运动控制实验报告通用范本
- 格式:docx
- 大小:73.86 KB
- 文档页数:5
一、实验目的1. 理解和掌握往返运动控制的基本原理和实现方法。
2. 掌握使用行程开关和继电器进行运动控制的基本技能。
3. 通过实验,提高对控制电路分析和设计的能力。
二、实验原理往返运动控制是一种常见的自动化控制方式,它通过控制电路实现运动部件的自动往返运动。
本实验采用行程开关和继电器作为控制元件,通过控制电路实现对电动机的正反转控制,从而实现运动部件的往返运动。
三、实验器材1. 电动机一台2. 继电器一个3. 行程开关两个4. 电源一个5. 连接导线若干6. 实验台一个四、实验步骤1. 搭建实验电路:- 将电动机、继电器、行程开关、电源和连接导线按照电路图连接好。
- 行程开关的常闭触点分别连接到继电器线圈的两侧,形成自锁电路。
- 行程开关的常开触点分别连接到继电器线圈的一侧,形成互锁电路。
2. 设置行程开关:- 将行程开关安装在运动部件的起始位置和终止位置,确保运动部件在往返运动过程中能够准确触发行程开关。
3. 实验操作:- 接通电源,按下正转起动按钮,电动机开始正转,运动部件向右运动。
- 当运动部件上的挡铁压下行程开关时,正转接触器线圈断电释放,反转接触器线圈得电吸合,电动机由正转变为反转,运动部件向左运动。
- 当运动部件上的挡铁再次压下行程开关时,反转接触器线圈断电释放,正转接触器线圈得电吸合,电动机由反转变为正转,运动部件再次向右运动。
- 如此循环往复,实现电动机的正反转控制,进而实现运动部件的自动往返运动。
4. 观察与分析:- 观察运动部件的往返运动是否平稳、准确。
- 分析实验过程中可能出现的问题,如行程开关触发不稳定、运动部件运行速度不均匀等。
五、实验结果与分析1. 实验结果:- 运动部件能够按照预期进行往返运动,往返运动平稳、准确。
2. 分析:- 行程开关的安装位置和触点接触良好,确保了运动部件在往返运动过程中能够准确触发行程开关。
- 继电器线圈吸合良好,保证了电动机的正反转控制。
- 电路连接正确,电源电压稳定。
第1篇一、实验背景随着科技的不断发展,运动控制技术已成为现代工业、军事、医疗等领域的关键技术之一。
运动控制系统通过对运动物体的位置、速度、加速度等参数进行精确控制,实现各种复杂运动任务。
本实验旨在通过对运动控制系统的设计与实现,掌握运动控制的基本原理和方法。
二、实验目的1. 理解运动控制系统的基本原理和组成;2. 掌握运动控制系统的设计方法;3. 学习运动控制系统的实现技术;4. 培养实际操作能力和创新能力。
三、实验内容本实验主要分为以下几个部分:1. 运动控制系统概述:介绍运动控制系统的基本概念、组成、分类和特点。
2. 运动控制器:学习运动控制器的种类、原理、功能和性能指标。
3. 运动控制算法:研究常用的运动控制算法,如PID控制、模糊控制、自适应控制等。
4. 运动控制系统设计:根据实际需求,设计运动控制系统,包括系统结构、参数选择和算法实现。
5. 运动控制系统实现:利用运动控制器和实验平台,实现运动控制系统,并进行实验验证。
四、实验步骤1. 运动控制系统概述:- 学习运动控制系统的基本概念和组成;- 了解运动控制系统的分类和特点;- 分析运动控制系统的应用领域。
2. 运动控制器:- 学习运动控制器的种类、原理和功能;- 分析运动控制器的性能指标和选择方法;- 熟悉常见运动控制器的操作方法和编程接口。
3. 运动控制算法:- 学习PID控制、模糊控制、自适应控制等运动控制算法;- 分析各种算法的优缺点和适用范围;- 熟悉各种算法的编程实现。
4. 运动控制系统设计:- 根据实际需求,确定运动控制系统的性能指标;- 设计运动控制系统的结构,包括控制器、执行器、传感器等;- 选择合适的运动控制算法,并进行参数优化。
5. 运动控制系统实现:- 利用运动控制器和实验平台,搭建运动控制系统;- 编写运动控制程序,实现运动控制算法;- 进行实验验证,分析实验结果,调整系统参数。
五、实验结果与分析1. 实验结果:- 实验过程中,成功搭建了运动控制系统,实现了预定的运动控制任务; - 通过实验验证,运动控制系统具有良好的稳定性和准确性。
人体运动控制实验报告引言人体运动控制是研究人类运动行为和运动控制原理的重要领域。
通过对人体运动控制的研究,可以更好地了解人体运动的机制,为运动训练、康复治疗、运动健身等提供科学依据。
本次实验旨在探究人体运动控制的基本原理,并通过实验验证理论的可行性。
材料与方法材料- 电脑- Matlab软件- 人体运动数据采集设备方法1. 实验设计:选择一个简单的运动任务,例如手臂的屈伸运动。
2. 实验操作:被试者进行手臂屈伸运动,数据通过运动数据采集设备记录并传输到电脑上。
3. 数据处理:使用Matlab软件对采集到的数据进行处理和分析,得出相应的结果。
4. 结果分析:根据数据分析结果,验证人体运动控制的相关原理。
实验结果经过运动数据采集设备的记录和Matlab软件的处理,得到了被试者手臂屈伸运动的相关数据。
通过分析这些数据,我们得到了以下结论:1. 运动轨迹:手臂屈伸运动的运动轨迹呈现出周期性的波动曲线,符合人体运动的特征。
2. 运动速度:手臂屈伸运动的速度在屈曲和伸展阶段存在差异,屈曲阶段速度较慢,伸展阶段速度较快。
3. 运动力度:手臂屈伸运动的力度在不同时间段存在差异,屈曲阶段力度较小,伸展阶段力度较大。
结果讨论通过本次实验得到的结果可以与已知的人体运动控制原理进行对比分析。
手臂屈伸运动的运动轨迹呈现出周期性的波动曲线,这与中枢神经系统的节律生成机制相吻合。
手臂屈伸运动的速度和力度在不同阶段的差异可以归因于运动控制系统对不同肌肉的激活程度的调节。
此外,实验结果还表明人体在进行手臂屈伸运动时,能够通过神经肌肉系统的协调作用,实现运动的平稳与精确。
同时,实验结果还为运动训练和康复治疗提供了一定的参考价值。
然而,本次实验只针对手臂屈伸运动进行了研究,其他运动行为的研究仍然有待深入。
此外,本实验所采集的数据量较小,数据质量和可靠性有待提高。
结论本次实验结果表明人体运动控制的基本原理是可行的。
通过对手臂屈伸运动轨迹、速度和力度的分析,我们得出了有关人体运动控制的一些结论。
报告编号:LX-FS-A69109 运动控制实验报告标准范本The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior.编写:_________________________审批:_________________________时间:________年_____月_____日A4打印/ 新修订/ 完整/ 内容可编辑运动控制实验报告标准范本使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。
资料内容可按真实状况进行条款调整,套用时请仔细阅读。
实验一晶闸管直流调速系统电流-转速调节器调试一.实验目的1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。
2.掌握直流调速系统主要单元部件的调试步骤和方法。
二.实验内容1.调节器的调试三.实验设备及仪器1.教学实验台主控制屏。
2.MEL—11组件3.MCL—18组件4.双踪示波器5.万用表四.实验方法1.速度调节器(ASR)的调试按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。
(1)调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI调节器,加入一定的输入电压(由MCL—18的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于5V。
(2)测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P 调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画图1-5 速度调节器和电流调节器的调试接线图出曲线。
实习报告实习单位:XX运动控制公司实习时间:202X年X月X日至202X年X月X日实习生:张三专业:自动化控制一、实习背景及目的随着科技的不断发展,运动控制技术在各个领域得到了广泛的应用。
为了更好地将所学知识与实际工作相结合,提高自己的实践能力,我选择了XX运动控制公司进行为期一个月的实习。
本次实习的主要目的是:1. 了解运动控制技术的基本原理及其在实际应用中的重要性。
2. 学习并掌握运动控制器的使用方法,熟练操作相关设备。
3. 通过对实际项目的参与,提高自己的问题分析与解决能力。
4. 培养自己的团队协作精神和职业道德。
二、实习内容及过程实习期间,我参与了公司的一个运动控制项目,主要工作内容包括:1. 运动控制器选型及参数设置:根据项目需求,选择合适的运动控制器,并设置相关参数,确保设备正常运行。
2. 程序编写与调试:根据项目要求,编写运动控制程序,并进行调试,保证设备按照预定轨迹进行运动。
3. 设备操作与维护:熟练操作运动控制器及相关设备,定期进行设备维护,确保设备稳定运行。
4. 问题分析与解决:在项目实施过程中,遇到的问题进行分析,运用所学知识寻找解决方案,并与团队成员共同讨论,共同进步。
三、实习收获及体会通过本次实习,我收获颇丰,具体表现在:1. 理论联系实际:将所学知识应用于实际工作中,更好地理解了运动控制技术的原理及其在实际应用中的重要性。
2. 技能提升:通过实际操作,熟练掌握了运动控制器的使用方法,提高了自己的技能水平。
3. 团队协作:在项目实施过程中,与团队成员密切配合,共同完成任务,培养了团队协作精神。
4. 职业素养:在实习过程中,遵循公司规章制度,尊重同事,诚实守信,培养了良好的职业道德。
四、实习总结本次实习让我深刻认识到运动控制技术在实际工作中的重要性,通过实际操作,提高了自己的技能水平,培养了团队协作精神和职业道德。
同时,我也发现自己在专业知识和实践能力方面还存在不足,需要在今后的学习和工作中继续努力。
一、实习背景与目的随着科技的不断发展,运动控制系统在工业自动化、机器人技术、航空航天等领域扮演着越来越重要的角色。
为了深入了解运动控制系统的原理、应用及发展趋势,提高自己的专业技能,我选择了在XX科技有限公司进行为期一个月的实习。
本次实习旨在通过实际操作和理论学习,掌握运动控制系统的基本原理、设计方法及调试技巧,为今后的工作打下坚实基础。
二、实习单位及实习内容实习单位:XX科技有限公司实习内容:1. 运动控制系统基础知识学习2. 运动控制系统的硬件设计3. 运动控制系统的软件编程4. 运动控制系统的调试与优化5. 运动控制系统的实际应用案例分析三、实习过程1. 运动控制系统基础知识学习在实习初期,我首先学习了运动控制系统的基本概念、组成及工作原理。
通过查阅资料、请教导师,我对运动控制系统有了初步的认识。
同时,我还了解了常见的运动控制方式,如步进电机控制、伺服电机控制等。
2. 运动控制系统的硬件设计在硬件设计方面,我参与了公司一款运动控制系统的硬件设计。
首先,我学习了运动控制系统的常用硬件组件,如PLC、步进电机驱动器、传感器等。
然后,根据设计要求,我绘制了硬件电路图,并编写了相应的PCB设计文件。
在导师的指导下,我完成了硬件电路的焊接和调试。
3. 运动控制系统的软件编程在软件编程方面,我学习了运动控制系统的编程语言,如C语言、LabVIEW等。
通过学习,我掌握了运动控制系统的编程方法,包括运动轨迹规划、速度控制、位置控制等。
在实际编程过程中,我参与了公司一款运动控制系统的软件开发,实现了对运动控制系统的实时监控和控制。
4. 运动控制系统的调试与优化在调试与优化阶段,我对所设计的运动控制系统进行了反复的测试和调试。
通过调整参数、优化算法,我使运动控制系统达到了预期的性能指标。
在此过程中,我学会了如何分析问题、解决问题,提高了自己的实际操作能力。
5. 运动控制系统的实际应用案例分析在实习后期,我参与了公司多个运动控制系统的实际应用案例分析。
#### 一、实习背景随着科技的发展,运动控制技术在工业、医疗、科研等领域发挥着越来越重要的作用。
为了深入了解运动控制技术,提升自身的实践能力,我参加了为期两周的运动控制实验室实习。
本次实习旨在通过实际操作,掌握运动控制的基本原理、设备使用和编程方法,为今后的学习和工作打下坚实基础。
#### 二、实习目的1. 熟悉运动控制的基本概念和原理。
2. 掌握运动控制设备的操作方法。
3. 学会使用编程软件对运动控制系统进行编程。
4. 培养动手能力和团队协作精神。
#### 三、实习内容1. 理论学习实习期间,我们首先学习了运动控制的基本概念和原理,包括运动学、动力学、传感器技术、控制算法等。
通过理论学习,我们对运动控制系统有了初步的认识。
2. 设备操作实习过程中,我们熟悉了运动控制实验室中的各种设备,如步进电机、伺服电机、传感器、控制器等。
通过实际操作,我们掌握了设备的安装、调试和维修方法。
3. 编程实践在编程实践环节,我们学习了使用C++、Python等编程语言对运动控制系统进行编程。
通过编程,我们实现了对运动轨迹、速度、加速度等参数的精确控制。
4. 实验项目实习期间,我们完成了以下实验项目:(1)单轴滑轨实验:通过编程控制步进电机驱动滑块运动,实现直线运动和曲线运动。
(2)多轴联动实验:控制两个或多个轴的运动,实现复杂运动轨迹。
(3)传感器应用实验:利用传感器获取运动过程中的位置、速度、加速度等数据,实现闭环控制。
#### 四、实验步骤1. 单轴滑轨实验(1)安装步进电机和滑轨。
(2)连接步进电机驱动器和控制器。
(3)编写程序,实现直线运动和曲线运动。
(4)调试程序,确保运动轨迹准确。
2. 多轴联动实验(1)安装多个步进电机和滑轨。
(2)连接步进电机驱动器和控制器。
(3)编写程序,实现多轴联动运动。
(4)调试程序,确保运动轨迹准确。
3. 传感器应用实验(1)安装传感器,如编码器、速度传感器等。
(2)连接传感器和控制器。
第1篇一、实验目的本实验旨在研究小车运动速度的控制,分析影响小车运动速度的因素,并通过实验验证控制方法的有效性。
通过本实验,学生可以掌握以下知识:1. 了解小车运动的基本原理。
2. 掌握小车运动速度控制的基本方法。
3. 熟悉实验仪器的使用和数据处理方法。
4. 培养学生的实验操作能力和分析问题能力。
二、实验原理小车运动速度的控制主要依赖于驱动电机的转速。
通过改变电机转速,可以实现对小车运动速度的调节。
在本实验中,采用PWM(脉冲宽度调制)技术对电机转速进行控制。
PWM技术通过改变脉冲宽度来调整电机驱动电路中的平均电压,从而实现对电机转速的调节。
三、实验器材1. 小车平台2. 驱动电机3. 电机驱动电路4. PWM控制器5. 电流表6. 电压表7. 数据采集卡8. 计算机及实验软件四、实验步骤1. 搭建实验电路:按照实验电路图连接小车平台、驱动电机、电机驱动电路和PWM控制器。
2. 设置实验参数:通过计算机软件设置PWM控制器的参数,包括PWM频率、占空比等。
3. 启动实验:启动PWM控制器,观察小车的运动状态。
4. 数据采集:利用数据采集卡采集小车运动过程中的电流、电压等数据。
5. 分析数据:对采集到的数据进行处理和分析,研究小车运动速度与电机转速之间的关系。
五、实验结果与分析1. 实验结果:通过实验,我们得到了不同PWM占空比下小车的运动速度数据。
2. 数据分析:(1)当PWM占空比较小时,小车运动速度较慢;随着PWM占空比的增大,小车运动速度逐渐加快。
(2)当PWM占空比达到一定值后,小车运动速度趋于稳定,此时电机转速基本达到最大值。
(3)在小车运动过程中,电流和电压数据也呈现出一定的规律性变化。
六、结论1. 小车运动速度与PWM占空比呈正相关关系,PWM占空比越大,小车运动速度越快。
2. 通过调节PWM占空比,可以实现对小车运动速度的有效控制。
3. 本实验验证了PWM技术在电机转速控制方面的可行性,为实际工程应用提供了理论依据。
运动控制系统实验报告运动控制系统实验报告概述运动控制系统是现代工业中不可或缺的一部分,它通过对机械设备的运动进行精确的控制,实现了生产过程的自动化和高效化。
本实验旨在通过对运动控制系统的研究和实验,探索其原理和应用。
一、实验目的本次实验的主要目的是研究运动控制系统的基本原理和应用,包括控制器的设计、运动规划和运动控制算法的实现。
通过实验,我们将深入了解运动控制系统的工作原理,掌握其调试和优化方法,为今后在工业自动化领域的应用打下基础。
二、实验装置和原理实验所用的运动控制系统包括运动控制器、电机驱动器和电机。
运动控制器是整个系统的核心,它接收外部的控制信号,经过处理后输出给电机驱动器。
电机驱动器负责将控制信号转换为电机能够理解的电压和电流信号,并驱动电机实现运动。
电机则是实际执行运动的部分,它根据电机驱动器的信号进行转动或线性运动。
三、实验步骤1. 系统搭建:按照实验指导书的要求,将运动控制器、电机驱动器和电机连接起来,并进行必要的设置和校准。
2. 控制器设计:根据实验要求,设计控制器的结构和参数。
可以选择PID控制器或者其他适合的控制算法。
3. 运动规划:根据实验要求,设计合适的运动规划方式。
可以使用简单的直线运动或者复杂的曲线运动。
4. 运动控制算法实现:将设计好的控制器和运动规划算法实现在运动控制器上。
可以使用编程语言或者专用的控制软件。
5. 实验调试:进行实验前的调试工作,包括控制器参数的调整、运动规划的优化等。
6. 实验运行:按照实验要求,进行实验运行并记录实验数据。
7. 数据分析:对实验数据进行分析和处理,评估实验结果的准确性和稳定性。
8. 实验总结:总结实验过程中的问题和经验,提出改进和优化的建议。
四、实验结果与讨论根据实验数据和分析结果,我们可以得出运动控制系统在不同条件下的性能表现。
通过对比不同控制算法和运动规划方式的实验结果,我们可以评估其优缺点,并选择最适合实际应用的方案。
五、实验的意义和应用运动控制系统在现代工业中有着广泛的应用,包括机械加工、自动化生产线、机器人等领域。
一、实习背景与目的随着科技的不断发展,运动控制技术已成为智能制造领域的重要研究方向。
为了深入了解运动控制技术在工业自动化中的应用,提高自身的专业素养和实践能力,我于2021年7月至2021年9月在XX科技有限公司的运动控制岗位进行了为期两个月的实习。
本次实习旨在通过实际操作和项目参与,掌握运动控制系统的基本原理、设计方法和应用技术,为今后从事相关领域工作打下坚实基础。
二、实习单位及岗位介绍XX科技有限公司是一家专注于工业自动化设备研发、生产和销售的高新技术企业。
公司产品广泛应用于汽车、机械、电子、包装等行业。
在本次实习中,我担任运动控制岗位实习生,负责协助工程师进行运动控制系统的设计与调试。
三、实习内容与过程1. 理论学习实习初期,我认真学习了运动控制系统的基本原理,包括运动控制理论、电机控制技术、传感器技术等。
通过查阅资料、参加培训等方式,我对运动控制系统的构成、工作原理和常见故障有了初步了解。
2. 项目参与在实习过程中,我参与了多个运动控制项目,具体如下:(1)汽车零部件生产线上的自动化设备调试该项目主要涉及伺服电机、编码器、PLC等运动控制设备的调试。
在工程师的指导下,我负责了设备安装、接线、参数设置等工作,并参与了设备的试运行和调试。
(2)机器人手臂控制系统开发该项目旨在为机器人手臂提供精确的运动控制。
我负责了控制系统硬件选型、软件编写和调试工作,确保机器人手臂能够按照预设轨迹运动。
(3)工业机器人关节运动控制研究针对工业机器人关节运动控制问题,我查阅了相关文献,分析了关节运动控制算法,并参与了算法的仿真和优化。
3. 实习心得与体会(1)理论联系实际通过本次实习,我深刻体会到理论知识在实际工作中的重要性。
只有掌握了扎实的理论基础,才能更好地解决实际问题。
(2)团队合作精神在实习过程中,我学会了与团队成员沟通协作,共同完成项目任务。
这种团队合作精神对于今后的工作具有重要意义。
(3)勇于挑战面对复杂的项目任务,我始终保持积极进取的态度,勇于挑战自我。
一、实习背景随着科技的不断发展,机器人技术逐渐成为热门领域。
运动控制作为机器人技术的重要组成部分,越来越受到广泛关注。
为了深入了解运动控制技术,提高自己的专业技能,我参加了为期一个月的运动控制实习。
二、实习单位及实习内容实习单位:XX科技有限公司实习内容:1. 学习运动控制基础知识,包括运动学、动力学、控制系统等。
2. 熟悉运动控制系统的组成及工作原理。
3. 参与实际项目,进行运动控制系统的设计与调试。
4. 学习使用运动控制相关软件,如MATLAB、Simulink等。
三、实习过程1. 实习初期,我首先了解了运动控制的基本概念,包括运动学、动力学、控制系统等。
通过学习,我对运动控制有了初步的认识。
2. 在熟悉运动控制系统组成及工作原理的过程中,我学习了运动控制系统的基本组成部分,如传感器、执行器、控制器等。
同时,我还了解了不同类型运动控制系统的特点和应用。
3. 在实际项目中,我参与了运动控制系统的设计与调试。
首先,根据项目需求,我确定了运动控制系统的方案。
然后,我使用MATLAB、Simulink等软件进行了系统建模与仿真。
在仿真过程中,我不断调整参数,使系统达到最佳性能。
4. 在调试过程中,我遇到了许多问题。
例如,系统响应速度慢、精度低等。
针对这些问题,我查阅了大量资料,与同事探讨,最终找到了解决方案。
通过这次实习,我深刻体会到理论与实践相结合的重要性。
四、实习收获1. 理论知识方面:通过实习,我对运动控制的基本理论有了更深入的了解,为今后的学习打下了坚实的基础。
2. 实践能力方面:在实习过程中,我学会了如何将理论知识应用于实际项目中,提高了自己的动手能力。
3. 团队协作能力:在实习期间,我与团队成员共同完成了多个项目,学会了与他人沟通、协作,提高了自己的团队协作能力。
4. 沟通能力:在实习过程中,我需要与同事、上级进行沟通,学会了如何表达自己的观点,提高了自己的沟通能力。
五、实习总结通过一个月的运动控制实习,我收获颇丰。
运动控制实验报告运动控制实验报告引言:运动控制是现代工程领域中的重要技术之一,它在各种机械系统、自动化设备以及机器人等领域得到广泛应用。
本实验旨在通过实际操作,探索运动控制的原理和应用,以提升我们对运动控制的理解和应用能力。
实验一:电机速度控制在本实验中,我们使用了一台直流电机,通过调节电压来控制电机的转速。
首先,我们将电机与电源连接,并通过转速传感器实时监测电机的转速。
然后,我们逐渐增加电压,观察电机转速的变化。
实验结果显示,电机的转速与电压呈线性关系,即电机转速随着电压的增加而增加。
这验证了电机转速与电压之间的直接关系,并为后续实验奠定了基础。
实验二:位置控制在本实验中,我们使用了一台步进电机,并通过控制步进电机的脉冲数来实现位置控制。
我们将步进电机与控制器连接,并设置目标位置。
通过发送脉冲信号,控制器驱动步进电机旋转一定角度,直到达到目标位置。
实验结果显示,步进电机能够精确控制位置,并且具有良好的重复性。
这表明步进电机在位置控制方面具有较高的精度和可靠性。
实验三:PID控制在本实验中,我们使用了一个小车模型,并通过PID控制器来控制小车的运动。
PID控制器通过比较实际位置与目标位置的差异来计算控制信号,从而实现位置控制。
我们设置了不同的目标位置,并观察小车的运动轨迹。
实验结果显示,PID控制器能够有效地控制小车的位置,使其稳定地停在目标位置上。
同时,我们还测试了PID控制器的鲁棒性,即在外部干扰的情况下,控制器是否能够保持稳定。
实验结果表明,PID控制器对于外部干扰具有一定的鲁棒性,但仍然存在一定的误差。
实验四:力控制在本实验中,我们使用了一个力传感器和一个伺服电机来实现力控制。
我们将力传感器连接到伺服电机上,并设置目标力值。
通过调节电机的转速,控制力传感器输出的力值接近目标力值。
实验结果显示,伺服电机能够根据力传感器的反馈信号,实时调整转速,从而实现力控制。
这为在机器人领域中的力控制提供了重要的参考。
可编辑修改精选全文完整版第二章运动控制(一)实验实验三不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.实验系统组成及工作原理采用闭环调速系统,可以提高系统的动静态性能指标。
转速单闭环直流调速系统是常用的一种形式。
实验图3一1所示是转速单闭环直流调速系统的实验线路图。
实验图3一1转速单闭环直流调速系统图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V供电,通过与电动机同轴刚性连接的测速发电机TG检测电动机的转速,并经转速反馈环节FBS分压后取出合适的转速反馈信号U n,此电压与转速给定信号U*经速度调节器ASR综合调节,ASR的n输出作为移相触发器GT的控制电压U ct,由此组成转速单闭环直流调速系统。
图中DZS和转速反馈电压U n均为零时,DZS的输出信号使转速为零速封锁器,当转速给定电压U*n调节器ASR锁零,以防止调节器零漂而使电动机产生爬行。
三、实验设备及仪器1.MCL—II型电机控制教学实验台主控制屏。
2.MCL—20组件。
3.MCL—03组件。
4.MEL—11电容箱。
5.MEL—03三相可调电阻(或自配滑线变阻器)6.电机导轨及测速发电机、直流发电机MO l7.直流电动机M03。
8.双踪示波器。
四.实验内容1.移相触发电路的调试(主电路未通电)(a)用示波器观察MCL—20的脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V-2V的双脉冲。
(b)触发电路输出脉冲应在30º~90º范围内可调。
可通过对偏移电压调节单位器及ASR输出电压的调整实现。
例如:使ASR输出为0V,调节偏移电压,实现α=90º:再保持偏移电压不变,调节ASR的限幅电位器RP1,使α =30º。
运动控制技术实验报告一、引言运动控制技术作为一种重要的工程技术,在工业生产和科研领域扮演着至关重要的角色。
本次实验旨在通过对运动控制技术的学习和实践,进一步了解其原理、应用以及实验操作过程,提高对其的认识和掌握程度。
二、实验目的1. 了解运动控制技术的基本原理和分类;2. 掌握运动控制技术的关键概念和术语;3. 学习运动控制技术的应用领域和发展趋势;4. 进行实际操作,熟悉运动控制技术设备的使用方法。
三、实验原理运动控制技术是一种利用控制系统对机械运动进行监测、测量和控制的技术。
它主要包括位置控制、速度控制和力控制等方面。
在实验中,我们将重点关注位置控制和速度控制两个方面的内容。
1. 位置控制位置控制是通过对位置传感器获取的信号进行处理,并反馈给执行元件,从而实现对机械运动的准确定位控制。
常见的位置传感器有编码器、光栅尺等,通过测量位置信号的变化,系统可以精确控制机械的位置。
2. 速度控制速度控制是通过控制系统对执行元件的输入信号进行调节,使得机械运动达到既定的速度。
在实验中,我们需要调节控制器的参数,以实现对机械运动速度的控制。
四、实验内容与步骤本次实验我们将使用PLC(可编程逻辑控制器)和伺服电机进行位置和速度控制的实验。
1. 实验器材准备:- PLC控制器- 伺服电机- 位置传感器(编码器)- 控制软件2. 实验步骤:(1)连接伺服电机和位置传感器,并通过PLC进行控制器的连接和参数设置;(2)编写控制程序,包括位置控制和速度控制的部分;(3)对伺服电机进行位置和速度调试,观察并记录控制效果;(4)分析实验结果,总结控制器参数设置的影响。
五、实验结果与分析通过实际操作,我们成功实现了对伺服电机的位置和速度控制。
在不同的控制参数设置下,我们观察到了机械运动的不同效果。
通过分析实验结果,我们可以得出以下结论:1. 对于位置控制,合适的控制参数设置可以实现机械的准确定位,但需要注意避免震动和过冲现象;2. 对于速度控制,控制器的响应速度和准确性对机械运动的稳定性和精度影响较大;3. 在实际应用中,需要综合考虑位置和速度控制的需求,选择合适的控制策略和参数设置。
第1篇一、实验目的1. 熟悉控制运动编程的基本原理和方法;2. 掌握利用编程控制运动物体的方法;3. 提高动手能力和编程能力。
二、实验原理控制运动编程是指通过编写程序来控制运动物体的运动轨迹、速度和方向等。
本实验采用PLC(可编程逻辑控制器)作为控制核心,利用传感器获取运动物体的实时信息,通过编程实现对运动物体的精确控制。
三、实验器材1. PLC:罗克韦尔CompactLogix系列可编程序控制器;2. 小车运动控制系统实训模型;3. 电源模块、CPU模块、数字量输入模块、数字量输出模块、通信编程电缆等;4. 传感器:光电传感器、电感式传感器、电容式传感器、超声波传感器、行程开关等;5. 编程软件:RSLogix 5000。
四、实验步骤1. 连接PLC与实训模型,搭建控制系统;2. 编写程序,实现以下功能:(1)运动距离测量:利用光电传感器和行程开关测量小车运动距离;(2)传动控制:通过数字量输出模块控制直流电机转速,实现小车运动速度调节;(3)键值优化比较行走控制:根据按键输入,实现小车正转、反转、停止等动作;(4)定向控制:根据传感器反馈,实现小车循线运动;(5)定位控制:根据预设位置,实现小车精确定位;(6)报警运行控制:当小车运动超出预设范围时,发出报警信号;(7)点动控制:实现小车单步前进、后退;(8)位置显示控制:通过显示屏显示小车当前位置;3. 编译程序,下载到PLC;4. 对程序进行调试,确保各项功能正常运行;5. 实验结束后,整理实验器材,撰写实验报告。
五、实验结果与分析1. 运动距离测量:实验中,利用光电传感器和行程开关成功测量了小车运动距离,测量精度满足实验要求;2. 传动控制:通过数字量输出模块控制直流电机转速,实现了小车运动速度的调节,满足实验要求;3. 键值优化比较行走控制:根据按键输入,实现了小车正转、反转、停止等动作,满足实验要求;4. 定向控制:根据传感器反馈,实现了小车循线运动,满足实验要求;5. 定位控制:根据预设位置,实现了小车精确定位,满足实验要求;6. 报警运行控制:当小车运动超出预设范围时,发出报警信号,满足实验要求;7. 点动控制:实现小车单步前进、后退,满足实验要求;8. 位置显示控制:通过显示屏显示小车当前位置,满足实验要求。
运控实验报告一、实验要求1学习控制器的使用,掌握控制器所需的编程、通信和网络配置软件,掌握针对简单逻辑对象的控制方法;2学习和掌握一类变频器的操作和使用方法;3掌握基于DeviceNet的变频器控制和使用方法;4设计电动机运行曲线并在现有的DeviceNet平台上实现;5编制相应的组态人机界面;6了解EtherNetIP网络配置和使用方法。
二、实验内容1可编程控制器ControlLogix软硬件平台熟悉和使用ControlLogix系统是基于机架的系统,可以提供对使用顺序控制、过程控制、运动控制和驱动控制的控制系统进行组态的选项,还可提供通信I/O 功能。
Controllogix系统是机架式、模块化安装。
Controllogix输入输出模块是是模块式安装的。
电源模块直接安装在Controllogix机架的左端。
Controllogix机架有4、7、10、13或17槽五种类型。
处理器可以控制本地输入输出和远程输入输出。
处理器可以通过以太网EtherNet/IP、控制网ControlNet、设备网DeviceNet和远程输入输出Universal Remote I/O来监控系统中的输入和输出。
此次试验我们使用的系统是7机架式的系统,其中有电源、处理器、以太网、DeviceNet、输入输出模块,使用的软件是Logix5000,可以在软件中通过梯形图编程,而后将程序写入硬件系统中实现相应的功能。
2通信(软件RSLinx)网络通信是Logix5000的核心,不同的网络可用于数据传送和通讯,正确的对网络进行识别是基础内容。
此次试验主要使用的网络通信是基于EtherNet和DeviceNet进行的,前五个试验主要使用的是以太网,连接计算机和硬件设,先用计算机编程,而后通过以太网将程序写入硬件设备,在硬件设备上实现一些简单的功能,例如通过按钮将输入模块某位数据置为1,使得输出模块某位置为1,控制灯的亮灭。
3基本编程(以上内容为Lab1-5)基本编程是基于梯形图的,梯形图是PLC使用得最多的图形编程语言,此部分内容主要是熟悉软件和语言的使用,实现基本的功能。
运动控制实验报告篇一:运动控制实验报告“运动控制系统”专题实验报告篇二:运动控制系统实验报告运动控制系统实验报告姓名:杜文划学号:912058XX02同组人:杜文坚,周文活,黎霸俊异步电动机SPWM与电压空间矢量变频调速系统一、实验目的1. 通过实验掌握异步电动机变压变频调速系统的组成与工作原理。
2. 加深理解用单片机通过软件生成SPWM波形的工作原理特点。
以及不同不同调制方式对系统性能的影响。
3. 熟悉电压空间矢量控制的原理与特点。
4. 掌握异步电动机变压变频调速系统的调试方法。
二、实验过程一、采用SPWM方式调制1. 同步调制30HZ下电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:定子电流波形如下示: IGBT两端波形如下示:定子端电压波形如下示:50HZ下电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:定子电流波形如下示: IGBT两端波形如下示:定子端电压波形如下示:波形分析:电机气隙磁通两相绕组之间相差约60°。
电机磁通轨迹50Hz时更接近圆形。
对定子电流:30Hz时和50Hz时呈正弦波,但其中有很多的高频分量。
IGBT的疏密程度反映了脉冲宽度调制的过程,越密表示频率越高。
定子电压呈正弦分布。
同步调制方式在50Hz比较好。
2、异步调制30HZ下电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:定子电流波形如下示:IGBT两端波形如下示:定子端电压波形如下示:50HZ下电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:定子电流波形如下示: IGBT两端波形如下示:定子端电压波形如下示:异步调制与同步调制想比,气隙磁通分量更接近正弦波,气隙磁通轨迹更接近圆形,此时30Hz比50Hz效果好些。
3、混合调制混合调制在不同的输出频率段采用不同的载波比10HZ下,载波比为100电机气隙磁通分量波形如下示:电机气隙磁通轨迹下:篇三:运动控制实验报告运动控制系统实验报告姓名刘炜原学号 XX03080414实验一晶闸管直流调速系统电流-转速调节器调试一.实验目的1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。
《运动控制系统》实验报告班级:2011级自动化2班姓名:丁灿学号:2011551723实验一晶闸管直流调速系统参数和环节特性的测定实验一、实验目的(1)熟悉晶闸管直流调速系统的组成及其基本结构。
(2)掌握晶闸管直流调速系统参数及反馈环节测定方法。
二、实验所需挂件及附件111 万用表自备三、实验线路及原理晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。
在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。
实验系统的组成原理图如图5-1所示。
图5-1 实验系统原理图四、实验内容测定晶闸管直流调速系统主电路总电阻值R。
2五、预习要求学习教材中有关晶闸管直流调速系统各参数的测定方法。
六、实验方法电枢回路总电阻R的测定电枢回路的总电阻R包括电机的电枢电阻R a、平波电抗器的直流电阻R L及整流装置的内阻R n,即R = R a十R L十R n (5-1) 由于阻值较小,不宜用欧姆表或电桥测量,因是小电流检测,接触电阻影响很大,故常用直流伏安法。
为测出晶闸管整流装置的电源内阻须测量整流装置的理想空载电压Ud0,而晶闸管整流电源是无法测量的,为此应用伏安比较法,实验线路如图5-2所示。
将变阻器R1、R2接入被测系统的主电路,测试时电动机不加励磁,并使电机堵转。
合上S1、S2,调节给定使输出直流电压U d在30%U ed~70%U ed范围内,然后调整R2使电枢电流在80%I ed~90%I ed范围内,读取电流表A和电压表V2的数值为I1、U1,则此时整流装置的理想空载电压为U do=I1R+U1(5-2)调节R1使之与R2的电阻值相近,拉开开关S2,在U d的条件下读取电流表、电压表的数值I2、U2,则U do=I2R十U2 (5-3) 求解(5-2)、(5-3)两式,可得电枢回路总电阻:R=(U2-U1)/(I1-I2) (5-4) 如把电机电枢两端短接,重复上述实验,可得R L十R n=(U2'-U1')/(I1'-I2') (5-5)则电机的电枢电阻为34R a =R-(R L 十R n )。
运动控制系统实验实验一、单闭环直流调速系统(1)转速负反馈的单闭环直流调速系统的稳态结构图如上图所示,其中输入信号U n*为阶跃信号,初值为0,终值为30,阶跃起始时刻为0时刻;负载电流是斜坡信号,斜率为1,起始时间为0,初始输出为0。
仿真时间长度不小于20秒。
设计转速调节器的参数,使得该闭环直流调速系统为有静差的系统,理想空载转速为800r/min,并计算其在Id=15时的闭环系统静态转速降落。
(2)电压负反馈的单闭环直流调速系统的稳态结构图如上图所示,其中的输入信号的参数与转速负反馈单闭环调速系统相同。
设计转速调节器的参数,使得该闭环直流调速系统为有静差的系统,理想空载转速为800r/min。
分析采用转速负反馈和电压负反馈的单闭环直流调速系统的静特性之间的区别,并说明其原因。
(3)单闭环调速系统动态结构如上图所示,其中输入信号U n*为阶跃信号,初值为0,终值为7,阶跃起始时刻为0时刻;干扰信号I dl为阶跃信号,初值为2,终值为8,阶跃起始时刻为4。
仿真时间长度不小于8秒。
1)设计速度控制器ASR,控制器考虑限幅,ASR限幅±7,要求系统输出量转速n的响应调节时间小于3秒,超调量小于10%,系统无静差;2)分析系统结果和启动过程。
运动控制系统实验报告(标题宋体,居中,3号,加粗,段前段后0.5行)学号:姓名:(宋体,居中,5号,单倍行距)一、实验目的(宋体,小4,加黑,段前段后0.5行)通过实验了解单闭环直流调速系统的结构和工作原理,通过系统调试深入领会系统的动静态特性,并掌握控制系统的调试方法。
(正文:宋体,5号,单倍行距)二、实验内容及结果1)分别给出两种不同反馈控制下的控制器结构和参数;2)给出仿真曲线及所取得的性能指标。
仿真曲线包括:静特性、输出n,误差d U n,控制器ASR输出量,控制器ACR输出量,电流i d注:①以双排栏的形式给出曲线,图下方需用文字说明;②给出每个实验的性能指标。
内部编号:AN-QP-HT390
版本/ 修改状态:01 / 00 In Order T o Standardize The Management, Let All Personnel Enhance The Executive Power, Avoid Self-
Development And Collective Work Planning Violation, According To The Fixed Mode To Form Daily Report To Hand In, Finally Realize The Effect Of Timely Update Progress, Quickly Grasp The Required Situation.
编辑:__________________
审核:__________________
单位:__________________
运动控制实验报告通用范本
运动控制实验报告通用范本
使用指引:本报告文件可用于为规范管理,让所有人员增强自身的执行力,避免自身发展与集体的工作规划相违背,按固定模式形成日常报告进行上交最终实现及时更新进度,快速掌握所需了解情况的效果。
资料下载后可以进行自定义修改,可按照所需进行删减和使用。
实验一晶闸管直流调速系统电流-转速调节器调试
一.实验目的
1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。
2.掌握直流调速系统主要单元部件的调试步骤和方法。
二.实验内容
1.调节器的调试
三.实验设备及仪器
1.教学实验台主控制屏。
2.MEL—11组件3.MCL—18组件4.双踪示波器5.万用表
四.实验方法
1.速度调节器(ASR)的调试
按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。
(1)调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI调节器,加入一定的输入电压(由MCL—18的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于5V。
(2)测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画
图1-5 速度调节器和电流调节器的调试接
线图
出曲线。
(3)观察PI特性
拆除“5”、“6”端短接线,突加给定电压(0.1V),用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。
反馈电容由外接电容箱改变数值。
2.电流调节器(ACR)的调试按图1-5接线。
(1)调整输出正,负限幅值
“9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于5V。
(2)测定输入输出特性
将反馈网络中的电容短接(“9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。
(3)观察PI特性
拆除“9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。
反馈电容由外接电容箱改变数值。
可在此位置输入公司或组织名字
You Can Enter The Name Of The Organization Here。