高考中常见的三角函数题型和解题方法-数学秘诀12
- 格式:doc
- 大小:495.50 KB
- 文档页数:5
高中数学解三角函数问题的技巧一、引言三角函数是高中数学中的重要内容,也是数学建模、物理学等学科的基础知识。
在解题过程中,掌握一些解三角函数问题的技巧可以帮助我们更快、更准确地解答问题。
本文将从角度的转化、特殊角的运用以及三角函数的性质等方面,介绍一些解三角函数问题的技巧。
二、角度的转化在解三角函数问题中,有时我们需要将角度转化为其他形式,以便更好地运用三角函数的性质。
例如,当我们遇到问题中的角度为弧度时,可以将其转化为角度制,方便我们进行计算。
同样地,如果问题中给出的是角度的余弦、正弦或正切值,我们可以利用反三角函数的性质将其转化为角度,再进行运算。
举例说明:已知三角函数值sin(x) = 1/2,求角x的度数。
解析:根据sin(x) = 1/2,我们可以利用反正弦函数的性质,得到角x的度数为30°或150°。
三、特殊角的运用在解三角函数问题中,特殊角的运用是非常常见的。
特殊角是指那些角度为某个固定值的角,如30°、45°、60°等。
我们可以利用这些特殊角的三角函数值来解答问题。
举例说明:已知sin(x) = 1/2,求角x的度数。
解析:根据sin(x) = 1/2,我们可以知道角x的度数为30°或150°。
因此,角x 的度数为30°。
四、三角函数的性质在解三角函数问题中,我们需要熟练掌握三角函数的基本性质,如同角三角函数的相等性、同角三角函数的互余关系等。
这些性质可以帮助我们简化计算,提高解题效率。
举例说明:已知sin(x) = 1/2,求cos(x)的值。
解析:根据同角三角函数的互余关系,我们知道cos(x) = sin(90° - x)。
由已知sin(x) = 1/2,我们可以得到sin(90° - x) = cos(x) = 1/2。
五、一题多解在解三角函数问题时,有时一个问题可能存在多个解。
高中三角函数常见考题类型与解题方法
高中数学中,三角函数是一个很重要的概念,而且考试中出现频率极高。
以下是三个常见的考题类型及其解题方法。
类型一:求三角函数的性质
这种类型的考题通常会给定一个三角函数式子,要求求出其周期、振幅、对称轴等性质。
解题方法
求周期可根据函数式中三角函数的系数和自变量的单位确定。
比如 $y=\sin(3x)$ 的周期为 $\dfrac{2\pi}{3}$。
振幅可以通过函数式的系数得到。
例如 $y=2\cos x$ 的振幅为$2$。
对称轴通常跟周期有关,可以先求出周期,再根据周期画出函数图像,最后找到对称轴。
类型二:证明三角恒等式
这种类型的考题通常会给定某个三角函数恒等式,要求证明其成立。
解题方法
证明三角恒等式的方法有很多,但最基本的就是按照恒等式左右两边分别化简,直到两边相等为止。
需要注意的是,证明过程中应该尽量保留中间步骤,避免花式运算导致答案出错。
类型三:求三角函数的值
这种类型的考题通常会给定一个三角函数式子,要求求出某个特定自变量下的函数值。
解题方法
求三角函数的值需要先把式子化简成最简形式,再代入自变量即可。
需要注意的是,有些函数值需要通过函数图像来判断正负,例如当 $x=\dfrac{3\pi}{4}$ 时,$\cos x=-\dfrac{\sqrt{2}}{2}$。
综上所述,掌握三角函数的性质、证明方法和求值方法是应对三角函数考题的关键。
三角函数基本题型及解题方法三角函数基本题型及解题方法对于三角函数的问题,特别是一些创新型问题,对大多数同学来说可能会感到陌生。
这些问题主要考查学生对于重要数学思想和方法的掌握以及在考试时对自己心态的调整。
但是,我们可以使用特殊化方法来解决这些问题。
特殊化方法的解题依据是,题目所叙述的一般情形成立,则对特殊情形也应该成立。
若不成立,则必然选项是错误的。
特殊化方法一般有赋特殊值、特殊函数等。
一、单调性类问题例11)若A、B是锐角三角形ABC的两个内角,则点P(cosB-sinA。
sinB-cosA)在哪个象限?选项为A、B、C、D。
2)设α、β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是?选项为A、B、C、D。
分析:这是依托基本的几何图形三角形,创新型的考查三角函数的单调性等重要性质的题目。
常规解法运算繁杂,用特殊化方法则可出奇制胜。
对于(1),赋A=B=60°,可知选B;对于(2),赋α=β=30°,可知选D。
例2若A、B、C是△XXX的三个内角,且A<B<C(C≠π/2),则下列结论中正确的是哪个?选项为A、B、C、D。
分析:赋A=30°,B=70°,C=80°,可知B、D错;赋A=30°,B=50°,C=100°,知C错。
故选A。
例3函数y=xcosx-sinx在下面哪个区间内是增函数?选项为A、B、C、D。
分析:所给函数的定义域显然是R,又令f(x)=xcosx-sinx,则f(π/2)=f(3π/2)=-1,f(π)=-π,f(π/6)=1,f(2π)=2π。
如对选项A,x从π/3到2π/3,y从-1,-π到1,不符合题意,同理可排除C、D。
例4函数y=2sin(π/6-2x)(x∈[0,π])为增函数的区间是哪个?选项为A、B、C、D。
分析:只需考虑区间端点处的函数值,有①x=0,y=1;②x=π/12,y=√3/2;③x=π/3,y=-2;④x=5π/6,y=1.可知选项B为正确答案。
高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
高考数学解答题技巧1、三角变换与三角函数的性质问题解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。
答题步骤:①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
2、解三角形问题解题方法:(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
答题步骤:①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
3、数列的通项、求和问题解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。
答题步骤:①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
4、离散型随机变量的均值与方差解题思路:(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
答题步骤:①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
5、圆锥曲线中的范围问题解题思路;①设方程;②解系数;③得结论。
答题步骤:①提关系:从题设条件中提取不等关系式。
数学三角函数解题技巧
数学中的三角函数是指正弦、余弦、正切等函数,这些函数在解决三角形相关问题时非常常见。
然而,对于一些学生来说,解决三角函数问题可能会感到困难。
以下是一些解决三角函数问题的技巧:
1. 理解三角函数的定义:在开始解决三角函数问题之前,应该先理解三角函数的定义。
例如,sinθ代表角度θ的正弦值,cosθ代表角度θ的余弦值,tanθ代表角度θ的正切值。
2. 记住基本三角函数值:在解决三角函数问题时,有时需要知道一些基本的三角函数值,例如sin30°、cos60°、tan45°等。
因此,记住这些基本的三角函数值是很重要的。
3. 使用三角函数的周期性:三角函数具有周期性,因此角度值可以加上或减去360°,不会改变其三角函数值。
因此,如果问题涉及到不同的角度值,可以考虑使用该角度值的周期性。
4. 使用三角函数的反函数:三角函数的反函数可以用于求解一些问题,例如求一个角度的值,使得其正弦值等于0.5。
在这种情况下,可以使用反正弦函数(arcsin)。
5. 应用三角函数的性质:三角函数具有许多性质,例如sinθ+cos
θ=1,tanθ=sinθ/cosθ等。
在解决三角函数问题时,可以使用这些性质简化问题。
总之,掌握这些技巧可以帮助学生更加轻松地解决三角函数问题。
当然,要熟练掌握这些技巧还需要多做练习,加深对三角函数的理解。
数学三角函数解题技巧
数学中的三角函数是一类非常重要的函数,常用于解决与角度有关的问题。
在学习三角函数时,很多学生会遇到各种各样的困难和难题。
以下就是一些关于解决三角函数解题的技巧。
1. 熟悉三角函数的定义
三角函数的定义有很多种,例如正弦函数,余弦函数,正切函数等等。
在解题过程中,首先需要对每种函数的定义进行熟悉和理解,才能更好地应用它们来解决问题。
2. 熟悉三角函数的基本性质
三角函数有很多基本性质,例如周期性,对称性,奇偶性等等。
熟悉这些基本性质,可以帮助我们更快地解决问题。
3. 转化为代数式解决问题
有些三角函数问题可以通过将三角函数转化为代数式来解决。
例如,可以使用和差化积公式或倍角公式将三角函数转化为代数式,然后再用代数式解决问题。
4. 利用三角函数的图像解决问题
三角函数的图像是一种很好的解题工具。
通过观察图像,可以了解函数的周期、振幅、极值等信息,从而更好地解决问题。
5. 利用三角函数的特殊值解决问题
三角函数有很多特殊值,例如正弦函数的最大值和最小值是1和-1,余弦函数的最大值和最小值是1和-1。
利用这些特殊值,可以更快地解决问题。
总之,解决三角函数问题需要多加练习和思考,掌握好以上技巧,相信可以更好地应对各种各样的三角函数问题。
高中三角函数解题技巧
一、了解基本概念
在解题过程中,首先需要了解三角函数的基本概念,包括正弦、余弦、正切等。
熟悉三角函数的定义和性质,能够帮助我们理解和
解决相关的问题。
二、掌握基本公式
掌握三角函数的基本公式对于解题非常重要。
例如,正弦函数
的基本公式是sinθ = 对边/斜边,余弦函数的基本公式是cosθ = 邻
边/斜边。
熟练运用这些公式,可以更快速地求解三角函数的值。
三、利用特殊关系
在解题过程中,有时可以利用三角函数的特殊关系简化问题。
例如,利用正弦函数和余弦函数的关系sin(π/2-θ)= cosθ,可以将一
个三角函数转换为另一个三角函数,从而简化计算过程。
四、利用三角函数的周期性
三角函数具有周期性,即在一定范围内的值是重复的。
例如,
正弦函数和余弦函数的周期都是2π。
利用这一特性,我们可以根
据给定角度的范围,将角度转化为对应周期内的角度,便于计算和
比较。
五、解三角方程
解三角方程是高中三角函数解题的重要内容。
通过对方程两边
进行一系列变换和化简,可得到与角度相关的等式。
掌握解三角方
程的一般方法和技巧,能够解答各种类型的问题。
六、练和总结
要掌握三角函数解题技巧,需要进行大量的练。
通过多做题目,积累经验,总结规律,逐步提高解题能力。
总结:
通过了解基本概念、掌握基本公式、利用特殊关系和周期性、
解三角方程以及进行练习和总结,我们能够提高在高中数学中解决
三角函数相关问题的能力。
希望这些技巧能对你有所帮助!。
三角函数题的技巧三角函数题是高中数学中的重要内容,也是数学分析、物理学、工程学等学科中的基础知识。
掌握三角函数题的解题技巧,对于学生来说是至关重要的。
在本文中,我将为大家详细介绍三角函数题的解题思路和技巧。
首先,我们需要了解三角函数的定义。
在平面直角坐标系中,考虑一个单位圆,对于一个圆上任意一点P(x, y),定义其对应的三角函数sinθ = y,cosθ = x,其中θ是点P与x轴正方向之间的夹角。
只考虑θ在0到2π之间的解,我们可以得到一组三角函数值的表格。
为了简化计算,人们通常使用一些特殊角的三角函数值。
例如,我们可以通过利用等腰直角三角形性质,计算出部分特殊角的三角函数值。
第一组特殊角是 0°、30°、45°、60°、90°。
这些角的三角函数值可以由三角函数定义、单位圆和等腰直角三角形的性质得到。
例如,sin0°=0,sin30°=1/2,sin45°=1/√2,sin60°=√3/2,sin90°=1。
同样地,可以计算出这些角对应的余弦值、正切值等。
第二组特殊角是副角。
我们知道,对于一个三角函数f(θ),如果f(θ)=f(θ+2kπ),其中k是整数,那么θ+2kπ被称为f(θ)的副角。
例如,sin(π/6)=1/2,那么sin(π/6+2kπ)=1/2,其中k是整数。
利用这个性质,我们可以通过副角的三角函数值,得到其他角度的三角函数值。
在解三角函数题时,我们还需要注意一些重要的性质。
首先是三角函数的周期性。
正弦函数和余弦函数的周期都是2π,而正切函数的周期是π。
因此,当我们需要计算某个角的三角函数值时,可以利用周期性简化计算。
其次,还需要注意三角函数的奇偶性。
正弦函数是奇函数,即sin(-x)=-sin(x),而余弦函数是偶函数,即cos(-x)=cos(x)。
利用奇偶性,我们可以简化某些三角函数的计算。
高考数学中的三角函数解题技巧在高考数学中,三角函数是一个重要的知识点,而且占有很大的比重。
三角函数解题是高考数学中的重点难点,需要掌握一些技巧。
下面将分享一些高考数学中的三角函数解题技巧。
一、理解三角函数的基本概念首先,我们需要理解三角函数的基本概念。
三角函数的基本形式是$y=f(\theta)$,其中$f(\theta)$表示这个函数与角$\theta$的关系。
常用的三角函数有正弦函数、余弦函数、正切函数等。
通过这些函数的关系,我们可以描述三角形的各个边角关系,并且能够解决与三角形有关的各种问题。
二、掌握转化为正弦函数、余弦函数的技巧有时候,我们需要将一个三角函数转化为另一个三角函数形式进行计算。
在这种情况下,我们可以通过借助三角函数的公式来进行转化。
以正弦函数为例,我们可以用以下公式将正弦函数转化为余弦函数形式:$$\sin(\theta)=\cos(\frac{\pi}{2}-\theta)$$同样的,我们可以用以下公式将余弦函数转化为正弦函数形式:$$\cos(\theta)=\sin(\frac{\pi}{2}-\theta)$$这种技巧在解题时非常实用,可以帮助我们将一些复杂的计算转化为较为简单的形式。
三、掌握三角函数的图像及性质熟练掌握三角函数的图像及性质也是解题的关键。
比如说,我们可以通过正弦函数的图像来判断一些数学问题的解。
正弦函数的图像是一条波动的曲线,其周期为$2\pi$,振幅为$1$。
因此,当我们需要求解某个最大值或最小值问题时,可以结合正弦函数图像思考:对于正弦函数而言,它的最大值与最小值均为$1$和$-1$,通过对于坐标轴上端点的观察,我们就能够迅速找到这个问题的答案。
除了正弦函数的图像,各种三角函数的图像及性质也都非常重要,大部分 trigonometric functions 的图像可以查阅资料/学习 video 得到。
在掌握三角函数图像及特性方面,记得要多加练习并且结合实际场景思考,这样才能够更好地理解并运用三角函数。
三角函数中的常考题型及其解法三角函数中常考题型及解法:一、求解三角函数值1、求正弦函数值解法:使用正弦定理进行求解,总结如下:(1)正弦定理(用于直角三角形):a/sinA=b/sinB=c/sinC;(2)正弦表:常记正弦值,如15°的正弦值是0.2588;(3)半角公式:sin(x/2)=±√[(1-cosx)/2];(4)倍角公式:sin2x=2sinxcosex。
2、求余弦函数值解法:使用余弦定理进行求解,总结如下:(1)余弦定理(用于直角三角形):a²=b²+c²-2bc·cosA;(2)余弦表:常记余弦值,如45°的余弦值是0.7071;(3)化简余弦值:常用公式或知识点化简余弦值,如极限化简,勾股定理等;(4)半角公式:cos(x/2)=±√[(1+cosx)/2];(5)倍角公式:cos2x=cos²x-sin²x。
三、求解三角函数表达式1、求正弦函数表达式解法:(1)可用图像法求解,如求函数y=2sin(x+π/6)的图形,可将之前已知的普通正弦图形向右移动π/6,并放大2倍;(2)也可用公式求解,如求函数y=2sin(x+π/6),用单位正弦函数表示法,则有y=2sin(x)·cos(π/6)+2cos(x)·sin(π/6)。
2、求余弦函数表达式解法:(1)可用图像法求解,如求函数y=2cos(x+π/6)的图形,可先求出正弦函数的图像,再进行垂直翻转;(2)也可用公式求解,如求函数y=2cos(x+π/6),用单位余弦函数表示法,则有y=2cos(x)·cos(π/6)-2sin(x)·sin(π/6)。
高考数学中的解三角函数题技巧数学是高考中最重要的科目之一,而解三角函数题更是数学中的重点和难点之一。
在高考中,解三角函数题往往可以占到总分数的30%,因此,我们必须掌握一些解题技巧,才能在高考中取得好的成绩。
下面,我将分享一些解三角函数题的技巧,希望对大家有所帮助。
一、基本得数解三角函数题,首先需要掌握的就是基本的三角函数值,包括正弦、余弦、正切等。
这是解题的基础,也是高考中比较容易考察的内容。
因此,我们需要利用课余时间逐渐掌握这些基本的三角函数值。
二、替换在解三角函数题中,有些题目比较复杂,难以直接求解。
这时,我们可以通过替换变量的方式简化问题。
例如,如果题目中出现了$3\sin x-\cos x=2$,我们可以令$y=\sin x$,然后将原式转化为$3y-4y^2=2$。
这样,我们就可以利用常规的求解方法来求解该方程,最后再回归到变量$x$中,得到最终的答案。
通过替换变量,我们可以将原本复杂的问题简化为易于处理的问题。
三、换元除了替换变量以外,还可以通过换元的方式简化问题。
例如,如果我们遇到了$2\cos x+\sqrt{3}\sin x=1$这样的方程,我们可以尝试利用恒等式($\cos^2 x+\sin^2 x=1$)来进行换元。
具体来说,我们可以将该式变形为$2\cos x+\sqrt{3}(1-\cos^2 x)=1$,然后令$y=\cos x$,得到$2y+\sqrt{3}(1-y^2)=1$。
这样,我们就可以利用常规的求解方法来求解方程。
通过换元,我们可以将复杂的问题转化为易于处理的问题。
四、化简有时,在解题过程中,我们会遇到较为繁琐的式子,难以进行进一步的运算。
这时,我们可以尝试通过化简的方式来简化问题。
例如,如果题目中出现了类似于$\frac{\cos x}{\sin x+\sqrt{3}}$这样的式子,我们可以将分母进行有理化,得到$\frac{\cos x}{\sinx+\sqrt{3}}\times\frac{\sin x-\sqrt{3}}{\sin x-\sqrt{3}}=\frac{\cosx(\sin x-\sqrt{3})}{\sin^2 x-3}$。
在解答三角函数相关的问题时,掌握一些基本的技巧可以帮助你更快更准确地得到答案。
以下是一些三角函数答题技巧:
1. 熟悉基本公式:确保你熟悉所有基本的三角恒等式,如和差公式、倍角公式、半角公式、积化和差公式、和差化积公式等。
2. 化简表达式:在解题前,先将给定的三角函数表达式化简到最简形式,这有助于简化计算。
3. 使用诱导公式:当遇到角度不是标准角度时,可以使用诱导公式将其转换为标准角度。
4. 利用图形辅助:在处理复杂问题时,可以画出一个简单的三角函数图形来辅助理解问题。
5. 注意象限和符号:在计算三角函数值时,要特别注意角度所在的象限以及三角函数的符号。
6. 识别特殊角度:对于0°、30°、45°、60°、90°等特殊角度,要熟悉它们的三角函数值。
7. 使用计算器:在允许的情况下,可以使用计算器来计算复杂的三角函数值,但要注意精度。
8. 检查答案:完成计算后,要检查答案是否合理,例如,一个正弦值不可能大于1。
9. 理解题目要求:仔细阅读题目,确保理解题目的要求,不要答非所问。
10. 规范答题:在答题时,要保持解答过程的条理性和规范性,这有助于阅卷老师理解你的思路。
11. 避免常见错误:在解答过程中,要避免常见的错误,如计算失误、公式使用错误等。
通过练习和不断的复习,你可以更好地掌握这些技巧,并在考试中灵活运用。
高考数学三角部分考点及答题技巧高考数学是高中数学学习的重点之一,而三角函数是高考数学中的一个重要考点。
本文将详细介绍三角函数部分的高考考点和答题技巧。
一、考点梳理1.角度制与弧度制的互化角度制和弧度制是两种不同的角度计量单位,在解决三角函数问题时,需要根据题目要求进行适当的单位转换。
2.三角函数的定义三角函数是解决三角函数问题的基本工具,需要熟练掌握正弦、余弦、正切等函数的定义,特别是它们的角度和长度的关系。
3.同角三角函数的基本关系同角三角函数的基本关系是:sin2A=2sinAcosA,cos2A=cos²A-sin²A,tan2A=(2tanA)/(1-tan²A)。
这些关系式是解决同角三角函数问题的基本工具。
4.三角形中的边角关系在解三角形的问题中,需要熟练掌握边角之间的关系,如正弦定理、余弦定理等。
5.三角函数的图像和性质三角函数的图像和性质是解决三角函数问题的关键,需要熟练掌握正弦函数、余弦函数、正切函数的图像和性质。
二、答题技巧1.掌握基本概念和公式熟练掌握三角函数的基本概念和公式是解决三角函数问题的关键。
在考试中,如果能够迅速地运用基本概念和公式解决问题,可以大大节省时间。
2.图像法求解问题对于一些比较复杂的问题,可以通过图像法来求解。
例如,在求解函数的值域、最值等问题时,可以通过画出函数的图像来找到答案。
这种方法比较直观,容易理解。
3.善用排除法检查答案在检查答案时,可以采用排除法来验证答案的正确性。
例如,如果选项中有一个明显错误的答案,就可以先将其排除,再根据其他选项进行选择。
这样可以提高答案的准确性。
4.注意细节问题在解决三角函数问题时,需要注意细节问题。
例如,在角度制和弧度制的互化时需要注意单位的转换、在求解同角三角函数的基本关系时需要关注角度的范围等。
只有注意到这些细节问题才能避免出错。
5.善于总结规律在解决三角函数问题时,要善于总结规律。
专题12 任意角和弧度制及任意角的三角函数1.了解任意角的概念2.了解弧度制的概念,能进行弧度与角度的互化 3.理解任意角的三角函数(正弦、余弦、正切)的定义热点题型一 象限角与终边相同的角例1、 (1)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________。
(2)如果α是第三象限的角,试确定-α,2α的终边所在位置。
【答案】(1)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π(2)见解析解析:(1)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π。
(2)由α是第三象限的角得π+2k π<α<3π2+2k π(k ∈Z ),所以-3π2-2k π<-α<-π-2k π(k ∈Z ),即π2+2k π<-α<π+2k π (k ∈Z ), 所以角-α的终边在第二象限。
由π+2k π<α<3π2+2k π(k ∈Z ),得2π+4k π<2α<3π+4k π(k ∈Z )。
所以角2α的终边在第一、二象限及y 轴的非负半轴。
【提分秘籍】1.终边在某直线上角的求法步骤(1)数形结合,在平面直角坐标系中画出该直线。
(2)按逆时针方向写出[0,2π)内的角。
(3)再由终边相同角的表示方法写出满足条件角的集合。
(4)求并集化简集合。
2.确定kα,αk(k ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的X 围,再写出kα或αk的X 围,然后根据k 的可能取值讨论确定kα或αk的终边所在位置。
【举一反三】设角α是第二象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则角α2属于( )A .第一象限B .第二象限C .第三象限D .第四象限热点题型二 扇形的弧长及面积公式例2、 (1)已知扇形周长为10,面积是4,求扇形的圆心角。
高中数学中的三角函数解题技巧在高中数学学习中,三角函数是一个重要的概念,它在解决各种几何和代数问题中起到了关键的作用。
在本文中,我们将介绍一些高中数学中常见的三角函数解题技巧。
一、角度与弧度的转换在解决三角函数问题时,角度与弧度之间的转换是必不可少的。
通常情况下,我们使用角度度量来表示角度,但是在计算三角函数的值时,通常使用弧度度量。
角度与弧度的转换关系可以通过以下公式得到:弧度 = 角度× (π / 180)角度 = 弧度× (180 / π)当我们给出角度时,可以通过将该角度与公式相乘得到对应的弧度值,进而计算三角函数的值。
同样地,已知弧度时也可以按照公式相除得到对应的角度值。
二、特殊角的三角函数值在解决三角函数问题时,我们常常会遇到一些特殊角,这些特殊角的三角函数值是已知的,可以直接使用而无需通过计算得到。
比如,在单位圆上,我们可以通过简单的几何推导得到以下特殊角的三角函数值:- 0度、90度、180度和270度的正弦值、余弦值和正切值分别为0、1、-1和无穷大;- 30度、45度和60度的正弦值、余弦值和正切值分别为1/2、√2/2、√3/2和√3等。
掌握这些特殊角的三角函数值能够大大简化解题过程,提高解题效率。
三、和差角公式的应用和差角公式是解决三角函数问题中常用的技巧之一。
它能够将一些复杂的三角函数表达式转化为简单的形式,从而便于计算。
正弦函数的和差角公式为:sin(A ± B) = sinAcosB ± cosAsinB余弦函数的和差角公式为:cos(A ± B) = cosAcosB ∓ sinAsinB正切函数的和差角公式为:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)利用和差角公式,我们可以将一个角度为A的三角函数表达式转化为一个或两个角度小于A的简单形式,然后再计算其三角函数的值。
高考数学:三角函数求值——高频题型的命题规律和解题技巧!三角函数的求值是三角函数的基本题型,也是高考命题的重点,主要有以下命题角度:(1)求值,利用诱导公式与同角三角函数关系,以及两角和与差的三角函数公式、倍角公式等求值;(2)求角,根据已知先求角的三角函数值,然后确定角的范围求值.此类问题以选择题和填空题为主,也隐含在解答题中进行考查,题目比较简单,属于低档题,分值为5分.解题方法和模板:(1)三角函数求值题可以用函数和方程思想,联立求解。
(2)借助直线与单位圆的知识,运用数形结合求解。
(3)齐次化,多用于求正切值题型。
通常将分母1转换,再分子分母同除余弦值的平方,达到构建正切一元二次方程的目的。
例1:[2018全国卷Ⅱ, 5分]已知sinα+cosβ=1,cosα+sinβ=0,则cos(α+β)=__________.思路分析:先根据条件解出sinα、cosβ再根据两角和正弦公式化简求结果.解析:因为sinα+cosβ=1,cosα+sinβ=0,答案:-1/2例2:[2017全国卷Ⅲ,5分]已知sinα-cosα=4/3,则sin2α=( )A.-7/9B.-2/9C.2/9D.7/9思路分析:本题主要考查同角三角函数的基本关系式、二倍角公式。
将已知条件两边平方,即可得到倍角数值。
解析:将sinα-cosα=4/3的两边平方,得sin^2α-2sinαcosα+cos^2α=16/9即sin2α=-7/9.答案:A例3:[2016全国卷Ⅲ,5,5分]若tanα=3/4,则cos^2α+2sin2α=()A.64/25 B.48/25 C.1 D.16/25思路分析:本题考查三角恒等变换,考查考生的运算能力.可以采用方程组思想,分别求出sinα、cosα的数值,也可以采用分母1的代换,再齐次化切,得到tanα的值,一步到位,求出结果.示例4:[2017全国卷Ⅰ,15,5分]已知α∈(0,π/2),tanα=2,则cos(α-π/4)=.思路分析:本题主要考查同角三角函数的基本关系,两角差的余弦公式等知识.直接运用公式即可.示例5:[2018全国卷Ⅱ,15,5分]已知tan(α-5π/4)=1/5,则tanα=.思路分析:利用两角差的正切公式展开,解方程可得tanα=3/2.答案tanα=3/2总结:本题主要考查学生对于两角和差公式的掌握情况,属于简单题型,解决此类问题的核心是要公式记忆准确,特殊角的三角函数值运算准确.示例6:[2018江苏卷,16,14分]思路分析:先根据同角三角函数关系得cos^2α,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得tan2α,再利用两角差的正切公式得结果.总结:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.。
第12讲 三角函数一、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
第12講 三角函數高考試題中的三角函數題相對比較傳統,難度較低,位置靠前,重點突出。
因此,在復習過程中既要注重三角知識的基礎性,突出三角函數的圖象、週期性、單調性、奇偶性、對稱性等性質。
以及化簡、求值和最值等重點內容的復習,又要注重三角知識的工具性,突出三角與代數、幾何、向量的綜合聯繫,以及三角知識的應用意識。
一、知識整合1.熟練掌握三角變換的所有公式,理解每個公式的意義,應用特點,常規使用方法等;熟悉三角變換常用的方法——化弦法,降冪法,角的變換法等;並能應用這些方法進行三角函數式的求值、化簡、證明;掌握三角變換公式在三角形中應用的特點,並能結合三角形的公式解決一些實際問題.2.熟練掌握正弦函數、余弦函數、正切函數、餘切函數的性質,並能用它研究複合函數的性質;熟練掌握正弦函數、余弦函數、正切函數、餘切函數圖象的形狀、特點,並會用五點畫出函數sin()y A x ωϕ=+的圖象;理解圖象平移變換、伸縮變換的意義,並會用這兩種變換研究函數圖象的變化. 高考考點分析2004年各地高考中本部分所占分值在17~22分,主要以選擇題和解答題的形式出現。
主要考察內容按綜合難度分,我認為有以下幾個層次:第一層次:通過誘導公式和倍角公式的簡單運用,解決有關三角函數基本性質的問題。
如判斷符號、求值、求週期、判斷奇偶性等。
第二層次:三角函數公式變形中的某些常用技巧的運用。
如輔助角公式、平方公式逆用、切弦互化等。
第三層次:充分利用三角函數作為一種特殊函數的圖象及週期性、奇偶性、單調性、有界性等特殊性質,解決較複雜的函數問題。
如分段函數值,求複合函數值域等。
三、方法技巧1.三角函數恒等變形的基本策略。
(1)常值代換:特別是用“1”的代換,如1=cos2θ+sin2θ=tanx ·cotx=tan45°等。
(2)項的分拆與角的配湊。
如分拆項:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x ;配湊角:α=(α+β)-β,β=2βα+-2βα-等。
三角函数一、知识整合1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()y A x ωϕ=+的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.二、高考考点分析2004年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。
主要考察内容按综合难度分,我认为有以下几个层次:第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。
如判断符号、求值、求周期、判断奇偶性等。
第二层次:三角函数公式变形中的某些常用技巧的运用。
如辅助角公式、平方公式逆用、切弦互化等。
第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。
如分段函数值,求复合函数值域等。
三、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab 确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值. 解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
例2.求函数21sin cos (sin cos )y x x x x =++++的值域。
解:设sin cos )[4πt x x x =+=+∈,则原函数可化为 22131()24y t t t =++=++,因为[t ∈,所以当t =max 3y =12t =-时,min 34y =,所以,函数的值域为3[34y ∈+,。
例3.已知函数2()4sin 2sin 22f x x x x R =+-∈,。
(1)求()f x 的最小正周期、()f x 的最大值及此时x 的集合;(2)证明:函数()f x 的图像关于直线8πx =-对称。
解:22()4sin 2sin 222sin 2(12sin )f x x x x x =+-=--2sin 22cos 2)4πx x x =-=-(1)所以()f x 的最小正周期T π=,因为x R ∈, 所以,当2242ππx k π-=+,即38πx k π=+时,()f x最大值为 (2)证明:欲证明函数()f x 的图像关于直线8πx =-对称,只要证明对任意x R ∈,有()()88ππf x f x --=-+成立,因为())]2)28842ππππf x x x x --=---=--=-,())]2)28842ππππf x x x x -+=-+-=-+=-, 所以()()88ππf x f x --=-+成立,从而函数()f x 的图像关于直线8πx =-对称。
例4. 已知函数y=21cos 2x+23sinx ·cosx+1 (x ∈R ), (1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?解:(1)y=21cos 2x+23sinx ·cosx+1=41 (2cos 2x -1)+ 41+43(2sinx ·cosx )+1 =41cos2x+43sin2x+45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45 =21sin(2x+6π)+45 所以y 取最大值时,只需2x+6π=2π+2k π,(k ∈Z ),即 x=6π+k π,(k ∈Z )。
所以当函数y 取最大值时,自变量x 的集合为{x|x=6π+k π,k ∈Z} (2)将函数y=sinx 依次进行如下变换: (i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6π)的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π)的图像; (iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6π)的图像; (iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+45的图像。
综上得到y=21cos 2x+23sinxcosx+1的图像。
说明:本题是2000年全国高考试题,属中档偏容易题,主要考查三角函数的图像和性质。
这类题一般有两种解法:一是化成关于sinx,cosx 的齐次式,降幂后最终化成y=22b a +sin (ωx+ϕ)+k 的形式,二是化成某一个三角函数的二次三项式。
本题(1)还可以解法如下:当cosx=0时,y=1;当cosx ≠0时,y=x x x x x 222cos sin cos sin 23cos 21+++1=xx 2tan 1tan 2321+++1 化简得:2(y -1)tan 2x -3tanx+2y -3=0∵tanx ∈R ,∴△=3-8(y -1)(2y -3) ≥0,解之得:43≤y ≤47 ∴y max =47,此时对应自变量x 的值集为{x|x=k π+6π,k ∈Z} 例5.已知函数.3cos 33cos 3sin )(2x x x x f += (Ⅰ)将f(x)写成)sin(φω+x A 的形式,并求其图象对称中心的横坐标;(Ⅱ)如果△ABC 的三边a 、b 、c 满足b 2=ac ,且边b 所对的角为x ,试求x 的范围及此时函数f(x)的值域. 解:23)332sin(2332cos 2332sin 21)32cos 1(2332sin 21)(++=++=++=πx x x x x x f (Ⅰ)由)332sin(π+x =0即z k k x z k k x ∈-=∈=+πππ213)(332得 即对称中心的横坐标为z k k ∈-,π213 (Ⅱ)由已知b 2=a c ,,,,,,231)332sin(31)332sin(3sin |295||23|953323301cos 21212222cos 22222+≤+<∴≤+<∴->-≤+<≤<<≤∴=-≥-+=-+=πππππππππππx x x x x ac ac ac ac ac c a ac b c a x 即)(x f 的值域为]231,3(+. 综上所述,]3,0(π∈x , )(x f 值域为]231,3(+ . 说明:本题综合运用了三角函数、余弦定理、基本不等式等知识,还需要利用数形结合的思想来解决函数值域的问题,有利于培养学生的运算能力,对知识进行整合的能力。
例6.在ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos 3cos C a c B b-=,(1)求sin B 的值;(2)若b =a=c ,求ABC 的面积。
解:(1)由正弦定理及cos 3cos C a c B b -=,有cos 3sin sin cos sin C A C B B-=, 即sin cos 3sin cos sin cos B C A B C B =-,所以sin()3sin cos B C A B +=,又因为A B C π++=,sin()sin B C A +=,所以sin 3sin cos A A B =,因为sin 0A ≠,所以1cos 3B =,又0B π<<,所以sin B ==。
(2)在ABC 中,由余弦定理可得222323a c ac +-=,又a c =, 所以有22432243a a ==,即,所以ABC 的面积为211sin sin 22S ac B a B === 例7.已知向量2(2cos sin )(sin cos )(3)a ααb ααx a t b =-=+- ,2,=,,,y ka b =-+ ,且0x y ⋅= ,(1)求函数()k f t =的表达式;(2)若[13]t ∈-,,求()f t 的最大值与最小值。
解:(1)24a = ,21b = ,0a b ⋅= ,又0x y ⋅= ,所以22222[(3)]()(3)[(3)]0x y a t b ka b ka t b t k t a b ⋅=+-⋅-+=-+-+--⋅= , 所以31344k t t =-,即313()44k f t t t ==-; (2)由(1)可得,令()f t 导数233044t -=,解得1t =±,列表如下:而(1)(1)(3)222f f f -==-=,,,所以max min ()()22f t f t ==-,。