3-2向量组的线性相关性
- 格式:pdf
- 大小:309.28 KB
- 文档页数:4
3.向量组的线性相关性与线性方程组的解§3.1 线性方程组解的判定1.定理3.1:n 元线性方程组AX=b ,其中A=(a 12a 12a 1n a 21a 22a 2na m1a m2a mn),x=( x 1x 2??x n ) ,b=( b 1b 2??b m )(1)无解的充要条件是R(A)<R(A,b);(2)有惟一解的充要条件是R(A)=R(A,b)=n ,(3)有无穷多解的充要条件是R(A)=R(A,b)<n.注:(1)R(A,b)先化为行阶梯形,判别。
有解时再化为行最简形求解。
(2)R(A)=m 时,AX=b 有解。
(3)R(A)=r 时,有n-r 个自由未知量,未必是后面n-r 个。
2.定理3.2:n 元线性方程组AX=0(1)有惟一解(只有零解)的充要条件是R(A)=n ; (2)有无穷多解(有非零解)充要条件是R(A)<n .注:(1)m <n,AX=0必有非零解。
3.定理3.3:矩阵方程AX=B 有解的充要条件是R(A)=R(A,B) 求解线性方程组例1. {4x 1+2x 2?x 3=23x 1?x 2+2x 3 =1011x 1+3x 2 =8例2. {2x 1+x 2?x 3+x 4 =14x 1+2x 2?2x 3+x 4=22x 1+x 2 ?x 3?x 4 =1例3. 求解齐次线性方程组{3x 1+ 4x 2?5x 3+ 7x 4 =02x 1?3x 2+3x 3? 2x 4 =04x 1+11x 2?13x 3+16x 4=07x 1?2x 2+ x 3+ 3x 4 =0例4.写出一个以X=C 1(2?310)+C 2(?2401)为通解的齐次线性方程组。
例5(每年).(1)λ取何值时,非齐次线性方程组{ λx 1+x 2+x 3=1x 1+λx 2+x 3=λx 1+x 2+λx 3=λ2(1)有惟一解;(2)无解;(3)有无穷多组解?并在有无穷多组解时求出通解.(2)非齐次线性方程组{x 1+x 2+2x 3=02x 1+x 2+ax 3=13x 1+2x 2+4x 3=b当a,b 取何值时,(1)有惟一解;(2)无解;(3)有无穷多组解?并求出通解.例5(12/13学年).设A=(λ110λ?1011λ), b=(a11),已知Ax=b 存在两个不同的解:(1)求λ,a;(2)求Ax=b 的通解。
向量组线性相关性向量组线性相关性是数学中一个重要的概念,它可以在许多应用中使用,包括统计和线性代数。
它表明了两个变量是如何相互影响的,并且可以用来解释不同情况下变量之间的线性关系。
因此,了解这个概念对推断变量之间的关系非常重要。
在这篇文章中,我们将详细讨论向量组线性相关性的定义、特性和应用。
首先,我们将介绍什么是向量组,包括它的结构、特性和如何表示。
接下来,我们将讨论线性相关性的定义,它的两个重要特性,即相关系数和回归线。
最后,我们将讨论向量组线性相关性的应用,特别是在统计学中,它可以用来推断和预测数据集之间的关系。
首先,让我们来看看什么是向量组。
它是一组由单位矢量组成的数值,它们被称为标量。
向量组由坐标轴上的点组成,这些点的特性取决于它们的大小和关系。
例如,在二维空间中,每一个矢量都可以用它的横坐标和纵坐标来表示,这两个坐标是矢量的分量。
此外,矢量的大小是按照它们两个坐标的积来表示的,这个大小可以用简单的乘法计算,也可以用更复杂的三角函数计算。
其次,我们来讨论线性相关性。
线性相关性是指在两个变量之间存在线性关系的能力。
它可以用相关系数来表示。
相关系数是一个指标,表示两个变量的相关性。
它的值介于-1和1之间,-1表示完全负相关,1表示完全正相关,0表示无关。
因此,通过计算相关系数,可以了解两个变量之间的线性关系。
此外,另一个重要的线性相关性特性是回归线。
回归线是一条拟合两个变量之间线性关系的直线,它可以用来推测两个变量之间的关系。
通过画出回归线,可以更清楚地了解两个变量之间的关系,例如它们之间是线性相关还是非线性相关。
最后,我们来看看向量组线性相关性的应用。
它主要应用于统计学,用来推断和预测数据集之间的关系。
它也可以用来了解变量之间的线性依赖性,以及变量的趋势及其变化。
此外,它还可以用来帮助预测未来,因为它可以用来推断不同数据集之间的相关性。
总之,向量组线性相关性是一个非常重要的概念,它可以帮助我们了解变量之间的关系,推断不同数据集之间的关系,以及预测未来。
第3章n维向量和线性方程组向量是线性代数的重点内容之一,也是难点,对逻辑推理有较高的要求。
本章从研究向量的线性关系(线性组合、线性相关与线性无关)出发,然后讨论向量组含最多的线性无关向量的个数,即引出向量组的秩和最大无关组,最后,应用向量空间的理论研究线性方程组的解的结构。
无论是证明、判断、还是计算,关键在于深刻理解本章的基本概念,搞清楚其相互关系,并会灵活应用。
3. 1 n维向量及其运算定义(n维向量)由数域F中的n个数a-i,a2/ , a n组成的有序数组-■ - ( a i, a2, , a n)a2耳一称为数域F上的一个n维向量,前者称为行向量,后者称为列向量,其中a1, a2 / ,a n称为向量的分量(或坐标)。
分量是实(复)数的向量称为实(复)向量。
如果没有特殊的声明,以下所讨论指数域F上的向量。
行向量可以看成行矩阵,列向量看成列矩阵,向量的运算规定按矩阵的运算法则进行。
以下讨论的向量,再没有指明是行向量还是列向量时,都当作列向量。
设有向量■■ = (a i,a2,…,a n),- - (b1 ,b2 / , b n )则向量相等的定义为- a i = b i (i=1,2,…,n)向量的加法定义为a + P =(a i +b i a? +b2 …a* +b n T数乘向量的定义为k:(「k)二(ka i,ka2, ,ka n)T向量的加法以及数乘运算统称为向量的线性运算,它满足下列8条运算规律(其中:■,'-,为n维向量,k,l为常数):(1)二:+:= :+=;)( :• - ) ( - );(3)存在零向量0= ( 0,0,…,0 ) T,使得〉+0= ;(4)存在:-的负向量-二=(_a i,_a2,…,-a n)T,使得〉+ (-二)=0;(5)仁• = :•;(6)k(l : )=(kl):-;(7)k(: + 1 )=k +k :;(8)(k+l)用=k : +1 :;如果记矩阵A = (a j )m n的第j列向量为:a i ja2jQ j = : , (j=1,2,…,n)貝一则由向量的线性运算,可将方程组Ax=b写成下列形式:论一:* - X2J2…'x n J n二 b而齐次线性方程组A X=0则可写成向量形式:Xv 1 ■ X2: 2 …• X n: n = 03. 2向量组的线性相关性定义(线性组合)设宀,:^,…,〉m是一组n维向量,k1, k2/ ,k m是一组常数,则称向量kr 1 k2: 2 k m: m为向量〉1,〉2,i,〉m的一个线性组合,并称k1,k2 / , k m为该线性组合的系数。
由3个2维向量组成的向量组线性相关3个2维向量组线性相关是指,一组由3个2维向量组成的向量之间存在线性关系,即它们的线性组合可以表示为它们的标量积。
3个2维向量组线性相关是比较常见的,它们可以用投影和变换来实现,也可以用线性代数的方法来分析。
首先,我们简单地介绍一下什么是一个2维向量。
2维向量就是一条直线,由长度和方向(也可以称为角度)组成。
在数学中,它可以被表示为一个有两个分量的有序对,即(x,y)。
其中的x和y分量分别表示向量的横向长度和纵向长度。
其中,x为横向长度,即从原点((0,0))沿着向量右侧的长度;y为纵向长度,即从原点((0,0))沿着向量上部的长度。
接下来,我们可以用数学语言来描述什么是3个2维向量组线性相关。
假设,给定一组3个2维向量,即:A(x1,y1),B(x2,y2),C(x3,y3)。
若这3个2维向量之间存在线性关系,即,它们的线性组合可以用标量积来表示,则称这3个向量组线性相关。
如果这3个2维向量组中存在2个或2个以上的向量平行,则该组向量不存在线性相关性,只有当所有3个2维向量都不能表示为两个或两个以上的向量的线性组合时,才可以称为线性相关。
此外,3个2维向量组线性相关可以用几种方式来实现和分析。
投影法是一种比较简单的方法,它将3个2维向量映射到一个新的空间中,以形成一个新的“坐标系”,由新的“坐标系”可以更容易地确定3个2维向量之间的线性关系。
另一种是变换法,利用线性代数,将3个2维向量变换到一个新的基准空间,并利用新的基准空间来检验3个2维向量之间的线性关系。
最后,我们来看下3个2维向量组线性相关在实际中的一些应用。
由于3个2维向量构成的空间是一个简单的,它在很多领域都有应用。
比如在科学研究领域,它可以用来描述粒子的线性组合、在几何分析领域,它可以用来解决复杂的角度关系问题等;又如在技术制造方面,它可以用来表示组件的定位关系;在信息技术领域,它可以用来描述向量之间的线性关系等。