2时,恒有f(a)<f(2).∴所求a的取值范围为0<a<2.。
2.2.2对数函数及其性质(一)课时目标 1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x是自变量,函数的定义域是________.2.对数函数的图象与性质定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域________值域________单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过点________,即log a1=0函数值特点x∈(0,1)时,y∈________;x∈[1,+∞)时,y∈________x∈(0,1)时,y∈________;x∈[1,+∞)时,y∈________对称性函数y=log a x与y=1logax的图象关于____对称3.对数函数y=log a x(a>0且a≠1)和指数函数__________________互为反函数.一、选择题1.函数y =log 2x -2的定义域是( ) A .(3,+∞) B .[3,+∞) C .(4,+∞) D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1)3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( ) A .0B .1C .2D .34.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( ) A .g (x )=4x B .g (x )=2x C .g (x )=9x D .g (x )=3x6.若log a 23<1,则a 的取值范围是( ) A .(0,23) B .(23,+∞) C .(23,1) D .(0,23)∪(1,+∞)题号12345 6答案二、填空题7.如果函数f(x)=(3-a)x,g(x)=log a x的增减性相同,则a的取值范围是______________.8.已知函数y=log a(x-3)-1的图象恒过定点P,则点P的坐标是________.9.给出函数则f(log23)=________.三、解答题10.求下列函数的定义域与值域:(1)y=log2(x-2);(2)y=log4(x2+8).11.已知函数f(x)=log a(1+x),g(x)=log a(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.能力提升12.已知图中曲线C1,C2,C3,C4分别是函数y=log a1x,y=log a2x,y=log a3x,y=log a4x的图象,则a1,a2,a3,a4的大小关系是()A.a4<a3<a2<a1B.a3<a4<a1<a2C.a2<a1<a3<a4D.a3<a4<a2<a113.若不等式x2-log m x<0在(0,12)内恒成立,求实数m的取值范围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x (a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x 的图象过(0,1)点,故对数函数图象必过(1,0)点.2.2.2 对数函数及其性质(一)知识梳理1.函数y =log a x (a >0,且a ≠1) (0,+∞) 2.(0,+∞) R (1,0) (-∞,0) [0,+∞) (0,+∞) (-∞,0] x 轴 3.y =a x (a >0且a ≠1) 作业设计1.D [由题意得:⎩⎨⎧log 2x -2≥0,x >0.解得x ≥4.]2.C [M =(0,1],N =(-∞,0],因此M ∪N =(-∞,1].] 3.B [α+1=2,故α=1.]4.A [y =|log 3x |的图象是保留y =log 3x 的图象位于x 轴上半平面的部分(包括与x 轴的交点),而把下半平面的部分沿x 轴翻折到上半平面而得到的.] 5.D [由题意得:log a 9=2,即a 2=9,又∵a >0,∴a =3. 因此f (x )=log 3x ,所以f (x )的反函数为g (x )=3x .]6.D [由log a 23<1得:log a 23<log a a . 当a >1时,有a >23,即a >1; 当0<a <1时,则有0<a <23.综上可知,a 的取值范围是(0,23)∪(1,+∞).] 7.(1,2)解析 由题意,得⎩⎨⎧ 0<3-a <1,0<a <1或⎩⎨⎧3-a >1,a >1,解得1<a <2.8.(4,-1)解析 y =log a x 的图象恒过点(1,0),令x -3=1,则x =4; 令y +1=0,则y =-1. 9.124解析 ∵1<log 23<log 24=2,∴3+log 23∈(4,5), ∴f (log 23)=f (log 23+1)=f (log 23+2)=f (log 23+3)=f (log 224)=222log 241log log 24241222-⎛⎫== ⎪⎝⎭=124.10.解 (1)由x -2>0,得x >2,所以函数y =log 2(x -2)的定义域是(2,+∞),值域是R .(2)因为对任意实数x ,log 4(x 2+8)都有意义, 所以函数y =log 4(x 2+8)的定义域是R . 又因为x 2+8≥8,所以log 4(x 2+8)≥log 48=32,即函数y =log 4(x 2+8)的值域是[32,+∞).11.解 (1)当a =2时,函数f (x )=log 2(x +1)为[3,63]上的增函数, 故f (x )max =f (63)=log 2(63+1)=6,f (x )min =f (3)=log 2(3+1)=2.(2)f (x )-g (x )>0,即log a (1+x )>log a (1-x ), ①当a >1时,1+x >1-x >0,得0<x <1. ②当0<a <1时,0<1+x <1-x ,得-1<x <0.12.B [作x 轴的平行线y =1,直线y =1与曲线C 1,C 2,C 3,C 4各有一个交点,则交点的横坐标分别为a 1,a 2,a 3,a 4.由图可知a 3<a 4<a 1<a 2.] 13.解 由x 2-log m x <0,得x 2<log m x ,在同一坐标系中作y =x 2和y =log m x 的草图,如图所示.要使x 2<log m x 在(0,12)内恒成立,只要y =log m x 在(0,12)内的图象在y =x 2的上方,于是0<m <1. ∵x =12时,y =x 2=14,∴只要x =12时,y =log m 12≥14=log m 14m . ∴12≤14m ,即116≤m .又0<m <1,∴116≤m <1,即实数m 的取值范围是[116,1).小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
2.2.2对数函数及其性质(二)课时目标 1.进一步加深理解对数函数的性质.2.掌握对数函数的性质及其应用.1.函数y=log a x的图象如图所示,则实数a的可能取值是()A.5B.1 5C.1e D.122.下列各组函数中,表示同一函数的是()A.y=x2和y=(x)2B.|y|=|x|和y3=x3C.y=log a x2和y=2log a xD.y=x和y=log a a x3.若函数y=f(x)的定义域是[2,4],则y=f(12log x)的定义域是()A.[12,1] B.[4,16]C.[116,14] D.[2,4]4.函数f(x)=log2(3x+1)的值域为()A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)5.函数f(x)=log a(x+b)(a>0且a≠1)的图象经过(-1,0)和(0,1)两点,则f(2)=________.6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( ) A .[-1,1]B .[12,2] C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( )A.14B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( ) A .b B .-b C.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1) D .y =13log x (13≤x <1)题 号 1 2 3 4 5 6二、填空题7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________.8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________. 9.若log a 2<2,则实数a 的取值范围是______________. 三、解答题10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f(x)=log a x(a>0,a≠1),若f(x1x2…x2010)=8,则f(x21)+f(x22)+…+f(x22010)的值等于()A.4B.8C.16D.2log4813.已知log m4<log n4,比较m与n的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.2.2.2 对数函数及其性质(二)双基演练 1.A2.D [y =log a a x =x log a a =x ,即y =x ,两函数的定义域、值域都相同.] 3.C [由题意得:2≤12log x ≤4,所以(12)2≥x ≥(12)4,即116≤x ≤14.]4.A [∵3x +1>1,∴log 2(3x +1)>0.] 5.2解析 由已知得log a (b -1)=0且log a b =1, ∴a =b =2.从而f (2)=log 2(2+2)=2.6.(3,1)解析 若x -2=1,则不论a 为何值,只要a >0且a ≠1,都有y =1. 作业设计1.D [因为0<log 53<log 54<1,1<log 45, 所以b <a <c .]2.D [∵-1≤x ≤1, ∴2-1≤2x ≤2,即12≤2x ≤2. ∴y =f (x )的定义域为[12,2] 即12≤log 2x ≤2,∴2≤x ≤4.]3.C [∵log a 8=3,解得a =2,因为函数f (x )=log a |x |(a >0且a ≠1)为偶函数,且在(0,+∞)为增函数,在(-∞,0)上为减函数,由-3<-2,所以f (-3)>f (-2).]4.B [函数f (x )=a x +log a (x +1),令y 1=a x ,y 2=log a (x +1),显然在[0,1]上,y 1=a x 与y 2=log a (x +1)同增或同减.因而[f (x )]max +[f (x )]min =f (1)+f (0)=a +log a 2+1+0=a ,解得a =12.] 5.B [f (-x )=lg1+x 1-x =lg(1-x 1+x )-1=-lg 1-x1+x=-f (x ),则f (x )为奇函数, 故f (-a )=-f (a )=-b .]6.C [由y =3x (-1≤x <0)得反函数是y =log 3x (13≤x <1), 故选C.] 7.b ≤1解析 由题意,x ≥1时,2x -b ≥1. 又2x ≥2,∴b ≤1. 8.[12,1)∪(1,2]解析 ∵|y |>1,即y >1或y <-1,∴log a x >1或log a x <-1, 变形为log a x >log a a 或log a x <log a 1a当x =2时,令|y |=1, 则有log a 2=1或log a 2=-1, ∴a =2或a =12. 要使x >2时,|y |>1.如图所示,a 的取值范围为1<a ≤2或12≤a <1. 9.(0,1)∪(2,+∞)解析 log a 2<2=log a a 2.若0<a <1,由于y =log a x 是减函数,则0<a 2<2,得0<a <2,所以0<a <1;若a >1,由于y =log a x 是增函数, 则a 2>2,得a > 2.综上得0<a <1或a > 2.10.解 由a >0可知u =3-ax 为减函数,依题意则有a >1. 又u =3-ax 在[0,2]上应满足u >0, 故3-2a >0,即a <32.综上可得,a 的取值范围是1<a <32.11.解 (1)∵函数f (x )的图象关于原点对称, ∴函数f (x )为奇函数, ∴f (-x )=-f (x ), 即12log 1+ax -x -1=-12log 1-ax x -1=12log x -11-ax , 解得a =-1或a =1(舍). (2)f (x )+12log (x -1)=12log 1+xx -1+12log (x -1)=log(1+x),12当x>1时,log(1+x)<-1,12∵当x∈(1,+∞)时,f(x)+log(x-1)<m恒成立,12∴m≥-1.12.C[∵f(x1x2…x2010)=log a(x1x2…x2010)=8,f(x21)+f(x22)+…+f(x22010)=log a(x21x22…x22010)=2log a(x1x2…x2010)=2×8=16.]13.解数形结合可得0<n<m<1或1<n<m或0<m<1<n.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
章末检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若a<12,则化简4(2a -1)2的结果是( ) A .2a -1 B .-2a -1 C .1-2aD .-1-2a2.函数y =lg x +lg (5-3x)的定义域是( ) A .[0,53) B .[0,53] C .[1,53)D .[1,53]3.函数y =2+log 2(x 2+3)(x ≥1)的值域为( ) A .(2,+∞) B .(-∞,2) C .[4,+∞)D .[3,+∞)4.已知2x =72y =A ,且1x +1y =2,则A 的值是( ) A .7B .7 2C .±7 2D .985.若a>1,则函数y =a x 与y =(1-a)x 2的图象可能是下列四个选项中的( )6.下列函数中值域是(1,+∞)的是( ) A .y =(13)|x -1|B .y =34x -C .y =(14)x +3(12)x +1 D .y =log 3(x 2-2x +4)7.若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( ) A .增函数且f(x)>0 B .增函数且f(x)<0 C .减函数且f(x)>0 D .减函数且f(x)<08.已知函数f(x)=⎩⎨⎧log 3x ,x>02x ,x ≤0,则f(f(19))等于( )A .4B .14C .-4D .-149.右图为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是( )A .m<0,n>1B .m>0,n>1C .m>0,0<n<1D .m<0,0<n<110.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3D .log 76<log 6711.方程log 2x +log 2(x -1)=1的解集为M ,方程22x +1-9·2x +4=0的解集为N ,那么M 与N 的关系是( )A .M =NB .M NC .MND .M ∩N =∅12.设偶函数f(x)=log a |x +b|在(0,+∞)上具有单调性,则f(b -2)与f(a +1)的大小关系为( )A .f(b -2)=f(a +1)B .f(b -2)>f(a +1)C .f(b -2)<f(a +1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分) 13.log 34log 98=________.14.函数f(x)=a x -1+3的图象一定过定点P ,则P 点的坐标是________. 15.设log a 34<1,则实数a 的取值范围是________________.16.如果函数y =log a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.三、解答题(本大题共6小题,共70分)17.(10分)(1)计算:(-3)0-120+(-2)-2-1416-; (2)已知a =12,b =132, 求[23a -()()122123b ab a ----]2的值.18.(12分)(1)设log a 2=m ,log a 3=n ,求a 2m +n 的值; (2)计算:log 49-log 212+5lg210-.19.(12分)设函数f(x)=2x+a2x-1(a为实数).(1)当a=0时,若函数y=g(x)为奇函数,且在x>0时g(x)=f(x),求函数y=g(x)的解析式;(2)当a<0时,求关于x的方程f(x)=0在实数集R上的解.20.(12分)已知函数f (x )=log a x +1x -1(a >0且a ≠1),(1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.21.(12分)已知-3≤12log x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.22.(12分)已知常数a 、b 满足a >1>b >0,若f (x )=lg(a x -b x ). (1)求y =f (x )的定义域;(2)证明y =f (x )在定义域内是增函数;(3)若f (x )恰在(1,+∞)内取正值,且f (2)=lg2,求a 、b 的值.章末检测(A)1.C [∵a <12,∴2a -1<0.于是,原式=4(1-2a )2=1-2a .]2.C[由函数的解析式得:⎩⎪⎨⎪⎧ lg x ≥0,x >0,5-3x >0,即⎩⎪⎨⎪⎧x ≥1,x >0,x <53.所以1≤x <53.]3.C [∵x ≥1,∴x 2+3≥4, ∴log 2(x 2+3)≥2,则有y ≥4.]4.B [由2x =72y =A 得x =log 2A ,y =12log 7A , 则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.] 5.C [∵a >1,∴y =a x 在R 上是增函数,又1-a <0,所以y =(1-a )x 2的图象为开口向下的抛物线.] 6.C [A 选项中,∵|x -1|≥0,∴0<y ≤1; B 选项中,y =341x=14x 3,∴y >0;C 选项中y =[(12)x ]2+3(12)x +1,∵(12)x >0,∴y >1; D 选项中y =log 3[(x -1)2+3]≥1.]7.C [当-1<x <0,即0<x +1<1,且0<a <1时,有f (x )>0,排除B 、D.设u =x +1,则u 在(-1,0)上是增函数,且y =log a u 在(0,+∞)上是减函数,故f (x )在(-1,0)上是减函数.]8.B [根据分段函数可得f (19)=log 319=-2,则f(f(19))=f(-2)=2-2=14.]9.D[当x=1时,y=m,由图形易知m<0,又函数是减函数,所以0<n<1.] 10.D[A选项中由于y=log0.4x在(0,+∞)单调递减,所以log0.44>log0.46;B选项中函数y=1.01x在R上是增函数,所以1.013.4<1.013.5;C选项中由于函数y=x0.3在(0,+∞)上单调递增,所以3.50.3>3.40.3;D选项中log76<1,log67>1,故D正确.]11.B[由log2x+log2(x-1)=1,得x(x-1)=2,解得x=-1(舍)或x=2,故M={2};由22x+1-9·2x+4=0,得2·(2x)2-9·2x+4=0,解得2x=4或2x=12,即x=2或x=-1,故N={2,-1},因此有M N.]12.C[∵函数f(x)是偶函数,∴b=0,此时f(x)=log a|x|.当a>1时,函数f(x)=log a|x|在(0,+∞)上是增函数,∴f(a+1)>f(2)=f(b-2);当0<a<1时,函数f(x)=log a|x|在(0,+∞)上是减函数,∴f(a+1)>f(2)=f(b-2).综上可知f(b-2)<f(a+1).]13.4 3解析原式=lg4 lg3 lg8lg9=lg4lg3×lg9lg8=2lg2×2lg3lg3×3lg2=43.14.(1,4)解析由于函数y=a x恒过(0,1),而y=a x-1+3的图象可看作由y=a x的图象向右平移1个单位,再向上平移3个单位得到的,则P点坐标为(1,4).15.(0,34)∪(1,+∞)解析当a>1时,log a 34<0<1,满足条件;当0<a<1时,log a34<1=log a a,得0<a<3 4.故a>1或0<a<34.16.(1,2)解析当x∈[2,+∞)时,y>1>0,所以a>1,所以函数y=log a x在区间[2,+∞)上是增函数,最小值为log a2,所以log a2>1=log a a,所以1<a<2.17.解(1)原式=1-0+1(-2)2-()1442-=1+14-2-1=1+14-12=34.(2)因为a=12,b=132,所以原式=23128114 2233a b a b--+-+⎛⎫=⎪⎝⎭=8414413333222221 ----⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭.18.解(1)∵log a2=m,log a3=n,∴a m =2,a n =3.∴a 2m +n =a 2m ·a n =(a m )2·a n =22·3=12. (2)原式=log 23-(log 23+log 24)+2lg 510=log 23-log 23-2+25=-85.19.解 (1)当a =0时,f (x )=2x -1, 由已知g (-x )=-g (x ),则当x <0时,g (x )=-g (-x )=-f (-x )=-(2-x -1) =-(12)x +1,由于g (x )为奇函数,故知x =0时,g (x )=0,∴g (x )=⎩⎨⎧2x -1, x ≥0-(12)x+1,x <0.(2)f (x )=0,即2x +a2x -1=0,整理, 得:(2x )2-2x +a =0, 所以2x=1±1-4a2,又a <0,所以1-4a >1,所以2x=1+1-4a2, 从而x =log 21+1-4a2. 20.解 (1)要使此函数有意义,则有⎩⎪⎨⎪⎧ x +1>0x -1>0或⎩⎪⎨⎪⎧x +1<0x -1<0,解得x >1或x <-1,此函数的定义域为 (-∞,-1)∪(1,+∞),关于原点对称.(2)f (-x )=log a-x +1-x -1=log a x -1x +1 =-log a x +1x -1=-f (x ). ∴f (x )为奇函数.f (x )=log a x +1x -1=log a (1+2x -1), 函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减. 所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递减; 当0<a <1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递增.21.解 ∵f (x )=log 2x 2·log 2x 4=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2=(log 2x -32)2-14,∵-3≤12log x ≤-32.∴32≤log 2x ≤3.∴当log 2x =32,即x =22时,f (x )有最小值-14;当log 2x =3,即x =8时,f (x )有最大值2.22.(1)解 ∵a x -b x >0,∴a x >b x,∴(a b )x >1.∵a >1>b >0,∴a b >1.∴y =(a b )x 在R 上递增.∵(a b )x >(a b )0,∴x >0.∴f (x )的定义域为(0,+∞).(2)证明 设x 1>x 2>0,∵a >1>b >0, ∴1x a >2x a >1,0<1x b <2x b <1.∴-1x b >-2x b >-1.∴1x a -1x b >2x a -2x b >0. 又∵y =lg x 在(0,+∞)上是增函数, ∴lg(1x a -1x b )>lg(2x a -2x b ),即f (x 1)>f (x 2). ∴f (x )在定义域内是增函数.(3)解 由(2)得,f (x )在定义域内为增函数, 又恰在(1,+∞)内取正值,∴f (1)=0.又f (2)=lg2,∴⎩⎪⎨⎪⎧ lg (a -b )=0,lg (a 2-b 2)=lg2.∴⎩⎪⎨⎪⎧ a -b =1,a 2-b 2=2.解得⎩⎪⎨⎪⎧ a =32,b =12.。
第二章基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n为大于1的奇数时,na对任意a∈R都有意义;④当n为大于1的偶数时,na只有当a≥0时才有意义.其中正确的是( ) A.①③④B.②③④C.②③D.③④2.若2<a<3,化简2-a2+43-a4的结果是( )A.5-2a B.2a-5 C.1D.-13.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是( )A.(-12)-1B.122-C.1212-⎛⎫⎪⎝⎭D.2-14.化简3a a的结果是( )A.a B.1 2 aC.a2D.1 3 a5.下列各式成立的是( )A.3m 2+n 2=()23m n +B .(b a)2=12a 12bC.6-32=()133- D.34=1326.下列结论中,正确的个数是( ) ①当a <0时,()322a=a 3;②na n =|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞); ④若100a =5,10b =2,则2a +b =1. A .0B .1 C .2D .3二、填空题 7.614-3338+30.125的值为________. 8.若a >0,且a x=3,a y=5,则22y x a+=________.9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________. 三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+-402+12-1-1-5·238-.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升 12.化简:4133223384a a b b a-+÷(1-23ba)×3a .13.若x>0,y>0,且x-xy-2y=0,求2x-xyy+2xy的值.第二章基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算知识梳理1.x n=a(n>1,且n∈N*) 2.根式根指数被开方数3.(1)a(2)a|a| 4.(1)na m(2)1amn(3)0 没有意义5.(1)a r+s(2)a rs(3)a r b r作业设计1.D [①错,∵(±2)4=16,∴16的4次方根是±2;②错,416=2,而±416=±2.] 2.C [原式=|2-a |+|3-a |, ∵2<a <3,∴原式=a -2+3-a =1.]3.C [∵(-12)-1=-2,122-=22,1212-⎛⎫ ⎪⎝⎭=2,2-1=12,∵2>22>12>-2, ∴1212-⎛⎫⎪⎝⎭>122->2-1>(-12)-1.]4.B [12a =.]5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a 2,B 选项错;6-32>0,()133-<0,C 选项错.故选D.]6.B [①中,当a <0时,()()3312222a a ⎡⎤=⎢⎥⎣⎦=(-a )3=-a 3, ∴①不正确;②中,若a =-2,n =3, 则3-23=-2≠|-2|,∴②不正确;③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10,即102a +b =10. ∴2a +b =1.④正确.]7.32解析 原式=522-3323+3123=52-32+12=32. 8.9 5 解析 22y x a+=(a x )2·()12y a=32·125=9 5.9.-23解析 原式=412x -33-412x +4=-23.10.解 (1)原式=()()11132122xy xyxy -⎡⎤⎢⎥⎣⎦·(xy )-1=13x ·2111136622y x yxy---=13x ·13x-=⎩⎨⎧1, x >0-1,x <0.(2)原式=12+12+2+1-22=22- 3. 11.解 原式=x -12-x +32=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时, 原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=- 4. ∴原式=⎩⎨⎧-2x -2-3<x <1-41≤x <3.12.解 原式=()111333212133338242aa b a b b a aa--÷++×13a13.解∵x-xy-2y=0,x>0,y>0,∴(x)2-xy-2(y)2=0,∴(x+y)(x-2y)=0,由x>0,y>0得x+y>0,∴x-2y=0,∴x=4y,∴2x-xyy+2xy=8y-2yy+4y=65.。
§2.2 习题课一、选择题1.下列不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( ) A.14B.22 C.2D .43.设函数若f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12) 5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( ) A .(0,12) B .(12,+∞) C .(12,1)∪(2,+∞) D .(0,12)∪(2,+∞)二、填空题 7.已知log a (ab )=1p ,则log ab a b =________. 8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________. 三、解答题10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,求实数a 的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.3010)能力提升12.设a>0,a≠1,函数f(x)=log a(x2-2x+3)有最小值,求不等式log a(x-1)>0的解集.13.已知函数f(x)=log a(1+x),其中a>1.(1)比较12[f(0)+f(1)]与f(12)的大小;(2)探索12[f(x1-1)+f(x2-1)]≤f(x1+x22-1)对任意x1>0,x2>0恒成立.§2.2 习题课双基演练1.C [0<m <1,n >1,p <0,故p <m <n .]2.A [∵0<a <1,∴y =log a x 是减函数.由log a m <log a n <0=log a 1,得m >n >1.]3.A [由题意得:⎩⎪⎨⎪⎧ x -1≥0,2-x >0,lg 2-x ≠0,解得:1<x <2.]4.B [①y =x 在(0,1)上为单调递增函数,∴①不符合题意,排除A ,D.④y =2x +1在(0,1)上也是单调递增函数,排除C ,故选B.]5.f (a +1)>f (2)解析 当a >1时,f (x )在(0,+∞)上递增,又∵a +1>2,∴f (a +1)>f (2);当0<a <1时,f (x )在(0,+∞)上递减;又∵a +1<2,∴f (a +1)>f (2).综上可知,f (a +1)>f (2).6.a -2解析 log 38-2log 36=log 323-2(1+log 32)=3a -2-2a =a -2.作业设计1.D [对A ,根据y =log 0.5x 为单调减函数易知正确.对B ,由log 34>log 33=1=log 55>log 65可知正确.对C ,由log 34=1+log 343>1+log 365>1+log 565=log 56可知正确. 对D ,由π>e>1可知,log e π>1>log πe 错误.]2.B [左边=lg7lg3·2lg3lg2·lg m 2lg7=lg m lg2, 右边=-lg22lg2=-12, ∴lg m =lg2-12=lg 22, ∴m =22.] 3.A [∵f (3)=2,∴log a (3+1)=2,解得a =2,又f (-2)=0,∴4-4+b =0,b =0.]4.D [令y =2x 2+x ,其图象的对称轴x =-14<0,所以(0,12)为y 的增区间,所以0<y <1,又因f (x )在区间(0,12)内恒有f (x )>0,所以0<a <1.f (x )的定义域为2x 2+x >0的解集,即{x |x >0或x <-12}, 由x =-14>-12得,(-∞,-12)为y =2x 2+x 的递减区间, 又由0<a <1,所以f (x )的递增区间为(-∞,-12).] 5.C [①若a >0,则f (a )=log 2a ,f (-a )=12log a ,∴log 2a >12log a =log 21a∴a >1a,∴a >1. ②若a <0,则f (a )=12log (-a ),f (-a )=log 2(-a ), ∴12log (-a )>log 2(-a )=12log (-1a),∴-a <-1a, ∴-1<a <0,由①②可知,-1<a <0或a >1.]6.C [∵f (x )在(0,+∞)上是增函数,且f (13)=0, 在(0,+∞)上f (18log x )<0⇒f (18log x )<f (13)⇒0<18log x <13⇒18log 1<18log x <18log 1318⎛⎫ ⎪⎝⎭⇒12<x <1; 同理可求f (x )在(-∞,0)上是增函数,且f (-13)=0,得x >2. 综上所述,x ∈(12,1)∪(2,+∞).] 7.2p -1解析 ∵log ab a =p ,log ab b =log ab ab a=1-p , ∴log ab a b=log ab a -log ab b =p -(1-p )=2p -1.8.12a +b -2 解析 因为log 236=a ,log 210=b ,所以2+2log 23=a,1+log 25=b .即log 23=12(a -2),log 25=b -1, 所以log 215=log 23+log 25=12(a -2)+b -1=12a +b -2. 9.-3解析 (1)当a ≤4时,2a -4=18, 解得a =1,此时f (a +6)=f (7)=-3;(2)当a >4时,-log 2(a +1)=18,无解. 10.解 由log 4(x +a )<1,得0<x +a <4,解得-a <x <4-a ,即B ={x |-a <x <4-a }.∵A ∩B =∅,∴⎩⎪⎨⎪⎧-a ≥-2,4-a ≤3,解得1≤a ≤2, 即实数a 的取值范围是[1,2].11.解 设至少抽n 次才符合条件,则 a ·(1-60%)n <0.1%·a (设原来容器中的空气体积为a ).即0.4n <0.001,两边取常用对数,得n ·lg 0.4<lg 0.001,所以n >lg 0.001lg 0.4. 所以n >-32lg2-1≈7.5. 故至少需要抽8次,才能使容器内的空气少于原来的0.1%.12.解 设u (x )=x 2-2x +3,则u (x )在定义域内有最小值. 由于f (x )在定义域内有最小值,所以a >1.所以log a (x -1)>0⇒x -1>1⇒x >2,所以不等式log a (x -1)>0的解集为{x |x >2}.13.解 (1)∵12[f (0)+f (1)]=12(log a 1+log a 2)=log a 2, 又∵f (12)=log a 32,且32>2,由a >1知函数y =log a x 为增函数,所以log a 2<log a 32. 即12[f (0)+f (1)]<f (12). (2)由(1)知,当x 1=1,x 2=2时,不等式成立.接下来探索不等号左右两边的关系:12[f (x 1-1)+f (x 2-1)]=log a x 1x 2,f (x 1+x 22-1)=log a x 1+x 22, 因为x 1>0,x 2>0, 所以x 1+x 22-x 1x 2=x 1-x 222≥0,即x 1+x 22≥x 1x 2.又a >1,所以log a x 1+x 22≥log a x 1x 2, 即12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1). 综上可知,不等式对任意x 1>0,x 2>0恒成立.。
2.1.2 指数函数及其性质(一)
课时目标 1.理解指数函数的概念,会判断一个函数是否为指数函数.2.掌握指数函数的图象和性质.
1.指数函数的概念
一般地,__________________叫做指数函数,其中x 是自变量,函数的定义域是____.
2.指数函数y =a x (a >0,且a ≠1)的图象和性质
一、选择题
1.下列以x 为自变量的函数中,是指数函数的是( ) A .y =(-4)x B .y =πx
C .y =-4x
D .y =a x +2(a >0且a ≠1)
2.函数f (x )=(a 2-3a +3)a x 是指数函数,则有( ) A .a =1或a =2B .a =1
C .a =2
D .a >0且a ≠1
3.函数y =a |x |(a >1)的图象是( )
4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x ,那么f (2)的值为( ) A .-9B.1
9 C .-1
9D .9
5.右图是指数函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c
6.函数y =(1
2)x -2的图象必过( ) A .第一、二、三象限B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限
二、填空题
7.函数f(x)=a x的图象经过点(2,4),则f(-3)的值为________.
8.若函数y=a x-(b-1)(a>0,a≠1)的图象不经过第二象限,则a,b必满足条件________________.
9.函数y=8-23-x(x≥0)的值域是________.
三、解答题
10.比较下列各组数中两个值的大小:
(1)0.2-1.5和0.2-1.7;
(2)
1
3
1
4
⎛⎫
⎪
⎝⎭
和
2
3
1
4
⎛⎫
⎪
⎝⎭
;
(3)2-1.5和30.2.
11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50000m3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V(m3)与垃圾体积的加倍的周期(3年)数n的关系的表格,并回答下列问题.
(1) (2)根据报纸所述的信息,你估计3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?
(4)写出n 与V 的函数关系式,并画出函数图象(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么?
能力提升
12.定义运算a ⊕b =⎩⎨⎧
a (a ≤
b )
b (a >b )
,则函数f (x )=1⊕2x 的图象是( )
13.定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(x y)=yf(x).
(1)求f(1)的值;
(2)若f(1
2)>0,解不等式f(ax)>0.(其中字母a为常数).
1.函数y=f(x)与函数y=f(-x)的图象关于y轴对称;函数y=f(x)与函数y=-f(x)的图象关于x轴对称;函数y=f(x)与函数y=-f(-x)的图象关于原点对称.
2.函数图象的平移变换是一种基本的图象变换.一般地,函数y =f (x -a )的图象可由函数y =f (x )的图象向右(a >0)或向左(a <0)平移|a |个单位得到.
2.1.2 指数函数及其性质(一)
知识梳理
1.函数y =a x (a >0,且a ≠1) R 2.(0,1) 0 1 y >1 0<y <1 0<y <1 y >1 增函数 减函数 作业设计
1.B [A 中-4<0,不满足指数函数底数的要求,C 中因有负号,也不是指数函数,D 中的函数可化为y =a 2·a x ,a x 的系数不是1,故也不是指数函数.]
2.C [由题意得⎩⎨⎧
a 2
-3a +3=1,
a >0且a ≠1.
解得a =2.]
3.B [该函数是偶函数.可先画出x ≥0时,y =a x 的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.]
4.C [当x >0时,-x <0,∴f (-x )=3-x , 即-f (x )=(1
3)x , ∴f (x )=-(1
3)x .
因此有f (2)=-(13)2=-1
9.]
5.B [作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系.]
6.D [函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x
-2的图象,所以观察y =(1
2)x -2的图象知选D.] 7.18
解析 由题意a 2=4,∴a =2. f (-3)=2-3=1
8.
8.a >1,b ≥2
解析 函数y =a x -(b -1)的图象可以看作由函数y =a x 的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x 的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x 的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2. 9.[0,8)
解析 y =8-23-x =8-23·2-x =8-8·(1
2)x =8[1-(12)x
]. ∵x ≥0,∴0<(1
2)x ≤1, ∴-1≤-(1
2)x <0,
从而有0≤1-(1
2)x <1,因此0≤y <8. 10.解 (1)考查函数y =0.2x . 因为0<0.2<1,
所以函数y =0.2x 在实数集R 上是单调减函数. 又因为-1.5>-1.7, 所以0.2-1.5<0.2-1.7.
(2)考查函数y =(14)x .因为0<1
4<1,
所以函数y =(1
4)x 在实数集R 上是单调减函数. 又因为13<2
3,所以
(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2, 所以2-1.5<30.2.
11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50000×28=12800000(m 3).
(2)根据报纸所述的信息,估计3年前垃圾的体积是50000×2-1=25000(m 3).
(3)如果n =-2,这时的n 表示6年前,V 表示6年前垃圾的体积. (4)n 与V 的函数关系式是V =50000×2n ,图象如图所示.
(5)因为对任意的整数n,2n >0,所以V =50000×2n >0,因此曲线不可能与横轴相交.
12.A [由题意f (x )=1⊕2x
=⎩⎨⎧
1, x ≥0;
2x ,x <0.
]
13.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0. (2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t
, 且s >t ,又f (1
2)>0, ∴f (x 1)-f (x 2)=f [(12)s ]-f [(1
2)t ] =sf (12)-tf (12)=(s -t )f (1
2)>0, ∴f (x 1)>f (x 2).
故f (x )在(0,+∞)上是减函数. 又∵f (ax )>0,x >0,f (1)=0, ∴0<ax <1, 当a =0时,x ∈∅, 当a >0时,0<x <1
a ,
当a <0时,1
a <x <0,不合题意.故x ∈∅. 综上:a ≤0时,x ∈∅;
a >0时,不等式解集为{x |0<x <1
a }.。