3.3 多元线性回归模型的统计检验
- 格式:ppt
- 大小:394.50 KB
- 文档页数:22
多元线性回归模型检验引言多元线性回归是一种常用的统计分析方法,用于研究两个或多个自变量对目标变量的影响。
在应用多元线性回归前,我们需要确保所建立的模型符合一定的假设,并进行模型检验,以保证结果的可靠性和准确性。
本文将介绍多元线性回归模型的几个常见检验方法,并通过实例进行说明。
一、多元线性回归模型多元线性回归模型的一般形式可以表示为:$$Y = \\beta_0 + \\beta_1X_1 + \\beta_2X_2 + \\ldots + \\beta_pX_p +\\varepsilon$$其中,Y为目标变量,$X_1,X_2,\\ldots,X_p$为自变量,$\\beta_0,\\beta_1,\\beta_2,\\ldots,\\beta_p$为模型的回归系数,$\\varepsilon$为误差项。
多元线性回归模型的目标是通过调整回归系数,使得模型预测值和实际观测值之间的误差最小化。
二、多元线性回归模型检验在进行多元线性回归分析时,我们需要对所建立的模型进行检验,以验证假设是否成立。
常用的多元线性回归模型检验方法包括:1. 假设检验多元线性回归模型的假设包括:线性关系假设、误差项独立同分布假设、误差项方差齐性假设和误差项正态分布假设。
我们可以通过假设检验来验证这些假设的成立情况。
•线性关系假设检验:通过F检验或t检验对回归系数的显著性进行检验,以确定自变量与目标变量之间是否存在线性关系。
•误差项独立同分布假设检验:通过Durbin-Watson检验、Ljung-Box 检验等统计检验,判断误差项是否具有自相关性。
•误差项方差齐性假设检验:通过Cochrane-Orcutt检验、White检验等统计检验,判断误差项的方差是否齐性。
•误差项正态分布假设检验:通过残差的正态概率图和Shapiro-Wilk 检验等方法,检验误差项是否满足正态分布假设。
2. 多重共线性检验多重共线性是指在多元线性回归模型中,自变量之间存在高度相关性的情况。
3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。
( F )2、在多元线性回归中,t 检验和F 检验缺一不可。
( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。
( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// 30n =E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。
§3.3 多元线性回归模型的统计检验多元线性回归模型的参数估计出来后,即求出样本回归函数后,还需进一步对该样本回归函数进行统计检验,以判定估计的可靠程度。
包括拟合优度检验、方程总体线性性显著性检验、变量显著性检验以及参数的置信区间估计等方面。
一、拟合优度检验1、可决系数与调整的可决系数在一元线性回归模型中,使用可决系数2R 来衡量样本回归线对样本观测值的拟合程度。
在多元线性回归模型中,我们也可用该统计量来衡量样本回归线对样本观测值的拟合程度。
记∑-=2)(Y Y TSS i为总离差平方和,∑-=2)ˆ(Y Y ESS i为回归平方和,∑-=2)ˆ(ii Y Y RSS 为剩余平方和,则 2222)ˆ()ˆ)(ˆ(2)ˆ())ˆ()ˆ(()(Y Y Y Y Y Y Y Y Y Y Y Y Y Y TSS ii i i i i ii i i -∑+--∑+-∑=-+-∑=-∑= 由于∑∑-=--)ˆ()ˆ)(ˆ(Y Y e Y Y Y Y iiii∑∑∑∑++++=i ki i k i i ie Y X e X e eβββˆˆˆ110=0所以有:E S S R S S Y Y Y Y T S Sii i +=-+-=∑∑22)ˆ()ˆ( (3.3.1) 即总离差平方和可分解为回归平方和与剩余平方和两部分。
回归平方和反映了总离差平方和中可由样本回归线解释的部分,它越大,剩余平方和越小,表明样本回归线与样本观测值的拟合程度越高。
因此,可用回归平方和占总离差平方和的比重来衡量样本回归线对样本观测值的拟合程度:T S SR S ST S S E S S R -==12(3.3.2) 该统计量越接近于1,模型的拟合优度越高。
在应用过程中发现,如果在模型中增加一个解释变量,2R 往往增大。
这是因为残差平方和往往随着解释变量个数的增加而减少,至少不会增加。
这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。
第三章习题解答3.1 写出二元线性回归模型表达式:(1)总体回归函数表达式; (2)总体回归函数随机设定形式;(3)样本回归函数的表达式; (4)样本回归函数的随机设定形式; (5)回归模型的矩阵表达式。
答:(1)总体回归表达式为:(|)()i i i E Y X f X = 当函数形式为线性的时候,总体回归表达式为: 12(|)i i i E Y X X ββ=+上述为个别值的表达形式,也可以写成抽象形式,如(|)()E Y X f X = 线性表达式也可以写成多元的形式,如122(|)i i i ki E Y X X X ββ=+++(2)总体回归函数随机设定形式为:(|)i i i i Y E Y X u =+或()i i i Y f X u =+ 当函数是线性的时候,总体回归函数随机设定形式为:12i i i Y X u ββ=++同样,也可以写成抽象的形式:12Y X u ββ=++ 线性表达式可以写成多元的形式:122i i ki i Y X X u ββ=++++(3)、(4)样本回归函数的表达式为:12ˆˆˆi iY X ββ=+ 随机设定形式为:12ˆˆi i iY X e ββ=++ 多元线性回归模型时,样本回归函数的表达式为:12233ˆˆˆˆˆi i i k kiY X X X ββββ=++++ 随机设定形式为:12233ˆˆˆˆi i ik ki iY X X X e ββββ=+++++(5)回归模型的矩阵表达式:=+Y X βu3.2 对多元线性回归模型进行检验时,为什么在做了F 检验之后还要做t 检验呢?答:F 检验是各解释变量联合起来对被解释变量影响的显著性检验,是模型的整体性检验,其效果相等于R 2检验,但不能说明具体每个变量的统计显著性问题,因此,需要对每个变量进行t 检验才能看出其对应参数估计值的统计显著性。
3.3 多元线性回归模型的经典假定与简单线性回归模型有什么区别?答:区别在于多元线性回归模型的经典假定设置了解释变量之间无多重共线性的假定。
课程教案课程名称:计量经济学授课教师:李晓鸿授课教师所在学院:经济与管理学院授课班级:市场营销1201-03 授课学期: 2014-2015-01学期一、基本信息:课程名称:计量经济学课程性质:必修√限选○选修○素拓○跨学科授课专业班级:市场营销学1201-02 学生人数:69 所处年级:○一年级○二年级√三年级○四年级总学时:48 理论课时:36 实验课时:8 学分: 3 课程教材:计量经济学(第三版)高教出版社上课时间:周一5-6节周四5-6节(单周) 上课地点:A226 A237答疑时间:答疑地点:先修课程:高等数学概率论统计学经济学本课程在授课对象所学专业人才培养中的作用与地位计量经济学是在对社会经济现象作定性分析的基础上,探讨如何运用模型方法定量描述和分析具有随机性特征的经济变量关系的经济学分支。
通过本课程的教学,要求学生达到了解计量经济学作为现代经济学的重要组成部分所具有的特征与地位,了解计量经济分析方法在经济学科的发展和实际经济工作中的作用;掌握计量经济学分析经济问题的基本思想,掌握计量经济学建模的基本原理;熟知计量经济分析的基本内容和工作程序;具备运用计量经济分析软件和计量经济分析方法对实际经济问题作定量分析的初步能力;并打下进一步学习更高层次计量经济学课程的基础。
本课程在知识传授、能力提升、素质培养各方面的教学目标(1)了解现代经济学的特征,了解经济数量分析课程在经济学课程体系中的地位,了解经济数量分析在经济学科的发展和实际经济工作中的作用;(2)掌握基本的经典计量经济学理论与方法,并对计量经济学理论与方法的扩展和新发展有概念性了解;(3)能够建立并应用简单的计量经济学模型,对现实经济现象中的数量关系进行实际分析;(4)具有进一步学习与应用计量经济学理论、方法与模型的基础和能力。
学生情况分析市场营销专业12级学生已经先修过经济学,概率论与数理统计以及应用统计学,具备学习计量经济学的理论基础二、课程大纲《计量经济学》课程教学大纲Econometrics课程编码:JJ111070 适用专业:经济学先修课程:经济学、概率论、统计学学分数:3总学时数:48 实验(上机)学时:8考核方式:院系考执笔者:李晓鸿编写日期:2010年7月一、课程性质和任务计量经济学是经济学类各专业的专业必修课,是以揭示经济活动中客观存在的数量关系为内容的分支学科。
3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。
( F )2、在多元线性回归中,t 检验和F 检验缺一不可。
( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。
( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题30n =1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。