2018课标版文数一轮(2)第二章-函数(含答案)5-第五节 指数与指数函数
- 格式:docx
- 大小:49.21 KB
- 文档页数:7
第五节指数与指数函数A组基础题组1.若a=(2+)-1,b=(2-)-1,则(a+1)-2+(b+1)-2的值是( )A.1B.C.D.2.已知a=,b=,c=2,则( )A.b<a<cB.a<b<cC.b<c<aD.c<a<b3.若函数f(x)=a|2x-4|(a>0,且a≠1)满足f(1)=,则f(x)的单调递减区间是( )A.(-∞,2]B.2,+∞)C.-2,+∞)D.(-∞,-2]4.函数f(x)=a|x+1|(a>0,且a≠1)的值域为1,+∞),则f(-4)与f(1)的大小关系是( )A.f(-4)>f(1)B.f(-4)=f(1)C.f(-4)<f(1)D.不能确定5.定义区间x1,x2]的长度为x2-x1,已知函数f(x)=3|x|的定义域为a,b],值域为1,9],则区间a,b]的长度的最大值为,最小值为.6.若指数函数y=a x在-1,1]上的最大值与最小值的差是1,则底数a= .7.(2016安徽江淮十校第一次联考)已知max{a,b}表示a,b两数中的最大值.若f(x)=max{e|x|,e|x-2|},则f(x)的最小值为.8.已知函数f(x)=b·a x(其中a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x)的表达式;(2)若不等式+-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.9.已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈-3,0]上的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.B组提升题组10.已知奇函数y=如果f(x)=a x(a>0,且a≠1)对应的图象如图所示,那么g(x)=( )A. B.- C.2-x D.-2x11.已知函数f(x)=e x,如果x1,x2∈R,且x1≠x2,则下列关于f(x)的性质:①(x1-x2)f(x1)-f(x2)]>0;②y=f(x)不存在反函数;③f(x1)+f(x2)<2f;④方程f(x)=x2在(0,+∞)上没有实数根,其中正确的是( )A.①②B.①④C.①③D.③④12.设f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系中一定成立的是( )A.3c>3aB.3c>3bC.3c+3a>2D.3c+3a<213.若函数f(x)=a x-1(a>0,且a≠1)的定义域和值域都是0,2],则实数a= .14.若函数f(x)=a x(a>0,且a≠1)在-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在0,+∞)上是增函数,则a= .15.已知函数f(x)=e x-e-x(x∈R,且e为自然对数的底数).(1)判断函数f(x)的单调性与奇偶性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t的值;若不存在,请说明理由.答案全解全析A组基础题组1.Da=(2+)-1=2-,b=(2-)-1=2+,∴(a+1)-2+(b+1)-2=(3-)-2+(3+)-2=+=. 2.A 因为a==,c=2=,函数y=在(0,+∞)上单调递增,所以<,即a<c,又因为函数y=4x在R上单调递增,所以<,即b<a,所以b<a<c,故选A.3.B 由f(1)=得a2=,又a>0,所以a=,因此f(x)=.根据复合函数的单调性可知f(x)的单调递减区间是2,+∞).4.A 由题意知a>1,所以f(-4)=a3,f(1)=a2,由y=a x(a>1)的单调性知a3>a2,所以f(-4)>f(1).5.答案4;2解析由3|x|=1得x=0,由3|x|=9得x=±2,故满足题意的定义域可以为-2,m](0≤m≤2)或n,2](-2≤n≤0),故区间a,b]的最大长度为4,最小长度为2.6.答案解析若0<a<1,则a-1-a=1,即a2+a-1=0,解得a=或a=(舍去).若a>1,则a-a-1=1,即a2-a-1=0,解得a=或a=(舍去).综上所述,a=.7.答案e解析由于f(x)=max{e|x|,e|x-2|}=当x≥1时,f(x)≥e,且当x=1时,取得最小值e;当x<1时,f(x)>e.故f(x)的最小值为f(1)=e.8.解析(1)因为f(x)的图象过点A(1,6),B(3,24),所以解得a2=4,又a>0,所以a=2,则b=3.所以f(x)=3·2x.(2)由(1)知a=2,b=3,则当x∈(-∞,1]时,+-m≥0恒成立,即m≤+在x∈(-∞,1]时恒成立.因为y=与y=均为减函数,所以y=+也是减函数,所以当x=1时,y=+在(-∞,1]上取得最小值,且最小值为.所以m≤,即m的取值范围是.9.解析(1)当a=1时,f(x)=2·4x-2x-1=2(2x)2-2x-1,令t=2x,则t∈.故y=2t2-t-1=2-,t∈,故y∈.即f(x)在x∈-3,0]上的值域为.(2)令m=2x,则m∈(0,+∞).关于x的方程2a(2x)2-2x-1=0有解等价于方程2am2-m-1=0在(0,+∞)上有解.记g(m)=2am2-m-1,当a=0时,m=-1<0,不符合题意.当a<0时,g(m)图象的开口向下,对称轴m=<0,过点(0,-1),不符合题意.当a>0时,g(m)图象的开口向上,对称轴m=>0,过点(0,-1),必有一个根为正,所以a>0.综上所述,a的取值范围是(0,+∞).B组提升题组10.D 由题图知f(1)=,∴a=,则f(x)=,由题意得g(x)=-f(-x)=-=-2x,故选D.11.B 因为e>1,所以f(x)=e x为定义域内的增函数,故①正确;函数f(x)=e x的反函数为y=lnx(x>0),故②错误;f(x 1)+f(x2)=+>2=2=2f,故③错误;作出函数f(x)=e x和y=x2的图象(图略)可知,两函数图象在(0,+∞)内无交点,故④正确.选B.12.D 画出f(x)=|3x-1|的图象,如图所示,要使c<b<a,且f(c)>f(a)>f(b)成立,则有c<0,且a>0.∴f(c)=1-3c,f(a)=3a-1,又f(c)>f(a),∴1-3c>3a-1,即3a+3c<2.13.答案解析当a>1时,f(x)=a x-1在0,2]上为增函数,则a2-1=2,∴a=±.又∵a>1,∴a=.当0<a<1时,f(x)=a x-1在0,2]上为减函数,又∵f(0)=0≠2,∴不满足条件.综上可知,a=.14.答案解析g(x)=(1-4m)在0,+∞)上是增函数,应有1-4m>0,即m<.当a>1时,f(x)=a x为增函数,由题意知⇒m=,与m<矛盾.当0<a<1时,f(x)=a x为减函数,由题意知⇒m=,满足m<.故a=.15.解析(1)∵f(x)=e x-,∴f'(x)=e x+,∴f'(x)>0对任意x∈R都成立,∴f(x)在R上是增函数.∵f(x)的定义域为R,且f(-x)=e-x-e x=-f(x),∴f(x)是奇函数.(2)存在.由(1)知f(x)在R上是增函数和奇函数,则f(x-t)+f(x2-t2)≥0对一切x∈R都成立⇔f(x2-t2)≥f(t-x)对一切x∈R都成立⇔x2-t2≥t-x对一切x∈R都成立⇔t2+t≤x2+x=-对一切x∈R都成立⇔t2+t≤(x2+x)min=-⇔t2+t+=≤0,又≥0,∴=0,∴t=-,∴存在t=-,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立.。
第五节指数与指数函数[考纲传真] 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.3.知道指数函数是一类重要的函数模型.1.有理指数幂(1)分数指数幂①正分数指数幂:a mn=n a m(a>0,m,n∈N*,且n>1);②负分数指数幂:a-mn=1amn=1na m(a>0,m,n∈N*,且n>1);③0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的运算性质①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).2.指数函数的图像与性质图像a>10<a<1定义域R值域(0,+∞)性质过定点(0,1),即x=0时,y=1当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1是R 上的增函数 是R 上的减函数1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)(-1)24=(-1)12=-1.( ) (2)函数y =2x -1是指数函数.( )(3)若a m <a n (a >0,且a ≠1),则m <n .( ) (4)函数y =ax 2+1(a >1)的值域是(0,+∞).( ) [答案] (1)× (2)× (3)× (4)× 2.化简[(-2)6]12-(-1)0的结果为( ) A .-9 B .7 C .-10D .9B [原式=(26)12-1=8-1=7.]3.函数y =a x -a (a >0,且a ≠1)的图像可能是( )A B C DC [法一:令y =a x -a =0,得x =1,即函数图像必过定点(1,0),符合条件的只有选项C.法二:当a >1时,y =a x -a 是由y =a x 向下平移a 个单位,且过(1,0),A ,B ,D 都不合适;当0<a <1时,y =a x -a 是由y =a x 向下平移a 个单位,因为0<a <1,故排除选项D.]4.(教材改编)已知0.2m <0.2n ,则m ________n (填“>”或“<”).【导学号:5796】> [设f (x )=0.2x ,f (x )为减函数, 由已知f (m )<f (n ),∴m >n .]5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________.【导学号:5796】(1,2)[由题意知0<2-a<1,解得1<a<2.]指数幂的运算[解](1)=1+14×23-110=1+16-110=1615.6分(2)12分[规律方法] 1.指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.[变式训练1]化简求值:指数函数的图像及应用(1)(·郑州模拟)定义运算a b =⎩⎨⎧a ,a ≤b ,b ,a >b ,则函数f (x )=12x的图像是( )(2)若曲线y =|2x -1|与直线y =b 有两个公共点,求b 的取值范围. (1)A [(1)因为当x ≤0时,2x ≤1; 当x >0时,2x >1. 则f (x )=12x =⎩⎨⎧2x ,x ≤0,1,x >0,故选A.](2)曲线y =|2x -1|与直线y =b 的图像如图所示,由图像可得,如果曲线y =|2x -1|与直线y =b 有两个公共点,8分 则b 的取值范围是(0,1).12分[规律方法] 指数函数图像的画法(判断)及应用(1)画(判断)指数函数y =a x (a >0,a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a .(2)与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解.[变式训练2] (1)函数f (x )=a x -b 的图像如图2-5-1,其中a ,b 为常数,则下列结论正确的是( )图2-5-1A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)方程 2x =2-x 的解的个数是________.(1)D (2)1 [(1)由f (x )=a x -b 的图像可以观察出,函数f (x )=a x -b 在定义域上递减,所以0<a <1,函数f (x )=a x -b 的图像是在y =a x 的基础上向左平移得到的,所以b <0.(2)方程的解可看作函数y =2x 和y =2-x 的图像交点的横坐标,分别作出这两个函数图像(如图).由图像得只有一个交点,因此该方程只有一个解.]指数函数的性质及应用☞角度1 比较指数式的大小(1)(·全国卷Ⅲ)已知a =243,b =323,c =2513,则()【导学号:5796】A .b <a <cB .a <b <cC .b <c <aD .c <a <b(2)(·浙江高考)已知函数f (x )满足:f (x )≥|x |且f (x )≥2x ,x ∈R .( ) A .若f (a )≤|b |,则a ≤b B .若f (a )≤2b ,则a ≤b C .若f (a )≥|b |,则a ≥b D .若f (a )≥2b ,则a ≥b (1)A (2)B[(1)a =243=423,b =323,c =2513=523.∵y =x 23在第一象限内为增函数,又5>4>3,∴c >a >b .(2)∵f (x )≥|x |,∴f (a )≥|a |.若f (a )≤|b |,则|a |≤|b |,A 项错误.若f (a )≥|b |且f (a )≥|a |,无法推出a ≥b ,故C 项错误.∵f (x )≥2x ,∴f (a )≥2a .若f (a )≤2b ,则2b ≥2a ,故b ≥a ,B 项正确.若f (a )≥2b 且f (a )≥2a ,无法推出a ≥b ,故D 项错误.故选B.]☞角度2 解简单的指数方程或不等式(·江苏高考)不等式2x 2-x <4的解集为______.{x |-1<x <2}()或(-1,2) [∵2x 2-x <4,∴2x 2-x <22, ∴x 2-x <2,即x 2-x -2<0,∴-1<x <2.] ☞角度3 探究指数型函数的性质已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.[解] (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3=-(x +2)2+7, 则g (x )在区间(-∞,-2)上递增,2分在区间[-2,+∞)上递减,又函数y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,因此f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2).4分 (2)由f (x )有最大值3知,ax 2-4x +3有最小值-1,则有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1.8分(3)由f (x )的值域是(0,+∞)知,ax 2-4x +3的值域为R ,则必有a =0.12分[规律方法] 1.比较指数式的大小的方法:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.解简单的指数方程或不等式可先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.3.探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.易错警示:在研究指数型函数的单调性时,当底数a 与“1”的大小关系不确定时,要分类讨论.[思想与方法]1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图像上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.[易错与防范]1.指数函数的单调性取决于底数a 的大小,当底数a 与1的大小关系不确定时应分0<a <1和a >1两种情况讨论.2.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成,并且一定要注意函数的定义域.3.对可化为a2x+b·a x+c=0或a2x+b·a x+c≥0(≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.。
第5讲 指数与指数函数, )1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a mn=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编 化简12-(-1)0的结果为( ) A .-9 B .7 C .-10 D .9B2.教材习题改编 设x +x -1=3,则x 2+x -2的值为( ) A .9 B .7 C .5D .3B 因为x +x -1=3.所以(x +x -1)2=9,即x 2+x -2+2=9, 所以x 2+x -2=7. 3.函数f (x )=ax -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y =1-x 的图象上.4.教材习题改编 若a >1且a3x +1>a-2x,则x 的取值范围为________.因为a >1,所以y =a x为增函数, 又a3x +1>a-2x,所以3x +1>-2x ,即x >-15.⎝ ⎛⎭⎪⎫-15,+∞ 5.若指数函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝ ⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312. 【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab 3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100. (2)原式=2(4ab -1)3210a 32b -32=16a 32b-3210a 32b -32=85.指数函数的图象及应用(1)函数f (x )=ax -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)若方程|3x-1|=k 有一解,则k 的取值范围为________. 【解析】 (1)由f (x )=a x -b的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=ax -b的图象是在f (x )=a x的基础上向左平移得到的,所以b <0.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点, 所以方程有一解.【答案】 (1)D (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=1-e |x |的图象大致是( )A 将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.若关于x 的方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根转化为函数y =|a x-1|与y =2a 有两个交点.(1)当0<a <1时,如图①,所以0<2a <1,即 0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.⎝⎛⎭⎪⎫0,12指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下四个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质;(4)求解指数型函数中参数的取值范围.(1)(2016·高考全国卷丙)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b(2)(2017·福州模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(3)若偶函数f (x )满足f (x )=2x-4(x ≥0),则不等式f (x -2)>0的解集为________. 【解析】 (1)因为a =243=1613,b =425=1615,c =2513,且幂函数y =x 13在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .(2)当a <1时,41-a=21,所以a =12;当a >1时,代入不成立. (3)f (x )为偶函数,当x <0时,f (x )=f (-x )=2-x-4.所以f (x )=⎩⎪⎨⎪⎧2x-4,x ≥0,2-x -4,x <0,当f (x -2)>0时,有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0 或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0, 解得x >4或x <0.所以不等式的解集为{x |x >4或x <0}. 【答案】 (1)A (2)12(3){x |x >4或x <0}有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小1.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <cD .b <c <aC 因为指数函数y =0.6x在(-∞,+∞)上为减函数, 所以0.60.6>0.61.5,即a >b ,又0<0.60.6<1,1.50.6>1,所以a <c ,故选C.角度二 解简单的指数方程或不等式 2.(2015·高考江苏卷)不等式2x 2-x<4的解集为________.因为2x 2-x<4,所以2x 2-x<22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质3.(2017·太原模拟)函数y =2x -2-x是( ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减A 令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C 、D.又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数.角度四 求解指数型函数中参数的取值范围4.已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a<1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b=-32.-32, )——利用换元法求解指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x 与a 2x (log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数f (x )=2a ·4x-2x-1.(1)当a =1时,求函数f (x )在x ∈上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. (1)当a =1时,f (x )=2·4x-2x-1=2(2x )2-2x-1, 令t =2x,x ∈,则t ∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1,故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0在(0,+∞)上有解.记g (m )=2am 2-m -1, 当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立,当a >0时,开口向上, 对称轴m =14a >0,过点(0,-1)必有一个根为正, 所以a >0.综上所述,a 的取值范围是(0,+∞)., )1.化简(a 23·b -1)-12·a -12·b 136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD .1aD 解析] 原式=a -13b 12·a -12b 13a 16b 56=a-13-12-16·b 12+13-56=1a. 2.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .B .C .D . 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9,可知C 正确.3.函数y =a x-1a(a >0,a ≠1)的图象可能是()D 当a >1时函数单调递增,且函数图象过点⎝ ⎛⎭⎪⎫0,1-1a ,因为0<1-1a<1,故A ,B均不正确;当0<a <1时,函数单调递减,且函数图象恒过点⎝ ⎛⎭⎪⎫0,1-1a ,因为1-1a<0,所以选D.4.(2017·德州模拟)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <aD 因为y =⎝ ⎛⎭⎪⎫25x为减函数,所以b <c ,又因为y =x 25在(0,+∞)上为增函数,所以a >c , 所以b <c <a ,故选D.5.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1). 6.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在上递增,在,则实数a =________. 当a >1时,f (x )=a x-1在上为增函数,则a 2-1=2,所以a =±3,又因为a >1,所以a = 3. 当0<a <1时,f (x )=a x-1在上为减函数, 又因为f (0)=0≠2,所以0<a <1不成立. 综上可知,a = 3.38.已知函数f (x )=e x-e -xe x +e -x ,若f (a )=-12,则f (-a )=________.因为f (x )=e x -e -xe x +e -x ,f (a )=-12,所以e a -e -ae a +e -a =-12.所以f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a =-⎝ ⎛⎭⎪⎫-12=12.129.(2017·济宁月考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是________.当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).(0,1)∪(2,+∞)10.(2017·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.由于f (x )=max{e |x |,e|x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x ,x <1. 当x ≥1时,f (x )≥e ,且当x =1时,取得最小值e ; 当x <1时,f (x )>e. 故f (x )的最小值为f (1)=e. e11.已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3, 结合a >0,且a ≠1,解得⎩⎪⎨⎪⎧a =2,b =3.所以f (x )=3·2x.要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在x ∈(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上的最小值不小于m 即可.因为函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上为减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x有最小值56. 所以只需m ≤56即可.即m 的取值范围为⎝⎛⎦⎥⎤-∞,56.12.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个B 函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x的图象如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b得,a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立. 13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值为1. 14.已知定义在R 上的函数f (x )=2x-12|x |,(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈恒成立,求实数m 的取值范围. (1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x -12x =32,得2·22x -3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x =-12,因为2x>0,所以x =1.(2)当t ∈时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1),因为22t-1>0, 所以m ≥-(22t+1), 因为t ∈,所以-(22t+1)∈, 故实数m 的取值范围是[-5,+∞).。
第五节 指数与指数函数考试要求:1.了解指数幂的拓展过程,掌握指数幂的运算性质.2.了解指数函数的实际意义,了解指数函数的概念.3.能画具体指数函数的图象,探索并理解指数函数的单调性与特殊点.一、教材概念·结论·性质重现1.n 次方根(1)根式的概念一般地,如果x n = a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当有意义时,叫做根式,n 叫做根指数,a 叫做被开方数.(2)a 的n 次方根的性质①()n =a .②当n 为奇数时,=a .当n 为偶数时,=|a |=2.有理数指数幂幂的有关概念正数的正分数指数幂:a =()m = (a >0,m ,n ∈N *,n >1)正数的负分数指数幂:a ==(a >0,m ,n ∈N *,n >1)0的正分数指数幂等于0,0的负分数指数幂没有意义指数幂的运算性质,a r a s =a r + s (a >0,r ,s ∈Q);(a r )s =a rs (a >0,r ,s ∈Q );(ab )r =a r b r (a >0,b >0,r ∈Q )3.指数函数的概念一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R .形如y =ka x (k ≠1),y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数.4.指数函数的图象与性质定义域R 值域(0 ,+∞ )性质过定点(0,1),即x =0时,y =1当x <0时,y >1 ;当x >0时,0< y <1 当x >0时,y >1 ;当x <0时,0< y <1减函数增函数二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)=()n =a .( × )(2)(-1)=(-1)=.( × )(3)函数y =a -x 是R 上的增函数.( × )(4)函数y =2x 是指数函数.( √ )(5)若a m <a n (a >0,且a ≠1),则m <n .( × )2.计算[(-2)6]-(-1)0的结果为( )A .-9B .7C .-10D .9B 解析:原式=2-1=23-1=7.故选B .3.函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .3C .2D .1B 解析:由指数函数的定义知a 2-4a +4=1且a ≠1,解得a =3.4.若函数f (x)=ax (a >0,且a ≠1)的图象经过点P ,则f (-1)=________. 解析:由题意知=a 2,所以a =,所以f (x )=,所以f (-1)==.5.若函数y =(a 2-1)x 在R 上为增函数,则实数a 的取值范围是________.a >或a <- 解析:由y =(a 2-1)x 在R 上为增函数,得a 2-1>1,解得a >或a <-.考点1 指数幂的化简与求值——基础性1.若实数a>0,则下列等式成立的是( )A.(-2)-2=4B.2a-3=C.(-2)0=-1D.(a)4=D 解析:对于A,(-2)-2=,故A错误;对于B,2a-3=,故B错误;对于C,(-2)0=1,故C错误;对于D,(a)4=,故D正确.2.(多选题)已知a+a-1=3,在下列各选项中,其中正确的是( )A.a2+a-2=7B.a3+a-3=18C.a+a=±D.a+=2ABD 解析:在选项A中,因为a+a-1=3,所以a2+a-2=(a+a-1)2-2=9-2=7,故A正确;在选项B中,因为a+a-1=3,所以a3+a-3=(a+a-1)(a2-1+a-2)=(a +a-1)·[(a+a-1)2-3]=3×6=18,故B正确;在选项C中,因为a+a-1=3,所以(a +a)2=a+a-1+2=5,且a>0,所以a+a=,故C错误;在选项D中,因为a3+a-3=18,且a>0,所以=a3+a-3+2=20,所以a+=2,故D正确.3.已知a>0,b>0,化简:·=________. 解析:原式=2×=21+3×10-1=.4.计算:+(0.002)-10(-2)-1+π0=__________.- 解析:原式=+500-+1=+10-10-20+1=-.1.解决这类问题要优先考虑将根式、分数指数幂统一为分数指数幂,以便利用法则计考点2 指数函数的图象及应用——综合性(1) (2021·海南中学模拟)已知函数f(x)=4+2a x-1(a>1且a≠1)的图象恒过点P,则点P的坐标是( )A.(1,6)B.(1,5)C.(0,5)D.(5,0)A 解析:当x=1时,f(1)=6,与a无关,所以函数f(x)=4+2a x-1的图象恒过点P(1,6).故选A.(2)若函数y=|2x-1|的图象与直线y=b有两个公共点,则b的取值范围为________ __.(0,1) 解析:作出曲线y=|2x-1|的图象与直线y=b如图所示.由图象可得b的取值范围是(0,1).在本例(2)中,若将条件中的“有两个公共点”,改为“有一个公共点”,则结果如何?b≥1或b=0 解析:作出曲线y=|2x-1|的图象与直线y=b如图所示.由图象可得b的取值范围是b≥1或b=0.1.(多选题)在同一坐标系中,关于函数y=3x与y=的图象的说法正确的是( ) A.关于y轴对称B.关于x轴对称C.都在x轴的上方D.都过点(0,1)ACD 解析:在同一坐标系中,作出y=3x与y=的图象(略),知两函数的图象关于y 轴对称,A项正确.由指数函数的性质,知选项CD正确.2.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.[-1,1] 解析:作出曲线|y|=2x+1的图象,如图所示,要使该曲线与直线y=b没有公共点,只需-1≤b≤1.3.已知实数a,b满足等式=,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中可能成立的有________.(填序号)①②⑤ 解析:函数y1=与y2=的图象如图所示.由=得,a<b<0或0<b<a或a=b=0.故①②⑤可能成立,③④不可能成立.考点3 指数函数的性质及应用——应用性考向1 比较大小(1)已知a=2,b=4,c=25,则( )A.b<a<c B.a<b<cC.b<c<a D.c<a<bA 解析:因为a=2=4>4=b,c=25=5>4=a,所以b<a<c.(2)(2020·全国Ⅱ卷)若2x-2y<3-x-3-y,则( )A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0A 解析:因为2x-2y<3-x-3-y,所以2x-3-x<2y-3-y.因为y=2x-3-x=2x-在R上单调递增,所以x<y,所以y-x+1>1,所以ln(y-x+1)>ln 1=0.考向2 解指数不等式若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为.{x|x>4或x<0} 解析:当x<0时,f(x)=f(-x)=2-x-4.所以f(x)=当f(x-2)>0时,有或解得x>4或x<0.所以不等式的解集为{x|x>4或x<0}.考向3 指数型函数的单调性函数f(x)=的单调递减区间为________.(-∞,1] 解析:设u=-x2+2x+1,因为y=在R上为减函数,所以函数f(x)=的单调递减区间即为函数u=-x2+2x+1的单调递增区间.又u=-x2+2x+1的单调递增区间为(-∞,1],所以f(x)的单调递减区间为(-∞,1].在例4中,若函数f(x)=改为f(x)=2-x2+2x+1,结果如何?[1,+∞) 解析:设u=-x2+2x+1,因为y=2u在R上为增函数,所以函数f(x)=2-x2+2x+1的单调递减区间即为函数u=-x2+2x+1的单调递减区间.又u=-x2+2x+1的单调递减区间为[1,+∞),所以f(x)的单调递减区间为[1,+∞).考向4 指数型函数的最值(1)已知函数f(x)=a x+b(a>0,且a≠1)的定义域和值域都是[-1,0],则a+b=________.- 解析:当a>1时,易知f(x)在[-1,0]上单调递增,则即无解.当0<a<1时,易知f(x)在[-1,0]上单调递减,则即解得所以a+b=-.(2)若函数f(x)=有最大值3,则a=________.1 解析:令h(x)=ax2-4x+3,y=.因为f(x)有最大值3,所以h(x)应有最小值-1,因此有解得a=1.1.研究指数函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.2.研究复合函数的单调性,要明确复合函数的构成,借助“同增异减”,将问题归结为内层函数相关的问题加以解决.1.已知a=(),b=2,c=9,则( )A.b<a<c B.a<b<cC.b<c<a D.c<a<bA 解析:a=()=2=2,b=2,c=9=3.由2<3,得a<c.由>,得a>b,所以c>a>b.故选A.2.(2021·柳州高三月考)已知函数y=f(x)的定义域为R,y=f(x+1)为偶函数,对任意x1,x2,当x1>x2≥1时,f(x)单调递增,则关于a的不等式f(9a+1)<f(3a-5)的解集为( )A.(-∞,1)B.(-∞,log32)C.(log32,1)D.(1,+∞)B 解析:因为函数y=f(x)的定义域为R,y=f(x+1)为偶函数,所以f(-x+1)=f(x+1),所以函数y=f(x)关于x=1对称.因为函数y=f(x)在[1,+∞)为增函数,所以函数y=f(x)在(-∞,1]为减函数.不等式f(9a+1)<f(3a-5)等价于|9a+1-1|<|3a-5-1|,即|3a-6|>9a⇒3a-6>9a或3a-6<-9a,令3a=t(t>0)得到:t2-t+6<0或t2+t -6<0.当t2-t+6<0时,无解.当t2+t-6<0时,(t+3)(t-2)<0,解得t<2,即3a<2,a<log32.3.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为( ) A.[9,81]B.[3,9]C.[1,9]D.[1,+∞)C 解析:由f(x)的图象过定点(2,1)可知b=2.因为f(x)=3x-2在[2,4]上单调递增,所以f(x)min=f(2)=32-2=1,f(x)max=f(4)=34-2=9.故选C.4.若函数f(x)=(2a-1)x-3-2,则y=f(x)的图象恒过定点________;又f(x)在R 上是减函数,则实数a的取值范围是________.(3,-1) 解析:对于函数f(x)=(2a-1)x-3-2,令x-3=0,得x=3,则f(x)=(2a-1)0-2=1-2=-1,可得y=f(x)的图象恒过定点(3,-1).又∵函数f(x) =(2a-1)x-3-2 在R上是减函数,故有0<2a-1<1,求得 <a<1.故答案为(3,-1);.设a=,b=,c=,则a,b,c的大小关系是( )A.a>c>b B.a>b>cC.c>a>b D.b>c>a[四字程序]读想算思比较大小比较大小的方法是什么?式子变换转化与化归a, b, c均为幂值的形式1.利用函数单调性.2.通过中间量比较大小.3.作差或商比较1.构造函数.2.统一幂指数.3.化为根式形式注意分数指数幂的等价变形以及运算法则思路参考:构造指数函数,利用单调性求解.A 解析:先比较b与c的大小,构造函数y=.因为0<<1,所以函数y=为减函数.又因为>,所以b=<=c.再比较a与c,因为=>=1,且a,c均大于0,所以a>c,所以a>c>b.故选A.思路参考:统一幂指数,利用幂函数单调性比较大小.A 解析:因为a,b,c为正实数,且a5==,b5==,c5==,所以a5>c5>b5,即a>c>b.故选A.思路参考:将三个数转化为同次根式的形式比较大小.A 解析:因为a=,b=,c=,所以a>c>b.故选A.1.本题给出了三种比较指数幂大小的方法,解法1是构造函数法,利用指数函数性质比较大小,利用这种方法应注意底数是否大于1;解法2与解法3比较类似,都是对a,b,c进行简单变形,转化为同次根式的形式,由被开方数的大小可得出a,b,c的大小.特别是解法3,结构较为简洁,转化为同次根式迅速求解.2.基于新课程标准,解决比较大小的问题,要熟练掌握基本初等函数的性质,尤其是单调性,同时也要熟练掌握指数式与对数式的互化,指数幂的运算法则等知识.解决比较大小问题体现了逻辑推理、数学运算的数学素养.函数y=F(x)的图象如图所示,该图象由指数函数f(x)=a x与幂函数g(x)=x b“拼接”而成.(1)求F(x)的解析式;(2)比较a b与b a的大小;(3)若(m+4)-b<(3-2m)-b,求m的取值范围.解:(1)依题意得解得所以F(x)=(2)因为a b==,b a=,指数函数y=在R上单调递减,所以<,即a b<b a.(3)由(m+4)<(3-2m),得解得-<m<,所以m的取值范围是.。
第五节 指数函数———————————————————————————————— 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.3.体会指数函数是一类重要的函数模型.1.根式的性质 (1)(na )n=a .(2)当n 为奇数时,n a n=a . (3)当n 为偶数时,nan=|a |=⎩⎪⎨⎪⎧a a,-a a<(4)负数的偶次方根无意义. (5)零的任何次方根都等于零. 2.有理指数幂 (1)分数指数幂①正分数指数幂:a =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a=1a m n=1na m(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质 ①a r·a s=ar +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q); ③(ab )r=a r b r(a >0,b >0,r ∈Q). 3.指数函数的图象与性质1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)4-4=-4.( )(2)(-1)24=(-1)12=-1.( ) (3)函数y =2x -1是指数函数.( )(4)函数y =ax 2+1(a >1)的值域是(0,+∞).( )(1)× (2)× (3)× (4)×2.化简12-(-1)0的结果为( ) A .-9 B .7 C .-10 D.9B3.函数y =a x-a (a >0,且a ≠1)的图象可能是( )【导学号:31222044】A B C DC4.(教材改编)已知0.2m<0.2n,则m ________n (填“>”或“<”). >5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (1,2)(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214--(0.01)0.5;(1)原式=1+14×⎝ ⎛⎭⎪⎫49-⎝ ⎛⎭⎪⎫1100=1+14×23-110=1+16-110=1615.6分(2)原式==1a .12分1.指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 化简求值:(1)(0.027)-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫279-(2-1)0;(2)56a ·b -2·(-3a -b -1)÷(4a ·b -3) .(1)原式=⎝ ⎛⎭⎪⎫271 000-72+⎝ ⎛⎭⎪⎫259-1=103-49+53-1=-45.6分=-54·1ab 3=-5ab 4ab 2.12分(1)函数f (x )=1-e |x |的图象大致是( )A B C D(2)若曲线y =|2x-1|与直线y =b 有两个公共点,求b 的取值范围. (1)A ,只有A 满足上述两个性质.](2)曲线y =|2x-1|与直线y =b 的图象如图所示,由图象可得,如果曲线y =|2x-1|与直线y =b 有两个公共点,8分则b 的取值范围是(0,1).12分指数函数图象的画法(判断)及应用(1)画(判断)指数函数y =a x(a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a . (2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. (1)函数f (x )=ax -b的图象如图251,其中a ,b 为常数,则下列结论正确的是( )【导学号:31222045】图251A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)方程 2x=2-x 的解的个数是________. (1)D (2)1☞角度1(1)(2016·全国卷Ⅲ)已知a =2,b =3,c =25,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b(2)(2016·浙江高考)已知函数f (x )满足:f (x )≥|x |且f (x )≥2x,x ∈R.( ) A .若f (a )≤|b |,则a ≤b B .若f (a )≤2b,则a ≤b C .若f (a )≥|b |,则a ≥b D .若f (a )≥2b,则a ≥b (1)A (2)B☞角度2 解简单的指数方程或不等式(2015·江苏高考)不等式2x 2-x <4的解集为______.{x |-1<x <2}()或-1,☞角度3 探究指数型函数的性质已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3=-(x +2)2+7, 则g (x )在区间(-∞,-2)上单调递增,2分在区间 1.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.解简单的指数方程或不等式可先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.3.探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.易错警示:在研究指数型函数的单调性时,当底数a 与“1”的大小关系不确定时,要分类讨论.1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较.1.指数函数的单调性取决于底数a的大小,当底数a与1的大小关系不确定时应分0<a<1和a>1两种情况分类讨论.2.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成,并且一定要注意函数的定义域.3.对可化为a2x+b·a x+c=0或a2x+b·a x+c≥0(≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.课时分层训练(八) 指数函数A组基础达标(建议用时:30分钟)一、选择题1.函数f(x)=2|x-1|的大致图象是( )【导学号:31222046】A B C DB2.(2016·山东德州一模)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <aD3.(2016·河南安阳模拟)已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2A4.函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为( ) 【导学号:31222047】A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]A5.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C 二、填空题 6.计算:________.【导学号:31222048】27.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是________.(1,5)8.已知正数a 满足a 2-2a -3=0,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.m >n三、解答题 9.求不等式a2x -7>a4x -1(a >0,且a ≠1)中x 的取值范围.设y =a x(a >0且a ≠1), 若0<a <1,则y =a x为减函数, ∴a2x -7>a4x -1⇔2x -7<4x -1,解得x >-3;5分若a >1,则y =a x为增函数, ∴a2x -7>a4x -1⇔2x -7>4x -1,解得x <-3.9分综上,当0<a <1时,x 的取值范围是(-3,+∞); 当a >1时,x 的取值范围是(-∞,-3).12分 10.已知函数f (x )=12x -1+a 是奇函数.(1)求a 的值和函数f (x )的定义域; (2)解不等式f (-m 2+2m -1)+f (m 2+3)<0.(1)因为函数f (x )=12x -1+a 是奇函数,所以f (-x )=-f (x ),即12-x -1+a =11-2x-a ,即-a x +a 1-2x =a ·2x+1-a 1-2x,从而有1-a =a ,解得a =12.3分 又2x-1≠0,所以x ≠0,故函数f (x )的定义域为(-∞,0)∪(0,+∞).5分 (2)由f (-m 2+2m -1)+f (m 2+3)<0,得f (-m 2+2m -1)<-f (m 2+3),因为函数f (x )为奇函数,所以f (-m 2+2m -1)<f (-m 2-3).8分由(1)可知函数f (x )在(0,+∞)上是减函数,从而在(-∞,0)上是减函数,又-m 2+2m -1<0,-m 2-3<0,所以-m 2+2m -1>-m 2-3,解得m >-1,所以不等式的解集为(-1,+∞).12分B 组 能力提升 (建议用时:15分钟)1.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b =0.其中不可能成立的关系式有( )【导学号:31222049】A .1个B .2个C .3个D .4个B2.(2017·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e|x -2|},则f (x )的最小值为________.e3.已知f (x )=⎝⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1).(1)讨论f (x )的奇偶性;(2)求a 的取值范围,使f (x )>0在定义域上恒成立. (1)由于a x-1≠0,则a x≠1,得x ≠0, ∴函数f (x )的定义域为{x |x ≠0}.2分 对于定义域内任意x ,有f (-x )=⎝⎛⎭⎪⎫1a -x -1+12(-x )3=⎝ ⎛⎭⎪⎫a x1-a x +12(-x )3 =⎝⎛⎭⎪⎫-1-1a x-1+12(-x )3=⎝⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数.5分(2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况. 当x >0时,要使f (x )>0,即⎝ ⎛⎭⎪⎫1a x -1+12x 3>0,即1a x -1+12>0,即a x +1a x ->0,9分即a x-1>0,a x>1,a x>a 0.又∵x >0,∴a >1. 因此a >1时,f (x )>0.12分。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标8指数与指数函数 理[解密考纲]本考点主要考查指数的运算、指数函数的图象与性质、简单的复合函数的单调性等,通常以选择题、填空题的形式呈现,题目难度中等或中等偏上.一、选择题1.(2017·云南昆明模拟)设a =22.5,b =2.50,c =⎝ ⎛⎭⎪⎫12 2.5,则a ,b ,c 的大小关系是( C )A .a >c >bB .c >a >bC .a >b >cD .b >a >c解析:b =2.50=1,c =⎝ ⎛⎭⎪⎫12 2.5=2-2.5,则2-2.5<1<22.5,即c <b <a .2.(2017·河南洛阳模拟)已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( B )解析:|f (x )|=|2x-2|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,易知函数y =|f (x )|的图象的分段点是x =1, 且过点(1,0),(0,1),⎝ ⎛⎭⎪⎫-1,32.又|f (x )|≥0,故选B . 3.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( C )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析:由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,f (x )min =f (2)=1,f (x )max =f (4)=9.可知C 正确,故选C .4.(2017·山西太原模拟)函数y =2x-2-x是( A ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减解析:令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C ,D .又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数,故选A .5.(2017·浙江丽水模拟)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( C )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)解析:原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x .∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2,故选C .6.(2017·山东济宁模拟)已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( D )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a<2cD .2a+2c<2解析:作出函数f (x )=|2x-1|的图象,如图.∵a <b <c ,且f (a )>f (c )>f (b ), 结合图象知0<f (a )<1,a <0,c >0, ∴0<2a<1.∴f (a )=|2a-1|=1-2a<1, ∴f (c )<1,∴0<c <1, ∴1<2c<2,∴f (c )=|2c-1|=2c-1, 又∵f (a )>f (c ),∴1-2a>2c-1, ∴2a+2c<2,故选D . 二、填空题7.(2017·吉林长春模拟)已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是(0,1).解析:因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增,所以1a>1,解得0<a <1.8.(2017·山东济南模拟)若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =14.解析:因为g (x )在[0,+∞)上为增函数, 则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上单调递增,最小值为1a=m ,最大值为a 2=4,解得a =2,m =12,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上单调递减,最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116,综上知a =14.9.(2017·山东济宁月考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f x 1-f x 2x 1-x 2>0,则a 的取值范围是(0,1)∪(2,+∞).解析:当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x 单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).三、解答题10.化简:(1)a 3b 23ab 2a 14b 124a -13 b 13(a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278-23 +(0.002)-12 -10(5-2)-1+(2-3)0. 解析:(1)原式=a 3b 2a 13b 23 12ab 2a -13 b 13=a 32 +16 +13 -1·b 1+13 -2-13 =ab -1. (2)原式=⎝ ⎛⎭⎪⎫-278-23 +⎝ ⎛⎭⎪⎫1500-12 -105-2+1 =⎝ ⎛⎭⎪⎫-82723 +50012 -10(5+2)+1=49+105-105-20+1 =-1679.11.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解析:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3=a ⎝ ⎛⎭⎪⎫x -2a 2+3-4a,∵f (x )有最大值,∴g (x )应有最小值,且g (x )min =3-4a (a >0),∴f (x )max =⎝ ⎛⎭⎪⎫133-4a =3,∴3-4a =-1,∴a =1.12.已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.解析:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得b =1,所以f (x )=-2x+12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.(2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t2-1)等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得⎩⎨⎧t ⎪⎪⎪⎭⎬⎫t >1或t <-13.。
第五节 指数与指数函数A 组 基础题组1.(2016贵州适应性考试)函数y=a x+2-1(a>0且a ≠1)的图象恒过的点是( ) A.(0,0)B.(0,-1)C.(-2,0)D.(-2,-1)2.已知a=20.2,b=0.40.2,c=0.40.6,则( ) A.a>b>c B.a>c>b C.c>a>bD.b>c>a3.(2017沈阳回民中学月考)函数y=a x-1a (a>0,且a ≠1)的图象可能是( )4.(2016莱芜模拟)函数y=|2x-1|在区间(k-1,k+1)上不单调,则k 的取值范围是( ) A.(-1,+∞) B.(-∞,1) C.(-1,1)D.(0,2)5.已知函数f(x)= 1-2-x ,x ≥0,2x -1,x <0,则函数f(x)是( )A.偶函数,在[0,+∞)上单调递增B.偶函数,在[0,+∞)上单调递减C.奇函数,且单调递增D.奇函数,且单调递减6.化简a · -1a+( a 5)5+ a 66= .7.若函数y=(a 2-1)x在R 上为增函数,则实数a 的取值范围是 . 8.已知函数f(x)=a -x(a>0,且a ≠1),且f(-2)>f(-3),则a 的取值范围是 . 9.化简下列各式: (1) 279 0.5+0.1-2+ 21027 -2-3π0+3748;(2) a 7· a -33÷ a -3· a -13.10.设函数f(x)=a x-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.(1)求k的值;(2)若f(1)<0,试判断函数的单调性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围.B组提升题组11.若函数f(x)=a x,x>1,(2-3a)x+1,x≤1是R上的减函数,则实数a的取值范围是()A.23,1 B.34,1 C.23,34D.23,+∞12.如图,平行四边形OABC的面积为8,对角线AC⊥CO,AC与BO交于点E,某指数函数y=a x(a>0,且a≠1)的图象经过点E,B,则a=()A. B.3 C.2 D.313.(2017北京海淀月考)定义区间[x1,x2]的长度为x2-x1,已知函数f(x)=3|x|的定义域为[a,b],值域为[1,9],则区间[a,b]的长度的最大值为,最小值为.14.(2016济南模拟)已知函数f(x)=x+1(0≤x<1),2x-12(x≥1),设a>b≥0,若f(a)=f(b),则b·f(a)的取值范围是.15.已知函数f(x)=b·a x(其中a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x)的表达式;(2)若不等式1a x+1bx-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.答案全解全析 A 组 基础题组1.C 解法一:因为函数y=a x(a>0且a ≠1)的图象恒过点(0,1),将该图象向左平移2个单位,再向下平移1个单位得到y=a x+2-1(a>0且a ≠1)的图象,所以y=a x+2-1(a>0且a ≠1)的图象恒过点(-2,0),选项C 正确. 解法二:令x+2=0,得x=-2,此时y=a 0-1=0,所以y=a x+2-1(a>0且a ≠1)的图象恒过点(-2,0),选项C 正确. 2.A 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b>c;因为a=20.2>1,b=0.40.2<1,所以a>b.综上,a>b>c.3.D 当x=-1时,y=1a -1a=0,所以函数y=a x-1a的图象必过定点(-1,0),结合选项可知选D.4.C 由于函数y=|2x-1|在(-∞,0)上递减,在(0,+∞)上递增,而函数在区间(k-1,k+1)上不单调,所以有0∈(k-1,k+1),则k-1<0<k+1,解得-1<k<1.5.C 易知f(0)=0,当x>0时,f(x)=1-2-x,-f(x)=2-x-1,而-x<0,则f(-x)=2-x-1=-f(x);当x<0时,f(x)=2x-1,-f(x)=1-2x,而-x>0,则f(-x)=1-2-(-x)=1-2x=-f(x).综上,函数f(x)是奇函数,又易知其单调递增,故选C. 6.答案 - -a解析 由题意可知a<0,故原式=- -(-a )2a+a+(-a)=- -a .7.答案 a> 2或a<- 2解析 由y=(a 2-1)x在(-∞,+∞)上为增函数,得a 2-1>1,解得a> 2或a<- 2. 8.答案 (0,1)解析 因为f(x)=a -x= 1a x,且f(-2)>f(-3),所以函数f(x)在定义域上单调递增,所以1a >1,解得0<a<1. 9.解析 (1)原式= 259 12+10.12+ 6427 -23-3+3748=53+100+916-3+3748=100. (2)原式= a 7·a -33÷ a -3·a -13= a 73÷ a -13=a 76÷a -16=a 86=a 43.10.解析 (1)∵f(x)是定义域为R 的奇函数,∴f(0)=a 0-(k-1)a 0=1-(k-1)=0,∴k=2. (2)由(1)知f(x)=a x-a -x(a>0且a ≠1).∵f(1)<0,∴a -1a <0,又a>0且a ≠1,∴0<a<1,∴y=a x 在R 上单调递减,y=a -x 在R 上单调递增,故f(x)=a x -a -x在R 上单调递减.不等式f(x 2+tx)+f(4-x)<0可化为f(x 2+tx)<f(x-4),∴x 2+tx>x-4,∴x 2+(t-1)x+4>0恒成立,∴Δ=(t-1)2-16<0,解得-3<t<5.∴所求实数t的取值范围是-3<t<5.B组提升题组11.C依题意知,a的取值应满足0<a<1,2-3a<0,(2-3a)×1+1≥a1,解得23<a≤34.12.A设点E(t,a t),则点B的坐标为(2t,2a t).∵点B在函数y=a x的图象上,∴2a t=a2t,∴a t=2.∴平行四边形OABC的面积=OC·AC=a t·2t=4t.又平行四边形OABC的面积为8,∴4t=8,∴t=2,∴a=2(负值舍去).故选A.13.答案4;2解析由3|x|=1得x=0,由3|x|=9得x=±2,故满足题意的定义域为[-2,m](0≤m≤2)或[n,2](-2≤n≤0),故区间[a,b]的最大长度为4,最小长度为2.14.答案34,2解析函数的图象如图所示.因为a>b≥0,f(a)=f(b),所以12≤b<1且32≤f(a)<2.所以34≤b·f(a)<2.15.解析(1)因为f(x)的图象过点A(1,6),B(3,24),所以b·a=6,b·a3=24,解得a2=4,又a>0,所以a=2,则b=3.所以f(x)=3·2x.(2)由(1)知a=2,b=3,则当x∈(-∞,1]时,12x+13x-m≥0恒成立,即m≤12x+13x在x∈(-∞,1]时恒成立.因为y=12x与y=13x均为减函数,所以y=12x+13x也是减函数,所以当x=1时,y=12x+13x在(-∞,1]上取得最小值,且最小值为56.所以m≤56,即m的取值范围是-∞,56.。
第九节函数模型及其应用A组基础题组1.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预期的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()2.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升3.已知某矩形广场的面积为4万平方米,则其周长至少为()A.800米B.900米C.1 000米D.1 200米4.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是()A.118元B.105元C.106元D.108元5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油6.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费S(元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差()A.10元B.20元C.30元D.元7.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为元.8.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.9.A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远时,才能使供电总费用y最少?B组提升题组10.某工厂八年来某产品总产量y与时间t(年)的函数关系如图所示,则下列说法中正确的是()①前三年总产量增长速度越来越慢;②前三年总产量增长速度越来越快;③第三年后,这种产品年产量保持不变;④第三年后,这种产品停止生产.A.①③B.①④C.②③D.②④11.世界人口在过去40年内翻了一番,则每年人口平均增长率约是(参考数据lg 2≈0.301 0,100.0075≈1.017)()12.(2016四川德阳一诊)将甲桶中的a L水缓慢注入空桶乙中,t min后甲桶中剩余的水量符合指数衰减曲线y=ae nt.假设过5 min后甲桶和乙桶的水量相等,若再过m min甲桶中的水只有 L,则m的值为()A.5B.8C.9D.1013.某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元万元14.(2016湖北八校联考)某人根据经验绘制了2016年春节前后,从1月25日至2月11日自己种植的西红柿的销售量y(千克)随时间x(天)变化的函数图象,如图所示,则此人在1月30日大约卖出了西红柿千克. 15.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖权以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?16.小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子商品需投入年固定成本3万元,每生产x万件,需另投入流动成本W(x)万元.在年产量不足8万件时,W(x)=x2+x;在年产量不小于8万件时,W(x)=6x+-38.每件商品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?答案全解全析A组基础题组1.B选项B中,Q的值随t的变化越来越快.2.B因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).3.A设这个矩形广场的长为x米,则宽为米.所以其周长为l=2≥800,当且仅当x=200时取等号.故其周长至少为800米.4.D设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108.5.D对于A选项:由题图可知,当乙车速度大于40 km/h时,乙车每消耗1升汽油,行驶里程都超过5 km,则A错; 对于B选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B错; 对于C选项:甲车以80千米/时的速度行驶时,燃油效率为10 km/L,则行驶1小时,消耗了汽油80×1÷10=8(升),则C错;对于D选项:当行驶速度小于80 km/h时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D对.综上,选D.6.A依题意可设S A(t)=20+kt,k≠0,S B(t)=mt,m≠0.∵S A(100)=S B(100),∴100k+20=100m,得k-m=-0.2,于是S A(150)-S B(150)=20+150k-150m=20+150×(-0.2)=-10,即当通话150分钟时,两种方式的电话费相差10元,选A.7.答案 4.24解析∵m=6.5,∴[m]=6,则所需通话费为1.06×(0.5×6+1)=4.24(元).8.解析(1)由已知条件得C(0)=8,则k=40,因此f(x)=6x+20C(x)=6x+(0≤x≤10).(2)f(x)=6x+10+-10≥2·-10=70,当且仅当6x+10=,即x=5时等号成立.所以当隔热层厚度为5 cm时,总费用f(x)达到最小,最小值为70万元.9.解析(1)由题意知x的取值范围为[10,90].(2)y=5x2+(100-x)2(10≤x≤90).(3)因为y=5x2+(100-x)2=x2-500x+25 000=-+.所以当x=时,y min=.故核电站建在距A城 km处时,能使供电总费用y最少.B组提升题组10.D由题图知,前三年产品总产量与时间的函数图象越来越陡,说明总产量增长的速度越来越快;三年后总产量与时间的函数图象平行于横轴,说明该产品不再生产了,故选D.11.C设每年人口平均增长率为x,则(1+x)40=2,两边取以10为底的对数,得40 lg(1+x)=lg 2,所以lg(1+x)=≈0.007 5,由100.007 5≈1.017,得1+x≈1.017,所以x约是1.7%.12.A∵5 min后甲桶和乙桶的水量相等,∴函数y=f(t)=ae nt满足f(5)=ae5n=a,可得n=ln,∴f(t)=a·,因此,当k min后甲桶中的水只有 L时,f(k)=a·=a,即=,∴k=10,由题可知m=k-5=5,故选A.13.C设总利润为y万元,公司在A地销售该品牌的汽车为x辆,则在B地销售该品牌的汽车为(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1-+0.1×+32.因为x∈[0,16]且x∈N,所以当x=10或11时,能获得最大利润,且最大利润为43万元.14.答案解析前10天满足一次函数关系,设为y=kx+b(k≠0),将点(1,10)和点(10,30)代入函数解析式得解得k=,b=,所以y=x+,则当x=6时,y=.15.解析设该店月利润余额为L元,则由题设得L=Q(P-14)×100-3 600-2 000,(※)由题图易得Q=--代入(※)得L=(1)当14≤P≤20时,L max=450,此时P=19.5;当20<P≤26时,L max=,此时P=.故当P=19.5元时,月利润余额最大,为450元.(2)设可在n年后脱贫,依题意有12n×450-50 000-58 000≥0,解得n≥20. 即最早可望在20年后脱贫.16.解析(1)因为每件商品售价为5元,则x万件商品销售收入为5x万元.依题意得,当0<x<8时,L(x)=5x--3=-x2+4x-3;当x≥8时,L(x)=5x---3=35-.所以L(x)=---(2)当0<x<8时,L(x)=-(x-6)2+9,当x=6时,L(x)取得最大值L(6)=9.当x≥8时,L(x)=35-≤35-2·=35-20=15.当且仅当x=,即x=10时,L(x)取得最大值15.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.。
第讲指数与指数函数,[学生用书]).根式 ()根式的概念式子.*∈其中>且,则叫做的次方根,=若①叫做根式,这里叫做根指数,叫做被开方数.②的次方根的表示:=⇒()根式的性质 ①()=(∈*,>).②=.有理数指数幂 ()幂的有关概念①正分数指数幂:=(>,,∈*,且>); ②负分数指数幂:==(>,,∈*,且>);.无意义的负分数指数幂,的正分数指数幂等于③ ()有理数指数幂的运算性质);∈,,(>+=① ②()=(>,,∈); ③()=(>,>,∈). .指数函数的图象与性质.辨明三个易误点()指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.()指数函数=(>,≠)的图象和性质与的取值有关,要特别注意区分>或<<.()在解形如+·+=或+·+≥(≤)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围..指数函数图象画法的三个关键点画指数函数=(>,且≠)的图象,应抓住三个关键点:(,),(,),.化简[(-)]-(-)的结果为( ) .-. .-.[答案]设+-=,则+-的值为( )....[解析]因为+-=.所以(+-)=,即+-+=,所以+-=..函数()=-(>,≠)的图象恒过点,下列函数中图象不经过点的是( ).=-.=.=().=-[解析]由()=-(>,≠)的图象恒过点(,),又=,知(,)不在=的图象上.若>且+>-,则的取值范围为.[解析]因为>,所以=为增函数,又+>-,所以+>-,即>-.[答案].若指数函数=(-)在(-∞,+∞)上为减函数,则实数的取值范围是.[解析]由题意知<-<,即<<,得-<<-或<<.[答案] (-,-)∪(,)指数幂的运算[学生用书][典例引领]化简下列各式:()+-·-();()·-·÷.【解】()原式=+×-=+×-=+-=.()原式=---÷=---÷=-·=-·=-.指数幂运算的一般原则()有括号的先算括号里的,无括号的先算指数运算.()先乘除后加减,负指数幂化成正指数幂的倒数.()底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.()若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.[注意]运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:()()+-;()·.[解]()原式=+-=+-=.()原式===.指数函数的图象及应用[学生用书][典例引领]()函数()=-的图象如图所示,其中,为常数,则下列结论正确的是( )。
(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第5节指数函数课时分层训练文新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用)2018高考数学一轮复习第2章函数、导数及其应用第5节指数函数课时分层训练文新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用)2018高考数学一轮复习第2章函数、导数及其应用第5节指数函数课时分层训练文新人教A版的全部内容。
课时分层训练(八)指数函数A组基础达标(建议用时:30分钟)一、选择题1.函数f(x)=2|x-1|的大致图象是( )【导学号:31222046】A B C DB [f(x)=错误!所以f(x)的图象在[1,+∞)上为增函数,在(-∞,1)上为减函数.]2.(2016·山东德州一模)已知a=错误!错误!,b=错误!错误!,c=错误!错误!,则() A.a<b<c B.c<b<aC.c<a<b D.b<c<aD [∵y=错误!x为减函数,错误!>错误!,∴b<c.又∵y=x错误!在(0,+∞)上为增函数,错误!>错误!,∴a>c,∴b<c<a,故选D。
]3.(2016·河南安阳模拟)已知函数f(x)=a x,其中a>0,且a≠1,如果以P(x1,f(x1)),Q (x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)等于( )A.1 B.aC.2 D.a2A [∵以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,∴x1+x2=0。
又∵f(x)=a x,∴f(x1)·f(x2)=ax1·ax2=a x1+x2=a0=1,故选A.]4.函数y=错误!2x-x2的值域为( )【导学号:31222047】A。
第五节指数与指数函数A组基础题组1.若a=(2+3)-1,b=(2-3)-1,则(a+1)-2+(b+1)-2的值是()A.1B.14C.22D.232.(2016课标全国Ⅲ,6,5分)已知a=24,b=42,c=251,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b3.若函数f(x)=a|2x-4|(a>0,且a≠1)满足f(1)=19,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]4.(2016浙江绍兴一中月考)函数f(x)=a|x+1|(a>0,且a≠1)的值域为[1,+∞),则f(-4)与f(1)的大小关系是()A.f(-4)>f(1)B.f(-4)=f(1)C.f(-4)<f(1)D.不能确定5.定义区间[x1,x2]的长度为x2-x1,已知函数f(x)=3|x|的定义域为[a,b],值域为[1,9],则区间[a,b]的长度的最大值为,最小值为.6.若指数函数y=a x在[-1,1]上的最大值与最小值的差是1,则底数a=.7.(2016安徽江淮十校第一次联考)已知max{a,b}表示a,b两数中的最大值.若f(x)=max{e|x|,e|x-2|},则f(x)的最小值为.8.已知函数f(x)=b·a x(其中a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x)的表达式;(2)若不等式1a x+1bx-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.9.已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈[-3,0]上的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.B组提升题组10.已知奇函数y=f(x),x>0,g(x),x<0.如果f(x)=ax(a>0,且a≠1)对应的图象如图所示,那么g(x)=()A.12-xB.-12xC.2-xD.-2x11.已知函数f(x)=e x,如果x1,x2∈R,且x1≠x2,则下列关于f(x)的性质:①(x1-x2)[f(x1)-f(x2)]>0;②y=f(x)不存在反函数;③f(x1)+f(x2)<2f x1+x22;④方程f(x)=x2在(0,+∞)上没有实数根,其中正确的是()A.①②B.①④C.①③D.③④12.设f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系中一定成立的是()A.3c>3aB.3c>3bC.3c+3a>2D.3c+3a<213.若函数f(x)=a x-1(a>0,且a≠1)的定义域和值域都是[0,2],则实数a=.14.若函数f(x)=a x(a>0,且a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=.15.已知函数f(x)=e x-e-x(x∈R,且e为自然对数的底数).(1)判断函数f(x)的单调性与奇偶性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t的值;若不存在,请说明理由.答案全解全析A组基础题组1.D a=(2+3)-1=2-3,b=(2-3)-1=2+3,∴(a+1)-2+(b+1)-2=(3-3)-2+(3+3)-2=12-63+12+63=23.2.A因为a=24=42,c=251=52,函数y=x2在(0,+∞)上单调递增,所以42<52,即a<c,又因为函数y=4x在R上单调递增,所以42<42,即b<a,所以b<a<c,故选A.3.B由f(1)=19得a2=19,又a>0,所以a=13,因此f(x)=13|2x-4|.根据复合函数的单调性可知f(x)的单调递减区间是[2,+∞).4.A由题意知a>1,所以f(-4)=a3,f(1)=a2,由y=a x(a>1)的单调性知a3>a2,所以f(-4)>f(1).5.答案4;2解析由3|x|=1得x=0,由3|x|=9得x=±2,故满足题意的定义域可以为[-2,m](0≤m≤2)或[n,2](-2≤n≤0),故区间[a,b]的最大长度为4,最小长度为2.6.答案5±12解析若0<a<1,则a-1-a=1,即a2+a-1=0,解得a=-1+52或a=-1-52(舍去).若a>1,则a-a-1=1,即a2-a-1=0,解得a=1+52或a=1-52(舍去).综上所述,a=5±12.7.答案 e解析由于f(x)=max{e|x|,e|x-2|}=e x,x≥1, e|x-2|,x<1.当x≥1时,f(x)≥e,且当x=1时,取得最小值e; 当x<1时,f(x)>e.故f(x)的最小值为f(1)=e.8.解析(1)因为f(x)的图象过点A(1,6),B(3,24),所以b·a=6,b·a3=24,解得a2=4,又a>0,所以a=2,则b=3. 所以f(x)=3·2x.(2)由(1)知a=2,b=3,则当x∈(-∞,1]时,12x+13x-m≥0恒成立,即m≤12x+13x在x∈(-∞,1]时恒成立.因为y=12x与y=13x均为减函数,所以y=12x+13x也是减函数,所以当x=1时,y=12x+13x在(-∞,1]上取得最小值,且最小值为56.所以m≤56,即m的取值范围是-∞,56.9.解析(1)当a=1时,f(x)=2·4x-2x-1=2(2x)2-2x-1,令t=2x,则t∈18,1.故y=2t2-t-1=2t-142-98,t∈18,1,故y∈-98,0.即f(x)在x∈[-3,0]上的值域为-98,0.(2)令m=2x,则m∈(0,+∞).关于x的方程2a(2x)2-2x-1=0有解等价于方程2am2-m-1=0在(0,+∞)上有解.记g(m)=2am2-m-1,当a=0时,m=-1<0,不符合题意.当a<0时,g(m)图象的开口向下,对称轴m=14a<0,过点(0,-1),不符合题意.当a>0时,g(m)图象的开口向上,对称轴m=14a>0,过点(0,-1),必有一个根为正,所以a>0. 综上所述,a的取值范围是(0,+∞).B组提升题组10.D由题图知f(1)=12,∴a=12,则f(x)=12x,由题意得g(x)=-f(-x)=-12-x=-2x,故选D.11.B因为e>1,所以f(x)=e x为定义域内的增函数,故①正确;函数f(x)=e x的反函数为y=lnx(x>0),故②错误;f(x1)+f(x2)=e x1+e x2>2e x1e x2=2x1+x2=2f x1+x22,故③错误;作出函数f(x)=e x和y=x2的图象(图略)可知,两函数图象在(0,+∞)内无交点,故④正确.选B.12.D画出f(x)=|3x-1|的图象,如图所示,要使c<b<a,且f(c)>f(a)>f(b)成立,则有c<0,且a>0.∴f(c)=1-3c,f(a)=3a-1,又f(c)>f(a),∴1-3c>3a-1,即3a+3c<2.13.答案3解析当a>1时,f(x)=a x-1在[0,2]上为增函数,则a2-1=2,∴a=±3.又∵a>1,∴a=3.当0<a<1时,f(x)=a x-1在[0,2]上为减函数,又∵f(0)=0≠2,∴不满足条件.综上可知,a=3.14.答案14解析g(x)=(1-4m)x在[0,+∞)上是增函数,应有1-4m>0,即m<14.当a>1时,f(x)=a x为增函数,由题意知a2=4,a-1=m⇒m=12,与m<14矛盾.当0<a<1时,f(x)=a x为减函数,由题意知a2=m,a-1=4⇒m=116,满足m<14.故a=14.15.解析(1)∵f(x)=e x-1e x ,∴f'(x)=e x+1e x,∴f'(x)>0对任意x∈R都成立,∴f(x)在R上是增函数.∵f(x)的定义域为R,且f(-x)=e-x-e x=-f(x),∴f(x)是奇函数.(2)存在.由(1)知f(x)在R上是增函数和奇函数,则f(x-t)+f(x2-t2)≥0对一切x∈R都成立⇔f(x2-t2)≥f(t-x)对一切x∈R都成立⇔x2-t2≥t-x对一切x∈R都成立⇔t2+t≤x2+x=x+122-14对一切x∈R都成立⇔t2+t≤(x2+x)min=-14⇔t2+t+14=t+122≤0,又t+122≥0,∴t+122=0,∴t=-12,∴存在t=-12,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立.。