第2章 质点运动学
- 格式:ppt
- 大小:4.55 MB
- 文档页数:84
第二章 质点运动学运动学的任务是描述随时间的推移物体位置变化(运动)的规律,不涉及物体间相互作用与运动的关系。
§2.1 质点的运动学方程一、质点的位置矢量和运动学方程 要描述某质点在空间的位置,可以在参考系上先建立一个空间直角坐标系xyz o -,从坐标原点向该质点引一条有向线段,用r表示。
1、 位置矢量定义:自参考点(原点o )引向质点P 所在位置的矢量。
质点位矢在直角坐标系中的表示:k z j y i x r++=ˆˆk j i,ˆ,ˆ分别为沿x 轴,y 轴,z 轴正方向的单位矢量,z y x ,,称为质点的位置坐标,质点的一组位置坐标就对应于一个位置矢量,也就对应质点一空间位置。
位矢的大小: 222z y x r r ++==位矢的方向(用方向余弦表示):rzr y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα γβα,,分别为位矢与x 轴,y 轴,z 轴正方向的夹角。
2、质点的运动学方程由于质点的运动的不同时刻,位矢不同,则有:)(t r r= 即为质点的运动学方程,它给出了任意时刻质点的位置。
方程在直角坐标系中的正交分解式:k t z j t y i t x t r)()()()(++=质点运动学方程的标量形式为: )(),(),(t z z t y y t x x === 3、质点的运动轨迹质点运动时位矢端点描出的曲线,称质点运动轨迹。
由运动学方程消去t 得: 0),,(=z y x f[例] 一质点的运动学方程为:j t r i t R rsin cos +=,求其轨迹。
解:由已知,tR y t R x sin cos == ,则轨迹方程:222R y x =+,圆心在原点。
二、质点的位移和路程1、位移:描述质点在一定时间间隔内位置变动的物理量,用r∆表示。
)()(t r t t r r-∆+=∆位移在直角坐标中的正交分解式: k t z j t y i t x t r t t r r)()()()()(∆+∆+∆=-∆+=∆注意:质点的位移是矢量,其大小 12r r r r -=∆≠∆2、路程:描述质点在一定时间间隔内在其轨迹上经过路径的长度,用l ∆表示。
第一章质点运动学1、(习题:一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置 : 22(48)r ti t j =+-r r r由d /d v r t =r r 则速度: 28v i tj =+r r r由d /d a v t =r r 则加速度: 8a j =r r则当t=1s 时,有 24,28,8r i j v i j a j =-=+=rr r rrrrr当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r rr r2、(习题): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv-= ⎰⎰-=t v v kdt dv v 001 t k e v v -=0t k e v dtdx-=0 dt e v dx t k tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m处,初速度v0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d d r t v ,d d v t v,tvd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+v v v(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t=v v v 而落地所用时间 gh2t =所以0d d r v i j t =v vd d v g j t=-v v 2202y 2x )gt (v v v v -+=+=2120212202)2(2])([gh v gh g gt v t g dt dv +=+= 5、 已知质点位矢随时间变化的函数形式为22r t i tj =+v vv,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
质点运动学简介质点运动学是研究物体运动的一门学科,它研究的对象是不考虑物体内部结构和力的作用下,描述物体运动状态的一系列物理量。
质点运动学主要研究质点的位置、速度和加速度等与运动有关的基本概念和关系,为进一步研究物体的力学性质和运动规律提供了基础。
质点质点是运动学中研究的基本对象之一。
它是一个理想化的模型,将物体的体积和形状等因素抽象化,仅考虑物体的质量和位置。
质点可以被描述为一个在空间中具有一定质量的点,在研究物体的运动时,可以用质点来近似地代替物体。
质点的位置通常用坐标来表示,如在二维空间中,可以用水平方向的x坐标和竖直方向的y坐标来描述质点的位置。
在三维空间中,需要使用x、y和z三个坐标来表示质点的位置。
位置、速度和加速度质点运动学关注物体的位置、速度和加速度等运动状态。
下面分别介绍这些概念:位置位置是物体在空间中相对于参考点的位置。
我们通常使用坐标系来描述质点的位置,如直角坐标系、极坐标系等。
在直角坐标系中,质点的位置可以用一组坐标来表示。
例如,一个位于原点的质点,其位置可以表示为(0, 0)。
速度速度是物体在单位时间内位移的大小与方向的矢量量。
它描述了质点在单位时间内改变位置的快慢和方向。
速度可以分为瞬时速度和平均速度。
瞬时速度是在某一时刻的瞬时位置与前一时刻的瞬时位置之间的位移与时间间隔的比值。
平均速度是在一段时间内的位移与时间间隔的比值。
加速度加速度是物体在单位时间内速度变化的大小与方向的矢量量。
它描述了质点在单位时间内改变速度的快慢和方向。
加速度可以分为瞬时加速度和平均加速度。
瞬时加速度是在某一时刻的瞬时速度与前一时刻的瞬时速度之间的速度变化与时间间隔的比值。
平均加速度是在一段时间内的速度变化与时间间隔的比值。
运动方程运动方程是质点运动学中描述质点运动规律的方程。
在一维运动中,质点只在一个方向上运动,可以用以下方程描述:•位移公式:s = vt•速度公式:v = v0 + at•加速度公式:a = (v - v0) / t在二维运动中,质点在平面上运动,可以用两个方向的运动方程来描述。
质点运动学1.描述质点的运动的物理量:位矢、位移、速度和加速度。
(1)位矢:从坐标原点引向质点所在位置的有向线段,记为r。
在直角坐标系中r=x i+y j+z k。
(2)运动方程:质点的位置随时间变化的关系:r=r(t)称为运动方程。
在直角坐标系中的矢量表示式:r(t)=x(t)i+y(t)j+z(t)k。
在自然坐标中:s=s(t)(3)位移:由质点初始位置指向末位置的矢量,△r=r(t+△t)-r(t).在直角坐标系中:△r=△x i+△y j+△z k。
(4)路程:物体运动时沿轨迹实际通过的路径长度称为路程,用s 表示。
一般情况下,|△r|≠△s。
(5)速度:质点位置对时间的一阶倒数称为速度v=d r/d t.在直角坐标系中:v=v x i+v y j+v z k=(dx/dt)i+(dy/dt)j+(dz/dt)k在自然坐标系中:v=(ds/dt)e t速度大小称为速率,速率是标量。
v=|v|=|d r/dt|=ds/dt(6)加速度:质点速度对时间的一阶求导a=d v/dt=d2r/dt2 在直角坐标系中:a=a x i+a y j+a z k=(dv x/dt)i+(dv y/dt)j+(dv z/dt)k=(d2x/dt2)i+(d2y/dt2)j+(d2z/dt2)k 在自然坐标系中:a=a t e t+a n e n=(dv/dt)e t+(v2/ρ)e n2.常见的几种运动形式(1)匀速直线运动:v=v0+atx=x0v0t+1/2*at2v2-v20=2a(x-x0)(2)抛体运动:a x=0,a y=-gv x=v0cosθ,v0=v0sinθ-1/2*gt2x=(v0cosθ)t,y=(v0sinθ)t-1/2*gt2 (3)圆周运动:角位置:θ=θ(t)角位移:△θ=θ(t+△t)-θ(t)角速度:ω=dθ/dt=v/R角加速度:β=dω/dt=d2θ/dt2法向加速度:a n=v2/R=Rω2切向加速度:aτ=dv/dt=Rβ3.伽利略变换伽利略速度变换式:v=v0+u。
第二章质点运动学思考题2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变?答:质点位置矢量方向不变,质点沿直线运动。
质点沿直线运动,质点位置矢量方向不一定不变。
如图所示。
2.2若质点的速度矢量的方向不变仅大小改变,质点作何种运动?速度矢量的大小不变而方向改变作何种运动?答:质点的速度矢量的方向不变仅大小改变,质点作变速率直线运动;速度矢量的大小不变而方向改变作匀速率曲线运动。
2.3“瞬时速度就是很短时间内的平均速度”这一说法是否正确?如何正确表述瞬时速度的定义?我们是否能按照瞬时速度的定义通过实验测量瞬时速度?答:“瞬时速度就是很短时间内的平均速度”这一说法不正确。
因为瞬时速度与一定的时刻相对应。
瞬时速度的定义是质点在t时刻的瞬时速度等于t至t+△t时间内平均速度t/r∆∆,当△t→0时的极限,即dtr dtrlimvt=∆∆=→∆。
很难直接测量,在技术上常常用很短时间内的平均速度近似地表示瞬时速度,随着技术的进步,测量可以达到很高的精确度。
2.4试就质点直线运动论证:加速度与速度同号时,质点作加速运动;加速度与速度反号时,作减速运动。
是否可能存在这样的直线运动,质点速度逐渐增加但加速度却在减小?答:,dtdvtvlima xxtx=∆∆=→∆加速度与速度同号时,就是说,0a,0va,0vxxxx<<>>或以a,0vxx>>为例,速度为正表示速度的方向与x轴正向相同,加速度为正表示速度的增量为正,t t ∆+时刻的速度大于t 时刻的速度,质点作加速运动。
同理可说明,0a ,0v x x <<质点作加速运动。
质点在作直线运动中速度逐渐增加但加速度却在减小是可能存在的。
例如初速度为x 0v ,加速度为t 6a x -=,速度为20t0x 0x t21t 6v dt )t 6(v v -+=-+=⎰,,0v ,0a 6t x x >><时,速度逐渐增加。
2.1一、质点把所研究的物体视为无形状大小但有一定质量的点。
•能否看成质点依研究问题而定。
例:地球绕太阳公转:地球→质点地球半径<<日地距离6.4×103 km 1.5×108 km地球自转:地球≠质点•复杂物体可看成质点的组合。
二、位置矢量与运动方程1、位置矢量k z j y i x r v v v v ++=定义:从坐标原点O 指向质点位置P 的有向线段位置矢量的直角坐标分量:===++=r z r y r x z y x r γβαcos ,cos ,cos 222方向:大小:γβαP (x,y,z )r v z y xo2、运动方程k t z j t y i t x r vv v v )()()(++=矢量形式参数形式===)()()(t z z t y y t x x 3、轨道方程(轨迹)== → ===0),,(0),,()()()(z y x G z y x F t z z t y y t x x t 消去•要尽可能选择适当的参照物和坐标系,以使运动方程形式最简,从而减少计算量。
三、位移和路程O P P ’r ∆v )(t r v )(t t r ∆+v s ∆•••1、位移'()()r PP r t t r t ∆==+∆−v v v 2、路程'()()s PP s t t s t ∆==+∆−注意(1) 位移是矢量(有大小,有方向)位移不同于路程(2) 位移与参照系位置的变化无关r s ∆≠∆v 与Δr 的区别r v ∆分清O r v ∆r v∆O r∆••O PP ’r ∆v )(t r v )(t t r ∆+v s∆•••思考:什么情况下位移的大小等于路程?[例题]一质点在xOy平面内依照x= t 2 的规律沿曲线y = x3/ 320运动,求质点从第2 秒末到第4秒末的位移(式中t的单位为s;x,y的单位为cm)。
[解] ()()r r t t r t ∆=+∆−v v v 1212.6i j=+v v(cm)2121()()x x i y yj=−+−v v [()()][()()]x t t i y t t j x t i y t j =+∆++∆−+v v v v[()()][()()]x t t x t i y t t y t j=+∆−++∆−v v 66222121()()320320t t t t i j=−+−v v 662242(42)()320320i j =−+−vv 17.4 cm r ∆==v 与水平轴夹角Δarctan 46.4Δyx ϕ=o=2.2一、速度O P P ’r∆v )(t r v )(t t r ∆+vs∆•••反映质点运动的快慢和方向的物理量1、速度的概念平均速度:平均速率:v v v v v r t r t t r t t==+−∆∆∆∆()()tt s t t s t s v ∆∆∆∆)()(−+==瞬时速度:瞬时速率:O P P ’r∆v)(t r v)(t t r ∆+vs∆•••vv v v =≠vv ,瞬时速度沿轨道切线方向2、速度的直角坐标分量()()()()::cos ,cos ,cos x y z y x z r r t x t i y t j z t kdr dx dy dz v i j k v i v j v k dt dt dt dt v v v v v v v αβγ==++==++=++ = ===v v v v vv v v v v v v v 大小方向101552r i tj t k=−++v v v v [例题]某质点的运动学方程为求:t = 0和1s 时质点的速度矢量。
第一章 质点运动学1、已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置。
解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v2、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m 。
质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值。
解: ∵ xv v t x x v t v a d d d d d d d d ===分离变量: 2d (26)d v v adx x x ==+ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v第二章 质点动力学1、质量为M 的大木块具有半径为R 的四分之一弧形槽,如图所示。
质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度。
解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m 、M 为系统,则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2MgR v m M =+2、 哈雷彗星绕太阳运动的轨道是一个椭圆。