东北师大附中 考试试卷
- 格式:doc
- 大小:50.00 KB
- 文档页数:9
2024—2025学年上学期高二年级 (物理)学科阶段验收考试试卷考试时间:75分钟 满分:100分一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
1.历史上很多科学家对电磁学理论的发展都做出很大贡献,下列有关说法正确的是( ) A .法接弟提出电场概念,并指出电场和电场线都是客观存在的 B .元电荷e 的数值最早是由法国学者库仑用实验测得的 C .卡文迪什通过扭秤实验得出了库仑定律D .美国科学家富兰克林通过实验发现,雷电的性质与摩擦产生的电的性质完全相同2.场是一种客观存在的物质,物体与地球之间的万有引力是通过引力场产生的。
类比用电场线描述静电场,可以用引力场线描述引力场。
不考虑其它天体的影响,地球周围的引力场线分布与下列哪种电场的电场线分布相似( ) A .匀强电场B .孤立点电荷的电场C .两个等量同种电荷的电场D .两个等量异种电荷的电场3.真空中静止放置一个带电量为Q +的点电荷,若取无穷远处为零电势点,则距离点电荷为r 处的电势为Qkr。
若距离点电荷距离为R 处电势为0ϕ,则此处电场强度大小为( ) A .RϕB .0R ϕC .0r ϕD .2R ϕ4.如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中点P 处的场强大小与电势(设无穷远处为电势零点)分别为( )A .0E =,0ϕ>B .0E =,0ϕ<C .0E =,0ϕ=D .0E >,0ϕ<5.在“用传感器观察电容器的充放电过程”实验中,按图甲所示连接电路。
电源两端电压保持不变。
单刀双掷开关S 先跟2相接,某时刻开关改接1,一段时间后,把开关再改接2,此后实验中使用了电流传感器来采集电流随时间的变化情况,实验得到的I t −图像如图乙所示。
东北师大附中2023-2024学年下学期高(一)年级期末考试(数学)科试卷注意事项:1.答题前,考生需将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效.4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀. 一、单项选择题:本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,复数i 12i z ⋅=+,则z =( ) A. 2i −− B. 2i −+C. 2i +D. 2i −【答案】D 【解析】【分析】利用复数的四则运算求解即可. 【详解】因为i 12i z ⋅=+,所以()()()12i i 12i2i ii i z +−+===−×−.故选:D.2. 已知两条不同的直线m ,n 和两个不同的平面α,β,下列四个命题中正确的为( ) A. 若//m α,//n α,则//m n B. 若//m n ,m α⊂,则//n α C. 若//m α,//m β,则αβ∥ D. 若//m α,m β⊥,则αβ⊥【答案】D 【解析】【分析】利用点、线、面的位置关系即可得出答案.【详解】对于A ,若//m α,//n α,则,m n 可能相交,故A 错误; 对于B ,若//m n ,m α⊂,则可能n ⊂α,故B 错误;对于C ,若//m α,//m β,则可能αβ⊥,故C 错误; 对于D ,若//m α,在平面α内能找到直线a ,使得//a m , 由m β⊥,可得a β⊥,又因为a α⊂,则αβ⊥,故D 正确. 故选:D .3. 高一年级某位同学在五次考试中的数学成绩分别为105,90,104,106,95,这位同学五次数学成绩的方差为( ) A. 20.2 B. 40.4C. 50D. 50.2【答案】B 【解析】【分析】根据题中数据结合平均数、方差公式运算求解.【详解】由题意可得:数学成绩平均数为()110590104106951005x=++++=, 所以数学成绩的方差为()()()()()2222221105100901001041001061009510040.45s =−+−+−+−+−=. 故选:B.4. 在直三棱柱111ABC A B C 中,122AA AB AC ==,且AB AC ⊥,则异面直线1A B 与1AC 所成角的余弦值是( )A.45B.35C.D.12【答案】A 【解析】【分析】先找到异面直线1A B 与1AC 所成角为HGI ∠(或其补角),再通过解三角形求出它的余弦值. 【详解】如图分别取111,,,A C AA AB AC 的中点,,,H G I M , 连接,,,GI HI IM GH ,因为11//,//A B GI HG AC ,所以异面直线1A B 与1AC 所成角即为直线GI 与HG 所成角,即HGI ∠(或其补角), 设1222AA AB AC ===,由AB AC ⊥,所以BC ==,MI =HIHG GB==所以由余弦定理可得:22224cos5252HG GI HIHGIHG GI+−−∠===−⋅.则异面直线1A B与1AC所成角余弦值是45.故选:A.5. 数据1,2,5,4,8,10,6的第60百分位数是()A. 4.5B. 5.5C. 6D. 8【答案】C【解析】【分析】对这7个数按从小到大的顺序排列,然后根据百分位数的定义求解.【详解】这7个数从小到大排列为:1,2,4,5,6,8,10,因为760% 4.2×=,所以第60百分位数是第5个数6.故选:C6. 已知圆台的上、下底面圆的半径分别为1和3,高为1,则圆台的表面积为()A.20π3B. 20πC. (10π+D. (11π+【答案】C【解析】【分析】根据题意求出圆台的母线长,再利用圆台的表面积公式求解即可.【详解】设圆台的母线长为l,则l=的所以圆台的表面积为221π1π3(2π12π3)2×+×+×+×10π+.故选:C7. 某学校高一年级学生有900人,其中男生500人,女生400人,为了获得该校高一全体学生的身高信息,现采用样本量按比例分配的分层随机抽样方法抽取了容量为180的样本,经计算得男生样本的均值为170,女生样本的均值为161,则抽取的样本的均值为是( ) A. 165.5 B. 166C. 166.5D. 168【答案】B 【解析】【分析】由样本均值计算公式,代入数据即可求得; 【详解】抽取的样本的均值近似于总体的均值, 由题意可得:170,161xy =,500,400m n ==, 抽取的样本的均值为500400170161166500400500400m n x ym n m n ω=+=×+×=++++. 故选:B .8. 棱长为2的正方体内有一个棱长为a 的正四面体,且该正四面体可以在正方体内任意转动,则a 的最大值为( ) A 1B.C.D. 2【答案】B 【解析】【分析】棱长为a 的正四面体的外接球的半径为1,设正四面体为−P ABC ,过P 作PO ⊥平面ABC ,垂足为O ,连接AO ,表示出,AO PO ,然后结合图形利用勾股定理列方程求解【详解】棱长为2的正方体内切球的半径为1,因为正四面体可以在正方体内任意转动,所以只需该正四面体为球的内接正四面体,换言之,棱长为a 的.正四面体的外接球的半径为1,设正四面体为−P ABC ,过P 作PO ⊥平面ABC ,垂足为O ,连接AO ,O 为底面正ABC 的中心,则23AO =,体高为PO ,由于外接球半径为1,利用勾股定理得:2211 −+=,解得a =或0a =(舍), 故选:B二、多项选择题:本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分或4分,有选错的得0分.9. 某单位为了解员工参与一项志愿服务活动的情况,从800位员工中抽取了100名员工进行调查,根据这100人的服务时长(单位:小时),得到如图所示的频率分布直方图.则( )A. a 的值为0.018B. 估计员工平均服务时长为45小时C. 估计员工服务时长的中位数为48.6小时D. 估计本单位员工中服务时长超过50小时的有45人【答案】AC 【解析】【分析】对于A ,根据各组的频率和为1可求出a ,对于B ,利用平均数的定义求解判断,对于C ,先判断中位数的位置,然后列方程求解即可,对于D ,根据频率分布直方图求出服务时长超过50小时的频率,再乘以800进行判断.【详解】对于A ,由频率分布直方图得10(0.0020.0350.0250.020)1a ++++=, 解得0.018a =,所以A 正确,对于B ,员工平均服务时长为250.02350.18450.35550.25650.249.3×+×+×+×+×=小时,所以B 错误,对于C ,因为前2组的频率和为0.200.5<,前3组的频率和为0.550.5>,所以中位数在第3组,设中位数为m ,则0.200.035(40)0.5m +−=, 解得48.6m ≈,所以C 正确,对于D ,因为服务时长超过50小时的频率为10(0.0250.020)0.45×+=, 所以本单位员工中服务时长超过50小时的约有8000.45360×=人,所以D 错误. 故选:AC10. 正六边形ABCDEF 的边长为2,G 为正六边形边上的动点,则AD BG ⋅的值可能为( ) A. 3− B. 1−C. 12D. 16【答案】ABC 【解析】【分析】利用投影向量求解向量数量积,得到AD BG ⋅的最小值和最大值,得到答案.【详解】连接BF 与AD 相交于点O ,由正六边形的几何性质,BF ⊥AD ,60FAO ∠=°, 正六边形ABCDEF 的边长为2,故sin 301AO AF =°=,24AD EF ==, 故413OD =−=,故点B 在AD 上的投影为O ,当点G 与点D 重合时,此时BG 的投影向量为OD ,OD 与AD方向相同此时AD BG ⋅取得最大值,最大值为4312AD OD ⋅=×=,故当G 与A 重合时,BG 的投影向量为OA ,OA 与AD方向相反, 此时AD BG ⋅取得最小值,最小值为4OA AD −⋅=−,故[]4,12AD BG ⋅∈−,ABC 正确,D 错误.故选:ABC11. 如图,正三棱锥A BCD −和正三棱锥E BCD −,2BD =.若将正三棱锥A BCD −绕BD 旋转,使得点A ,C 分别旋转至点M ,N 处,且M ,B ,D ,E 四点共面,点M ,E 分别位于BD 两侧,则( )A. MN BD ⊥B. MN CE ⊥C. MCD. 点C 与点A 【答案】ACD 【解析】【分析】对于A ,先作出图形,取BD 中点P ,证明BD ⊥平面ACP ,即可得到BD MN ⊥;对于B ,分别证明CE ⊥平面BDE ,MN ⊥平面MBD ,可推得//MN CE ,排除B ;对于C,先求得cos MPO ∠再由余弦定理即可求得MC ,对于,只需求出两点的旋转半径即可求得.【详解】如图,取BD 中点P ,连接,AP CP ,依题意,,AB AD CB CD ==,则有,,BD AP BD CP ⊥⊥ 因,,AP CP P AP CP ∩=⊂平面ACP ,则BD ⊥平面ACP . 对于A ,因为将正三棱锥A BCD −绕BD 旋转,使得点A ,C 分别旋转至点M ,N 处,故MN ⊂平面ACP ,因BD ⊥平面ACP ,故BD MN ⊥即A 正确; 对于B,因2,BC CD BD EB ED EC ======,则由222ED EC CD +=可知,CE DE ⊥,同理CE BE ⊥,因,,DE BE E DE BE ∩=⊂平面BDE ,故得,CE ⊥平面BDE ,同理可证AC ⊥平面ABD , 依题意,因M ,B ,D ,E 四点共面,故MN ⊥平面MBD ,故//MN CE ,故B 错误; 对于C ,设连接AE ,交CP 于点O ,则EO PO ⊥,11233OP CP ===,112EP BD =,则cos EPO ∠,依题意,,,M P E三点共线,可得cos MPO ∠, 在MPC中,由余弦定理,MC ==故C 正确;对于D ,因点C 与点A 是同时旋转,故转动的轨迹长度之比即旋转的半径之比, 而点C转动的半径为2PC ==,点A 转动的半径为1PA =,故点C 与点A 旋转运动D 正确. 故选:ACD.【点睛】关键点点睛:本题主要考查余几何体旋转有关的线面关系问题,属于难题.问题的关键在于,正确作出图形,理解旋转前后的变与不变的量,通过线面关系的推理与证明,即可得到线面关系,借助于正、余弦定理进行相关计算,即可解决.三、填空题:本大题共3小题,每小题5分,共15分.12.已知复数112z =−+,复数2z 满足123z z −=,则2z 的最小值为________. 【答案】2 【解析】【分析】设2i(,R)z a b a b =+∈,代入123z z −=中化简可得22192a b ++−=,则点(,)a b在以12 − 为圆心,3为半径的圆上,从而可求得结果. ,的【详解】设2i(,R)z a b a b =+∈,因为112z =−,123z z −=,所以1i 32a b −+−−=,所以22192a b++−=,所以点(,)a b 在以12 − 为圆心,3为半径的圆上,所以2z =的最小值为3312=−=. 故答案为:213. 设正方体1111ABCD A B C D −的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则点M 轨迹的长度为________.【答案】2+ 【解析】【分析】建立空间直角坐标系,利用空间向量求解出点M 轨迹的长度.【详解】在正方体1111ABCD A B C D −中,棱长为1,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,∴1111(0,0,0),(1,,0),(,,),2222D E F 设(,,)M x y z ,则1111(1,,0),(,,)2222DE FM x y z ==−−− , ∵DE FM ⊥,∴11113()0022224x y x y −+−=⇒+−=,当0y =时,34x =,当1y =时,14x =,取3113(,0,0),(,1,0),(,1,1),(,0.1)4444G H R T ,连结,,,GH HR RT TG ,则1(,1,0),(0,0,1)2GH TR TG RH ==−== ,∴四边形GHRT 为矩形, 则111()20022DE GH ⋅=×−+×+= ,1100102DE TG ⋅×+×+× ,即,,,DE GH DE TG GH TG ⊥⊥为平面GHRT 中的两条相交直线,∴DE ⊥平面GHRT ,又111111(,,),(,,)422422GF FR =−=− ,又F 为1BD 的中点,则F ∈平面GHRT , 为使DE FM ⊥,必有点M ∈平面GHRT ,又点M 在正方体表面上运动,所以点M 的轨迹为四边形GHRT ,因为1GH RT TG RH ,则点M 的轨迹不是正方形,则矩形GHRT 的周长为1222×+=+故答案为:2.14. 有两个相同的直三棱柱,高为2,底面三角形的三边长分别为3,4,5.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,拼成的几何体的表面积最小值是________. 【答案】52 【解析】【分析】先分情况分别求解组成三棱柱和四棱柱时的表面积,再比较大小得出最小值即可. ABC DEF −和直三棱柱111111A B C D E F −,如图所示:当拼成一个三棱柱时,表面积有三种情况: ①上下底面对接,其表面积为()112343454602S =×××+++×=;②边长为3的边合在一起时,表面积为()2122342542602S =××××++×=; ③边长为4的边合在一起时,表面积为()3122342532562S =××××++×=.当拼成一个四棱柱时,有四种情况,如图④、⑤、⑥、⑦:图④的表面积()4143454542602S =×××++++×=, 图⑤的表面积()5143453352562S =×××++++×=,图⑥的表面积()6143443432522S =×××++++×=, 图⑦的表面积()7143443342522S =×××++++×=. 综上所述,拼成的几何体的表面积最小值是52.故答案为:52.四、解答题:本大题共5小题,共55分,解答应写出文字说明,证明过程或演算步骤. 15. 已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,120B =°.(1)若1a =,b =,求A ;(2)若b =ABC 周长的最大值.【答案】(1)30A =°(2)4+【解析】【分析】(1)利用正弦定理直接求解;(2)根据余弦定理结合基本不等式得4a c +≤,从而可求出ABC 周长的最大值.【小问1详解】由正弦定理知sin sin b a B A =1sin A=,解得1sin 2A =, 因为B 为钝角,所以30A =°.【小问2详解】解:由余弦定理得()2222222cos b a c ac B a c ac a c ac =+−=++=+−, 又由0a >,0c >,则22a c ac + ≤, 所以()()()222231224a c a c ac a c a c + =+−≥+−=+ , 所以4a c +≤,当且仅当a c =时,等号成立,即a c +的最大值为4,所以ABC 周长的最大值为4+.16. 在四棱锥P ABCD −中,PA ⊥平面ABCD ,AB AD ⊥,AD ∥BC ,2PA AB AD ===,1BC =,E 为PD 中点.(1)求证:CE ∥平面P AB ;(2)求直线CE 与平面P AD 所成的角的正弦值.(要求用几何法解答)【答案】(1)证明见解析(2【解析】【分析】(1)取AD 中点G ,根据平行关系可证平面ECG ∥平面P AB ,结合面面平行的性质分析证明; (2)根据题意可证CG ⊥平面P AD ,可知CEG ∠为CE 与平面P AD 所成的角,即可得结果.【小问1详解】取AD 中点G ,连接EG ,CG ,因为E 、G 分别为PD 、AD 中点,则EG ∥PA ,112EG PA ==, 且PA ⊂平面P AB ,EG ⊄平面P AB ,可得EG ∥平面P AB ,由题意可知:BC ∥AG ,且BC AG =,可知ABCG 为平行四边形,则AB ∥CG ,2AB CG ==,且AB ⊂平面P AB ,CG ⊄平面P AB ,可得CG ∥平面P AB ,且CG EG G ∩=,,CG EG ⊂平面ECG ,所以平面ECG ∥平面P AB ,又因为EC ⊂平面ECG ,所以CE ∥平面P AB .【小问2详解】因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,则PA AB ⊥又因为AD AB ⊥,PA AD A ∩=,,PA AD ⊂平面P AD ,可得AB ⊥平面P AD ,由(1)可知:AB ∥CG ,则CG ⊥平面P AD ,可知CEG ∠为CE 与平面P AD 所成角,在直角三角形CEG 中,由(1)可知:2,1,CG EG CE ====,则sin CG CEG CE ∠=的所以直线CE 与平面P AD . 17. 近年来,“直播带货”受到越来越多人的喜爱,目前已经成为推动消费的一种流行营销形式,某直播平台有1000个直播商家,对其进行调查统计,发现所售商品多为小吃、衣帽、生鲜、玩具、饰品类等,各类直播商家所占比例如图①所示,为了更好地服务买卖双方,该直播平台打算用分层抽样的方式抽取80个直播商家进行问询交流.(1)应抽取小吃类商家多少家?(2)在问询了解直播商家的利润状况时,工作人员对抽取的80个商家的平均日利润进行了统计(单位:元),所得频率直方图如图②所示.①估计该直播平台商家平均日利润的第75百分位数;②若将平均日利润超过480元的商家称为“优质商家”,估计该直播平台“优质商家”的个数.【答案】(1)28家 (2)① 487.5元;②280【解析】【分析】(1)根据分层抽样的定义结合图①求解即可;(2)①先根据频率和为1求出a ,然后列方程求解第75百分位数,②根据频率分布直方图求出平均均日利润超过480元的频率,然后乘以1000可得答案.【小问1详解】根据分层抽样知:应抽取小吃类()80130%15%10%5%5%28×−−−−−=家; 【小问2详解】①根据题意可得()0.002320.006501a ×++×=,解得0.004a =, 设75百分位数为x ,因为()0.0020.0040.006500.60.75++×=<,(0.002+0.004+0.006+0.004)×50=0.8>0.75,所以()4500.0040.60.75x −×+=,解得487.5x =, 所以该直播平台商家平均日利润的75百分位数为487.5元.②5004800.0040.0020.00250100028050− ×++××=, 所以估计该直播平台“优秀商家”的个数为280.18. 如图,已知正方体1111ABCD A B C D −的棱长为2,M 分别为棱1BB 的中点.(1)证明:1AC D M ⊥;(2)求平面1AMD 与平面ABCD 所成二面角的余弦值.(要求用几何法解答)【答案】(1)证明见解析(2)23【解析】【分析】(1)连接BD ,则AC BD ⊥,由线面垂直的判定定理可证得AC ⊥平面1BDD ,从而可证得结论; (2)延长1D M 、DB 交于点E ,则直线AE 为平面1AMD 与平面ABCD 的交线,过点M ,作MN AE ⊥,垂足为N ,连接BN ,则可得∠MNB 为平面1AMD 与平面ABCD 所成二面角的平面角,然后在MNB 中求解即可.【小问1详解】证明:连接BD ,因为四边形ABCD 为正方形,所以AC BD ⊥,因为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,所以1DD AC ⊥,因为1DD BD D = ,1,DD BD ⊂平面1BDD ,所以AC ⊥平面1BDD ,因为1D M ⊂平面1BDD ,所以1AC D M ⊥.【小问2详解】延长1D M 、DB 交于点E ,则直线AE 为平面1AMD 与平面ABCD 的交线,过点M ,作MN AE ⊥,垂足为N ,连接BN ,因为BM ⊥平面ABCD ,AE ⊂平面ABCD ,所以BM AE ⊥,因为BM MN M = ,,BM MN ⊂BMN ,所以⊥AE 平面BMN ,因为BN ⊂平面BMN ,所以AE BN ⊥,所以∠MNB 为平面1AMD 与平面ABCD 所成二面角的平面角,因为BM ∥1DD ,所以MBE △∽1D DE △, 所以112MB BE D D DE ==,所以BE BD == 在ABE 中,2AB =,BE =135ABE ∠=°所以2222cos13520AE AB BE AB BE =+−⋅°=,所以AE = 因为11sin 22ABE S AB BE ABE AE BN ∆=⋅∠=⋅,所以11222BN ××°=×,所以BN =MN === 所以2cos 3BN MNB MN ∠== 所以平面1AMD 与平面ABCD 所成二面角的余弦值为23.19.定义:球的直径的两个端点称为球的一对对径点;过球心的平面与球面的交线称为该球的大圆;对于球面上不在同一个大圆上的点A ,B ,C ,过任意两点的大圆上的劣弧AB ,劣弧BC ,劣弧CA 所组成的图形称为球面ABC ,记其面积为ABC S 球面△.易知:球的任意两个大圆均可交于一对对径点,如图1的A ,A ′;若球面上A ,B ,C 的对径点分别为A ′,B ′,C ′,则球面A B C ′′′ 与球面ABC 全等,如图2.已知球O 的半径为R ,圆弧AB 和圆弧AC 所在平面组成的锐二面角B AO C −−的大小为α,圆弧BA 和圆弧BC 所在平面组成的锐二面角的大小为β,圆弧CA 和圆弧CB 所在平面组成的锐二面角的大小为γ.记()AB C ABC A BC A B C S S S S S α′′′′′′=+++ 球面球面球面.(1)请写出()πS ,π2S ,π4S的值,并猜测函数()S α的表达式; (2)求ABC S 球面△(用α,β,γ,R 表示).【答案】(1)()2π4πS R =,2π2π2S R = ,2ππ4S R =;猜测2()4S R αα= (2)()πABCS R αβγ++−球面△【解析】 【分析】(1)结合图形理解题意,根据()S α的计算公式,分别求出()πS ,π2S,π4S ,并按照规律猜出()S α的表达式即得;(2)分别计算,,S S S αβγ并相加,利用八块球面拼接成一个球面,以及ΔA B C ABC S S ′′′=球面球面,将其化简,代入(1)猜测的公式,即可求得ABC S 球面△的解析式.【小问1详解】()222221111π4π4π4π4π4π4444S R R R R R =×+×+×+×=, 22222π11114π4π4π4π2π28888S R R R R R =×+×+×+×= ,22222π11114π+4π4π4ππ416161616S R R R R R =××+×+×= . 猜测2()4S R αα=.【小问2详解】S S S αβγ++=()ABC A BC AB C A B C S S S S ′′′′′′++++ 球面球面球面球面()ABC AB C A BC A B C SS S S ′′′′′′++++ 球面球面球面球面 ()ABCABC A B C A B C S S S S ′′′′′′+++ 球面球面球面球面 22ABC A B C S S S ′′′=++ 球球面球面因为ΔA B C ABC S S ′′′=球面球面,所以22224444π4ABC R R R R S αβγ++=+ 球面,即()2πABC S R αβγ++− 球面.【点睛】思路点睛:本题主要考查球面三角形表面积的新定义问题,属于难题.解题思路,即是结合图形,充分理解题意,正确列出关系式,并根据图形进行表面积合并整理,即可求得.。
2024-2025学年上学期东北师大附中(物理)科试卷高一年级期中考试注意事项:1.答题前,考生须将自己的处名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.回答非选择题时,请使用0.5。
毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效。
4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共13个小题,每个小题4分,共52分,每个小题的四个选项中,1-7题只有一个正确选项,8-13题至少有两个选项是正确的。
全部答对的得4分,选对但不全得2分,有错选的不得分)1. 下列有关力的说法,正确的是()A. 物体所受重力施力物体是地球,方向总是垂直地面向下的B. 杆对物体的弹力一定是沿杆的方向C. 物体重心的位置与形状有关,形状规则的物体重心一定在几何中心上D. 箱子对地面的压力是由于箱子发生微小形变而产生的2. 下列说法正确的是()A.B. 物体速度变化大,加速度一定大C. 加速度减小,速度可能增大D. 研究子弹穿过薄木板的时间,可以将子弹看成质点3. 某同学将一石子竖直向上抛出,经过2s落回抛出点,已知重力加速度g=10m/s2,忽略空气阻力。
关于石子在空中的运动,下列说法正确的是()A. 上升的时间大于下降的时间B. 加速度先减小后反向增大C. 抛出瞬间的速度大小为20m/sD. 上升的最大高度为5m4. 两个力F1和F2间的夹角为θ,两力的合力为F.以下说法正确的是()A. 若F1和F2的大小不变,θ角越小,合力越大B. 合力F总比分力F1和F2中的任何一个力都大C. 若夹角θ不变,F 1大小不变,只要F 2增大,合力F 就增大D. 若夹角θ不变,F 1和F 2同时增大,则合力F 一定增大5. 质点做匀变速直线运动,某过程用时为3t ,已知经过第一个t 时间内位移为3x ,后2t 时间内位移为5x ,该过程中物体的加速度为( ) A. 22x t − B. 23x t C. 23x t − D. 223x t 6. 如图所示,某创新实验小组制作了一个半径为12cm 的圆环,将3个相同的轻弹簧一端等间距地连接在圆环上的A 、B 、C 三点,另外一端连接于同一点,结点恰好在圆心O 处。
东北师大附中高三年级(数学)科试卷2024—2025学年上学期第一次摸底考试出题人:高三备课组审题人:高三备课组考试时长:120分钟满分:150分一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合{}213A x x =-≤,{}240B x xx =∈-≤N ,则A B = ()A.0,2B.0,2C.{}0,1,2 D.{}1,22.已知1tan 2α=,则sin cos sin 3cos αααα-=+()A.23 B.17-C.12D.12-3.已知角α的终边经过点5π5πsin ,cos 66⎛⎫ ⎪⎝⎭,则tan α=()A. B.C.33-D.334.若函数()3ln f x a x x x=+-既有极大值也有极小值,则实数a 的取值范围为()A.(0, B.((),-∞-⋃+∞C.(,-∞- D.()+∞5.已知函数()f x 是定义在R 上的奇函数,当0x <时,()3e 1e 1x x f x -=-,则下列说法正确的是()A.函数()f x 有两个零点B.当0x >时,()e 3e 1x xf x -=-C.()0f x >的解集是(),ln 3-∞-D.m ∀∈R ,0x ∃∈R ,使得()0f x m=6.定义在R 上的函数()f x 的导函数为()f x ',若()10f =,()()f x f x '>,则不等式()0f x >的解集为()A.()0,∞+ B.()1,+∞ C.()0,1 D.()()0,11,+∞ 7.已知34m =,44m a -=,22m b -=,则下列说法正确的是()A.a b <B.a b >C.a b= D.a b=-8.若关于x 不等式()ln ax x b ≤+恒成立,则当1e ea ≤≤时,1e lnb a +-的最小值为()A.11e+ B.e 1- C.1D.e二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若0b a >>,则下列不等式成立的是()A.2a ba b +<<< B.11a b<C.222log log log 22a b a b++< D.()22b a b a ->-10.已知π2sin 33α⎛⎫+=⎪⎝⎭,则下列说法正确的是()A.πcos 63α⎛⎫-=⎪⎝⎭ B.π1cos 239α⎛⎫-=- ⎪⎝⎭C.5π2cos 63α⎛⎫+=- ⎪⎝⎭ D.若()0,πα∈,cos 6α=11.定义在R 上的偶函数()f x ,满足()()=2f x f x --,当(]1,0x ∈-时,()1f x x =--,则下列说法正确的是()A.()10f =B.2027122f ⎛⎫=⎪⎝⎭C.函数()()31y f x x =--的所有零点之和为5D.()0.11e1ln 1.1f f ⎛⎫-> ⎪⎝⎭三、填空题:本大题共3小题,每小题5分,共15分.12.已知某扇形的圆心角为120°,弧长为2πcm ,则此扇形的面积为________2cm .13.已知函数2231,0()ln(3),0x x f x x ax x +⎧-<⎪=⎨++≥⎪⎩,()()30f f -=,则实数a 的值为______.14.对于函数()f x ,若在定义域内存在实数x 满足()()f x f x -=-,则称函数()f x 为“局部奇函数”.若函数()14972xx f x m +=-⋅-在定义域R 上为“局部奇函数”,则实数m 的取值范围为________.四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.已知数列{}n a 满足:11a =,()*12n n a a n +=+∈N,数列{}nb 为单调递增等比数列,22b=,且1b ,2b ,31b -成等差数列.(1)求数列{}n a ,{}n b 的通项公式;(2)设2log n n n c a b =+,求数列{}n c 的前n 项和n T .16.已知函数()2ee xx f x x =+-.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)当[]1,0x ∈-时,求函数()f x 的最大值与最小值.17.师大附中考入北大的学生李聪毕业后帮助某地打造“生态果园特色基地”,他决定为该地改良某种珍稀水果树,增加产量,提高收入,调研过程中发现:此珍稀水果树的单株产量W (单位:千克)与投入的成本30x(单位:元)满足如下关系:()2343,02,332,2 5.1x x W x x x x x ⎧+≤≤⎪⎪=⎨⎪+<≤⎪+⎩,已知这种水果的市场售价为10元/千克,且供不应求.水果树单株获得的利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当投入成本为多少时,该水果树单株获得的利润最大?最大利润是多少?18.已知函数()()e ln xf x x a a x =--,a ∈R .(1)当e a =时,求函数()f x 的单调区间与极值;(2)若函数()f x 有2个不同的零点1x ,2x ,满足2121e 2e x xx x >,求a 的取值范围.19.对于数列{}n x ,若0M ∃>,对任意的*n ∈N ,有n x M ≤,则称数列{}n x 是有界的.当正整数n 无限大时,若n x 无限接近于常数a ,则称常数a 是数列{}n x 的极限,或称数列{}n x 收敛于a ,记为lim n n x a →+∞=.单调收敛原理:“单调有界数列一定收敛”可以帮助我们解决数列的收敛性问题.(1)证明:对任意的1x ≥-,*n ∈N ,()11nx nx +≥+恒成立;(2)已知数列{}n a ,{}n b 的通项公式为:11nn a n ⎛+⎫ ⎪⎝⎭=,111n n b n +⎛⎫=+ ⎪⎝⎭,*n ∈N .(i )判断数列{}n a ,{}n b 的单调性与有界性,并证明;(ii )事实上,常数e lim lim n n n n a b →+∞→+∞==,以e 为底的对数称为自然对数,记为ln x .证明:对任意的*n ∈N ,()1111ln 11nnk k n k k ==<+<+∑∑恒成立.东北师大附中高三年级(数学)科试卷2024—2025学年上学期第一次摸底考试出题人:高三备课组审题人:高三备课组考试时长:120分钟满分:150分一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BCD【11题答案】【答案】ABD三、填空题:本大题共3小题,每小题5分,共15分.【12题答案】【答案】3π【13题答案】【答案】3-【14题答案】【答案】1,7⎡⎫-+∞⎪⎢⎣⎭四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.【15题答案】【答案】(1)21n a n =-,12n n b -=;(2)232n n n T -=【16题答案】【答案】(1)22y x =+(2)函数()f x 的最大值为2,最小值3ln 24+【17题答案】【答案】(1)()23403030,02332020,251x x x f x x x x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪+⎩(2)当投入成本为90元时,该水果树单株获得的利润最大,最大利润是180元【18题答案】【答案】(1)()f x 单调递减区间为()0,1;()f x 单调递増区间为()1,+∞;()f x 有极小值0,无极大值.(2)2ln 2a >【19题答案】【答案】(1)证明见解析;(2)(i ){}n a 是递增数列,是有界的,{}n b 是递减数列,也是有界的,(ii )证明见解析.。
2024-2025学年东北师大附中 高一年级数学科试卷上学期阶段性考试考试时长:90分钟 试卷总分:120分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1. 下列元素的全体可以组成集合的是( ) A. 人口密度大的国家 B. 所有美丽的城市 C. 地球上四大洋 D. 优秀的高中生【答案】C 【解析】【分析】根据集合的确定性,互异性和无序性即可得出结论.详解】由题意,选项ABD ,都不满足集合元素的确定性,选项C 的元素是确定的,可以组成集合. 故选:C.2. 若全集R U =,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A. {3,4,5,6}B. {0,1,2}C. {0,1,2,3}D. {4,5,6}【答案】A 【解析】【分析】根据图中阴影部分表示()U A B 求解即可. 【详解】由题知:图中阴影部分表示()U A B ,{}|3U Bx x =≥ ,则(){}3,4,5,6U B A = .故选:A3. 命题“[1,3]x ∀∈−,2320x x −+<”的否定为( )的【A. []1,3x ∃∈−,2320x x −+≥B. []1,3x ∃∈−,2320x x −+>C. []1,3x ∀∈−,2320x x −+≥D. []1,3x ∃∉−,2320x x −+≥【答案】A 【解析】【分析】根据给定条件,利用全称量词命题的否定直接写出结论即可.【详解】命题“[1,3]x ∀∈−,2320x x −+<”是全称量词命题,其否定是存在量词命题, 因此命题“[1,3]x ∀∈−,2320x x −+<”的否定是[]1,3x ∃∈−,2320x x −+≥. 故选:A4. 已知集合{}240A x x=−>,{}2430B x xx =−+<,则A B = ( )A. {}21x x −<< B. {}12x x <<C. {}23x x −<<D. {}23x x <<【答案】D 【解析】【分析】解出集合,A B ,再利用交集含义即可.【详解】{}{2402A x xx x =−>=或}2x <−,{}{}2430|13B x xx x x =−+<=<<,则{}23A Bx x ∩=<<.故选:D.5. 若,,a b c ∈R ,0a b >>,则下列不等式正确的是( ) A.11a b> B. a c b c >C. 2ab b >D. ()()2211a c b c −>−【答案】C 【解析】【分析】对BD 举反例即可,对AC 根据不等式性质即可判断. 【详解】对A ,因为0a b >>,则11a b<,故A 错误; 对B ,当0c =时,则a c b c =,故B 错误;对C ,因为0a b >>,则2ab b >,故C 正确; 对D ,当1c =时,则()()2211a c b c −=−,故D 错误. 故选:C.6. “2a <−”是“24a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】解出不等式24a >,根据充分不必要条件的判定即可得到答案. 【详解】24a >,解得2a >或2a <−,则“2a <−”可以推出“24a >”,但“24a >”无法推出“2a <−”, 则“2a <−”是“24a >”的充分不必要条件. 故选:A .7. 关于x 的一元二次方程(1)(4)x x a −−=有实数根12,x x ,且12x x <,则下列结论中错误的说法是( ) A. 当0a =时,11x =,24x = B. 当0a >时,1214x x << C. 当0a >时,1214x x <<< D. 当904a −<<时,122544x x <<【答案】B 【解析】【分析】根据给定条件,借助二次函数的图象,逐项分析判断即可.【详解】对于A ,当0a =时,方程(1)(4)0x x −−=的二实根为121,4x x ==,A 正确; 对于B ,方程(1)(4)x x a −−=,即2540x x a −+−=,254(4)0a ∆=−−>,解得94a >−, 当0a >时,1244x x a =−<,B 错误;对于C ,令()(1)(4)f x x x =−−,依题意,12,x x 是函数()y f x =的图象与直线y a =交点的横坐标, 在同一坐标系内作出函数()y f x =的图象与直线y a =,如图,观察图象知,当0a >时,1214x x <<<,C 正确; 对于D ,当904a −<<时,12254(4,)4x x a =−∈,D 正确.故选:B8. 已知[]x 表示不超过x 的最大整数,集合[]{}03A x x =∈<<Z ,()(){}2220Bx xax x x b =+++=,且 R A B ∩=∅ ,则集合B 的子集个数为( ).A. 4B. 8C. 16D. 32【答案】C 【解析】【分析】由新定义及集合的概念可化简集合{}1,2A =,再由()A B ∩=∅R 可知A B ⊆,分类讨论1,2的归属,从而得到集合B 的元素个数,由此利用子集个数公式即可求得集合B 的子集的个数. 【详解】由题设可知,[]{}{}Z |31,2A x x =∈<<=,又因为()A B ∩=∅R ,所以A B ⊆, 而()(){}22|20B x xax x x b =+++=,因为20x ax 的解为=0x 或x a =−,220x x b ++=的两根12,x x 满足122x x +=−, 所以1,2分属方程20x ax 与220x x b ++=的根,若1是20x ax 的根,2是220x x b ++=的根,则有221+1=02+22+=0a b × × ,解得=1=8a b −− , 代入20x ax 与220x x b ++=,解得=0x 或=1x 与=2x 或4x =−,故{}0,1,2,4B=−;若2是20x ax 的根,1是220x x b ++=的根,则有222+2=01+21+=0a b × × ,解得=2=3a b −− ,代入20x ax 与220x x b ++=,解得=0x 或=2x 与=1x 或3x =−,故{}0,1,2,3B=−;所以不管1,2如何归属方程20x ax 与220x x b ++=,集合B 总是有4个元素, 故由子集个数公式可得集合B 的子集的个数为42=16. 故选:C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知关于x 的不等式20ax bx c ++<的解集为(1,6)−,则( ) A. 0a < B. 不等式0ax c +>的解集是{|6}x x > C. 0a b c ++< D. 不等式20cx bx a −−<的解集为11(,)32【答案】BC 【解析】【分析】利用一元二次不等式的解集用a 表示,b c ,再逐项分析判断即得.【详解】对于A ,由不等式20ax bx c ++<的解集为(1,6)−,得1,6−是方程20ax bx c ++=的两个根,且0a >,A 错误;对于B ,16,16b ca a−+=−−×=,则5,6b a c a =−=−, 不等式0ax c +>,即60ax a −>,解得6x >,B 正确; 对于C ,56100a b c a a a a ++=−−=−<,C 正确;对于D ,不等式20cx bx a −−<,即2650ax ax a −+−<,整理得()()31210x x −−>,解得13x <或12x >,D 错误. 故选:BC10. 已知x y 、都是正数,且满足2x y +=,则下列说法正确的是( )A. xy 的最大值为1B.+的最小值为2C. 11x y+的最小值为2D. 2211x y x y +++的最小值为1【答案】ACD【解析】【分析】根据给定条件,借助基本不等式及“1”的妙用逐项计算判断即得.【详解】对于A ,由0,0x y >>,2x y +=,得2()12x y xy +≤=,当且仅当1xy ==时取等号,A 正确;对于B2+≤,当且仅当1xy ==时取等号,B 错误; 对于C,1111111()()(2)(22222y x x y x y x y x y +=++=++≥+=, 当且仅当1xy ==时取等号,C 正确; 对于D ,222211111111111111x y x y x y x y x y x y −+−++=+=−++−+++++++ 11111111[(1)(1)]()(2)11411411y x x y x y x y x y ++=+=++++=++++++++1(214≥+=,当且仅当1111y x x y ++=++,即1x y ==时取等号,D 正确. 故选:ACD11. 用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),,C A C B C A C B A B C B C A C A C B −≥ ∗=−< ,已知集合222{0},{R |()(1)0}A x x x B x x ax x ax =+==∈+++=|,则下面正确结论正确的是( )A. a ∃∈R ,()3C B =B. a ∀∈R ,()2C B ≥C. “0a =”是“1A B ∗=”的充分不必要条件D 若{}R1S a A B =∈∗=∣,则()4C S = 【答案】AC 【解析】【分析】根据集合新定义,结合一元二次方程,逐项分析判断即可. 【详解】对于A ,当2a =时,{}0,2,1B =−−,此时()3C B =,A 正确;对于B ,当0a =时,{}0B =,此时()1C B =,B 错误;.对于C ,当0a =时,{}0B =,则()1C B =,而{}0,1A =−,()2C A =,因此1A B ∗=;当1A B ∗=时,而()2C A =,则()1C B =或3,若()1C B =,满足2Δ40a a ==−< ,解得0a =; 若()3C B =,则方程20x ax 的两个根120,x x a ==−都不是方程210x ax ++=的根,且20Δ40a a ≠ =−=,解得2a =±,因此“0a =”是“1A B ∗=”的充分不必要条件,C 正确; 对于D ,由1A B ∗=,而()2C A =,得()1C B =或3,由C 知:0a =或2a =±,因此{}0,2,2S =−, 3C S ,D 错误.故选:AC三、填空题(本题共3小题,每小题5分,共15分.)12. 已知集合{}A x x a =<,{}13B x x =<<,若A B B = ,则实数a 的取值范围是______.【答案】3a ≥ 【解析】【分析】根据给定条件,利用交集的定义,结合集合的包含关系求解即得.【详解】由A B B = ,得B A ⊆,而{}A x x a =<,{}13B x x =<<,则3a ≥,所以实数a 的取值范围是3a ≥. 故答案:3a ≥13.若一个直角三角形的斜边长等于,当这个直角三角形周长取最大值时,其面积为______. 【答案】18 【解析】【分析】由题意画出图形,结合勾股定理并通过分析得知当()2722AB AC AB AC +=+⋅最大值,这个直角三角形周长取最大值,根据基本不等式的取等条件即可求解. 【详解】如图所示:为在Rt ABC △中,90,A BC ==而直角三角形周长l AB BC CA AB CA =++=++,由勾股定理可知(222272AB CA BC +===,若要使l 最大,只需+AB AC 即()2222722AB AC AB AC AB AC AB AC +=++⋅=+⋅最大即可, 又22272AB AC AB AC ⋅≤+=,等号成立当且仅当6AB AC ==, 所以()2722144AB AC AB AC +=+⋅≤,12AB AC +≤,12l ≤+, 等号成立当且仅当6AB AC ==, 此时,其面积为11661822S AB AC =⋅=××=. 故答案为:18.14. 若不等式22x x a ax +−>+对(]0,1a ∀∈恒成立,则实数x 取值范围是______. 【答案】(]),2∞∞−−∪+【解析】【分析】根据主元法得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,再利用一次函数性质即可得到答案.【详解】由不等式22x x a ax +−>+对(]0,1a ∀∈恒成立, 得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,令()()212g a x a x x =+−−+,得22(0)20(1)120g x x g x x x =−−+≤ =+−−+< , 解得(]),2x ∈−∞−+∞,∴实数x的取值范围是(.故答案为:(]),2∞∞−−∪+.四、解答题(本题共3小题,共47分)15. 设集合U =R ,{}05Ax x =≤≤,{}13B x m x m =−≤≤. (1)3m =,求()U A B ∪ ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.的【答案】(1){|5x x ≤或}9x > (2)12m <−或513m ≤≤. 【解析】【分析】(1)根据 集合的补集定义以及集合的交集运算,即可求得答案;(2)依题意可得B A ,讨论集合B 是否为空集,列出相应的不等式,即可求得结果. 【小问1详解】当3m =时,可得{}|29B x x =≤≤,故可得{|2U B x x =< 或}9x >,而{}|05A x x =≤≤, 所以(){|5U A B x x ∪=≤ 或}9x >. 【小问2详解】由“x B ∈”是“x A ∈”的充分不必要条件可得B A ; 当B =∅时,13m m −>,解得12m <−,符合题意; 当B ≠∅时,需满足131035m m m m −≤−≥ ≤,且10m −≥和35m ≤中的等号不能同时取得,解得513m ≤≤; 综上可得,m 的取值范围为12m <−或513m ≤≤. 16. (1)已知03x <<,求y =的最大值; (2)已知0x >,0y >,且5x y xy ++=,求x y +的最小值; (3)解关于x 的不等式()2330ax a x −++<(其中0a ≥). 【答案】(1)92;(2)2+;(3)答案见解析 【解析】【分析】(1)化简得y,再利用基本不等式即可;(2)利用基本不等式构造出252x y x y + ++≤,解出即可;(3)因式分解为(3)(1)0ax x −−<,再对a 进行分类讨论即可.【详解】(1)()229922x x y +−=≤=,当且仅当229x x =−,即229x x =−,即x =时等号成立.则y =的最大值为92. (2)因为 0,0x y >>, 且 5x y xy ++=, 则252x y x y xy + ++≤,解得2x y +≥ 或 2x y +≤−(舍去),当且仅当1x y ==时等号成立,则x y +的最小值为2+.(3)不等式()2330ax a x −++<化为(3)(1)0ax x −−<,(其中0a ≥), 当0a =时,解得1x >;当0a >时,不等式化为3()(1)0x x a−−<,若0<<3a ,即31a>,解得31x a <<;若3a =,x 无实数解; 若3a >,即31a <,解得31x a<<, 所以当0a =时,原不等式的解集为{|1}x x >; 当0<<3a 时,原不等式的解集为3{|1}x x a<<; 当3a =时,原不等式的解集为∅; 当3a >时,原不等式的解集为3{|1}x x a<<. 17. 已知方程()220,x mx n m n −+−=∈R(1)若1m =,0n =,求方程220x mx n −+−=的解;(2)若对任意实数m ,方程22x mx n x −+−=恒有两个不相等的实数解,求实数n 的取值范围;(3)若方程()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,且()2121248x x x x +−=,求221221128x x x x x x +−+的最小值. 【答案】(1)2x =或1−;(2)2n <(3)【解析】【分析】(1)由题意得到220x x −−=,求出方程的根;(2)由根的判别式大于0得到()21124n m <++,求出()211224m ++≥,从而得到2n <; (3)由韦达定理得到1212,2x x m x x n +==−,代入()2121248x x x x +−=中得到24m n =,结合立方和公式化简得到2212211288328x x m x x x x m m m+−=−++−,令8t m m =−,由单调性得到81333t −=≥,结合基本不等式求出22122112832x x t x x x x t +−=+≥+,得到答案. 【小问1详解】1m =,0n =时,220x x −−=,解得2x =或1−;【小问2详解】()222120x mx n x x m x n −+−=⇒−++−=,故()()2Δ1420m n =+−−>,所以()21124n m <++, 其中()211224m ++≥,当且仅当1m =−时,等号成立, 故2n <;【小问3详解】()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,()2Δ420m n =−−>,由韦达定理得1212,2x x m x x n +==−,故()2212124488x x x x m n +−=−+=,所以24m n =,此时80∆=>, 所以()()2222331211221212211212121212888x x x x x x x x x x x x x x x x x x x x x x +−+++−=−=−+++ ()()()221212121212336882x x x x x x m m n x x x x n m ++−−+ −=−+−,因为24m n =, 所以2222122221126284488883282244m m m m x x m m m x x x x m m m m m +−+ +−=−=−=−++−−−, 令8t m m =−,其在3m ≥上单调递增,故81333t −=≥,故22122112832x x t x x x x t +−=+≥+ 当且仅当32t t=,即=t 时,等号成立, 故221221128x x x x x x +−+的最小值为【点睛】关键点点睛:变形得到2212211288328x x m x x x x m m m+−=−++−,换元后,由函数单调性和基本不等式求最值.。
2025届吉林省长春市东北师大附中高三最后一卷数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知椭圆22:13x C y +=内有一条以点11,3P ⎛⎫ ⎪⎝⎭为中点的弦AB ,则直线AB 的方程为( )A .3320x y --=B .3320x y -+=C .3340x y +-=D .3340x y ++=2. “角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )A .6B .7C .8D .93.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )A .7πB .6πC .5πD .4π4.已知函数有三个不同的零点 (其中),则 的值为( )A .B .C .D .5.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .322-B .221+C .21-D .21+6.已知抛物线C :24x y =的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,其中点A 在第一象限,若弦AB 的长为254,则AF BF =( ) A .2或12B .3或13C .4或14D .5或157.复数()()2a i i --的实部与虚部相等,其中i 为虚部单位,则实数a =( ) A .3B .13-C .12-D .1-8.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21B .42C .63D .849.已知平面向量,,a b c ,满足||2,||1,b a b c a b λμ=+==+且21λμ+=,若对每一个确定的向量a ,记||c 的最小值为m ,则当a 变化时,m 的最大值为( ) A .14B .13C .12D .110.已知函数()f x 是定义域为R 的偶函数,且满足()(2)f x f x =-,当[0,1]x ∈时,()f x x =,则函数4()()12x F x f x x+=+-在区间[9,10]-上零点的个数为( ) A .9B .10C .18D .2011.函数()cos 22x xxf x -=+的部分图像大致为( )A .B .C .D .12.若函数()y f x =的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数()y f x =的图像可能是( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
2023-2024学年东北师大附中初中部初一年级数学学科试卷第二学期期中考试考试时长:120分钟试卷分值:120分一、选择题(共8小题,每题3分,共24分)1. 如图,下列四种通信标志中,其图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .2. 已知a b >,下列不等式成立的是( )A. a b −>−B. 22a b −<−C. 22a b <D. 0a b −<【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵a b >,∴a b −<−,故不符合题意;B . ∵a b >,∴a b −<−,∴22a b −<−,故符合题意;C .∵a b >,∴22a b >,故不符合题意;D . ∵a b >,∴0a b −>,故不符合题意.故选:B .3. 一副三角板,按如图所示叠放在一起,则图中α∠的度数为( )A. 60°B. 65°C. 75°D. 85°【答案】C【解析】 【分析】本题考查了与三角板有关的运算以及三角形内角和性质,先得出115ABD ABC ∠=∠−∠=°,再运用三角形内角和进行列式,计算即可作答.【详解】解:如图所示:由题意得出6045ABD ABC ∠=°∠=°,,∴1604515ABD ABC ∠=∠−∠=°−°=°,∵90D ∠=︒,∴180901575α∠=°−°−°=°,故选:C .4. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.5. 已知12x y = =是关于x ,y 的方程,x +ky =3的一个解,则k 的值为( ) A. -1B. 1C. 2D. 3 【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵12x y = =是关于x 、y 的方程x +ky =3的一个解, ∴把12x y = =代入到原方程,得1+2k =3, 解得k =1,故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.6. 一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A. 1B. 1.5C. 2D. 4【答案】D【解析】【分析】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则 5353x −<<+,即28x <<,只有选项D 符合题意.故选D .7. 不等式53x −≥的解集在数轴上表示正确的是( )A.B.C.D.【答案】A【解析】 【分析】本题考查的是解一元一次不等式,利用数轴表示不等式的解集.先求出不等式的解集,再在数轴上表示出来不等式的解集即可,注意大于小于用空心,大于等于小于等于用实心,大于大于等于开口向右,小于小于等于开口向左.【详解】解:53x −≥,∴2x ≤,数轴上表示:,故选:A .8. 某学校为学生配备物理电学实验器材,一个电表包内装有1个电压表和2个电流表.某生产线共60名工人,每名工人每天可生产14个电压表或20个电流表.若分配x 名工人生产电压表,y 名工人生产电流 ) A. 6022014x y y x += ×=B. 6014202x y x y += =C. 601420x y x y += =D. 6021420x y x y += ×=【答案】D【解析】 【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到电压表数量和电流表数量的等量关系.【详解】解:若分配x 名工人生产电压表,y 名工人生产电流表,由题意,得6021420x y y y += ×=. 故选:D .二、填空题(共6小题,每小题3分,共18分)9. 已知二元一次方程327x y +=,用含x 的代数式表示y ,则y =______.为【答案】7322x − 【解析】【分析】本题考查了解二元一次方程,根据327x y +=,将x 看成已知数,进行移项,再系数化1,即可作答.【详解】解:∵327x y +=∴273y x =−7322y x =− 故答案为:7322x − 10. 在通过桥洞时,往往会看到如图所示标志:这是限制车高的标志,表示车辆高度不能超过5m ,通过桥洞的车高m x 应满足的不等式为_____________.【答案】5x ≤##5x ≥【解析】【分析】根据不等式的定义列不等式即可.5m ,∴5x ≤.故答案为5x ≤.【点睛】本题主要考查列不等式,掌握不等式的定义是解答本题的关键.11. 不等式组10{212x x −<−≥的最小整数解为_________. 【答案】2【解析】【分析】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集,根据“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:解不等式组10{212x x −<−≥得:32x ≥, ∴最小整数解为2,故答案为:2.的12. 如图,正五边形ABCDE 和正六边形EFGHMN 的边CD 、FG 在直线l 上,正五边形在正六边形左侧,两个正多边形均在l 的同侧,则DEF ∠的大小是___度.【答案】48【解析】【分析】利用正多边形的内角和,求出其中一个角的度数,进一步求出三角形DEF 的两个内角,最后由三角形内角和定理来求解.【详解】解: 正五边形内角和为540°且CD 在直线l 上,5401085EDC °∴∠==°, 正六边形内角和为720°且FG 在直线l 上, 7201206EFG °∴∠==°, 在EDF 中,180DEF EDF EFD ∠=°−∠−∠,18010872EDF ∠=°−°=° ,18012060EFD ∠=°−°=°,48DEF ∴∠=°,故答案是:48.【点睛】本题考查了正多边形的内角、三角形的内角和定理,解题的关键是:掌握正多边形内角和的求法.13. 我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各一直金几何?”译文问题:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问一头牛、一只羊一共值多少两银子?”则1头牛、1只羊一共值 ______ 两银子.【答案】5【解析】【分析】设每头牛值x 两银子,每只羊值y 两银子,根据“5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子”,可得出关于x ,y 的二元一次方程组,利用()7+÷①②,即可求出结论.【详解】解:设每头牛值x 两银子,每只羊值y 两银子,根据题意得:52192516x y x y += +=①②, ()7+÷①②得:5x y +=, ∴1头牛、1只羊一共值5两银子,故答案为:5.【点睛】本题考查了二元一次方程组的应用以及数学文化,找准等量关系,正确列出二元一次方程组是解题的关键.14. 为了更好的开展大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都要买且钱全部用完),则该班级的购买方案有______种.【答案】4【解析】【分析】设购买x 个跳绳,y 个呼啦圈,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出购买方案的数量.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【详解】解:设购买x 个跳绳,y 个呼啦圈,依题意得:812120x y +=, 2103y x ∴=−. x ,y 均为正整数,x ∴为3的倍数,∴38x y = = 或66x y = =或94x y = = 或122x y = = , ∴该班级共有4种购买方案.故答案为:4.三、解答题(共10小题,共78分)15. 解方程组:(1)23328y x x y =− +=(2)28452x y x y += −=【答案】(1)21x y = =(2)32x y = =【解析】【分析】本题主要考查了解二元一次方程组:(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【小问1详解】解:23328y x x y =− +=①② 把①代入②得:()32238x x +−=,解得2x =, 把2x =代入①得2231y =×−=,∴方程组的解为21x y = =; 小问2详解】解:28452x y x y += −=①② 2×−①②得:714y =,解得2y =,把2y =代入①得:228x +=,解得3x =, ∴方程组解为32x y = = . 16. 解下列不等式(组):(1)()32723x +≥;(2)()313122x x x x −> −−≥【的【答案】(1)13x ≥(2)无解【解析】 【分析】本题考查了解一元一次不等式以及解一元一次不等式组,正确掌握相关性质内容是解题的关键. (1)先去括号,再移项合并同类项,系数化1,即可作答.(2)分别算出每个不等式组的解集,再取公共部分的解集,即可作答.【小问1详解】解:()32723x +≥,62123x +≥,62x ≥,13x ≥; 【小问2详解】解:()313122x x x x −> −−≥, 由()31x x −>,得33x x −>,解得32x >, 由3122x x −−≥,得243x x −≥−1x ≤, 此时不等式组无解.17. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的ABC ,线段MN 在网格线上.(1)画出AB 边上的高线CD ;(2)画出BC 边上的中线AE ;(3)在线段MN 上任取一点P ,则ABP 的面积是______.【答案】(1)见详解 (2)见详解(3)5【解析】【分析】本题考查了三角形的高,中线的定义,运用网格求面积,正确掌握相关性质内容是解题的关键.(1)过点C作CD垂直于BA的延长线,交点为点D,即可作答.(2)根据网格特征以及中线定义,进行作图即可;(3)根据平行线之间的距离处处相等的性质,得出MN与AB的距离为5,再结合三角形面积公式进行计算,即可作答.【小问1详解】解:AB边上的高线CD如图所示:【小问2详解】解:BC边上的中线AE如图所示:【小问3详解】解:如图所示:∴ABP 的面积12552=××=. 18. 如图,在ABC 中,AN 是ABC 的角平分线,50B ∠=°,80ANC ∠=°,求C ∠的度数.【答案】70° 【解析】【分析】根据三角形外角的性质,角平分线的定义以及三角形的内角和定理即可得到结论.此题主要考查了三角形外角的性质,角平分线的定义,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和. 【详解】解:∵5080ANC B BAN B ANC ∠=∠+∠∠=°∠=°,,. ∴805030BAN ANC B ∠∠∠=−=°−°=°,∵AN 是BAC ∠角平分线,∴223060BAC BAN ∠∠×°°,在ABC 中,180180506070C B BAC ∠=°−∠−∠=°−°−°=°. 19. 若一个多边形的内角和的14比它的外角和多90°,那么这个多边形的边数是多少? 【答案】12 【解析】【分析】设这个多边形的边数是n ,根据题意,列方程1(2)180360904n −×°=°+°求解即可. 【详解】解:设这个多边形的边数是n , 由题意得:1(2)180360904n −×°=°+°, 解得:12n =,答:这个多边形的边数是12.【点睛】本题考查了多边形的内角和和外角和定理,熟练掌握两个定理是解题的关键. 20. 在长方形ABCD 中,放入5个形状大小相同的小长方形(空白部分),其中8cm AB =,12cm BC =,求图中阴影部分图形的面积.【答案】236cm 【解析】【分析】设小长方形的长为xcm ,宽为ycm ,根据图形中大长方形的长和宽列二元一次方程组,求出x 和y 的值,即可解决问题.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设小长方形的长为xcm ,宽为ycm ,根据题意,得:3128x y x y +=+=,解得:62x y ==, ∴每个小长方形的面积为()22612cm ×=, ∴阴影部分的面积()281251236cm =×−×=.21. 阅读下列材料:解方程组23237432323832x y x yx y x y +− +=+− += .小明发现,如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的()23x y +看成一个整体,把()23x y −看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令23mx y =+,23n x y =−.原方程组化为743832m nm n += += ,解得6024m n = =− , 把6024m n = =− 代入23m x y =+,23n x y =−,得23602324x y x y +=−=− ,解得914x y = = ,∴原方程组的解为914x y ==. (1)学以致用:运用上述方法解方程组:()()()()213211224x y x y ++−=+−−=(2)拓展提升: 已知关于x ,y 的方程组111222a x b y c a x b y c +=+=的解为34x y = = ,请直接写出关于m 、n 的方程组()()1112222323a m b n c a m b n c +−=+−= 的解是______. 【答案】(1)11x y == (2)143m n = =−【解析】【分析】本题主要考查了换元法解二元一次方程组:(1)结合题意,利用整体代入法求解,令1m x =+,2n y =−得23124m n m n +=−=,解得21m n = =− 即1221x y +=−=− 即可求解;(2)结合题意,利用整体代入法求解,令2x m =+,3y n =−,则()()1212222323a m b n c a m b n c +−=+−= 可化为121222a x b y c a x b y c +=+= ,且解为34x y = = 则有2334m n +=−= ,求解即可. 【小问1详解】解:令1m x =+,2ny =−, 原方程组化为23124m n m n += −=,解得21m n ==− ,1221x y +=∴ −=−,解得:11x y ==, ∴原方程组的解为 11x y = =; 【小问2详解】解:在()()1212222323a m b n c a m b n c +−=+−= 中,令2x m =+,3y n =−,则()()1212222323a m b n c a m b n c +−=+−= 可化为121222a x b y c a x b y c += += , ∵方程组121222a x b y c a x b y c +=+= 解为34x y = = ,∴2334m n +=−=, 143m n = ∴ =−,故答案为:143m n ==−.22. “粮食生产根本在耕地、出路在科技”.为提高农田耕种效率,今年开春某农村合作社计划投入资金购进甲、乙两种农耕设备,已知购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元.(1)求甲种农耕设备和乙种农耕设备单价各是多少万元;(2)若该合作社决定购买甲、乙两种农耕设备共7台,且购进甲、乙两种农耕设备总资金不超过10万元,求最多可以购进甲种农耕设备多少台.【答案】(1)1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; (2)5台 【解析】【分析】(1)设购进1台甲种农耕设备需x 万元,1台乙种农耕设备需y 万元,根据“购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元”,可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进甲种农耕设备m 台,则购进乙种农耕设备()7m −台,利用总价=单价×数量,结合总价不超过10万元,可得出关于m 的一元一次不等式,解之可得出m 的取值范围,再取其中的最大整数值,即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式. 【小问1详解】解:设购进1台甲种农耕设备需x 万元,1台乙种农耕设备需y 万元,根据题意得:2 4.23 5.1x y x y += +=,解得: 1.51.2x y ==.答:购进1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; 【小问2详解】解:设购进甲种农耕设备m 台,则购进乙种农耕设备()7m −台, 根据题意得:()1.5 1.2710m m +−, 解得:153m ≤, 又m 为正整数,m ∴的最大值为5.答:最多可以购进甲种农耕设备5台.23. 【探究】如图①,在ABC 中,点D 是BC 延长线上一点,ABC ∠的平分线BP 与ACD ∠的平分线CP 相交于点P .则有12P A ∠=∠, 请补全下面证明过程:证明:BP 平分ABC ∠,CP 平分ACD ∠, 2ABC PBC ∴∠=∠,2ACD ∠=∠______(______). ACD A ∠=∠+∠ ______(三角形的一个外角等于与它不相邻的两个内角的和), 22PCD A PBC ∴∠=∠+∠._____PCD PBC ∠=∠+∠ (三角形的一个外角等于与它不相邻的两个内角的和),12P A ∴∠=∠. 【应用】如图②,在四边形MNCB 中,设M α∠=,N β∠=,若180αβ+>°,四边形的内角MBC ∠与外角NCD ∠的角平分线BP CP ,相交于点P .为了探究P ∠的度数与α和β的关系,小明同学想到将这个问题转化图①的模型,因此,延长了边BM 与CN 交于点A .如图③,若106BMN∠=°,124MNC ∠=°,则______A ∠=°,因此______P ∠=°. 【拓展】如图④,在四边形MNCB 中,设M α∠=,N β∠=,若180αβ+<°,四边形的内角MBC ∠与外角NCD ∠的角平分线所在的直线相交于点P ,请直接写出P ∠=______.(用含有α和β的代数式表示)【答案】探究:PCD ;角平分线的定义;PBC ;P ;应用:50°;25°;拓展:121902αβ°−− 【解析】【分析】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义: 探究:根据三角形外角的性质和角平分线的定义结合已给推理过程求解即可;应用:先利用平角的定义和三角形内角和定理求出A ∠的度数,再有探究的结论即可得到答案;拓展:延长MB 交NC 的延长线于A ,则由三角形内角和定理可得180A αβ=°−−∠;再由题意可得PB PC ,分别平分ABH ACB ∠,∠,则11190222PA αβ==°−−∠∠. 【详解】解:探究:证明:BP 平分ABC ∠,CP 平分ACD ∠, 2ABC PBC ∴∠=∠,2ACD PCD ∠=∠(角平分线的定义). ACD A ABC ∠=∠+∠ (三角形的一个外角等于与它不相邻的两个内角的和), 22PCD A PBC ∴∠=∠+∠.PCD P PBC ∠=∠+∠ (三角形的一个外角等于与它不相邻的两个内角的和), 12P A ∴∠=∠, 故答案为:PCD ;角平分线的定义;PBC ;P ; 应用:延长了边BM 与CN 交于点A .如图③, ∵106BMN∠=°,124MNC ∠=°,∴1807418056AMN BMN ANM MNC =°−=°=°−=°∠∠,∠∠, ∴18050A AMN ANM =°−−=°∠∠∠, ∴1252P A ∠=∠=°, 故答案:50°;25°.拓展:如图,延长MB 交NC 的延长线于A ,∵M α∠=,N β∠=, ∴180180A M N αβ=°−−=°−−∠∠∠; ∵四边形的内角MBC ∠与外角NCD ∠的角平分线所在的直线相交于点P , ∴PB PC ,分别平分ABH ACB ∠,∠,∴11190222PA αβ==°−−∠∠, 故答案为:121902αβ°−−.24. 如图①,点O 为数轴原点,3OA =,正方形ABCD 的边长为6,点P 从点O 出发,沿射线OA 方向运动,速度为每秒2个单位长度,设运动时间为t 秒,请回答下列问题.为(1)点A 表示的数为______,点D 表示的数为______. (2)APC △的面积为6时,求t 的值.(3)如图②,当点P 运动至D 点时,立即以原速返回,到O 点后停止.在点P 运动过程中,作线段3PE =,点E 在数轴上点P 右侧,以PE 为边向上作正方形PEFG ,当DPF 与ABG 面积和为16时,直接写出t 的值.【答案】(1)3,9 (2)t 的值为12秒或52秒 (3)1318t =或236或316或14918.【解析】【分析】(1)根据线段OA 的长和正方形的边长可以求解.(2)根据P 点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据P 点运动确定正方形的位置再去讨论DPF 与ABG 面积和为16时的t 值. 本题考查了数轴与动点的结合,表示出P 点的运动距离是本题的解题关键. 【小问1详解】解: 3OA = ,且O 为数轴原点,在O 的右侧,A ∴表示的数为3,正方形的边长为6,639OD ∴=+=,D ∴表示的数为9.故答案是3,9; 【小问2详解】解:∵APC △的面积为6, ∴116622APC S AP CD AP =×=××=△, 解得2AP =,P 点从O 点开始运动且速度为每秒2个单位长度,2OP t ∴=,∵3OA =,∴当点P 在AO 之间时,则3322AP OP t =−=−=,解得12t =, ∴当点P 在OA 的延长线上时,则3232AP OP t =−=−=,解得52t =, ∴APC △的面积为6时,t 的值为12秒或52秒; 【小问3详解】解:①当P 点在A 点左侧时,2OP t =,由题意得:连接BG AG PF FD ,,,,如图所示:∵36OA AD ==,, ∴9OD =,∵速度为每秒2个单位长度,设运动时间为t 秒, ∴902t ≤≤, ∴32PA OA OP t =−=−, ∴()11279233222DPF S PD EF t t =××=−×=− , ()116329622ABGS AB AP t t =××=××−=− , ∵DPF 与ABG 面积和为16, ∴27396162DPF ABG S S t t +=−+−= , 解得1318t =, 当P 点在A 点右侧时,连接BG AG PF FD ,,,,如图所示:同理得()11279233222DPF S PD EF t t =××=−×=− , ()116236922ABGS AB AP t t =××=××−=− , ∵DPF 与ABG 面积和为16, ∴27369162DPF ABG S S t t +=−+−= , 解得236t =, ②点P 从D 向O 运动时,则9999222t <≤+=, 连接BG AG PF FD ,,,,如图所示:∴9926222PD t AP AD PD t=×−=−=−−,此时119272332222DPF S PD EF t t =××=×−×=− , 119662456222ABG S AB AP t t=××=××−−=−, ∵DPF 与ABG 面积和为16, ∴273456162DPF ABG S S t t +=−+−= ,第21页/共21页解得316t =, 当P 点在A 点左侧时, 由题意得:连接BG AG PF FD ,,,,如图所示:∴92292962152PD t t AP PD AD t t=×−=−=−=−−=−,, 此时119272332222DPF S PD EF t t =××=×−×=− , ()11621564522ABG S AB AP t t =××=××−=− , ∵DPF 与ABG 面积和为16, ∴273645162DPF ABG S S t t +=−+−= , 解得14918t =, 综上:1318t =或236或316或14918.。
2024-2025学年上学期东北师大附中(语文)科试卷高(二)年级期中考试注意事项:1.答题前,考生需将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效。
4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀。
一、现代文阅读(33分)(一)现代文阅读I(本题共4小题,15分)阅读下面的文字,完成1-4题。
材料一:孟郊最重要的朋友和知音,非韩愈莫属。
孟郊与韩愈是贞元八年(公元792)进士科的同年友,但本次科考,韩愈及第,老诗人孟郊却名落孙山。
韩愈来看望孟郊,他没有因自己及第就觉得高人一等,反而为孟郊的淹蹇落魄而感伤,为他的被黜落而感到不平。
他在诗中宽慰这位前辈,不要因一时的挫折就愤郁愁闷,贫富荣悴,各有各的活法,没有高下贤愚之分。
无论你的处境如何,我们都永远支持你,敬重你。
韩愈之所以如此看重孟郊,除了因为孟郊是诗坛前辈之外,更重要的,是因为韩愈被孟郊鬼惊神哭的诗艺折服。
孟郊比韩愈年长十七岁,而登第却比韩愈足足晚了四年。
韩文公“文起八代之衰”,其为人也。
孤高自许,向来不惮以人师自居,然在孟郊面前,却折节侍坐,甘心执弟子礼。
没有什么比韩文公的拜伏,更能说明孟郊诗歌的魅力了。
韩愈是中唐诗坛的领袖,而在某种程度上,孟郊之于韩愈,是友而兼师,孟郊在当时诗坛的地位之高崇,可想而知。
孟、韩诗歌的奇思奥句,造就了贞元、元和诗歌新貌。
白居易说“诗到元和体变新”,李肇《唐国史补》对其内涵做了具体的阐释:“为文笔则学奇诡于韩愈,学苦涩于樊宗师;歌行则学流荡于张籍,诗章则学矫激于孟郊;学浅切于白居易,学淫靡于元稹。
”平心而论,“流荡”“浅切”都谈不上“新”、“元和体”的“新”,是以怪、奇、丑、险在诗苑的竞相绽放而呈现新境的,即“元和之风尚怪”也。
东北师大附中2024—2025学年上学期第一次摸底考试高三年级 (英语) 科试卷考试时长:120 分钟满分: 150分第Ⅰ卷选择题(满分95分)第一部分听力(共两节,满分30分)第一节 (共5小题; 每小题1.5分, 满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What are the speakers doing?A. Studying a book.B. Reading a letter.C. Collecting money.2. What is the woman looking for?A. Her hat.B. Her coat.C. Her gloves.3. What kind of paper are the speakers going to write?A. A historical one.B. A biological one.C. A geographical one.4." What will the weather be like tomorrow morning?A. Windy.B. Rainy.C. Sunny.5. Why does Fred decide to quit?A. He often works overtime.B. He needs to earn more money.C. He doesn't get on well with his colleagues.第二节 (共15小题; 每小题1.5分, 满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时何阅读各个小题,每题5秒钟:听完后,各小题将给出5秒钟的作答时间。
2023-2024学年下学期高(二)年级期中考试东北师大附中(数学)科试卷考试时长:120分钟 试卷总分:120分注意事项:1.答题前,考生须将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效。
4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀。
一、单项选择题:本大题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.数列,3,−9…的一个通项公式是()A.()()*1n n a n −∈N B.())*1n n a n −∈N C.())*1n n a n +−∈N D.())*1n n a n +−∈N 2.已知函数()f x 和()g x 在区间[],a b 上的图象如图所示,则下列说法正确的是()A.()f x 从a 到b 的平均变化率大于()g x 从a 到b 的平均变化率B.()f x 从a 到b 的平均变化率小于()g x 从a 到b 的平均变化率C.对于任意()0,x a b ∈,函数()f x 在0x x =处的瞬时变化率总大于函数()g x 在0x x =处的瞬时变化率D.存在()0,x a b ∈,使得函数()f x 在0x x =处的瞬时变化率小于函数()g x 在0x x =处的瞬时变化率3.已知数列{}n a 中,11a =且()*133n n n a a n a +=∈+N ,则13a =()A.18 B.17 C.16 D.15东北师大附中2024年高二下学期期中考试数学试卷+答案4.已知随机变量()~4,XB p ,若()65181P X ≥=,则()2P X ==( ) A.43 B.427 C.827 D.32275.在一个有穷数列中,每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作称为该数列的一次“H 扩展”,已知数列1;2,第一次“H 扩展”后得到1,3,2;第二次“H 扩展”后得到1,4,3,5,2,那么第十次“H 扩展”后得到的数列的项数为( )A.1025B.1023C.513D.511 6.已知数列{}n a 是正项数列,()2*3n n n ⋅⋅⋅++∈N ,则9122310a a a ++⋅⋅⋅+=( ) A.216 B.260 C.290 D.316 7.如图,将a ,a ,b ,b ,c ,c 6个字母放入3×2的表格中,每个格子各放一个字母,且同列字母不相同,若共有k 行字母相同,则k 的均值为( )A.12B.35C.1D.28.满足333311115032233442024n n +++⋅⋅⋅+>−−−−的最小正整数n 为( ) A.12 B.13 C.17 D.18二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。
2024-2025学年吉林省长春市东北师大附中高三(上)月考数学试卷(一)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设集合P ={x ∈Z|x 2−2x−8<0},Q ={x|y =ln (2x−x 2)},则P ∩Q =( )A. {2}B. {1}C. (0,3)D. (1,2)2.已知f(x)是定义在R 上的奇函数,当x >0时f(x)=log 3x ,则f(−3)=( )A. −1B. 0C. 1D. 23.设a >0,b >1,若a +b =2,则4a +1b−1的最小值为( )A. 6B. 9C. 3 2D. 184.函数f(x)=(4−x 2)⋅2|x|的大致图象是( )A. B.C. D.5.已知函数y =log 12(x 2−2ax +5a)在[2,+∞)上为减函数,则实数a 的取值范围是( )A. (−∞,2] B. [2,+∞) C. (−4,2] D. [−1,2]6.已知函数f(x)=log 3(32x +1)−x ,则满足f(2x−1)>f(x)的x 的取值范围为( )A. (1,+∞)B. (−∞,13)∪(1,+∞)C. (13,1] D. (−∞,−13)∪(1,+∞)7.已知m >n >0,e =2.71828…为自然对数的底数,则下列不等式恒成立的是( )A. 1m >1nB. e m +n >e n +mC. ne m >me nD. m−2cosn <n−2cosm8.已知x 1是函数f(x)=e x +x−2的零点,x 2是函数g(x)=e 4−x −x +2的零点,则x 1+x 2的值为( )A. 3B. 4C. 5D. 6二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.若“∃x 0∈(0,2),使得2x 20−λx 0+1<0成立”是假命题,则实数λ可能的值是( )A. 1B. 2 2C. 3D. 3 210.已知定义域为R 的函数f(x)满足f(x)不恒为零,且f(x +6)=f(x),f(3+x)+f(3−x)=0,f(2)=0,则下列结论正确的是( )A. f(0)=0B. f(x)是奇函数C. f(x)的图象关于直线x =13对称D. f(x)在[0,10]上有6个零点11.已知实数x 1,x 2是函数f(x)=(12)x −|log 2(x−1)|的两个零点,则下列结论正确的是( )A. (x 1−1)(x 2−1)∈(0,12)B. (x 1−1)(x 2−1)∈(12,1)C. (x 1−1)(x 2−1)∈(1,2) D. (x 1−2)(x 2−2)∈(−∞,0)三、填空题:本题共3小题,每小题5分,共15分。
2023-2024学年东北师大附中高二语文(下)期末试卷试卷满分为150分,考试用时为150分钟一、现代文阅读(33分)(一)现代文阅读Ⅰ(本题共4小题,15分)阅读下面的文字,完成下面小题。
材料一:中央领导人强调,“发展新质生产力是推动高质量发展的内在要求和重要着力点,必须继续做好创新这篇大文章,推动新质生产力加快发展”。
当前,新一轮科技革命方兴未艾,以新质生产力塑造我国经济新的核心竞争力和发展新动能成为实现高质量发展的关键内容,既具有重大理论意义,又具有重大实践价值。
新质生产力本质是先进生产力,从多个方面体现出先进性。
一是要素构成的先进性。
新质生产力要素的先进性,主要呈现为掌握新科技的新型劳动者、智能设备等新劳动资料、数字空间等非物质化的新劳动对象等。
这些新生产要素及其优化组合通过创新效应和结构效应可以不断提高劳动生产率。
二是推动力量的先进性。
科学技术和新产业是推动新质生产力发展的关键力量。
如果说科学技术是第一生产力,那么前沿科技和颠覆性技术是形成新质生产力的关键要素。
以战略性新兴产业和未来产业为牵引,以传统产业数字化、智能化和绿色化转型升级为突破点,由此形成的现代化产业体系是发展新质生产力的强大产业基础。
三是社会分工协作体系的先进性。
在马克思的社会再生产理论中,企业和社会等需要依赖社会分工协作体系。
新质生产力的发展需要先进的社会分工协作体系支持。
这里的体系是影响新质生产力发展的内生变量,是组织生产要素、创造社会财富的重要社会经济力量。
(取材于《发展新质生产力是推动高质量发展的内在要求和重要着力点》)材料二:(取材于“今日公文网”)材料三:科技创新能够催生新产业、新模式、新动能,是发展新质生产力的核心要素。
这就要求我们加强科技创新特别是原创性、颠覆性科技创新,加快实现高水平科技自立自强。
要深入实施科教兴国战略、人才强国战略、创新驱动发展战略,坚持“四个面向”,强化国家战略科技力量,有组织推进战略导向的原创性、基础性研究。
2024-2025学年上学期东北师大附中(英语)科试卷高(一)年级期中考试注意事项:1.答题前,考生需将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效。
4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷选择题(满分75分)第一部分听力理解(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What is the man’s opinion about his present job?A. It is creative.B. It makes him bored.C. It is full of challenges.2. How long will the man keep the books?A. Thirteen days.B. Ten days.C. Seven days.3. What did the man do this morning?A. He had a meeting.B. He had a history lesson.C. He had a chemistry class.4. What are the speakers talking about?A. An island.B. The weather.C. The development of tourism.5. Where does the conversation most probably take place?A. In a restaurantB. In an office.C. At home.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
一、基础知识(每题2分,共20分)1. 下列词语中,字形、字音、字义完全正确的一项是()A. 沉默寡言(mò mò guǎ yán)B. 狼吞虎咽(láng tūn hǔ yàn)C. 翻箱倒柜(fān xiāng dǎo guì)D. 欣喜若狂(xīn xǐ ruò kuáng)2. 下列句子中,没有语病的一项是()A. 随着我国经济的快速发展,人民生活水平日益提高,同时也带来了许多环境问题。
B. 我国科学家在航空、航天、海洋等领域取得了举世瞩目的成就,为我国科技事业的发展做出了巨大贡献。
C. 为了确保交通安全,我们必须严格遵守交通规则。
D. 这位老师的教学方法非常独特,让学生们受益匪浅。
3. 下列句子中,标点符号使用错误的一项是()A. “他从小热爱劳动,不怕苦,不怕累,是老师的好帮手。
”B. “我要把学习当成一种乐趣,把困难当成一种挑战。
”C. “我国有悠久的历史,丰富的文化,壮丽的河山。
”D. “我们学校位于市中心,交通便利,环境优美。
”4. 下列词语中,与“得意洋洋”意思相近的一项是()A. 欣喜若狂B. 喜出望外C. 喜形于色D. 心花怒放5. 下列句子中,成语使用不恰当的一项是()A. 他勤奋好学,成绩优异,是班级的佼佼者。
B. 这个工厂的环保措施不到位,导致周边环境严重污染。
C. 我们要发扬艰苦奋斗的精神,为实现中华民族伟大复兴而努力拼搏。
D. 在这次比赛中,他发挥出色,取得了第一名的好成绩。
二、阅读理解(每题3分,共30分)阅读下面的文章,回答问题。
小明是一名初中生,他热爱学习,成绩优异。
但是,他的性格比较内向,不太善于与人交流。
一天,老师组织了一场“我与同学共成长”的主题班会,要求每位同学邀请一位同学一起参加。
小明心想:“我要邀请谁呢?他们都不太愿意和我玩。
”这时,他想起了班上的小华。
小华性格开朗,喜欢和大家交流,是班级的活跃分子。
东北师大附中 考试试卷政 治 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间90分钟.第Ⅰ卷(选择题,共50分)我国加入世贸组织后,具有优势的劳动密集型的农产品,如蔬菜、瓜果、肉类等,频遭绿色壁垒。
回答1—3题。
1.上述材料表明 ( )A .注重质量是商品生产者的根本出发点和落脚点B .只有注重商品质量,才能保证其价值实现C .没有质量保证的商品不能进入市场流通D .农产品的质量决定其价格2.针对这种情况,农业部下发了《关于加快绿色产品发展的意见》,要求全面加快我国绿色 产品的发展。
农业部的做法主要体现了我国政府( )A .加强了政策和信息方面的引导B .加大对农业的直接管理力度C .加强了与国际组织的沟通D .通过立法维护我国企业的利益3.我国农业企业由于规模相对较小、效益差、竞争力弱,将面临严峻挑战。
有关专家指出, 在知识经济时代,市场竞争的结果,更多的将是“快鱼吃慢鱼”,而不是“大鱼吃小鱼”。
我国企业如果能坚持“以快制慢”,就能做到“以小胜大”。
“快鱼”所以能吃掉“慢鱼”, 主要是因为( )A .“快鱼”规模小,经营方式更灵活B .“快鱼”技术更先进,劳动生产率更高C .“快鱼”产品创新速度快,更能适应市场供求关系的变化D .“快鱼”实现了经济增长方式由粗放型向集约型的转变“牧童经济”是一个形象的比喻,使人们想起牧童在放牧时,只顾放牧而不顾草原的被破坏。
它是由英国一位著名的经济学家提出的一种对自然资源进行掠夺、破坏式的经济模式。
据此回答4—5题。
2003—2004学年度高三年级第二次摸底4.“牧童经济”模式表明市场经济()A.是有效的资源配置方式B.具有自发性、盲目性、滞后性的弱点C.存在恶性竞争D.导致优胜劣汰5.“牧童经济”模式对我国西部开发的启示是()A.加强基础设施建设B.注重资源的合理开发、利用和环境的保护C.积极引进资金、技术和人才D.国家支持实现由“输血”到“造血”的转变围绕经济中心开展立法,是九届全国人大重要的立法准则。
《中华人民共和国农村土地承包法》就是经九届全国人大常委会审议通过,2002年8月29日由国家主席江泽民签署公布,并于今年3月1日起已经正式实施,据此回答6—8题:6.由材料可以体会到:全国人大常委会()A.是最高国家权力机关B.是最高国家权力机关的执行机关C.在行使最高立法权D.在行使立法权7.制定和颁布《农村土地承包法》,可依法保护农民的土地承包经营权,保护农民的利益,促进农村经济的发展。
这体现了我国的国家机关坚持:①依法治国的原则②权利和义务相统一的原则③对人民负责的原则④在法律面前一律平等的原则()A.①③B.①③④C.①②③D.①②③④8.上题材料还体现了国家机构在履行①组织和领导社会主义经济建设的职能②正确处理人民内部矛盾,维护社会稳定的职能的政治职能③搞好社会公共服务的职能④组织和领导社会主义文化建设的国家职能()A.①②B.②③C.③④D.①③“食人鲳”原产于亚马逊河,它色彩美丽但性情残暴,一旦适应某一水域的环境,就会对入侵水域的动物甚至人类造成威胁,破坏当地生态系统。
回答9—10题。
9.食人鲳曾被我国作为观赏鱼大量引进,但忽视了会给我国生态系统的良性发展带来不良后果,这启示我们()A.认识对实践具有指导作用B.只有树立正确的价值观,才能促进事物的发展C.认识的反作用具有两重性D.正确的价值观是在实践的过程中形成的10.2002年12月,国家有关部委相继发出了查处食人鲳的紧急通知,要求严防食人鲳等有害生物的传入,这说明①我国的法律体系需进一步完善②生态安全引起了政府的高度重视③国家在履行社会公共服务的职能④发展对外贸易要扩大出口减少进口()A.①②③④B.②③C.①②③D.①④随着我国市场经济的发展,社会保险正在逐步建立和不断完善。
表2 中外保险情况对照表注:保险密度指保险总收入与国民总人数之比。
保险深度指保险总收入与国民生产总值之比。
阅读上述两表,回答11—13题。
11.对照上述两表,说明()A.我国保险业发展潜力很大B.我国保险业发展迅速,水平较高C.我国保险业将成国民经济的支柱产业D.我国保险业将受到国外保险公司的冲击12.我国保险主要分社会保险和商业保险,如我国正在实施的基本养老保险、失业保险等等都属于社会保险。
实施这类社会保险()A.可以启动市场刺激消费B.可以提高人民的生活水平C.是社会主义本质的要求D.是实现共同富裕的重要途径13.平时生活中,我们参加各商业保险,只要按合约交付保险费,保险事故发生后,就可以从保险公司获得相应的经济补偿。
这说明()A.参加保险没有任何投资风险B.参加保险主要是为了获得经济利益C.参加保险与存款储蓄投资方式相同D.享受补偿权利与履行交费义务是统一的江泽民在十六大报告中指出:要深入学习贯彻“三个代表”重要思想,党员干部特别是高中级干部要带头学习和实践“三个代表”重要思想,成为勤奋学习、善于思考的模范、解放思想、与时俱进的模范、勇于实践、锐意创新的模范。
在全党深入进行马克思主义发展史的教育,大力弘扬求真务实、开拓进取的精神、不断深化对共产党执政规律、社会主义建设规律和人类社会发展规律的认识,不断丰富和发展马克思主义。
据此回答14—16题。
14.上述论断是对党建设的要求。
A.思想作风B.工作作风C.领导作风D.干部生活作风15.上述论断体现的主要观点有()①必须坚持解放思想、实事求是的思想路线和思想作风②马克思主义要与时俱进③要坚持马克思主义与中国现代化建设的具体的历史的统一④要反对因循守旧、本本主义⑤要反对官僚主义和享乐主义A.①②③B.①③④C.①②③④D.①②③④⑤16.江泽民同志在十六大报告中强调加强党的执政能力建设,提高党的领导水平和执政水平。
如十六大报告在起草过程中,中共中央曾征求各民主党派、全国工商联和无党派人士对《报告》的意见。
这表明()A.中国共产党和各民主党派共同执掌国家政权B.中国共产党的领导地位是由国家和党的性质决定的C.各民主党派享有制定国家大政方针的权力D.我国实行中国共产党领导的多党合作和政治协商制度“家国兴亡自有时,吴人何苦怨西施。
西施若解倾吴国,越国亡来又是谁?这是唐朝诗人罗隐在《西施》中的名句。
回答17—18题。
”17.这首诗蕴含的哲理是()A.事物变化发展是有规律的B.事物都有一个产生、发展、灭亡的过程C.量变是质变的重要条件D.事物的内部矛盾是事物变化的根本原因18.古诗所反映的道理,给我们的启示主要是()A.注重自我发展,提高抵御各种风险能力B.想问题办事情要一切从实际出发,实事求是C.创造良好发展环境,提高对外开放水平D.坚持以经济建设为中心,两手抓,两手都要硬2003年10月15日,我国“神舟”5号载人飞船成功返回,成为继美国、俄罗斯后第三个在航天技术上取得重大突破并在太空遨游的国家。
据此回答19—20题。
19.我国科学家利用“神舟”5号飞船进行了许多科技方面的试验,取得了很大成果。
这些成果将对经济的发展产生重大影响。
这说明()A.科技进步和创新能推动生产力的发展B.农业发展的唯一出路是应用新技术C.科技成果能够迅速转化为生产力D.科学实验水平是国家经济发展水平的标志20.国家尊严来自国家实力,我们只有不断增强综合国力,不断壮大科技实力和国防实力,才能避免在国际社会中受制于人,这也是航天科技工作者肩负的重任。
这就是说()A.国家力量决定国家在国际社会中的作用B.国家力量的变化直接影响国家间关系的变化C.国家力量的变化导致对外政策的变化D.国家力量是主权国家赖以生存和发展的基础坚持扩大内需的方针,继续实施积极的财政政策和稳健的货币政策,综合运用各种宏观调控手段,巩固和发展经济增长的好形势。
据此回答16—18题。
21.面对国内需求不旺的市场,怎样扩大内需,拉动经济增长?著名经济学家历以宁说:“消费是最终需求,投资需求是中间需求,只有最终需求旺了,经济才能最终启动起来。
”他在一次讲座中指出,消费者“可买可不买的,不买”和“可买可不买的,买”,这对经济的发展大不一样。
这位经济学家强调的是()A.生产对消费的决定作用B.消费对生产的反作用C.消费与生产相互作用D.消费要适度22.扩大内需是我国当前促进经济增长的立足点,而结构调整是扩大内需的重要内容,结构调整得好,在改进供给的同时,将有效地创造需求。
这说明()A.结构调整的实质是扩大内需B.结构调整与扩大内需互为目的C.扩大内需促进结构调整,推动经济增长D.结构调整将促进扩大内需,推动经济增长2003年9月,第58届联合国大会总务委员会作出决定,拒绝将极少数国家提出的所谓“台湾参与联合国”问题纳入本届联大议程。
这是台湾当局制造“两个中国”“一中一台”的图谋连续第十一次遭到挫败。
据此回答23—25题:23.我国向冈比亚等国家政府提出严正交涉,是因为()A.用和平方式解决台湾问题是我国的一贯主张B.台湾还不是我国的特别行政区,不具备高度自治权C.台湾是中国领土不可分割的一部分D.台湾不是主权国家,不能与外国发生任何联系24.坚持一个中国原则的内涵是()①世界上只有一个中国②大陆和台湾同属一个中国③中国的主权和领土完整不容分割④反对分裂势力搞“台湾独立”⑤反对外国势力干涉中国统一A.①②③B.③④⑤C.②④⑤D.①②④25.在解决台湾问题上我们始终坚持一个中国的原则,是因为()①它攸关国家主权和领土完整②它攸关国家的强盛和民族的振兴③它与包括台湾同胞在内的全国人民的根本利益息息相关④它是发展两岸关系和实现和平统一的基础A.①B.①②C.①②③D.①②③④第Ⅱ卷(非选择题共50分)26.2003年10月11日—14日,在北京召开的中国共产党十六届三中全会的一个重要议题是决定实施振兴东北地区老工业基地振兴战略。
吉林省是我国的重要农业基地,加入WTO后,大豆、玉米等支柱产品在质量、价格等方面与美国、加拿大等国家的竞争中节节败退。
请结合经济常识有关知识简要指明吉林省农业要走出困境的主要举措。
27.2003年我国很多城市(如北京、广州、长春等)相继组织了名目繁多的汽车展销会,我国国产、外国进口、中外合资生产的汽车都纷纷亮相,并且在价格方面给予了购车族很多优惠。
专家预计,在不久的未来,我国的汽车行业也将与彩电行业和电脑行业一样进入价格大战时期。
用经济常识的知识分析价格大战的影响主要有哪些?28.2002的《政府工作报告》中,朱总理第一次郑重使用了“弱势群体”这个学术语。
(“弱势群体”是指在社会经济收入、社会地位、权益维护、竞争能力等方面处于困难和不利境地的劳动者。
)朱总理强调:积极扩大就业和再就业是增加居民收入的重要途径,对弱势群体要给予特殊的就业援助。