过程控制系统1
- 格式:ppt
- 大小:132.50 KB
- 文档页数:8
过程控制系统
(ProcessContro1System)
总学时:40学时理论40学时
学分:2.5
课程主要内容:
《过程控制系统》课程是电气工程与自动化专业的一门专业主干课程,具有很强的实践性。
主要内容包括单回路控制系统的方案设计、调节参数整定以及控制系统的投运:为提高控制品质或满足特殊操作要求的复杂过程控制系统及应用中的有关问题;对典型案例的学习,掌握对各典型单元操作静、动态特性的分析方法,和与之相匹配的典型控制方案的设计等三大部分。
通过本课程的学习,要使学生在掌握控制理论和过程检测与控制仪表等知识的基础上,用工程处理的方法去解决控制系统的分析、设计与研究方面的问题。
先修课程:自动控制理论、微机原理、过程检测与控制仪表、微机控制等。
适用专业:电气工程与自动化
教材:
邵裕森.过程控制工程.北京:机械工业出版社,2006年1月。
教学弁考书:
[1]金以慧.过程控制.北京:清华大学出版社,1993年4月。
[2]蒋慰孙.过程与控制.北京:化学工业出版社,1996年10月。
[3]邵裕森.过程控制及仪表(修订版).上海:上海交大出版社,1995年3月。
过程控制系统PCS(ProcessContro1System)的介绍及应用过程控制系统(ProcessContro1System,PCS)是在自动化技术的支持下对生产过程进行实时监测、控制和优化的一种系统。
PCS通过传感器、执行器、计算机和网络等技术手段,对现场各种参数进行实时监测、分析和控制,以确保产品质量、提高生产效率和降低成本。
以下是PCS的介绍及应用。
1.过程控制系统的基础功能核心模块:输入模块、控制模块和输出模块这三个模块是过程控制系统的基础。
其中输入模块主要负责采集现场的数据,如温度、压力、流量等;控制模块则对这些数据进行处理、分析,并制定相应的控制策略;输出模块则将控制信号传送给执行器,如阀门、电机等,来实现对生产过程的控制。
2.过程控制系统的应用2.1化工行业化工行业中存在许多高危作业环节,PCS可以帮助企业降低生产事故风险。
例如,作为一个严格遵循生产规范要求的工业领域,PCS能够在化学反应过程中确保反应的安全性,从而防止不必要的人员伤害和财产损失。
3.2石油行业在石油工业中,过程控制系统也发挥着至关重要的作用。
由于石油生产环境复杂,PCS可以通过对石油采集、加工、储存等环节的实时监测,精准掌握各个环节的生产数据,提高生产效率和节约成本。
4.3电力行业电力行业是一个需要高度自动化技术支持的领域,PCS通常被用来监测、控制和优化发电机组的运行状态。
例如,在燃气发电机组中,使用PCS能够实现自动控制温度、压力和电压等参数,以提高发电效率和减少排放。
5.4制药行业制药行业需要严格遵守安全、卫生、环保等法规标准,PCS在制药过程中的应用非常重要。
例如,通过对药品生产过程进行实时监测和控制,PCS能够确保药品的生产量和质量达到最佳效果,同时满足药品的安全标准。
6.5食品行业食品行业也是PCS的一个重要应用领域。
在生产食品过程中,PCS可以对温度、湿度、氧气等多项参数进行实时监测和控制,提高食品的生产效率和质量,并且确保生产过程符合卫生安全标准。
第1章 过程控制系统概述习题与思考题1.1 什么是过程控制系统,它有那些特点?1.2 过程控制的目的有那些?1.3 过程控制系统由哪些环节组成的,各有什么作用?过程控制系统有那些分类方法?1.4 图1.11是一反应器温度控制系统示意图。
A 、B 两种物料进入反应器进行反应,通过改变进入夹套的冷却水流量来控制反应器的温度保持不变。
试画出该温度控制系统的方框图,并指出该控制系统中的被控过程、被控参数、控制参数及可能影响被控参数变化的扰动有哪些?1.5 锅炉是化工、炼油等企业中常见的主要设备。
汽包水位是影响蒸汽质量及锅炉安全的一个十分重要的参数。
水位过高,会使蒸汽带液,降低了蒸汽的质量和产量,甚至会损坏后续设备;而水位过低,轻则影响汽液平衡,重则烧干锅炉甚至引起爆炸。
因此,必须对汽包水位进行严格控制。
图1.12是一类简单锅炉汽包水位控制示意图,要求:1)画出该控制系统方框图。
2)指出该控制系统中的被控过程、被控参数、控制参数和扰动参数各是什么。
3)当蒸汽负荷突然增加,试分析该系统是如何实现自动控制的。
V-1图1.12 锅炉汽包水位控制示意图1.6 评价过程控制系统的衰减振荡过渡过程的品质指标有那些?有那些因素影响这些指标?1.7 为什么说研究过程控制系统的动态特性比研究其静态特性更意义?1.8 某反应器工艺规定操作温度为800 10℃。
为确保生产安全,控制中温度最高不得超过850℃。
现运行的温度控制系统在最大阶跃扰动下的过渡过程曲线如图1.13所示。
1)分别求出稳态误差、衰减比和过渡过程时间。
2)说明此温度控制系统是否已满足工艺要求。
T/℃图1.13 某反应器温度控制系统过渡过程曲线1.9 简述过程控制技术的发展。
1.10 过程控制系统与运动控制系统有何区别?过程控制的任务是什么?设计过程 控制系统时应注意哪些问题?第3章 过程执行器习题与思考题3.1 试简述气动和电动执行机构的特点。
3.2 调节阀的结构形式有哪些?3.3 阀门定位器有何作用?3.4 调节阀的理想流量特性有哪些?实际工作时特性有何变化?3.5 已知阀的最大流量min v q =50m 3,可调范围R=30。
《过程控制系统》习题解答1-1 试简述过程控制的发展概况及各个阶段的主要特点。
答:第一个阶段50年代前后:实现了仪表化和局部自动化,其特点:1、过程检测控制仪表采用基地式仪表和部分单元组合式仪表2、过程控制系统结构大多数是单输入、单输出系统3、被控参数主要是温度、压力、流量和液位四种参数4、控制的目的是保持这些过程参数的稳定,消除或减少主要扰动对生产过程的影响5、过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入、单输出的定值控制系统的分析和综合问题第二个阶段60年代来:大量采用气动和电动单元组合仪表,其特点:1、过程控制仪表开始将各个单元划分为更小的功能,适应比较复杂的模拟和逻辑规律相结合的控制系统2、计算机系统开始运用于过程控制3、过程控制系统方面为了特殊的工艺要求,相继开发和应用了各种复杂的过程控制系统(串级控制、比值控制、均匀控制、前馈控制、选择性控制)4、在过程控制理论方面,现代控制理论的得到了应用第三个阶段70年代以来:现代过程控制的新阶段——计算机时代,其特点:1、对全工厂或整个工艺流程的集中控制、应用计算系统进行多参数综合控制2、自动化技术工具方面有了新发展,以微处理器为核心的智能单元组合仪表和开发和广泛应用3、在线成分检测与数据处理的测量变送器的应用4、集散控制系统的广泛应用第四个阶段80年代以后:飞跃的发展,其特点:1、现代控制理论的应用大大促进了过程控制的发展2、过程控制的结构已称为具有高度自动化的集中、远动控制中心3、过程控制的概念更大的发展,包括先进的管理系统、调度和优化等。
1-2 与其它自动控制相比,过程控制有哪些优点为什么说过程控制的控制过程多属慢过程过程控制的特点是与其它自动控制系统相比较而言的。
一、连续生产过程的自动控制连续控制指连续生产过程的自动控制,其被控量需定量控制,而且应是连续可调的。
若控制动作在时间上是离散的(如采用控制系统等),但是其被控量需定量控制,也归入过程控制。
过程控制系统的组成
过程控制系统通常由以下组成部分构成:
1. 传感器和执行器:传感器用于感知物理量,如温度、湿度、压力、流量、浓度等,执行器用于实现相应控制动作,如电机、阀门、变压器、分离器等。
2. 控制器:控制器是过程控制系统中的核心部分,负责接收传感器的数据,根据预设的控制算法进行计算,产生控制信号并通过执行器实现控制。
3. 数据采集与处理系统:数据采集与处理系统主要负责传感器数据采集、信号调节、滤波处理、数据存储等工作。
4. 人机界面:人机界面是实现人机交互的部分,用于实时监测和控制过程控制系统的运行状态,包括显示、控制、报警等功能。
5. 通信网络:通信网络用于实现过程控制系统与其他系统之间的数据传输和通信,如PLC、DCS、SCADA等系统。
6. 电源与安全装置:电源与安全装置负责过程控制系统的电源供应和安全保障,如UPS电源、防爆设备、保护开关等。
第一章过程控制系统概述1.五大参量:温度、压力、流量、物位(液位)、成分2.过程控制系统的组成:控制器,执行器,被控过程和测量变送等组成;除被控对象外都是变送单元。
过程控制系统由两大部分组成:过程仪表和被控对象过程控制系统由三大部分组成:检测变送单元,控制器,被控对象。
系统中的名词术语:1)被控过程:生产过程中被控制的工艺设备或装置(即从被控参数检测点至调节阀之间的管道或设备)。
2)检测变送器:检测量转换为统一标准的电信号。
3)调节器(控制器):实时地对被控系统施加控制用。
4)执行器:将控制信号进行放大以驱动调节阀。
5)被控参数:被控过程内要求保持稳定的工艺参数。
6)控制参数:使被控参数保持期望值的物料量或能量。
7)设定值:被控参数的预定值。
8)测量值:测量变送器输出的被控参数值。
9)偏差:设定值与测量值之差。
10)扰动作用:作用于被控对象并引起被控变量变化的作用。
11)控制作用:调节器的输出(控制调节阀的开度)。
控制器,执行器和检测变送环节称为过程仪表;过程控制系统由过程仪表和被控过程组成。
3.性能指标:包含了对控制系统的稳定性、准确性和快速性三方面的评价。
稳态误差ess:描述系统稳态特性的唯一指标(静态指标)。
衰减比n:n<1,表示过渡过程为发散振荡;n=1,表示过渡过程为等幅振荡;n>1,表示过渡过程为衰减振荡。
一般为4:1-10:1,4:1为理想指标,也是用来调试的。
前馈,反馈控制特点(1)反馈控制系统:根据系统被控参数与给定值的偏差进行工作;是按照偏差进行调节,达到减小或消除偏差的目的;偏差值是系统调节的依据;可以有多个反馈信号;属于闭环控制系统。
(2)前馈控制系统:根据扰动大小进行控制,扰动是控制的依据;控制及时;属于开环控制系统;实际生产中不采用第二章过程检测仪表控制器输出:1.电动仪表:4-20mA,DC(远距离);1-5V,DC(短距离)气动仪表:20-100Kpa(100m)直流电流4-20mA,空气压力20-100Kpa为通用标准信号。
过程控制系统第一章&第二章1.过程控制系统:为了实现过程控制,以控制理论和生产要求为依据,采用模拟仪表、数字仪表或计算机构成的总体,称为过程控制系统。
2.过程控制系统的组成:系统输出、受控过程的输入、外部扰动、受控过程、广义过程、控制器。
3.过程控制系统的分类:a)按过程控制系统的结构特点来分类i.反馈控制系统 ii.前馈控制系统 iii. 前馈-反馈控制系统b)按给定信号的特点来分类i. 定制控制系统 ii. 程序控制系统 iii. 随动控制系统4.过程建模数学模型a). 机理建模法 b). 实验建模法5.过程输入量与输出量之间的信号联系,称为“通道”;控制作用与受控参数之间的信号联系,称为“控制通道”;扰动作用与受控参数之间信号联系,称为“扰动通道”。
6.自衡特性:在扰动作用破坏平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性。
表示。
7.有自衡能力的单容过程的数学模型,都可用传递函数G(s)=&'()*8.题2-4、2-6(P29)什么是过程的自平衡能力?第三章1.一次仪表:测量体将被测参数成比例地转换为另一便于计量的物理量,所用的仪表叫做一次仪表。
2.二次仪表:显示被计量的物理量的仪表。
3.准确度等级:任何自动化仪表均有一定误差。
常用仪表精度等级:0.1、0.2、0.35、0.4、0.5、1.0、1.5、2.5、4.0等(工业常用0.5~4.0)。
4.热电偶测温计a)测温原理:热电效应b)补偿导线:用两根不同的金属丝,它在0----100摄氏度温度范围和所连接的热电偶具有相同的热电性能,其材料是廉价金属,用它将热电偶的冷端延伸出来。
c)冷端补偿:为了消除冷端温度变化对测量精度的影响。
i.计算矫正法 ii. 补偿电桥桥5.热电阻温度计a)工作原理:利用导体或半导体的电阻值随温度变化的性质来测量温度的。
b)特点:性能稳定、测量精度高、测量范围宽、同时还不需要冷端温度补偿,一般可在—270~900ºC 范围内使用。
过程控制系统试题一一、选择题(10×3分)1、过程控制系统由几大部分组成,它们是:( c )A.传感器、变送器、执行器B.控制器、检测装置、执行机构、调节阀门C. 控制器、检测装置、执行器、被控对象D. 控制器、检测装置、执行器2、在过程控制系统过渡过程的质量指标中, ( A )反映控制系统稳定程度的指标A.超调量B.衰减比C.最大偏差D.振荡周期3、下面对过程的控制质量没有影响的是: ( D )A .控制通道放大倍数K O B.扰动通道放大倍数K fC.扰动通道时间常数D.扰动通道纯滞后时间4、在对象特性中,( )是静特性。
A. 放大系数ΚB. 时间常数TC.滞后时间τD.传递函数5、选择调节参数应尽量使调节通道的( )A.功率比较大B.放大系数适当大C.时间常数适当小D.滞后时间尽量小6、在简单控制系统中,接受偏差信号的环节是( )。
A .变送器 B. 控制器, C. 控制阀 D. 被控对象7、下列说法正确的是( )。
A. 微分时间越长,微分作用越弱;B. 微分时间越长,微分作用越强;C. 积分时间越长,积分时间越弱;D. 积分时间越长,积分时间越强。
8、调节阀按其使用能源不同可分为( )三种。
A.电动B.液动C.气动 D.压动9、打开与控制阀并联的旁路阀,会使可调比(A)。
A.变小B.变大C.不变D. 为零10、串级控制系统主、副对象的时间常数之比,T01/T02=( )为好,主、副回路恰能发挥其优越性,确保系统高质量的运行。
A. 3~10B. 2~8C. 1~4D. 1~2二、判断题(10×2分)1、过程控制系统中,需要控制的工艺设备(塔、容器、贮糟等)、机器称为被控对象。
( )2、调节阀的结构形式的选择首先要考虑价格因素。
( )3、当生产不允许被调参数波动时,选用衰减振荡形式过渡过程为宜。
( )4、临界比例度法是在纯比例运行下进行的。
通过试验,得到临界比例度δK和临界周期T K,然后根据经验总结出来的关系,求出调节器各参数值。
过程控制系统的四个环节以及相关概念过程控制系统是一种广泛应用于工业生产、交通运输、能源等领域的自动化控制技术。
它通过将输入信号与输出信号之间的映射关系进行计算,实现对被控对象的精确控制。
过程控制系统的研究和发展可以分为四个环节:传感器、执行器、控制器和监测系统。
本文将对这四个环节进行详细阐述,并介绍相关概念。
传感器是过程控制系统中的关键部件,它负责将被控对象的状态信息转换为电信号。
传感器的种类繁多,包括温度传感器、压力传感器、流量传感器等。
这些传感器可以根据不同的测量对象和测量要求进行选择。
例如,在温度控制过程中,我们可以使用温度传感器来测量炉子的温度,并将测量结果传递给控制器。
执行器是过程控制系统中的另一个重要组成部分,它负责将控制器发出的指令转化为实际的物理动作。
执行器的种类也很多,包括气动执行器、电动执行器、液压执行器等。
执行器的性能直接影响到控制系统的精度和稳定性。
因此,在选择执行器时,需要考虑其响应速度、负载能力等因素。
第三,控制器是过程控制系统的核心部件,它根据传感器提供的信号和预设的控制策略来计算输出信号。
控制器可以采用不同的算法和结构,如开环控制、闭环控制、模糊控制等。
其中,闭环控制具有较高的精度和稳定性,但需要对系统的动态特性进行建模和分析。
控制器还需要具备一定的自适应能力,以应对环境变化和被控对象非线性问题。
监测系统是过程控制系统的辅助部分,它负责对控制系统的运行状态进行实时监测和故障诊断。
监测系统可以通过人机界面、数据采集卡等方式实现对控制系统的可视化和远程操作。
当监测系统发现异常情况时,可以向控制器发送报警信号,以便及时采取措施避免事故的发生。
除了以上四个环节外,过程控制系统还涉及到一些相关概念,如采样周期、稳态误差、快速响应等。
采样周期是指传感器对被测信号进行采样的时间间隔,通常以秒为单位。
稳态误差是指系统在达到稳定状态后仍存在的偏差,它与系统的动态响应特性有关。
快速响应是指控制器能够在短时间内对输入信号做出有效反应的能力,这对于某些高速或紧急情况下的应用非常重要。
过程控制系统一个过程控制系统可以称为一个反馈系统。
统计过程控制(SPC)是一类反馈系统,但也存在不是统计性的反馈系统。
下面讨论这个系统的四个重要的基本原理。
1. 过程所谓过程指地是共同工作以产生输出的供方、生产者、人、设备、输入材料、方法和环境以及使用输出的顾客之集合(见图1)。
过程的性能取决于供方和顾客之间的沟通,过程设计及实施的方式,以及动作和管理的方式等。
过程控制系统的其他部分只有它们在帮助整个系统保持良好的水平或提高整个过程的性能时才有用。
2. 有关性能的信息通过分析过程输出可以获得许多与过程实际性能有关的信息。
但是与性能有关的最有用的信息还是以研究过程本质以及其内在的变化性中得到的。
过程特性(如温度、循环时间、进给速率、缺勤、周转时间、延迟以中止的次数等)然后我们关心的重点。
我们要确定这些特性的目标值,从而使过程操作的生产率最高,然后我们要监测我们与目标值的距离是远还是近,如果得到信息并且正确地解释,就可以确定过程是在正常或非正常的方式下运行。
若有必要可采取适当的措施来校正过程或刚产生的输出。
若需要采取措施,就必须及时和准确,否则收集信息的努力就白费了。
3. 对过程采取措施通常,对重要的特性(过程或输出)采取措施从而避免它们偏离目标值太远是很经济的。
这样能保持过程的稳定性并保持过程输出的变差在可接受的界限之内。
采取的措施包括变化操作(例如:操作员培训、变换输入材料等),或者改变过程本身更基本的因素(例如:设备需要修复、人的交流和关系如何,或整个过程的设计——也许应改变车间的温度或湿度)。
应监测采取措施后的效果,如有必要还应进一步分析并采取措施。
4. 对输出采取措施如果仅限于对输出检测并纠正不符合规范的产品,而没有分析过程中的根本原因,常常是不经济的。
不幸的是如果目前的输出不能满足顾客的要求,可能有必要将所有的产品进行分类报废不合格品或返工。
这种状态必然持续到对过程采取必要的校正措施并验证,或持续到产品更改为止。