中考数学复习考点解密规律探索性问题[及解析]
- 格式:doc
- 大小:445.00 KB
- 文档页数:31
L_J 中考数学探索性问题的解法随着应试教育向素质教育的转轨,加强对学生各方面能力考察的题目成了近年来各省市中考试题中的热门问题,探索性问题便是其中一类应运血生的新题型, 这•类问题对培养学生的创造性思维、想象能力和探索能力有很大帮助。
探索性问题又可分为结论探索型和存在探索型两种。
一、结论探索型问题此类题型一般是在给定题设条件下探求结论,它要求学生在对题设条件或图形认真分析的基础上,进行归纳,大胆猜想,然后通过推理、计算获得结论。
例1、长方形的周长为24cm,面积为64cm2,则这样的长方体()(A)有一个(B)有二个(C)有无数个(D)不存在a +b = 12解:设长方体的长为d,宽为b,贝U、址' = 64a> b可视为X2—12x+64=0的两个根•/ △二(一12) 2-4 X 64 = 144-256V0・.・该方程无实根即a、b不存在,因此选(D)a例2、在宽为a的纸带中剪出直径为a的圆5个,直径为5的圆10个,排列方法如图1,计算所用纸带长度,请考虑能否再设计一种排列方法,使所用纸带的长度比原排列方法节省原材料?ffll图2买•恩•收瓦潟暴圈3分析:通过图1观察易发现图中虚线部分具有典型性,为计算方便,取具有典型的部分(图2)进行分析,计算出结果。
易知,在等腰三角形ABC中,BC边上的高为AD,..a V2 a 今27+ 2 龙4 = 4a + — + — a 十一+ 2a = - a..•原排列方法使用纸带长为 2 2 4 4通过计算启发我们,如果把小圆分别插到大圆中,采用如下的排列方法,(如图3)这时纸带长为,a , 72 ° a ,3 ,9」、 3+18>/23 2 24 4 244- A = (6-4很)a a 0.344a可见改进后的排列方法比较合理例3、如图6、有四个动点P、Q、E、F分别从正方形ABCD的顶点A、B、C、D同时出发,沿着AB、BC、CD、DA以同样的速度向点B、C、D、A移动。
精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。
中考数学热点分析--探索型问题一、内容综述:1.探索型问题分类①结论探索型问题:一般是由给定的已知条件探求相应的结论,解题中往往要求充分利用条件进行大胆而合理的猜想,发现规律,得出结论。
②条件探索型问题:条件探索型问题,一般是由给定的结论反思探索命题,应具备的条件。
2.探索存在型问题解决法解决方法:①直接解法:从已知条件出发,推导出所要求的结论。
②假设求解法:假设某一命题成立--相等或矛盾,通过推导得出相反的结论。
③寻求模型法二、例题精讲:-------------------------------------------------------------------------------------------------------------------------------------------例1.已知点A(0, 6), B(3,0), C(2,0), M(0,m),其中m<6,以M为圆心,MC为半径作圆,则(1)当m为何值时,⊙M与直线AB相切(2)当m=0时,⊙M与直线AB有怎样的位置关系?当m=3时,⊙M与直线AB有怎样的位置关系?(3)由第(2)题验证的结果,你是否得到启发,从而说出在什么范围内取值时,⊙M 与直线AB相离?相交?((2),(3)只写结果,不要过程)(江苏常州中考题) 分析:如图(1)只需d=r。
作MD⊥AB ,当MD=MC,直线和圆相切,MD用相似可求。
(2)d与r比较(3)(1)是三种位置关系中的临界位置说明:在解有关判定直线与圆的位置这类问题时,一般应先求出这一直线与圆位置相切时应满足的条件,然后再辅以图形运动,分别考察相离,相交的条件。
说明:判断探索性的问题:是指几何图形的形状,大小的判定,图形与图形的位置关系判定,方程(组)解的判定等一类问题。
-------------------------------------------------------------------------------------------------------------------------------------------例 2.已知a,b,c分别是ΔABC的∠A,∠B,∠C的对边(a>b),二次函数y=(x-2a)x-2b(x-a)+c2的图象,顶点在x轴上,且sinA,sinB是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个根。
探索规律型问题归类解析探索规律型问题是历年中考数学试题中的重要题型之一,其特点是给出一组变化了的数字、式子、表格、图形等,要求学生通过观察、归纳、猜想、验证、类比,探求其内在规律.1.通用的解题策略解答规律型问题一般要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.这种“特殊——一般——特殊”的解题模式,体现了总结归纳的数学思想,也正是人们认识新事物的一般过程.具体来说,就是先写出开头几个数式的基本结构,然后通过横比或纵比找出各部分的特征,写出符合要求的结果.例1 如图1,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“L”形由3个正方形组成,第2个黑色“L”形由7个正方形组成,…那么组成第6个黑色“L”形的正方形个数是( )(A)22 (B)23 (C)24 (D)25解析从特例入手:如图1.纵比正方形的个数3,7,11,15中,后一个数比前一个大4(即相邻两数的差为4),猜想与4有关.横比3与1,7与2,11与3,15与4之间有何关系?联想到与4有关,故改写为:3=4×1-1,7=4×2-1.11=4×3-1,15=4×4-1.猜想组成第6个黑色L形的正方形个数是4 ×6-1=23个.故选B.点评考察相邻两数的差(或商)是探究数字规律的常用手段.常见的类型有:相邻两数的差(或商)相等或成倍数关系,相邻两数的差相等与商相等交替出现等.2.关注特殊数列(1)斐波那契数列:1,1,2,3,5,8,13,21…(其规律为:从第三项开始,每一项都等于前两项之和);(2)平方数数列:1,4,9,16,25,36…(其规律为:n2,即每一项都等于项数的平方).例2 有一组数:1,2,5,10,17,26…请观察这组数的构成规律,用你发现的规律确定第8个数为_______.解析规律为:n2+1(n=0,1,2…).答案:50.点评此类题要注意n2,n2+1,n2-1等(3)三角形数列:1,3,6,10,15,21,…(其规律为1+2+3+…+n)例3 世界上著名的莱布尼茨三角形如图2所示,则排在第10行从左边数第3个位置上的数是:( )(A)(B)(C)(D)解析从第3行起,从左边数第3位置上的数分别为,,,,…它们的分母可分别改写为:1×3,3×4,6×5,10×6,15×7,21×8,…,而1,3,6,10,15,21,…,正是三角形数,故答案为:.选B.(4)杨辉三角形,杨辉三角形斜边上1以外的各数,都等于它“肩上”的两数之和,如图3.(5)与等差等比数列有关的数列.如例1中3,7,11,15…就是一个等差数列.例4 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数应是_______.解析第二个加数1,2,4,8…规律为2n(为一等比数列,也要关注这一数列),第一个加数2,3,5,9…比第二个加数大1.所以第六个数为(25+1)+25=65.例5 一组按规律排列的数:…请你推断第9个数是________.解析这列数的分母为2,3,4,5,6…的平方数,分子形成二阶等差数列,依次相差2,4,6,8…故第9个数分子为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为.(6)与循环有关的问题例6 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a3;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;……依此类推,则a2008=_______.解析根据题意可算出a1=26,a2=65,a3=122,a4=26,a5=65,a6=122,…发现每3个数就出现一次循环.所以由2008=669×3+1,可得a2008=a1=26.点评一列数由某m个数循环出现组成,可依据同余等值(由n=p·m+r得a n=a r)实施转换.(7)分奇数项偶数项的问题例7 一组按规律排列的式子:,…(a b≠0),其中第7个式子是________,第n个式子是_(n为正整数).解析6的指数2,5,8,11…,相邻两数差为3,是等差数列,其规律为3n-1;再注意到奇数项为负,偶数项为正,则第n个式子为第七个式子为3.特殊数列的迁移例8 把数字按如图4所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围的一列,从上至下依次为1.5.13.25.…,则第10个数为_______.解析1 中间框出的一列数的规律为:第n个数为1+4+8+12+…+4(n-1).所以第10个数为1+4+8+12+…+36=.解析2 用虚线圈出的一列数1,5,13,25可改写为:02+12,12+22,22+32,32+42,猜想第10个数为92+102=181.点评此列数可看成是平方数数列的迁移.例9 图5中是与杨辉三角有类似性质的三角形数垒.a,b,c,d是相邻两行的前四个数,那么当a=8时,c=_______,d=_______.解析除两边外,中间的每个数等于肩上两数的和.答案:9;32.点评此列数可看成是杨辉三角形的迁移.4.关注中考新题型例10 观察图6所示表格,依据表格数据排列的规律,数2008在表格中出现的次数共有_______次.解析从特例入手,通过扩充表格可得:数1,2,3,4,5,6,7,8,9,10出现次数分别为1,2,2,3,2,4,2,4,3,4.出现的次数恰为给定数的所有因数的个数,而2008的因数为1,2,4,8,251,502,1004,2008等8个.故答案为8.点评本例中新产生的数为自然数的倍数,因此,其出现的次数与其因数的多少有关,仔细观察便会发现,其出现次数就是给定数所有因数的个数,本题规律的隐蔽性较强,因而有一定的难度.。
2012年中考数学二轮复习考点解密探索性问题Ⅰ、综合问题精讲:探索性问题是指命题中缺少一定地条件或无明确地结论,需要经过推断,补充并加以证明地题型.探索性问题一般有三种类型:(1)条件探索型问题;(2)结论探索型问题;(3)探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件地题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定地前提下,需探索发现某种数学关系是否存在地题目.探索型问题具有较强地综合性,因而解决此类问题用到了所学过地整个初中数学知识.经常用到地知识是:一元一次方程、平面直角坐标系、一次函数与二次函数解析式地求法(图象及其性质)、直角三角形地性质、四边形(特殊)地性质、相似三角形、解直角三角形等.其中用几何图形地某些特殊性质:勾股定理、相似三角形对应线段成比例等来构造方程是解决问题地主要手段和途径.因此复习中既要重视基础知识地复习,又要加强变式训练和数学思想方法地研究,切实提高分析问题、解决问题地能力.Ⅱ、典型例题剖析【例1】如图2-6-1,已知抛物线地顶点为A(O,1),矩形CDEF地顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线地解析式;(2)如图2-6-2,若P点为抛物线上不同于A地一点,连结PB并延长交抛物线于点Q,过点P、Q分别作x轴地垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR地形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点地三角形和以点Q、R、M为顶点地三角形相似,若存在,请找出M点地位置;若不存在,请说明理由.⑴解:方法一:∵B点坐标为(0,2),∴OB=2,∵矩形CDEF面积为8,∴CF=4.∴C 点坐标为(一2,2).F 点坐标为(2,2). 设抛物线地解析式为2y ax bx c =++. 其过三点A(0,1),C(-2.2),F(2,2).得1242242xa b c a b c=⎧⎪=-+⎨⎪=++⎩解得1,0,14a b c ===∴此抛物线地解析式为2114y x =+方法二:∵B 点坐标为(0,2),∴OB =2, ∵矩形CDEF 面积为8,∴CF=4. ∴C 点坐标为(一2,2).根据题意可设抛物线解析式为2y ax c =+. 其过点A(0,1)和C(-2.2)124c a c=⎧⎨=+⎩解得1,14a c == 此抛物线解析式为2114y x =+(2)解:①过点B 作BN BS ⊥,垂足为N .∵P 点在抛物线y=214x +l 上.可设P 点坐标为21(,1)4a a +.∴PS =2114a +,OB =NS =2,BN=a .∴PN=PS —NS=2114a -在Rt PNB 中.PB 2=222222211(1)(1)44PN BN a a a +=-+=+∴PB =PS =2114a +②根据①同理可知BQ =QR. ∴12∠=∠, 又∵13∠=∠, ∴23∠=∠,同理∠SBP =∠B ∴2523180∠+∠=︒∴5390∠+∠=︒∴90SBR ∠=︒. ∴△SBR 为直角三角形. ③方法一:设,PS b QR c ==,∵由①知PS =PB =b .QR QB c ==,PQ b c =+.∴222()()SR b c b c =+--∴SR =假设存在点M .且MS =x ,别MR=x .若使△PSM ∽△MRQ ,则有b x=即20x bc -+=∴12x x =∴SR =∴M 为SR 地中点. 若使△PSM ∽△QRM ,则有b x =.∴x =.∴1MR x c QB ROMS x b BP OS ==-===. ∴M 点即为原点O.综上所述,当点M 为SR 地中点时.∆PSM ∽ΔMRQ ;当点M 为原点时,∆PSM ∽∆MRQ .方法二:若以P 、S 、M 为顶点地三角形与以Q 、M 、R 为顶点三角形相似, ∵90PSM MRQ ∠=∠=︒,∴有∆PSM ∽∆MRQ 和∆PSM ∽△QRM 两种情况.当∆PSM ∽∆MRQ 时.∠SPM =∠RMQ ,∠SMP =∠RQM . 由直角三角形两锐角互余性质.知∠PMS+∠QMR =90°.∴90PMQ ∠=︒. 取PQ 中点为N .连结MN .则MN =12PQ=1()2QR PS +.∴MN 为直角梯形SRQP 地中位线,∴点M 为SR 地中点当△PSM ∽△QRM 时,RM QR QBMS PS BP ==.又RM RO MS OS=,即M 点与O 点重合.∴点M 为原点O.综上所述,当点M 为SR 地中点时,∆PSM ∽△MRQ ;当点M 为原点时,∆PSM ∽△QRM.点拨:通过对图形地观察可以看出C 、F 是一对关于y 轴地对称点,所以(1)地关键是求出其中一个点地坐标就可以应用三点式或 y=ax 2+c 型即可.而对于点 P 既然在抛物线上,所以就可以得到它地坐标为(a ,14 a 2+1).这样再过点B 作BN ⊥PS .得出地几何图形求出PB 、PS 地大小.最后一问地关键是要找出△PSM 与△MRQ 相似地条件.【例2】探究规律:如图2-6-4所示,已知:直线m ∥n ,A 、B 为直线n 上两点,C 、P 为直线m 上两点.(1)请写出图2-6-4中,面积相等地各对三角形;(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么,无论P 点移动到任何位置,总有________与△ABC 地面积相等.理由是:_________________.解决问题:如图 2-6-5所示,五边形 ABCDE 是张大爷十年前承包地一块土地地示意图,经过多年开垦荒地,现已变成如图2-6-6所示地形状,但承包土地与开垦荒地地分界小路(2-6-6中折线CDE )还保留着;张大爷想过E 点修一条直路,直路修好后,要保持直路左边地土地面积与承包时地一样多,右边地土地面积与开垦地荒地面积一样多.请你用有关地几何知识,按张大爷地要求设计出修路方案(不计分界小路与直路地占地面积).(1)写出设计方案.并画出相应地图形; (2)说明方案设计理由.解:探究规律:(l )△ABC 和△ABP ,△AOC 和△ BOP 、△CPA 和△CPB .(2)△ABP ;因为平行线间地距离相等,所以无论点P 在m 上移动到任何位置,总有△ABP与△ABC同底等高,因此,它们地面积总相等.解决问题:⑴画法如图2-6-7所示.连接EC,过点D作DF∥EC,交CM于点F,连接EF,EF即为所求直路位置.⑵设EF交CD于点H,由上面得到地结论可知:SΔECF=SΔECD,SΔHCF=SΔEDH,所以S五边形ABCDE=S五边形ABCFE,S五边形EDCMN=S四边形EFMN.点拨:本题是探索规律题,因此在做题时要从前边问题中总结出规律,后边地问题要用前边地结论去一做,所以要连接EC,过D作DF∥EC,再运用同底等高地三角形地面积相等.【例3】如图2-6-8所示,已知抛物线地顶点为M(2,-4),且过点A(-1,5),连结AM交x轴于点B.⑴求这条抛物线地解析式;⑵求点B地坐标;⑶设点P(x,y)是抛物线在x轴下方、顶点M左方一段上地动点,连结PO,以P为顶点、PQ为腰地等腰三角形地另一顶点Q在x轴上,过Q作x轴地垂线交直线AM于点R,连结PR.设面PQR地面积为S.求S与x之间地函数解析式;⑷在上述动点P(x,y)中,是否存在使SΔPQR=2地点?若存在,求点P地坐标;若不存在,说明理由.解:(1)因为抛物线地顶点为M(2,-4)所以可设抛物线地解析式为y=(x-2)2-4.因为这条抛物线过点A(-1,5)所以5=a(-1-2)2-4.解得a=1.所以所求抛物线地解析式为y=(x—2)2-4(2)设直线AM地解析式为y=kx+ b.因为A(-1,5), M(2,-4)所以524k bk b-+=⎧⎨+=-⎩,解得k=-3,b=2.所以直线AM地解析式为y=3x+2.当y=0时,得x= 23,即AM与x轴地交点B(23,0)(3)显然,抛物线y=x2-4x过原点(0,0〕当动点P (x ,y )使△POQ 是以P 为顶点、PO 为腰且另一顶点Q 在x 轴上地等腰三角形时,由对称性有点 Q (2x ,0)因为动点P 在x 轴下方、顶点M 左方,所以0<x <2.因为当点Q 与B (23 ,0)重合时,△PQR 不存在,所以x ≠13 ,所以动点P (x ,y )应满足条件为0<x <2且x ≠13 ,因为QR 与x 轴垂直且与直线AM 交于点R , 所以R 点地坐标为(2x ,-6x+2) 如图2-6-9所示,作P H ⊥OR 于H , 则PH=|||2|,|62|Q P x x x x x QR x -=-==-+而S=△PQR 地面积=12 QR ·P H= 12 |62|x x -+下面分两种情形讨论:①当点Q 在点B 左方时,即0<x <13 时,当R 在 x 轴上方,所以-6x +2>0. 所以S=12(-6x +2)x=-3x 2+x ;②当点Q 在点B 右方时,即13 <x <2时点R 在x 轴下方,所以-6x +2<0. 所以S=12 [-(-6x +2)]x=3x 2-x ;即S 与x 之间地函数解析式可表示为2213(0)313(2)3x x x S x x x ⎧-+<<⎪⎪=⎨⎪-<<⎪⎩(4)当S=2时,应有-3x 2+x =2,即3x 2-x+ 2=0,显然△<0,此方程无解.或有3x 2-x =2,即3x 2-x -2=0,解得x 1 =1,x 2=-23 当x=l 时,y= x 2-4x=-3,即抛物线上地点P (1,-3)可使S ΔPQR =2; 当x=-23<0时,不符合条件,应舍去.所以存在动点P ,使S ΔPQR =2,此时P 点坐标为(1,-3)点拨:此题是一道综合性较强地探究性问题,对于第(1)问我们可以采用顶点式求得此抛物线,而(2)中地点B是直线AM与x轴地交点,所以只要利用待定系数法就可以求出直线AM,从而得出与x轴地交点B.(3)问中注意地是Q点所处位置地不同得出地S与x 之间地关系也随之发生变化.(4)可以先假设存在从而得出结论.Ⅲ、综合巩固练习:(100分90分钟)观察图2-6-10中⑴)至⑸中小黑点地摆放规律,并按照这样地规律继续摆放.记第n个图中小黑点地个数为y.解答下列问题:⑴填下表:⑵当n=8时,y=___________;⑶根据上表中地数据,把n作为横坐标,把y作为纵坐标,在图2-6-11地平面直角坐标系中描出相应地各点(n,y),其中1≤n≤5;⑷请你猜一猜上述各点会在某一函数地图象上吗?如果在某一函数地图象上,请写出该函数地解析式.2.(5分)图2-6-12是某同学在沙滩上用石子摆成地小房子.观察图形地变化规律,写出第n个小房子用了_____________块石子.3.(10分)已知Rt△ABC中,AC=5,BC=12,∠ACB =90°,P是AB边上地动点(与点A、B不重合),Q是BC边上地动点(与点B、C不重合).⑴如图2-6-13所示,当PQ∥A C,且Q为BC地中点时,求线段CP地长;⑵当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ地长地取值范围,若不可能,请说明理由.4.如图2-6-14所示,在直角坐标系中,以A(-1,-1),B(1,-1),C(1,1),D(-1,l)为顶点地正方形,设正方形在直线:y=x及动直线l:y=-x+2a(-l≤a<1)上方2部分地面积为S(例如当a取某个值时,S为图中阴影部分地面积),试分别求出当a=0,a=-1时,相应地S地值.5.(10分)如图2-6-15所示,DE是△ABC地中位线,∠B=90○,AF∥B C.在射线A F 上是否存在点M,使△MEC与△A DE相似?若存在,请先确定点M,再证明这两个三角形相似;若不存在,请说明理由.6.如图2-6-16所示,在正方形ABCD中,AB=1,AC是以点B为圆心.AB长为半径地圆地一段弧点E是边AD上地任意一点(点E与点A、D不重合),过E作AC所在圆地切线,交边DC于点F石为切点.⑴当∠DEF=45○时,求证点G为线段EF地中点;⑵设AE=x,FC=y,求y关于x地函数解析式;并写出函数地定义域;⑶图2-6-17所示,将△DEF沿直线EF翻折后得△D1EF,当EF=56时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.(图2-6-18为备用图)7.(10分)取一张矩形地纸进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图2-6-19(1)所示;第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上地对应点B′,得Rt△AB′E,如图2-6-19(2)所示;第三步:沿EB′线折叠得折痕EF,如图2-6-19⑶所示;利用展开图2-6-19(4)所示探究:(l)△AEF是什么三角形?证明你地结论.(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.8.(10分)某校研究性学习小组在研究有关二次函数及其图象性质地问题时,发现了两个重要结论.一是发现抛物线y=ax 2+2x+3(a ≠0),当实数a 变化时,它地顶点都在某条直线上;二是发现当实数a 变化时,若把抛物线y=ax 2+2x+3(a ≠0)地顶点地横坐标减少1a,纵坐标增加1a ,得到A 点地坐标;若把顶点地横坐标增加1a ,纵坐标增加1a,得到B 点地坐标,则A 、B 两点一定仍在抛物线y=ax 2+2x+3(a ≠0)上.⑴请你协助探求出实数a 变化时,抛物线y=ax 2+2x+3(a ≠0)地顶点所在直线地解析式; ⑵问题⑴中地直线上有一个点不是该抛物线地顶点,你能找出它来吗?并说明理由;⑶在他们第二个发现地启发下,运用“一般→特殊→一般”地思想,你还能发现什么?你能用数学语言将你地猜想表述出来吗?你地猜想能成立吗?若能成立,请说明理由.9.已知二次函数地图象过A (-3,0),B (1,0)两点.⑴当这个二次函数地图象又过点以0,3)时,求其解析式;⑵设⑴中所求M次函数图象地顶点为P,求SΔAPC:SΔABC地值;⑶如果二次函数图象地顶点M在对称轴上移动,并与y轴交于点D,SΔAMD:SΔABD地值确定吗?为什么?10.(13分)如图2-6-20所示,在Rt△ABC中,∠ACB=90°,BC地垂直平分线DE,交BC于D,交AB于E,F在DE上,并且A F=CE.⑴求证:四边形ACEF是平行四边形;⑵当∠B地大小满足什么条件时,四边形A CEF是菱形?请回答并证明你地结论;⑶四边形ACEF有可能是正方形吗?为什么?版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.2MiJT。
中考数学专题讲座探索性问题概述:探索性题目一般作为压轴题或次压轴题出现,题目较难,难在结论不肯定,要通过探索证明或计算,得出结论,并给予肯定或否定回答:这种题目的结论有多样性,需要解题的周密考虑,解这种题目有两种方法:一种是假定结论成立,去证明它的可能性或存在性;另一种是从条件出发直接证明或计算回答存在或不存在.典型例题精析例1.如图1,分别以直角三角形ABC三边为直径向外作三个半圆,•其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3.(1)如图2所示,分别以直角三角形ABC三边为边向外作三个正方形,•其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2)如图3所示,分别以直角三角形ABC三边为边向外作三个正三角形,•其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别为S1、S2、S3表示,使S1、S2、S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件?并证明你的结论;(4)类比(1)、(2)、(3)的结论,请你总结出一个更具一般意义的结论.S3S2S1图1BCABCAS3S2S1图2BCAS3S2S1图3解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2.(1)S1=S2+S3;(2)S1=S2+S3,证明如下:显然:S12,S22,S32,∴S2+S3=4(a2+b2)=4c2=S1.(也可用三角形相似证明)(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似,∴2221S aS c=,2321S bS c=,∴222321S S a bS c++==1,∴S1=S2+S3.(4)分别以直角三角形ABC的三边为一边向外作相似图形,其面积分别用S1、S2、•S3表示,则S1=S2+S3.例2.如图1,⊙O1和⊙O2外切于P,AB是⊙O1和⊙O2的公切线,A、B是切点,直线AP、BP分别交⊙O2,⊙O1于F、E.(1)求证:AE、BF分别为⊙O1、⊙O2的直径;(2)求证:AB2=AE·BF;(3)如图2,当图1中的切点P变为两圆一个交点时,结论AB2=AE·BF还成立吗?•若成立,请证明;若不成立,请说明理由.图1图2分析:(1)即证∠APE=∠BPF=90°,过P作二圆公切线,可证明.(2)证明△ABE∽△BFA可得.(3)同样可证△ABE∽△BFA.∴∠E=∠BAF,∠F=∠ABE.中考样题训练1.如图,在直角坐标系中,O是原点,A、B、•C•三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别作饼速运动,其中点P沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动 ,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC 的解析式及经过O 、A 、C 三点的抛物线的解析式.(2)试在(1)中的抛物线上找一点D ,使得以O 、A 、D 为顶点的三角形与△AOC 全等,请直接写出点D 的坐标.(3)设从出发起运动了t 秒,如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t 的取值范围.(4)设从出发起,运动了t 秒钟,当P 、Q 两点运动的路程之和恰好等于梯形OABC 周长的一半,这时,直线PQ 能否把梯形的面积也分成相等的两部分,如有可能,•请求出t 的值;如不可能,请说明理由.C(8,6)B(18,6)A(18,0)xOyQ P2.如图,⊙O 2与⊙O 1的弦BC 切于C 点,两圆的另一个交点为D ,动点A•在⊙O 1上,直线AD 与⊙O 2交于点E ,与直线BC 交于点F . (1)如图1,当点A 在CD 上时,求证:①△FDC∽△FCE;②AB∥EC;(2)如图2,当点A在BD上时,是否仍有AB∥EC?请证明你的结论.3.如图,⊙A和⊙B是外离两圆,⊙A 半径长为2,⊙B的半径长为1,•AB=4,P为连结两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC+PD=4?如果存在,问这样的P点有几个;并求出PB的值;如果不存在,说明理由;(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD,请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)•时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.4.三月三,放风筝,图中是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学知识给予证明.EDHF考前热身训练 1.填空题(1)观察下列等式,你会发现什么规律? 3×5=15,而15=42-1, 5×7=35,而35=62-1,… 11×13=143,而143=122-1,…将你猜想到的规律用只含一个字母的式子表示出来_ ___________________.(2)如图,以△ABC 的边AB 为直径作⊙O 交BC 于D ,过D 作⊙O•的切线交AC 于E ,使得DE ⊥AC ,则△ABC 的边必须满足的条件是________.2.已知反比例函数y=kx(k ≠0)和一次函数y=-x+8. (1)若一次函数和反比例函数的图象交于点(4,m ),求m 和k ; (2)k 满足什么条件时,这两个函数图象有两个不同的交点?(3)设(2)中的两个交点为A 、B ,试判定∠AOB 是锐角还是钝角?3.如图,在直角坐标系xOy 中,以点A (0,-3)为圆心作圆与x 轴相切,⊙B 与⊙A 外切于点P ,B 点在x 轴正半轴上,过P 点作两圆的公切线DP 交y 轴于D ,交x 轴于C .B(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=23r1,求公切线DP的长及直线DP•的函数解析式;(2)若⊙A的位置大小不变,点B在x轴正半轴上移动,⊙B与⊙A始终外切,过D作⊙B的切线DE,E为切点,当DE=4时,B点在什么位置?从解答中能发现什么?EC A BxyDPO答案:中考样题看台1.(1)y=34x.∴y=-340x2+2720x(2)D(10,6)(3)当Q在OC上运动时,可设Q(m,34m),依题意有:m2+(34m2)=(2t)2.∴m=85t,∴Q(85t,65t),(0≤t≤5)当Q在BC上时,Q点所走过的路程为2t.∵OC=10,∴CQ=2t-10,∴Q点在横坐标为2t-10+8=2t-2,∴Q(2t-2,6)(5<t≤10).(4)∵梯形OABC的周长为44,当Q点在OC上,P运动的路程为t,则Q•运动的路程为(22-t)△OPQ中,OP边上的高为:(22-t)×35,∴S△OPQ=12t(22-t)×35,S梯形OABC=12(180+10)×6=84.依题意有:12t(22-t)×35=84×12,整理得:t2-22t+140=0.∴△=222-4×140<0,∴这样的t不存在.当Q在BC上时,Q走过的路程为22-t,∴CQ的长为:22-t-10=12-t,∴S梯形OCQP=12×6(22-t-10+t)=36≠84×12,∴这样的t值也不存在.综上所述,不存在这样的t值,使得直线PQ同时平分梯形的周长和面积.2.(1)①∵BC切⊙O2于C,∴∠ECF=∠CDF,又∠F=∠F,∴△FDC∽△FCE.•②又∵∠ADC=∠ABC,∠ECF=∠CDF,∴∠ABC=∠ECF,∴AB∥EC(2)有AB∥EC,证明:∵BC切⊙O2于C,∴∠BCE=∠D,又∵ABCD内接于⊙O1,∴∠ABF=∠D,∴∠BCE=∠ABF,∴AB∥EC 3.(1)∵PC切⊙A于点C,∴PC⊥AC,P C2=PA2-AC2,同理PD2=PB2-BD2,∵PC=PD,∴PC2-•A C2=PB2-B D2,设PB=x,PA=4-x代入得x2-1=(4-x)2-22,解得x=138,1<138<2,即PB的长为138(PA长为198>2).(2)假定有在一点P使PC2+PD2=4,设PB=x,则PD2=x2-1,PC2=(4-x)2-22,代入条件得(4-x)2-22+x2-1=4,解得x=2,∵P在两圆间的圆外部分,∴1<PB<2,即1<x<2,满足条件的P点只有一个,这时PB=2-2.(3)当PC:PD=2:1或PB=43时,也有△PCA∽△PDB,这时,在△PCA与△PDB中21AC PCBD PD==(或APBP),∠C=∠D=Rt∠,∴△PCA∽△PDB,∴∠BPD=∠APC=∠BPE(E在CP的延长线上),∴B点在∠DPE的角平分线上,B到PD与PE的距离相等,∵⊙B与PD相切,∴⊙B也与CP•的延长线PE相切.4.证明:连结DH在△DEH和△DFH中,∵DE DFEH FHDH DH=⎧⎪=⎨⎪=⎩∴△DEH≌△DFH,∴∠DEH=∠DFH.考前热身训练1.(1)(2n-1)(2n+1)=(2n)2-1 (n≥2)(2)等腰三角形(AB=AC)2.(1)m=4,k=16,(2)k<16且k≠0(3)当0<k<16时,∠AOB为锐角,当k<0时,∠AOB为钝角3.(1)直线DP的解析式为:y=-43x+2(2)DE=DP,Rt△APD≌Rt△AOB,∴BO=DP=4,∴点B(4,0),可以看出,四边形OBED是矩形,或切线DP的长等于B的横坐标.。
探索性问题专题一、知识网络梳理探索是人类认识客观世界过程中最生动、最活跃的思维活动,探索性问题存在于一切学科领域之中,在数学中则更为普遍.初中数学中的“探索发现”型试题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以证明的命题,它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,从而定格于“条件——演绎——结论”这样一个封闭的模式之中,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或由结论去探索未给予的条件;或去探索存在的各种可能性以及发现所形成的客观规律.通常情景中的“探索发现”型问题可以分为如下类型:1.条件探索型——结论明确,而需探索发现使结论成立的条件的题目.2.结论探索型——给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目.3.存在探索型——在一定的条件下,需探索发现某种数学关系是否存在的题目.4.规律探索型——在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.二、知识运用举例(一)条件探索型例1.(2007呼和浩特市)在四边形ABCD中,顺次连接四边中点E F G H,,,,构成一个新的四边形,请你对四边形ABCD填加一个条件,使四边形EFGH成为一个菱形.这个条件是__ .解:AC BD或四边形ABCD是等腰梯形(符合要求的其它答案也可以)ABD EFGHC例2(2007荆门市)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:_____________________. (2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说出你的结论和理由:_________________________________________. (3)在Rt △BCD 沿射线BD 方向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是_____________________________________;当点B 的移动距离为______时,四边形ABC 1D 1为菱形,其理由是____________________________.(图3、图4用于探究)解:(1)是,此时AD BC ,一组对边平行且相等的四边形是平行四边形.(2)是,在平移过程中,始终保持AB C 1D 1,一组对边平行且相等的四边形是平行四边形. (3,此时∠ABC 1=90°,有一个角是直角的平行四边形是矩形.D 与点B 1重合,AC 1⊥BD 1,对角线互相垂直的平行四边形是菱形. 例3(2006广东)如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,BC ∥OA ,OA =7,AB =4,∠ COA =60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得∠CPD =∠OAB ,且AB BD =85,求这时点P 的坐标. [解析](1);过C 作CD ⊥OA 于A ,BE ⊥OA 于E 则△OCD ≌△ABE ,四边形CDEB 为矩形 ∴OD =AE ,CD =BE∵OC =AB =4,∠COA =60° ∴CD=,OD =2 ∴CB =DE =3∴OE =OD +DE =5 ∵BE =CD= ∴B (5,)(2)∵∠COA =60°,△OCP 为等腰三角形图4CADB 图3 CAD B 图2 D 1C 1B 1CADB 图130︒30︒B DAC∴△OCP 是等边三角形 ∴OP =OC =4 ∴P (4,0)即P 运动到(4,0)时,△OCP 为等腰三角形(3)∵∠CPD =∠OAB =∠COP =60° ∴∠OPC +∠DPA =120° 又∵∠PDA +∠DPA =120° ∴∠OPC =∠PDA ∵∠OCP =∠A =60° ∴△COP ∽△PAD∴OP OCAD AP =∵58BD AB =,AB =4 ∴BD =52∴AD =32即 4372OP OP =- ∴276OP OP -= 得OP =1或6∴P 点坐标为(1,0)或(6,0)(二)结论探索型例4(2007云南省)已知:如图,四边形ABCD 是矩形(AD >AB ),点E 在BC 上,且AE=AD ,DF ⊥AE ,垂足为F . 请探求DF 与AB 有何数量关系?写出你所得到的结论并给予证明.解:经探求,结论是:DF = AB .证明如下:∵四边形ABCD 是矩形, ∴ ∠B = 90 , AD ∥BC , ∴ ∠DAF = ∠AEB . ∵ DF ⊥AE , ∴ ∠AFD = 90 , ∵ AE = AD ,∴ △ABE ≌△DFA . ∴ AB = DF .例5(2007北京市)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:FADCEB至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形 是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.解:(1)回答正确的给1分(如平行四边形、等腰梯形等). (2)答:与A ∠相等的角是BOD ∠(或COE ∠). 四边形DBCE 是等对边四边形.(3)答:此时存在等对边四边形,是四边形DBCE .证法一:如图1,作CG BE ⊥于G 点,作BF CD ⊥交CD 延长线于F 点.因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BCF CBG △≌△.所以BF CG =.因为BDF ABE EBC DCB ∠=∠+∠+∠,BEC ABE A ∠=∠+∠,所以BDF BEC ∠=∠.可证BDF CEG △≌△.所以BD CE =.所以四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作FCB DBC ∠=∠,CF 交BE 于F 点. 因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BDC CFB △≌△.所以BD CF =,BDC CFB ∠=∠.所以ADC CFE ∠=∠. 因为ADC DCB EBC ABE ∠=∠+∠+∠,FEC A ABE ∠=∠+∠, 所以ADC FEC ∠=∠. 所以FEC CFE ∠=∠. 所以CF CE =. 所以BD CE =.所以四边形DBCE 是等边四边形.说明:当AB AC =时,BD CE =仍成立.只有此证法,只给1分.例6(07山东滨州)如图1所示,在ABC △中,2AB AC ==,90A =∠,O 为BC 的BOADECBOAD ECF 图2 B OA D ECF 图1 G中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.(1)点E F ,的移动过程中,OEF △是否能成为45EOF =∠的等腰三角形?若能,请指出OEF △为等腰三角形时动点E F ,的位置.若不能,请说明理由.(2)当45EOF =∠时,设BE x =,CF y =,求y 与x 之间的函数解析式,写出x 的取值范围.(3)在满足(2)中的条件时,若以O 为圆心的圆与AB 相切(如图2),试探究直线EF 与O 的位置关系,并证明你的结论.解:如图,(1)点E F ,移动的过程中,OEF △能成为45EOF ∠=°的等腰三角形. 此时点E F ,的位置分别是:①E 是BA 的中点,F 与A 重合.②BE CF ==E 与A 重合,F 是AC 的中点. (2)在OEB △和FOC △中,135EOB FOC ∠+∠=°,135EOB OEB ∠+∠=°, FOC OEB ∠=∠∴. 又B C ∠=∠∵,OEB FOC ∴△∽△.BE BOCO CF=∴. BE x =∵,CF y =,OB OC === 2(12)y x x=∴≤≤. (3)EF 与O 相切. OEB FOC ∵△∽△, BE OE CO OF =∴. BE OE BO OF =∴. 即BE BOOE OF=. 又45B EOF ∠=∠=∵°, BEO OEF ∴△∽△.图1 B图2BBEO OEF ∠=∠∴.∴点O 到AB 和EF 的距离相等. AB ∵与O 相切,∴点O 到EF 的距离等于O 的半径. EF ∴与O 相切.(三)存在探索型存在性探索问题是指在某种题设条件下,判断具有某种性质的数学对象是否存在的一类问题.解题的策略与方法是:先假设数学对象存在,以此为条件进行运算或推理.若无矛盾,说明假设正确,由此得出符合条件的数学对象存在;否则,说明不存在.例7(2006山东省威海市)抛物线y = ax 2+bx +c (a ≠0)过点A (1,-3),B (3,-3),C (-1,5),顶点为M 点. ⑴求该抛物线的解析式.⑵试判断抛物线上是否存在一点P ,使∠POM =90︒.若不存在,说明理由;若存在,求出P 点的坐标.解:⑴ y = x 2 -4x⑵ 易求得顶点M 的坐标为(2,-4).设抛物线上存在一点P ,使OP ⊥OM ,其坐标为(a ,a 2 -4a ). 过P 作PE ⊥y 轴,垂足为E ;过M 点作MF ⊥y 轴,垂足为F , 则∠POE +∠MOF =90︒,∠POE +∠EPO =90.∴∠EPO =∠FOM . ∵∠OEP =∠MFO =90︒,∴Rt △OEP ∽Rt △MFO .∴OE ∶MF =EP ∶OF .即(a 2 -4a )∶2=a ∶4.解得a 1 =0(舍去),a 2 =29. 故抛物线上存在一点P ,使∠POM =90︒,P 点的坐标为(29,49)例8.(2006武汉市)已知:二次函数y =x 2 -(m +1)x +m 的图象交x 轴于A (x 1,0)、B (x 2,0)两点,交y 轴正半轴于点C ,且x 12 +x 22 =10.⑴求此二次函数的解析式; ⑵是否存在过点D (0,-25)的直线与抛物线交于点M 、N ,与x 轴交于点E ,使得点M 、N 关于点E 对称?若存在,求直线MN 的解析式;若不存在,请说明理由.分析与解答 ⑴依题意,得x 1x 2=m ,x 12 +x 22 =10, ∵x 1 +x 2 = m +1,∴(x 1 +x 2)2 -2x 1x 2 =10,图2-2-33∴(m +1)2 -2m =10,m =3或m = -3, 又∵点C 在y 轴的正半轴上,∴m =3. ∴所求抛物线的解析式为y =x 2 -4x +3. ⑵假设存在过点D (0,-25)的直线与抛物线交于M (x M ,y M )、N (x N ,y N )两点,与x 轴交于点E ,使得M 、N 两点关于点E 对称.∵M 、N 两点关于点E 对称,∴y M +y N =0. 设直线MN 的解析式为:y =kx -25. 由⎪⎩⎪⎨⎧=+-=.25-kx y 3x 4x y 2,得x 2 -(k +4)x +211=0,∴x M +x N =4+k ,∴y M +y N =k (x M +x N )-5=0.∴k (k +4)-5=0,∴k =1或k = -5. 当k =-5时,方程x 2 -(k +4)x +211=0的判别式⊿<0,∴k =1, ∴直线MN 的解析式为y =x -25. ∴存在过点D (0,-25)的直线与抛物线交于M 、N 两点,与x 轴交于点E ,使得M 、N 两点关于点E 对称.例9(2007乐山)如图(13),在矩形ABCD 中,4AB =,10AD =.直角尺的直角顶点P 在AD 上滑动时(点P 与A D ,不重合),一直角边经过点C ,另一直角边AB 交于点E .我们知道,结论“Rt Rt AEP DPC △∽△”成立. (1)当30CPD =∠时,求AE 的长;(2)是否存在这样的点P ,使DP C △的周长等于AEP △周长的2倍?若存在,求出DP的长;若不存在,请说明理由.解(1)在Rt PCD △中,由tan CDCPD PD=∠,得4tan tan 30CD PD CPD ===∠10AP AD PD ∴=-=-由AEP DPC △∽△知AE AP PD CD =,12AP PDAE CD∴== . (2)假设存在满足条件的点P ,设DP x =,则10AP x =-由AEP DPC △∽△知2CDAP=,图(13)图2-2-14210x∴=-,解得8x =,此时2AP =,4AE =符合题意.(四)规律探索型规律探索问题是根据已知条件或所提供的若干个特例,通过观察、类比、归纳,提示和发现题目所蕴含的本质规律与特征的一类探索性问题. 例10.(2006湖南衡阳)观察算式:1=12; 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52 ;……用代数式表示这个规律(n 为正整数):1+3+5+7+9++(2n -1)=______________________.分析与解答 由以上各等式知,等式左端是从1开始的连续若干个奇数之和,右端是左端奇数个数的平方,由此易得1+3+5+7+…+(2n -1)=n 2.填n 2.例11 (2006吉林省)如图2-2-1,用灰白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖数为___________.分析与解答 根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题,首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.第1个图案有白色瓷砖5(即2+3⨯1)块;第2个图案有白色瓷砖8(即2+3⨯2)块;第3个图案有白色瓷砖11(即2+3⨯3)块. 由此可得,第n 个图案有白色瓷砖(2+3n )块. 填3n +2. 例12.(2007资阳)设a 1=32-12,a 2=52-32,…,a n =(2n +1)2-(2n -1)2 (n 为大于0的自然数).(1) 探究a n 是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由) .解:(1)∵a n=(2n+1)2-(2n-1)2=22++-+-=,n n n n n4414418又n为非零的自然数,∴a n是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数.说明:第一步用完全平方公式展开各1分,正确化简1分.(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.n为一个完全平方数的2倍时,a n为完全平方数.一、知识巩固训练(题组训练)1.(2006年山东省)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件....可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.2.(2006年随州市)如图,矩形ABCD中,M是AD的中点.(1)求证:△ABM≌△DCM;(2)请你探索,当矩形ABCD中的一组邻边满足何种数量关系时,有BM⊥CM成立,说明你的理由.3.如图,在△ABC中,D为BC上一个动点(D点与B、C不重合),且DE∥AC交AB•于点E,DF∥AB交AC于点F.(1)试探究,当AD满足什么条件时,四边形AEDF是菱形?并说明理由.(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.4.如图,AB是⊙O的直径,EF是⊙O的切线,切点是C.点D是EF上一个动点,连接AD.试探索点D运动到什么位置时,AC是∠BAD的平分线,请说明理由.5.(2006年成都市)已知:如图,在△ABC中,D是AC的中点,E是线段BC•延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.6.(2006年常德市)如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP•为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.7.如图,AB是⊙O的直径,AD、BC、DC都是⊙O的切点,A、B、E分别是切点.(1)判定△COD的形状,并说明理由.(2)设AD=a,BC=b,⊙O的半径为r,试探究r与a,b之间满足的关系式,并说明理由.8.(2006年绵阳市)在正方形ABCD中,点P是CD上一动点,连结PA,分别过点B、D 作BE⊥PA、DF⊥PA,垂足分别为E、F,如图①.(1)请探索BE、DF、EF这三条线段长度具有怎样的数量关系.若点P在DC•的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD•的延长线上呢(如图③)?请分别直接写出结论;(2)请在(1)中的三个结论中选择一个加以证明.9.(2007云南省)已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点.(1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.10.(2007呼和浩特市)如图,在矩形ABCD中,AB =1AD =.点P 在AC 上,PQ BP ⊥,交CD 于Q ,PE CD ⊥,交于CD 于E .点P 从A 点(不含A )沿AC 方向移动,直到使点Q 与点C 重合..为止. (1)设AP x =,PQE △的面积为S .请写出S 关于x 的函数解析式,并确定x 的取值范围.(2)点P 在运动过程中,PQE △的面积是否有最大值,若有,请求出最大值及此时AP的取值;若无,请说明理由.11.(2007成都市)在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.BQE D12(2007绵阳市)如图,已知抛物线y = ax 2 + bx -3与x 轴交于A 、B 两点,与y 轴交于C 点,经过A 、B 、C 三点的圆的圆心M (1,m )恰好在此抛物线的对称轴上,⊙M 的半径为5.设⊙M 与y 轴交于D ,抛物线的顶点为E . (1)求m 的值及抛物线的解析式;(2)设∠DBC = α,∠CBE = β,求sin (α-β)的值;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCE 相似?若存在,请指出点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.13(07日照)如图,直线EF 将矩形纸片ABCD 分成面积相等的两部分,E 、F 分别与BC 交于点E ,与AD 交于点F (E ,F 不与顶点重合),设AB =a ,AD =b ,BE =x .(Ⅰ)求证:AF =EC ;(Ⅱ)用剪刀将纸片沿直线EF 剪开后,再将纸片ABEF 沿AB 对称翻折,然后平移拼接在梯形ECDF 的下方,使一底边重合,直腰落在边DC 的延长线上,拼接后,下方的梯形记作EE′B′C .(1)求出直线EE ′分别经过原矩形的顶点A 和顶点D 时,所对应的 x ︰b 的值;(2)在直线EE ′经过原矩形的一个顶点的情形下,连接B E′,直线BE ′与EF 是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a 与b 满足什么关系时,它们垂直?14.(2006江西省)如图2-2-2,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:⑴ 第4个图案中有白色纸片___________张;⑵ 第n 个图案台有白色纸片___________张.15.(2006广西贺州市)观察图2-2-3中一列有规律的数,然后在“?”处填上一个合适的数,这个数是______________.A 2A 1 A 3 A 4A 65 B图2-2-424158335 48?图2-2-3图2-2-2 第1个 第2个 第3个……16.(2006广西百色市)如图2-2-4,A 1A 2B 是直角三角形,且A 1A 2=A 2B =a ,A 2A 3⊥A 1B ,垂足为A 3,A 3A 4⊥A 2B ,垂足为A 4,A 4A 5⊥A 3B ,垂足为A 5,……,A n +1A n +2⊥A n B ,垂足为A n +2,则线段A n +1A n +2(n 为自然数)的长为( ). (A )n)2(a (B(C )2a (D )2n a 17.(2006江苏泰州市)如图2-2-5,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n 的等式表示第n 个正方形点阵中的规律_______.18.(2006浙江绍兴市)如图2-2-6,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2 006次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2006的位置,则P 2006的横坐标x 2006=_______________.19.(2007内江)如图(11),某小区有东西方向的街道3条,南北方向的街道4条,从位置A 出发沿街道行进到达位置B ,要求路程最短,研究共有多少种不同的走法.小东是这样想的:要使路程最短,就不能走“回头路”,只能分五步来完成,其中三步向右行进,两步向上行进,如果用用数字“1”表示向右行进,数字“2”表示向上行进,那么“11221”与“11212”就表示两种符合要求的不同走法,请你思考后回答:符合要求的不同走法共有20.(2007内江)探索研究(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是________;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a =________,n a =________;(2)如果欲求232013333+++++ 的值,可令图2-2-5…………211= 2363+=26104+=2132+= 图2-2-6B图(11)A232013333S =+++++ ……………………………………………………①将①式两边同乘以3,得_______________________………………………………………………………② 由②减去①式,得S =____________________.(3)用由特殊到一般的方法知:若数列123n a a a a ,,,,,从第二项开始每一项与前一项之比的常数为q ,则n a =________(用含1a q n ,,的代数式表示),如果这个常数1q ≠,那么123n a a a a ++++= ________(用含1a q n ,,的代数式表示).21.(07自贡)一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________.22.(2007德阳)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0) 根据这个规律探索可得,第100个点的坐标为____________.23.(2007河南省)将图①所示的正六边形进行进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③, 再将图③中最小的某一个正六边形按同样的方式进行分割…,则第n 个图形中,共有________个正六边形.图① 图②图③(第13题)……24.(2007安徽省)探索n ×n 的正方形钉子板上(n 是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n =2时,钉子板上所连不同线段的长度值只有1有2种,若用S 表示不同长度值的线段种数,则S =2;当n =3时,钉子板上所连不同线段的长度值只有12n =2时增加了3种,即S =2+3=5.(1) 观察图形,填写下表:(2) 写出(n -1)×(n -1)和n ×n 的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可) 【解】(3)对n ×n 的钉子板,写出用n 表示S 的代数式. 【解】25.(07贵阳市)如图12,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…. (1)“17”在射线________上.(2)请任意写出三条射线上数字的排列规律. (3)“2007”在哪条射线上?图1226.(07无锡)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=.图1 图2 图3 图4 如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,, ,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-, ,求图4中所有圆圈中各数的绝对值之和.27.(07乐山)如图(15),在直角坐标系中,已知点0P 的坐标为(10),,将线段0OP 按逆时针方向旋转45,再将其长度伸长为0OP 的2倍,得到线段1OP ;又将线段1OP 按逆时针方向旋转45,长度伸长为1OP 的2倍,得到线段2OP ;如此下去,得到线段3OP ,4OP ,,n OP (n 为正整数)(1)求点6P 的坐标; (2)求56POP △的面积;(3)我们规定:把点()n n n P x y ,(0123n = ,,,,) 的横坐标n x 、纵坐标n y 都取绝对值后得到的新坐标()nn xy ,称之为点n P 的“绝对坐标”.根据图中点n P 的分布规律,请你猜想点n P 的“绝对坐标”,并写出来.28.(07山东东营)根据以下10个乘积,回答问题:11×29; 12×28; 13×27; 14×26; 15×25; 16×24; 17×23; 18×22; 19×21; 20×20.(1)试将以上各乘积分别写成一个―□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来; (3)试由⑴、⑵猜测一个一般性的结论.(不要求证明)第2层 第1层 …… 第n 层5P答案:1.答案不惟一,符合题意即可.2.(1)略 (2)当AD =2AB 时,有BM •⊥CM 成立.说明理由(略) 3.(1)当AD 平分∠BAC 时,四边形AEDF 是菱形.理由(略)(2)在(1)的条件下,当∠BAC =90°时,四边形AEDF 是正方形.说明理由(略) 4.当点D •运动到满足条件AD ⊥EF 时,AC 平分∠BAD .证明(略)5.(1)证明△ADF ≌△CDE 即可 (2)四边形AFCE 是矩形.(证明略) 6.(1)证明△BPA ≌△BQC ,AP =CQ (2)△PQC 是直角三角形,∵PA :PB :PC =3:4:5, 设PA =3k ,PB =4k ,PC =5k ,∵∠PBQ =60°,BP =BQ ,∴△PBQ 是等边三角形, ∴PQ =PB =4k ,在△PQC 中,∵PQ 2+QC 2=(4k )2+(3k )2=25k 2,PC 2=(5k )2=25k 2, ∴PQ 2+QC 2=PC 2,∴△PQC 是Rt △. 7.(1)△COD 是直角三角形,连OE ,由圆的切线的性质可证得:•△OAD ≌△OED ,△OEC ≌△OBC , ∴∠AOD =∠EOD ,∠EOC =∠BOC ,可证得∠DOC =90°,• 所以△COD 是直角三角形.(2)r 与a 、b 之间满足的关系是r 2=ab .证明△OAD ∽△CBO ,得OA ADBC OB=,OA ·OB =AD ·BC 即r 2=ab . 8.解:(1)①BE =DF +EF ,②BE =DF -EF ,③EF =BE +DF . (2)•证明略.9.解:(1)∵抛物线经过点(1,0)A 、(5,0)B , ∴(1)(5)y a x x =--. 又∵抛物线经过点(0,5)C , ∴55a =,1a =.∴抛物线的解析式为2(1)(5)65y x x x x =--=-+.(2)∵E 点在抛物线上,∴m = 42–4×6+5 = -3.∵直线y = kx +b 过点C (0, 5)、E (4, –3),∴5,4 3.b k b =⎧⎨+=-⎩解得k = -2,b = 5.设直线y =-2x +5与x 轴的交点为D , 当y =0时,-2x +5=0,解得x =52. ∴D 点的坐标为(52,0). ∴S =S △BDC + S △BDE=1515(5)5+(5)32222⨯-⨯⨯-⨯ =10.(3)∵抛物线的顶点0(3,4)P -既在抛物线的对称轴上又在抛物线上,∴点0(3,4)P -为所求满足条件的点.(4)除0P 点外,在抛物线上还存在其它的点P 使得△ABP 为等腰三角形.理由如下:∵004AP BP ==>,∴分别以A 、B 为圆心半径长为4画圆,分别与抛物线交于点B 、1P 、2P 、3P 、A 、4P 、5P 、6P ,除去B 、A 两个点外,其余6个点为满足条件的点. (说明:只说出P 点个数但未简要说明理由的不给分)10.解:(1)解:过点P 作PF BC ⊥,垂足为F .在矩形ABCD 中,PF AB ∥ PFC ABC ∴△∽△ FC PC PFBC AC AB==∴又AP x =∵,1BC AD ==,AB = 又∵在Rt ABC △中,3AC =3PC x =-313FC x-=∴33xFC -=∴3133x xBF BC FC -=-=-=∴ 又PE CD ⊥∵ 90PEC ∠=∴°又在四边形PFCE 中,90PFC BCD PEC ∠=∠=∠=° ∴四边形PFCE 为矩形90FPE ∠=∴° 又PQ BP ⊥∵ 90BPQ ∠=∴° FPE BPQ ∠=∠∴ E P Q Q P F B P F F P ∠+∠=∠+∠∴ EPQ BPF ∠=∠∴ 又90PEQ BFP ∠=∠=° PEQ PFB ∴△∽△EQ PEBF PF=∴ 又PE FC = EQ FC BF PF =∴ 又FC PFBC AB =FC BCPF AB=∴ EQ BC BF AB =∴B C B FEQ AB=·∴3x EQ ==∴113223x S EQ PE -==∴··2S x x =+∴或23)S x x =-+ 过点B 作BK AC ⊥,垂足为K .在Rt ABC △中,由等积法可得 1122AC BK AB BC =·· AC BK AB BC =∴··31BK ⨯=BK =∴ 由题意可得当Q 与C 重合时,P 与K 重合即AP AK =, 由ABK ABC △∽△得AK AB BK BC =即x = 83x =∴ x ∴的取值范围是803x <≤(2)PQE △面积有最大值 由(1)可得2S x x =+232x ⎫=-⎪⎝⎭∴当32x =即32AP =时, S面积最大,即S =最大 11.解:(1) 二次函数图象顶点的横坐标为1,且过点(23),和(312)--,, ∴由1242393212.ba abc a b ⎧-=⎪⎪++=⎨⎪-+=-⎪⎩,, 解得123.a b c =-⎧⎪=⎨⎪=⎩,,∴此二次函数的表达式为223y x x =-++.(2)假设存在直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.在223y x x =-++中,令0y =,则由2230x x -++=,解得1213x x =-=,(10)(30)A B ∴-,,,.令0x =,得3y =.(03)C ∴,. 设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E点B 的坐标为(30),,点C 的坐标为(03),,点A 的坐标为(-4345.AB OB OC OBC ∴===∠=,, BC ∴==要使BOD BAC △∽△或BDO BAC △∽△, 已有B B ∠=∠,则只需BD BO BCBA=, ①或.BO BD BCBA=②成立.若是①,则有BO BC BD BA===. 而45OBC BE DE ∠=∴=,.∴在Rt BDE △中,由勾股定理,得222222BE DE BE BD +===⎝⎭.解得94BE DE ==(负值舍去). 93344OE OB BE ∴=-=-=.∴点D 的坐标为3944⎛⎫⎪⎝⎭,.将点D 的坐标代入(0)y kx k =≠中,求得3k =.∴满足条件的直线l 的函数表达式为3y x =.[或求出直线AC 的函数表达式为33y x =+,则与直线AC 平行的直线l 的函数表达式为3y x =.此时易知BOD BAC △∽△,再求出直线BC 的函数表达式为3y x =-+.联立33y x y x ==-+,求得点D 的坐标为3944⎛⎫⎪⎝⎭,.]若是②,则有BO BA BD BC=== 而45OBC BE DE ∠=∴=,.∴在Rt BDE △中,由勾股定理,得222222BE DE BE BD +===.解得2BE DE ==(负值舍去).321OE OB BE ∴=-=-=.∴点D 的坐标为(12),. 将点D 的坐标代入(0)y kx k =≠中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =.∴存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944⎛⎫⎪⎝⎭,或(12),.(3)设过点(03)(10)C E ,,,的直线3(0)y kx k =+≠与该二次函数的图象交于点P .将点(10)E ,的坐标代入3y kx =+中,求得3k =-. ∴此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).512x y ∴==-,. ∴点P 的坐标为(512)-,. 此时,锐角PCO ACO ∠=∠.又 二次函数的对称轴为1x =,∴点C 关于对称轴对称的点C '的坐标为(23),. ∴当5p x >时,锐角PCO ACO ∠<∠;当5p x =时,锐角PCO ACO ∠=∠; 当25p x <<时,锐角PCO ACO ∠>∠. 12.解:(1)由题意可知C (0,-3),12=-ab, ∴ 抛物线的解析式为y = ax 2-2ax -3(a >0), 过M 作MN ⊥y 轴于N ,连结CM ,则MN = 1,=CM ∴ CN = 2,于是m =-1. 同理可求得B (3,0),∴ a ×32-2-2a ×3-3 = 0,得 a = 1, ∴ 抛物线的解析式为y = x 2-2x -3.(2)由(1)得 A (-1,0),E (1,-4),D (0,1∴ 在Rt △BCE 中,23=BC ,2=CE ,∴313==OD OB ,3223==CE BC ,∴ CE BC OD OB =,即 CE OD BC OB =, ∴ Rt △BOD ∽Rt △BCE ,得 ∠CBE =∠OBD =β, 因此 sin (α-β)= sin (∠DBC -∠OBD )= sin ∠OBC =22=BC CO .(3)显然 Rt △COA ∽Rt △BCE ,此时点P 1(0,0).过A 作AP 2⊥AC 交y 正半轴于P 2,由Rt △CAP 2 ∽Rt △BCE ,得)31,0(2P . 过C 作CP 3⊥AC 交x 正半轴于P 3,由Rt △P 3CA ∽Rt △BCE ,得P 3(9,0). 故在坐标轴上存在三个点P 1(0,0),P 2(0,1∕3),P 3(9,0),使得以P 、A 、C 为顶点的三角形与BCE 相似.13.解:(Ⅰ)证明:∵AB =a ,AD =b ,BE =x ,S 梯形ABEF = S 梯形CDFE . ∴21a (x +AF )=21a (EC +b -AF ), ∴2AF =EC +(b -x ). 又∵EC =b -x , ∴2AF =2EC ,即AF =EC ; (Ⅱ)(1)当直线EE′经过原矩形的顶点D 时,如图(一),∵EC ∥E ′B ′, ∴B E EC ''=BD DC'. 由EC =b -x ,E ′B ′=EB =x , DB ′=DC +CB ′=2a , 得aax x b 2=-, ∴x ︰b =32;当直线E′E 经过原矩形的顶点A 时,如图(二), 在梯形AE ′B ′D 中, ∵EC ∥E ′B ′,点C 是DB ′的中点,∴CE =21(AD + E ′B ′), 即b -x =21(b +x ),∴x ︰b =31. (2) 如图(一), 当直线EE′ 经过原矩形的顶点D 时,BE ′∥EF . 证明:连接BF . ∵FD ∥BE , FD =BE , ∴四边形FBED 是平行四边形, ∴FB ∥DE , FB =DE , 又∵EC ∥E ′B ′, 点C 是DB ′的中点, ∴DE =EE ′, ∴FB ∥EE ′, FB = EE ′, ∴四边形BE ′EF 是平行四边形 ∴BE ′∥EF .如图(二), 当直线EE′ 经过原矩形的顶点A 时,显然BE ′与EF 不平行,设直线EF 与BE′交于点G .过点E ′作E ′M ⊥BC 于M , 则E ′M =a ..∵x ︰b =31, ∴EM =31BC =31b .若BE′与EF 垂直,则有∠GBE +∠BEG =90°,又∵∠BEG =∠FEC =∠MEE ′, ∠MEE ′+∠ME ′E =90°, ∴∠GBE =∠ME ′E . 在Rt △BME ′中,tan ∠E ′BM = tan ∠GBE =BMME '=b a 32. 在Rt △EME ′中,tan ∠ME ′E =M E EM'=ab31,∴b a 32=a b 31. 又∵a >0,b >0,=b a 32, ∴当=b a 32时,BE′与EF 垂直. 14. ⑴13 ⑵3n +115. 6316. A17. 2)1n (n -+2)1n (n +=n 2或1+2+…+(n -1)+1+2+…+n =n 2。
[中考数学复习专题] 探索性问题:就是问题的条件或结论不直接给出,需要经过观察、分析、分类、推理、化归、特殊化、一般化、数形结合及猜想等一系列的探索活动,逐步确定要求的结论或条件.其命题方式主要有填空题、选择题和综合题,其中以综合题为主.下面结合具体题目进行分析.1、条件探索型:总体思路是采用分析法,把结论看作已知进行逆推,探索结论成立需要的条件. 【例1】点D E ,分别在线段A B A C ,上,B E C D ,相交于点O AE AD=,,要使A B E A C D△≌△,需添加一个条件是 (只要写一个条件).【例2】求出一个二次函数,使得当时,当时,当时.【练习】1。
()P x y ,位于第二象限,并且4y x +≤(x y ,为整数)写出符合上述条件的点P的坐标______:.2. M,N,P,Q 分别是四边形ABCD 各边AB 、BC 、CD 、DA 的中点,当四边形ABCD 满足条件时,四边形MNPQ 为矩形;3.关于的方程,是否存在负数,使方程的两个实数根的倒数和为?若存在,求出满足条件的负数值,若不存在,请说明理由?2、结论探索型:解这类探索题的总体思路是先假定结论存在,并以此进行推理.【例1】 如图①,已知AB 是⊙O 的直径,AC 是弦,直线CD 切⊙O 于点C ,AD⊥CD,垂足为D .(1)求证:AC 2=AB·AD; (2)若将直线CD 向上平移,交⊙O 于C 1、C 2两点,其他条件不变,可得到图②所示的图形,试探索AC 1、AC 2、AB 、AD 之间的关系,并说明理由;(3)把直线C 1D 继续向上平移,使弦C 1C 2与直径AB 相交(交点不与A 、B 重合),其他条件不变,请你在图③中画出变化后的图形,标好字母,并试着写与(2)相应的结论,判断你的结论是否成立?若不成立,请说明理由;若成立,请给出证明。
【例2】 如图2-6-4所示,已知:直线m∥n,A 、B 为直线n 上两点,C 、P 为直线m 上两点.(1)请写出图2-6-4中,面积相等的各对三角形______________;理由是:__________.(2)如图 2-6-5所示,五边形 ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图2-6-6所示的形状,但承包土地与开垦荒地的分界小路(2-6-6中折线CDE)还保留着;张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案(不计分界小路与直路的占地面积).(1)写出设计方案.并画出相应的图形;(2)说明方案设计理由.【练习】(1)写出一个两实数根符号相反的一元二次方程:__________________.(2)请你写一个先提公因式、再运用公式来分解因式的三项式,并写出分解的结果.(3)已知E、F为平行四边形ABCD对角线DB的三等分点,连结AE并延长交CD于P,连结PF并延长交AB于Q.猜测AQ、BQ间的关系是.猜测AQ、BQ间的关系成立吗?为什么?3、存在性探索型【例1】如图,四边形O A B C是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边B C折叠,使点B落在边O A的点D处.已知折痕C E=,且3tan4E D A∠=.(1)判断O C D△与AD E△是否相似?请说明理由;(2)求直线C E与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线C E与x轴所围成的三角形和直线l、直线C E与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.例2 如图,已知O为坐标原点,∠AOB=300,∠ABO=900,且点A的坐标为(2,0).(1)求点B的坐标;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标,若不存在,请说明理由.【练习】1。
专题一规律探索型问题【专题诠释】规律探索型问题是近几年来中考的热点问题,能比较系统的考查学生的逻辑思维能力、归纳猜想能力及运用所学的知识和方法分析、解决数学问题的能力,是落实新课标理念的重要途径,所以备受命题专家的青睐,经常以填空题或选择题的形式出现,在全国各地中考中,出现了不少立意新颖、构思巧妙、形式多样的规律探索型问题,虽然分值不大,但是学生不易找出其中存在的规律,容易丢分,因此必须加大此项内容的学习力度。
【重点、难点突破】规律探索型问题是指给出一系列数字、一个等式或一列图形的前几项,让学生通过“观察-----思考------探究------猜想”这一系列的活动逐步找出题目中存在的规律,最后归纳出一般的结论,再加以运用。
解决此类问题的关键是仔细审题,归纳规律,合理推测,认真验证,从而得出问题的结论。
【典型例题】【题型一】数字规律问题例1:观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).分析:第一行数字是2的正整数次幂的值,第二行数字均比第一行相应的数字大3,所以猜想第一行第10个数为210,即1024,所以第二行的第10个数字为1027,它们的和为2051. 答案:2051【题型二】图形规律问题例2:下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依次规律,拼搭第8个图案需小木棒 根.分析:主要考查学生的规律探究能力、归纳能力和递推能力,因为4=1×(1+3),10=2×(2+3),18=3×(3+3),28=4×(4+3),所以第n 个为n (n+3),当n=8时,n (n+3)=8×11=88,第二种方法是可以根据规律画第8个图形,其规律,第一个图形为第一排一个,第二个图形为第一排2个,第2排1个,第3个图形为第一排3个,第2排2个,第3排1个,……,所以第8个图形为第一排8个,第2排7个,第3排6个,……第8排1个,所以共有88根 答案:88 【课堂检测】1.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。
规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。
三.考点精讲 考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1. 例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3),3×4 = 31(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n[])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n [])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 = 31(1×2×3-0×1×2), 2×3 =31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.(2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d .(用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。
202X年中考数学複习考点解密开放探索性问题含解析第一部分讲解部分一、专题诠释开放**型问题,可分为开放型问题和**型问题两类.开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特徵大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.**型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特徵大致可分为:条件**型、结论**型、规律**型和存在性**型等四类.二、解题策略与解法精讲由于开放**型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在複习时,首先对于基础知识一定要複习全面,併力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联络,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推汇出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重複也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、考点精讲(一)开放型问题考点一:条件开放型:条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1:(202X江苏淮安)在四边形abcd中,ab=dc,ad=bc.请再新增一个条件,使四边形abcd是矩形.你新增的条件是写出一种即可)分析:已知两组对边相等,如果其对角线相等可得到△abd≌△abc≌adc≌△bcd,进而得到,∠a=∠b=∠c=∠d=90°,使四边形abcd 是矩形.解:若四边形abcd的对角线相等,则由ab=dc,ad=bc可得.△abd≌△abc≌adc≌△bcd,所以四边形abcd的四个内角相等分别等于90°即直角,所以四边形abcd是矩形,故答案为:对角线相等.评注:此题属开放型题,考查的是矩形的判定,根据矩形的判定,关键是是要得到四个内角相等即直角.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特徵,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取捨.例2:(202X天津)已知一次函式的图象经过点(0,1),且满足y随x的增大而增大,则该一次函式的解析式可以为分析:先设出一次函式的解析式,再根据一次函式的图象经过点(0,1)可确定出b的值,再根据y随x的增大而增大确定出k的符号即可.解:设一次函式的解析式为:y=kx+b(k≠0),∵一次函式的图象经过点(0,1),∴b=1,∵y随x的增大而增大,∴k>0,故答案为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函式).评注:本题考查的是一次函式的性质,即一次函式y=kx+b(k≠0)中,k>0,y随x的增大而增大,与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上.考点三:条件和结论都开放的问题:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的资讯集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例3:(202X玉溪)如图,在平行四边形abcd中,e是ad的中点,请新增适当条件后,构造出一对全等的三角形,并说明理由.分析:先连线be,再过d作df∥be交bc于f,可构造全等三角形△abe和△cdf.利用abcd是平行四边形,可得出两个条件,再结合de∥bf,be∥df,又可得一个平行四边形,那幺利用其性质,可得de=bf,结合ad=bc,等量减等量差相等,可证ae=cf,利用sas可证三角形全等.解:新增的条件是连线be,过d作df∥be交bc于点f,构造的全等三角形是△abe与△cdf.理由:∵平行四边形abcd,ae=ed,∴在△abe与△cdf中,ab=cd,∠eab=∠fcd,又∵de∥bf,df∥be,∴四边形bfde是平行四边形,∴de=bf,又ad=bc,∴ad﹣de=bc﹣bf,即ae=cf,∴△abe≌△cdf.(答案不唯一,也可增加其它条件)评注:本题利用了平行四边形的性质和判定、全等三角形的判定、以及等量减等量差相等等知识.考点四:编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,寻求解法的一类题,它更具有开放性.例4:(202X年江苏盐城中考题)某校九年级两个班各为玉树**灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述资讯,就这两个班级的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程.分析:本题的等量关係是:两班捐款数之和为1800元;2班捐款数-1班捐款数=4元;1班人数=2班人数×90%,从而提问解答即可.解:解法一:求两个班人均捐款各多少元?设1班人均捐款x元,则2班人均捐款(x+4)元,根据题意得·90%=解得x=36 经检验x=36是原方程的根x+4=40答:1班人均捐36元,2班人均捐40元解法二:求两个班人数各多少人?设1班有x人,则根据题意得4= 解得x=50 ,经检验x=50是原方程的根90x % =45答:1班有50人,2班有45人.评注:对于此类编制开放型问题,是一类新型的开放型问题,它要求学生的思维较发散,写出符合题意的正确答案即可,难度要求不大,但学生容易犯想当然的错误,叙述不够準确,如单位的问题、符合实际等要求,在解题中应该注意防範.(二)**型问题考点五:动态探索型:此类问题结论明确,而需**发现使结论成立的条件的题目.例5:(202X临沂)如图1,将三角板放在正方形abcd上,使三角板的直角顶点e与正方形abcd的顶点a重合,三角扳的一边交cd于点f.另一边交cb 的延长线于点g.(1)求证:ef=eg;(2)如图2,移动三角板,使顶点e始终在正方形abcd的对角线ac上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形abcd”改为“矩形abcd”,且使三角板的一边经过点b,其他条件不变,若ab=a、bc=b,求的值.分析:(1)由∠geb+∠bef=90°,∠def+∠bef=90°,可得∠def=∠geb,又由正方形的性质,可利用sas证得rt△fed≌rt△geb,则问题得证;(2)首先点e分别作bc、cd的垂线,垂足分别为h、i,然后利用sas证得rt△fei≌rt△geh,则问题得证;(3)首先过点e分别作bc、cd的垂线,垂足分别为m、n,易证得em∥ab,en∥ad,则可证得△cen∽△cad,△cem∽△cab,又由有两角对应相等的三角形相似,证得△gme∽△fne,根据相似三角形的对应边成比例,即可求得答案.解:(1)证明:∵∠geb+∠bef=90°,∠def+∠bef=90°,∴∠def=∠geb,又∵ed=be,∴rt△fed≌rt△geb,∴ef=eg;(2)成立.证明:如图,过点e分别作bc、cd的垂线,垂足分别为h、i,则eh=ei,∠hei=90°,∵∠geh+∠hef=90°,∠ief+∠hef=90°,∴∠ief=∠geh,∴rt△fei≌rt△geh,∴ef=eg;(3)解:如图,过点e分别作bc、cd的垂线,垂足分别为m、n,则∠men=90°,∴em∥ab,en∥ad.∴△cen∽△cad,△cem∽△cab,∴,∴,即,∵∠ief+∠fem=∠gem+∠fem=90°,∴∠gem=∠fen,∵∠gme=∠fne=90°,∴△gme∽△fne,∴,∴.评注:此题考查了正方形,矩形的性质,以及全等三角形与相似三角形的判定与性质.此题综合性较强,注意数形结合思想的应用.考点六:结论**型:此类问题给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目.例6:(202X福建省三明市)在矩形abcd中,点p在ad上,ab=2,ap=1.将直角尺的顶点放在p处,直角尺的两边分别交ab,bc于点e,f,连线ef(如图①).(1)当点e与点b重合时,点f恰好与点c重合(如图②),求pc的长;(2)**:将直尺从图②中的位置开始,绕点p顺时针旋转,当点e和点a 重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠pef的值是否发生变化?请说明理由;。
冲刺06中考数学 探索性问题怎样解规律探索 【简析】规律探索问题是根据已知条件或所提供的若干个特例,通过观察、类比、归纳、揭示和发现题目所蕴含的本质规律与特征的一类探索性问题. 【典型考题例析】例1:观察下列各式:1×3=12+2×1;2×4=22+2×2;3×5=32+2×3;……请你将猜想到的规律用自然数(1)n n ³表示出来: (2005年陕西省中考题目)分析与解答 观察比较以上各等到式知.等式左端是两个因数的乘积,前一个因数依次是1、2、3、……后一个因数依次是3、4、5、……它们都是连续的,且后一个因数比前一个因数均大2;等式右端是两项的和,前一个加数依次为:12、22、32、……后一个加数依次是连续自然数的2倍,因而猜想到的规律用自然(1)n n ³表示为:2(2)2n n n n -=+.例2:观察下列数表: 1 2 3 4 … 第1行 2 3 4 5 … 第2行 3 4 5 6 … 第3行 45 6 7 … 第4行 ┇ ┇ ┇ ┇ 第 第 第 第 1 2 3 4 列列 列 列根据数表所反映的规律,猜想第6行与第6列交叉点上的数应为 .第n 行(n 为为正整数)与第n 列交叉点上的数应为 .(2005年北京市丰台区中考题)分析与解答 本例属于数字规律的探索问题.经观察,本数表是一个n ×n 型表,每一行的第1个数字就是该行的序数,后面的第2、3、……、n 个数自然数递增的顺序排列.第n 行与第n 列的交叉点上的数就是第n 行的第n 个数.据些,第6行与第6列的交叉点上的数就是第6行的第6个数,即6+5=11.第n 行的第n 个数为n +(n-1)=2n-1.例3:用同样大小的黑、白两种颜色的棋子摆设如图2-2-1所示的正方形图案.则第n 个图案需要用白色棋子 枚.(用含有n 的代数式表示)(2005年广东省茂名市中考题)分析与解答 根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题解决这尖问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.很显然,第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可猜出想第n 个图案的白色棋子数为(n +2)2-n 2=4(n +1).图2-2-1第n 个第3个第2个第1个【跟踪演练】1.观察下列各式,探索发现规律.1×3=3=22-1;3×5=15=42-1;5×7=35=62-1;7×9=63=82-1;9×11=99=102-1;… 用含正整数n 的等式表示你所发现的规律为 .(2005年山东菏泽市中考题)2.图2-2-2是用积木摆放的一组图案,观察图形并探索:第5个图案中共有 块积木.第n 个图形共有 块积木. (2005年内蒙古呼和浩特市中考题)3.观察下列各式:===…请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来,是 . (2004年山西省中考题)4.观察下列图形(每个正方形的边长均为1)和相应等式,探索其中的规律: ①111122?- ←→ ②222233?- ←→③333344?- ←→④444455?- ←→……………………(1)写出第五个等式,并在下面给出的五个正方形上画出与之对应的图示:(2)猜想并写第n 个图形相对应的等式. (2005年河北省中考题) 【跟踪演练答案】1.2(21)(21)(2)1n n n -+=- 2.225n 3(n =+4.(1)555566⨯=-,图示略;(2)11n nn n n n ⨯=-++ 结论探索 【简析】结论探索问题是指仅给出某种情境而没有明确指出结论,需要解题者去探索符合条件的一类试题.这图2-2-2第三个第二个第一个←→类探索问题的设问常以适合某种条件的结论“成立”、“不成立”、“是否成立”等语句加以表述,或直接问“有何结论”等.它与传统题的区别在于:探索问题的结论往往也是解题过程. 【典型考题例析】例1:如图2-2-3,已知AB 是⊙O 的直径,AC 是弦,直线CD 切⊙O 于点C ,AD ⊥CD ,垂足为D . (1) 求证:2AC AB AD =(2) 若将直线CD 向上平移,交⊙O 于12C C 、两点,其他条件不变,可得到图2-2-4所示的图形,试探索12AC AC AB AD 、、、之间的关系,并说明理由.(3) 把直线1C D 继续向上平移,使弦12C C 与直径AB 相交(交点不与A .B 重合),其他条件不变,请你在图2-2-5中画出变化后的图形,标好字母,并试着写与(2)相应的结论,判断你的结论是否成立?若不成立,请说明理由;若成立,请给出证明.(2005年内蒙古呼和浩特市中考题目)图2-2-5图2-2-4图2-2-3分析与解答 第(1)题,连结BC ,证明△ACD ∽△ABC ;第(2)题,探索12AC AC AB AD 、、、所在的的两个三角形是否与(1)中有类似的相似;第(3)题的关键是在图2-2-5中正确画出图形.(1)连结BC .∵AB 是⊙O 的直径,∴∠ACB=900.∵AD ⊥CD ,∴∠ADC=900. ∴∠ACD=∠ADC ,∵CD 切⊙O 于C .∴△ACD ∽△ABC . ∴AB AC AC AD=.∴2AC AB AD =. (2)关系式:12AC AC AB AD =.理由:连结1BC .∵四边形12ABC C 是圆内接四边形,∴∠2AC D =∠B .同(1)有∠2ADC =∠1AC B ,∴△2ADC ∽△1AC B ,∴12AC AB AC AD=,即12AC AC AB AD =. (3)如图2-2-5,结论:12AC AC AB AD =.理由:连结1BC .同(1)有∠2ADC =∠1AC B .又∵∠1C =∠B,∴△2ADC ∽△1AC B .∴12AC ABAC AD=,即12AC AC AB AD =.图2-2-8(b)(a)说明:本题是一道典型的结论探索题,题中设计的三个问题从特殊到一般,客观地反映了思维的渐进过程.解题的关键是先用常规方法证明第(1)小题的结论,然后第(2).(3)小题仿照第(1)小题的方法连结1BC 去探索结论并给出证明.例2:如图2-2-6,已知E .F 为ABCD 对角线DB 的三等分点,连结AE 并延长交DC 于P ,连结PF 并并延长交AB 于Q .(1)在图2-2-6的备用图中,画出满足上述条件的图形,试用刻度尺在图2-2-6,图2-2-7中量得AQ 、BQ 的长度,估计AQ 、BQ 间的关系,并填入下表:由上表可猜测AQ 、BQ 间的关系是 . (2)上述(1)中的猜测AQ 、BQ 间的关系成立吗?为什么?(3)若将ABCD 改为梯形(AB ∥CD ),其他条件不变,此时(1)中猜测AQ .BQ 间的关系是否成立?(不必说明理由) (2005年浙江省绍兴市中考题)分析与解答 本题是一道集操作、测量、猜想、证明于一体的结论开放性试题.解答本题的关键是准确进行测量,然后根据测量的结果合理、正确地猜想.(1) 填表格略.猜测:AQ=3BQ .(2) 成立.∵四边形ABCD 是平行四边形,∴DC ∥AB .∴△PDF ∽△QBF . ∴DP DFBQ BF=. ∵E .F 为BD 的三等分点,∴:2DP BQ =.同理:2AB PD =. ∴:4AB BQ =.∴:3AQ BQ =,即3AQ BQ =.(3) 成立.【跟踪演练】1.如图2-2-8,已知AC 、AB 是⊙O 的弦,AB>AC .(1)在图2-2-8(a )中,能否在AB 上确定一点E ,使得2AC AE AB =?为什么?(2)在图2-2-8(b )中在条件(1)的结论下延长EC 到P ,连结PB ,如果PB=PE ,试判断PB 和⊙O 的位置关系,并说明理由. (2005年甘肃省中考题)2.已知矩形ABCD 和点P .当点P 在图2-2-9的位置时,则有结论:PBCPACPCDS SS=+.理由:过点P作EF垂直BC ,分别交AD 、BC 于E、F两点.∵11111()22222PBC PCD ABCD S SBC PF AD PE BC PF PE BC EF S +=+=+==矩形,又∵12PACPC D P A D A BC D SSS S ++=矩形,∴PBC PAD PAC PCD PAD S S S S S +=++. ∴PBCPACPCDS SS=+.图2-2-7C图2-2-6Q PF E DCB A图2-2-13图2-2-12请你参照上述信息,当点P 分别在图2-2-10、图2-2-11中的位置时,PBCS、PACS、PCDS又有怎样的数量关系?请写出你对上两种情况的猜想,并选择其中一种情况的猜想给予证明. (2005年黑龙江省中考题)图2-2-11PABCD 图2-2-10PD CBA3.已知A 为⊙O 上一点,B 为⊙A 与OA 的交点,⊙A 与O 的半径分别为r 、R .(1)如图2-2-12,过点B 作⊙A 的切线与O 交于M 、N 两点,求证:2AM AN Rr =.(2)如图2-2-13,若⊙A 与⊙O 的交点为E 、F ,C 是EBF 上任意一点,过点C 作⊙A 的切线与⊙O 交于P 、Q 两点,试问2AP AQ Rr =是否成立?并证明你的结论且. (2004年天津市中考题)【跟踪演练答案】上取点D ,使AD AC =,连结CD1.(1)作法有多种,如在⊙O 交AB 于点E ,则有2AC AE AB =,证明略 (2)PB 是⊙O 的切线,连BO 并延长交⊙O 于F ,证∠AFB=∠BEP=∠ABP ,故PBO=9002.猜想结果:图2-2-10有结论:PBC PAC PCD S S S ∆∆∆=+,图2-2-11有结论:PBC PAC PCD S S S ∆∆∆=-.证明略.3.(1)延长AO 与⊙O 交于点D ,连结DM ,证明Rt △ABM ∽Rt △AMD ,由垂径定理得AM=AN ,又AB=r ,AD=2R ,∴2AM AN Rr = (2)提示:延长AO 与⊙O 交于点D ,连结DQ 、AC ,证Rt △ADQ ∽Rt △APC ,∵2,AD R AC r ==,∴2AP AQ Rr = 方案设计探索 【简析】方案设计探索问题,指的是提出一个数学问题情况如几何图形或图案的设计,物长物高的测量等,要求考生按要求设计某种方案来解决问题的一类探索题. 【典型考题例析】例1:请用几何图形“△”、“││”、“⌒”(一个三角形,两条平行线,一个半圆,如图2-2-14)作为构件,尽可能构思独特且有意义的图形,并写一两句帖切、诙谐的解说词.(至少两幅). (2005年青海省湟中县中考题目)分析与解答 这是几何构件类方案设计题.解答这类问题无固定的模式可套,需要考生去探索、创新.现给出两个参考作案(如图2-2-15),请大家开动脑筋,再设计几幅出来.图2-2-16花园图2-2-15犹有尽时海龟虽寿天涯共此时海上生明月例2:在某居民小区的中心地带,留有一块长16m ,宽12m 的矩形空地,计划用于建造一个花圆,设计要求:花圆面积为空地面积的一半,且整体图案成轴对称图形.(1)小明的设计方案如图2-2-16所示,其中花园四周是人行道,且人行道的宽度都相等,你知道人行道的宽度是多少吗?,请通过计算,给予解答.(2)其实,设计的方案可以是多种多样的,请你按设计要求,另设计一种方案.(2005年广西钦州市中考题) 分析与解答 本例集计算、设计于一体,综合考查了学生,运用数学知识解决实际问题的能力.(1)设人行道宽为xm ,根据题意,得 1(162)(122)16122x x --=创.解之,得122,12(x x ==舍去). 人行道的宽度为2m.(2)符合要求的答案很多,如图2-2-17的①~④均可.其中图①中的花园是底边长为16M 的等腰三角形,图②中的花园是两边底长为8M 的等腰三角形.图③中的花园是顶点分别是矩形中点的菱形,图④中的花园是上底与下底之和为16的等腰梯形.例3:已知:如图2-2-18,现有a a ´、b b ´的正方形纸片和a b ´的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图痕迹),使拼出的图形面积为22252a ab b ++,并标出此矩形的长和宽.(2005年江苏省盐城市中考题)分析与解答 本题是一道实践操作的拼图设计题.解决这类问题我们应从图形的面积着手进行考虑,看看要拼成的矩形与已知正方形、矩形的面积有何倍数关系,然后尝试着进行拼图,下面给出两种拼法(图2-2-19)供参考.图2-2-18bb ba a a图2-2-174()3()2()1()花园花园花园花园花园图2-2-19拼法二拼法一2a+ba+2ba+2b 2a+b例4:高为12.6米的的教学楼ED 前有一棵大树AB (如图2-2-20).(1)某一时刻测得大树AB ,教学楼ED 在阳光下的投影长分别是BC=2.4米、DF=7.2米.求大树AB 的高度.(2)用刻度尺、高为h 米的测角仪,请你设计另一种测量大树AB 高度的方案.要求:①在图2-2-21上,画出你设计的测量方案示意图,并将应测数据标记在图上(长度用字母m 、n ……表示,角度用希腊字母a 、b ……表示);②根据你所画的示意图和标注的数据.计算大树AB 的高度.(用字母表示) (2005年江苏省泰州市中考题)分析与解答 本例属于相似三角形和解直角三角形应用类的方案设计问题. (1)连结AC 、EF ,则有AC ∥EF ,易得△ABC ~△EDF ,∴A B B CE D D F=,∴2.412.67.2AB =,∴4.2AB =.故大树AB 的高度为4.2米.(2)方案很多,下面提供两种设计方案供参考.方案1:如图2-2-22,,tan ,MG BN m AG m a ===∴(tan )AB m h a =+米.方案2:如图2-2-23,,cot cot m NF ME m AG b a ===-,∴()cot cot mAB h b a=+-米. 图2-2-21图2-2-20BFAFEC D B A光线【跟踪演练】1.在图2-2-24的方格纸中设计一个轴对称图案.在这个图案中必须用到等腰三角形、正方形、圆三种基本图形.(2005年宁夏灵武市中考题)2.在一次数学探索活动中,小强用两条直线把平行四边形ABCD 分别割成四部分,使含有一组对项角的两个图形全等.图2-2-24(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有 组.(2)请在图2-2-25的三个平行四边形中画出满足小强分割方法的直线.(3)由上述实验操作过程,你发现所画的直线有什么规律? (2005年贵州省贵阳市中考题)3.如图2-2-26,A 、B 两点被池塘隔开,为测量AB 两点的距离,在AB 外选一点C ,连结AC 和BC ,并分别找出AB 和BC 的中点M 、N ,如果测行MN=20m ,那么AB=2×20m=40m .(1)测AB 距离也可由图2-2-27所示用三角形相似的知识来解决,请根据题意填空:延长AC 到D ,使12CD AC =.延长BC 到E ,使CE= .则由相似三角形得:AB= . (2)测AB 距离还可由三角形全等的知识来设计测量的方案,求出AB 的长,请用上面类似的方法,在图2-2-28中画出图形,并叙述你的测量方案.(2005年辽宁省大连市中考题)4.阳光小区有一块正方形空地,设计用作休闲场地和绿化场地.如图2-2-29是小聪根据正方形空地完成的设计方案示意图(阴影部分为绿化场地),请你用圆规和直尺在同样的正方形内(图2-2-30、图2-2-31),画出二种不同于小聪的设计方案示意图,使它们的绿化面积(用阴影表示)与图2-2-29中的绿化面相同(不要求写画法)(2005年湖北省孝感市中考题).图2-2-25ABCDABC D D C BA图2-2-31图2-2-30图2-2-29【跟踪演练答案】1.略 2.(1)无数 (2)只要两条直线都过对角线的交点就行 (3)这两条直线过平行四边形的对称中心(或对角线的交点) 3.(1)12BC2DE (2)延长AC到D,使CD=AC,延长BC到E,使CE=BC,连结DE,则AB=DE 4.设计方案图略.存在性探索【简析】存在性探索问题是指在某种题设条件下,判断具有某种性质的数学对象是否存在的一类问题.解题的策略与方法是:先假设数学对象存在.以此为条件进行运算或推理,若无矛盾,说明假设正确.由此得出符合条件的数学对象存在;否则说明不存在.【典型考题例析】例1:已知:抛物线2()1y x m=--+与x轴相交于A、B(B在A的右边),与y轴的交点为C.当点B原点的右边,点C在原点的下方时,是否存在△BOC为等腰三角形的情形?若存在,求出m的值,若不存在,请说明理由.分析与解答当0y=时,2()10x m--+=,即有,2()1,x m-=∴11,x m=-,21x m=+,∴(1,0),(1,0)A mB m-+.∵点B在原点右边,∴ 1.OB m=+当0x=时,21y m=-+,点C在原点下方,∴21OC m=-.假如△BOC是等腰直角三角形,则有OB=OC.即211m m+=-.解之,得122,1m m==-.当1m=-时,21OC m=-,不符合题意,∴1m=-舍去.∴存在△BOC为等腰直角三角形,此时2m=.例2:如图2-2-33,已知O为坐标原点,∠AOB=300,∠ABO=900,且点A的坐标为(2,0).(1)求点B的坐标.(2)若二次函数2y ax bx c=++的图象经过A、B、O三点,求此二次函数的解析式.(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCD的面积最大?若存在,求出这个最大值及此时点C的坐标,若不存在,请说明理由.(2005年四川省资阳市中考题)分析与解答(1)在Rt△OAB中,∵∠AOB=300,∴.过点B作BD垂直于x轴,垂足为D,则3,22OD BD==,∴点B的坐标为3(,22.OABCDEF图2-2-33(2)将A (2,0)、B 3(,22、O (0,0)三点的坐标代入2y ax bx c =++,得42093420a b c a b c c ++=⎧⎪⎪++=⎨⎪=⎪⎩,解得033a b c =-==.∴二次函数解板式为233y x x =-+. (3)设存在点23(,)(0)2C x x x x <<其中,使四边形ABCD 面积最大. ∵△OAB 面积为定值,∴只要△OBC 面积最大,四边形ABCO 就有最大面积.过点C作x轴的垂线CE ,垂足为E ,交OB于点F ,则11132224OB C OCF BCF SSS C F O E CF E DC F OD CF =+=+==.而22C F CF y y x x x =-=+-=.∴2OBCSx x=+. ∴当34x =时,△OBC 面积蛎,最大面积为32.此时,点C 坐标为3(4,四边形ABCD . 【跟踪演练】 1.如图2-2-34,平面直角坐标系中,Rt △ABC 的斜边AB 在x 轴上,项点C 在y 轴的负半轴上,3tan 4ABC ∠=,点P 在线段OC 上,且PO 、PC 的长(PO<PC )是方程212270x x -+=的两根.(1)求P 点的坐标.(2)求AP 的长.(3)在x 轴上是否存在点Q ,使得以A 、C 、P 、Q 为项点的四边形是梯形?若存在,请直接写出直线PQ 的解析式;若不存在,主说明理由.(2005年黑龙江省中考题)2.如图2-2-35,已知两点A (-1,0)、B (4,0)在x 轴上,以AB 为直径的半圆P 交y 轴于点C .(1)求经过A 、B 、C 三点的抛物线的解析式.(2)设AC 的垂直平分线交OC 于D ,连结AD 并延长AD 交半圆P 于点E ,»ºAC与CE相等吗?请证明你的结论.(3)设点M 为x 轴负半轴上图2-2-34xyC BAO图2-2-35一点,12OM AE =,是否存在过点M 的直线,使该直线与(1)中所得抛物线的两个交点到y 轴的距离相等?若相存在,求出这条直线对应函数的解析式;若不存在,请说明理由. (2005年甘肃省中考题)3.如图2-2-36,已知二次函数223y ax x =++的图象与x 轴交于点A 、点B (点B 在x 轴的下半轴上),与y 轴交于点C ,其项点为D ,直线DC 的函数关系式为3y kx =+,又tan 1OBC ∠=.(1)求,a k 的值.(2)探究:在该二次函数的图象上是否存在点P (点P 与B 、C 不重合),使得△PBC 是以BC 为一条直角边的直角三角形?若存在,求出P 的坐标;若不存在,请说明理由. (2005年广东省茂名中考题) 【跟踪演练答案】1.(1)P (0,-3) (2)AP = (3)存在,直线PQ 的解析式为433y x =--或1312y x =-- 2.(1)213222y x x =-++ (2)AC CE =,证明略 (3)不存在符合要求的直线,连BE .在Rt △AOD 中,可得54AD =,由△AOD ∽△AEB 得AE=4.故点M 的坐标为(-2,0).设过点M 的直线的解析式为y kx b =+,将点M 的坐标代入2y k x k =+,再代入抛物线方程得213()22022x k x k +-+-=.由题意知此方程的两根互为相反数,故32k =.这时方程无实数根 3.(1)1,1a k =-= (2)二次函数223y x x =-++的图象上存在点P (1,4)或P (-2,-5),使得△PBC 是以BC 为一条直角边的直角三角形.【冲刺演练】1、已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点。
2018年中考数学二轮复习考点解密规律探索性问题第一部分讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
b5E2RGbCAP二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。
p1EanqFDPw三.考点精讲考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
DXDiTa9E3d例 1.有一组数:,请观察它们的构成规律,用你发现的规律写出第n<n为正整数)个数为.分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可.解答:解:;;;;;…;∴第n<n为正整数)个数为.点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1.RTCrpUDGiT例2<2018广东汕头)阅读下列材料:1×2=(1×2×3-0×1×2>,2×3=(2×3×4-1×2×3>,3×4=(3×4×5-2×3×4>,由以上三个等式相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+···+10×11<写出过程);(2)1×2+2×3+3×4+···+n×(n+1> = ______________;(3)1×2×3+2×3×4+3×4×5+···+7×8×9 =______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式5PCzVD7HxA;照此方法,同样有公式:.解:<1)∵1×2=(1×2×3-0×1×2>,2×3=(2×3×4-1×2×3>,3×4=(3×4×5-2×3×4>,…10×11=(10×11×12-9×10×11>,∴1×2+2×3+3×4+···+10×11=×10×11×12=440.<2).<3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.jLBHrnAILg例3<2018山东日照,19,8分)我们知道不等式的两边加<或减)同一个数<或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:xHAQX74J0X一般地,如果那么a+cb+d.<用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。
解答:>,>,<,>;证明:∵a>b,∴a+c>b+ c.又∵c>d,∴b+ c>b+d,∴a+ c> b+ d.点评:本题是一个考查不等式性质的探索规律题,属于中等题.要求学生具有熟练应用不等式的基本性质和传递性进行解题的能力.区分度较好.LDAYtRyKfE考点二:点阵变化规律在这类有关点阵规律中,我们需要根据点的个数,确定下一个图中哪些部分发生了变化,变化的的规律是什么,通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.Zzz6ZB2Ltk例1:如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律、若前n行点数和为930,则n=< )dvzfvkwMI1A.29 B.30 C.31 D.32分析:有图个可以看出以后每行的点数增加2,前n行点数和也就是前n个偶数的和。
解答:解:设前n行的点数和为s.则s=2+4+6+…+2n==n<n+1).若s=930,则n<n+1)=930.∴<n+31)<n﹣30)=0.∴n=﹣31或30.故选B.点评:主要考查了学生通过特例,分析从而归纳总结出一般结论的能力.例2观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为< )rqyn14ZNXIA.3n﹣2B.3n﹣1C.4n+1D.4n﹣3考点:规律型:图形的变化类。
专题:规律型。
分析:根据所给的数据,不难发现:第一个数是1,后边是依次加4,则第n个点阵中的点的个数是1+4<n﹣1)=4n﹣3.EmxvxOtOco解答:解:第n个点阵中的点的个数是1+4<n﹣1)=4n﹣3.故选D.点评:此题注意根据所给数据发现规律,进一步整理计算.考点三:循环排列规律循环排列规律是运动着的规律,我们只要根据题目的已知部分分析出图案或数据每隔几个图暗就会循环出现,看看最后所求的与循环的第几个一致即可。
SixE2yXPq5例1:<2007广东佛山)观察下列图形,并判断照此规律从左向右第2007个图形是< )A.B.C.D.考点:规律型:图形的变化类.专题:规律型.分析:本题的关键是要找出4个图形一循环,然后再求2007被4整除后余数是3,从而确定是第3个图形.解答:解:根据题意可知笑脸是1,2,3,4即4个一循环.所以2007÷4=501…3.所以是第3个图形.故选C.6ewMyirQFL点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.kavU42VRUs例2:下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2018个梅花图案中,共有个“”图案.考点:规律型:图形的变化类.专题:规律型.分析:注意观察图形中循环的规律,然后进行计算.解答:解:观察图形可以发现:依次是向上、右、下、左4个一循环.所以2018÷4=503余1,则共有503+1=504个.y6v3ALoS89考点四:图形生长变化规律探索图形生长的变化规律的题目常受到中考命题人的青睐,其原因是简单、直观、易懂.从一些基本图形开始,按照生长的规律,变化出一系列有趣而美丽的图形.因此也引起了应试人的兴趣,努力揭示内在的奥秘,从而使问题规律清晰,易于找出它的一般性结论.M2ub6vSTnP例1<2018四川乐川)勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.如图所示,是一棵由正方形和含30°角的直角三角形按一定规律长成的勾股树,树主干自下而上第一个正方形和第一个直角三角形的面积之和为S1,第二个正方形和第二个直角三角形的面积之和为S2,…,第n个正方形和第n个直角三角形的面积之和为Sn.设第一个正方形的边长为1.0YujCfmUCw请解答下列问题:<1)S1=;<2)通过探究,用含n的代数式表示Sn,则Sn=.分析:根据正方形的面积公式求出面积,再根据直角三角形三条边的关系运用勾股定理求出三角形的直角边,求出S1,然后利用正方形与三角形面积扩大与缩小的规律推导出公式.eUts8ZQVRd 解答:解:<1)∵第一个正方形的边长为1,∴正方形的面积为1,又∵直角三角形一个角为30°,∴三角形的一条直角边为,另一条直角边就是=,∴三角形的面积为×÷2=,∴S1=1+;<2)∵第二个正方形的边长为,它的面积就是,也就是第一个正方形面积的,同理,第二个三角形的面积也是第一个三角形的面积的,∴S2=<1+)•,依此类推,S3═<1+)••,即S3═<1+)•,Sn=<n为整数).点评:本题重点考查了勾股定理的运用.例2<2018重庆江津区)如图,四边形ABCD中,AC=a,BD=b,且AC 丄BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有<)sQsAEJkW5T①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形AnBnCnDn的面积是.A、①②B、②③C、②③④D、①②③④分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD 中各边长的长度关系规律,然后对以下选项作出分析与判断:GMsIasNXkA①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5 的周长;④根据四边形AnBnCnDn 的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1 ,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形ABCD是平行四边形;∴B1D1=A1C1<平行四边形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2<中位线定理),∴四边形A2B2C2D2 是菱形;故本选项错误;②由①知,四边形A2B2C2D2是菱形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故本选项正确;③根据中位线的性质易知,A5B5=A3B3=×A1B1=××AB,B5C5=B3C3=×B1C1=××BC,TIrRGchYzg∴四边形A5B5C5D5的周长是2×<a+b)=;故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形AnBnCnDn的面积是;故本选项错误;综上所述,②③④正确;故选C.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理<三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.7EqZcWLZNX例3:<2009锦州)图中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,…依此规律,当正方形边长为2时,第n个图中所有圆的面积之和Sn=.lzq7IGf02E分析:先从图中找出每个图中圆的面积,从中找出规律,再计算面积和.解答:根据图形发现:第一个图中,共一个愿,圆的半径是正方形边长的一半,为1,S1=πr2=π;第二个图中,共4个圆,圆的半径等于正方形边长的,为×2=;S2=4πr2=4π<)2=π,依次类推,则第n个图中,共有n2个圆,所有圆的面积之和Sn=n2πr2=n2π<)2=π,即都与第一个图中的圆的面积都相等,即为π.zvpgeqJ1hk点评:观察图形,即可发现这些图中,每一个图中的所有的圆面积和都相等.考点五:与坐标有关规律这类问题把点的坐标与数字规律有机的联系在一起,加大了找规律的难度,点的坐标不仅要考虑数值的大小,还要考虑不同象限的坐标的符号。