高中化学选修三 原子结构与性质知识总结
- 格式:pdf
- 大小:263.35 KB
- 文档页数:7
原子结构与性质一 原子结构 1、原子的构成中子N(核素)原子核 近似相对原子质量质子Z (带正电荷) → 核电荷数 元素 → 元素符号原子结构 决定原子呈电中性 电子数(Z 个)化学性质及最高正价和族序数体积小,运动速率高(近光速),无固定轨道核外电子 运动特征电子云(比喻) 小黑点的意义、小黑点密度的意义。
排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图2、三个基本关系(1)数量关系:质子数 = 核电荷数 = 核外电子数(原子中) (2)电性关系:①原子中:质子数=核电荷数=核外电子数②阳离子中:质子数>核外电子数 或 质子数=核外电子数+电荷数 ③阴离子中:质子数<核外电子数 或 质子数=核外电子数-电荷数 (3)质量关系:质量数 = 质子数 + 中子数二 原子核外电子排布规律决定 X)(A Z三相对原子质量定义:以12C原子质量的1/12(约1.66×10-27kg)作为标准,其它原子的质量跟它比较所得的值。
其国际单位制(SI)单位为1,符号为1(单位1一般不写)原子质量:指原子的真实质量,也称绝对质量,是通过精密的实验测得的。
如:一个氯原子的m(35Cl)=5.81×10-26kg。
核素的相对原子质量:各核素的质量与12C的质量的1/12的比值。
一种元素有几种同位素,就应有几种不同的核素的相对原子质量,相对诸量如35Cl为34.969,37Cl为36.966。
原子比较核素的近似相对原子质量:是对核素的相对原子质量取近似整数值,数值上与该质量核素的质量数相等。
如:35Cl为35,37Cl为37。
元素的相对原子质量:是按该元素各种天然同位素原子所占的原子个数百分比算出的平均值。
如:Ar(Cl)=Ar(35Cl)×a% + Ar(37Cl)×b%元素的近似相对原子质量:用元素同位素的质量数代替同位素相对原子质量与其原子个数百分比的乘积之和。
高中化学《选修三物质结构与性质》知识归纳选修三《物质结构与性质》是高中化学课程中的一本重要教材。
本书主要介绍了物质的结构与性质的关系,以及有机化合物、配位化学、无机材料等内容。
下面是关于该教材的知识归纳。
第一章物质的结构和性质1.物质的微观结构:原子、离子和分子是物质的微观结构。
2.物质的宏观性质:密度、熔点、沸点、导电性、导热性、溶解性等是物质的宏观性质。
3.物质的宏观性质与微观结构的关系:物质的性质与其微观结构相关,如金属的导电性、晶体的硬度等。
第二章有机化合物的结构和性质1.有机化合物的元素组成:有机化合物主要由碳、氢和少量氧、氮、硫等元素组成。
2.有机化合物的结构:有机化合物由分子构成,分子由原子通过共价键连接。
3.有机化合物的性质:有机化合物具有燃烧性、酸碱性、氧化还原性、流动性、挥发性等特性。
4.有机物的分类:根据分子中所含的官能团,有机物可分为醇、酮、醛、酸、酯、醚、芳香化合物等不同类型。
第三章有机反应与有机合成1.有机反应的定义:有机反应是指有机化合物在适当条件下发生变化,形成具有新性质的有机化合物。
2.脱水反应:脱水反应是指有机化合物中的水分子与有机分子发生反应,生成新的有机化合物。
3.氢化反应:氢化反应是指有机化合物中的氢气与有机分子发生反应,生成新的有机化合物。
4.酸碱催化:酸碱催化是指在酸碱存在的条件下,有机化合物的反应速率增加。
第四章金属配合物1.配位化合物的概念:配位化合物是指由一个或多个给体与一个或多个受体之间通过配位键结合形成的化合物。
2.配位键:配位键是指由配体中的一个或多个电子对与金属离子形成的共价键。
3.配位数:配位数是指一个金属离子周围配位体的数目。
4.配位化合物的性质:配位化合物具有明显的颜色、溶解度、稳定性等特性。
第五章无机材料1.无机材料的分类:无机材料可分为金属材料、非金属材料和无机非金属材料。
2.无机材料的性质:金属材料具有导电性、延展性、塑性等特性;非金属材料主要用于绝缘材料、陶瓷材料等;无机非金属材料具有耐高温、耐腐蚀等特性。
高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
第一章原子结构与性质课标要求1.了解原子核外电子的能级分布,能用电子排布式表示常见元素的(1~36号)原子核外电子的排布。
了解原子核外电子的运动状态。
2.了解元素电离能的含义,并能用以说明元素的某种性质3.了解原子核外电子在一定条件下会发生跃迁,了解其简单应用。
4.了解电负性的概念,知道元素的性质与电负性的关系。
要点精讲一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。
能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。
说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。
也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。
(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。
比如,p3的轨道式为或,而不是。
洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。
物质结构与性质知识点大全原子核外电子排布原理1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。
这种电子云轮廓图称为原子轨道。
【特别提示】(1)任一能层的能级总是从s能级开始,而且能级数等于该能层序数。
(2)以s、p、d、f……排序的各能级可容纳的最多电子数依次为1、3、5、7……的二倍。
(3)构造原理中存在着能级交错现象。
由于能级交错,3d轨道的能量比4s轨道的能量高,排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。
(4)前四周期的能级排布(1s、2s、2p、3s、3p、4s、3d、4p)。
第一能层(K),只有s能级;第二能层(L),有s、p两种能级,p能级上有三个原子轨道p x、p y、p z,它们具有相同的能量;第三能层(M),有s、p、d三种能级。
(5)当出现d轨道时,虽然电子按ns,(n-1)d,np顺序填充,但在书写电子排布式时,仍把(n-1)d放在ns前。
(6)在书写简化的电子排布式时,并不是所有的都是[X]+价电子排布式(注:X 代表上一周期稀有气体元素符号)。
2.基态原子的核外电子排布(1)能量最低原理电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。
如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图。
注意:所有电子排布规则都需要满足能量最低原理。
(2)泡利原理每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
(3)洪特规则。
高中化学选修3重要知识点总结关于高中化学选修3重要知识点总结高中的化学课本包括必修和选修,选修课本的知识通常是一些重点难点知识的拓展,我们现在学习化学的时候,选修三的内容是不能轻视的。
下面是店铺为大家整理的高中化学必备的知识点,希望对大家有用!高中化学选修3重要知识点总结1(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f < (n-1)d(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
高中化学物质结构与性质知识点总结一、原子结构与元素周期律1. 原子组成:原子由原子核和核外电子组成。
原子核包含质子和中子,质子带正电,中子不带电。
核外电子围绕原子核运动,形成电子云。
2. 电子排布规律:电子按照能量层次和亚层分布,遵循奥布定律(泡利不相容原理、洪特规则)进行排布。
最低能量原理指导电子优先填充能量最低的轨道。
3. 元素周期表:元素按照原子序数(质子数)递增排列的表格,分为7个周期和18个纵行(族)。
元素周期表反映了元素的周期律和族律。
4. 元素周期律:元素的性质随着原子序数的增加呈现周期性变化。
同一周期内,元素的原子半径逐渐减小,电负性逐渐增大;同一族内,元素的化学性质具有相似性。
二、化学键与分子结构1. 化学键的形成:化学键是由原子间相互作用形成,主要包括离子键、共价键和金属键。
2. 离子键:正负离子之间的静电吸引力。
通常由活泼金属和活泼非金属元素之间形成。
3. 共价键:两个或多个非金属原子之间通过共享电子对形成的键。
共价键可以是单键、双键或三键,键的强度和性质与电子对的共享方式有关。
4. 分子的几何结构:分子中原子的空间排布。
分子的几何结构影响其物理和化学性质。
例如,水分子呈弯曲结构,二氧化碳分子呈线性结构。
5. 分子间力:分子间的相互作用力,包括氢键、范德华力等。
这些力量影响物质的熔点、沸点和溶解性等物理性质。
三、晶体结构1. 晶体的类型:晶体分为分子晶体、原子晶体、离子晶体和金属晶体。
不同类型的晶体具有不同的物理和化学性质。
2. 晶体的构造:晶体由原子、离子或分子按照一定的规律排列而成。
晶体的构造决定了其对称性和物理性质。
3. 晶体缺陷:晶体中的不完美之处,如空位、位错等。
晶体缺陷会影响材料的强度、导电性和光学性质。
四、酸碱与氧化还原反应1. 酸碱理论:布朗斯特-劳里酸碱理论认为,凡是能够给出质子的物质为酸,能够接受质子的物质为碱。
2. 酸碱性质:酸性物质具有释放质子的能力,碱性物质具有接受质子的能力。
高中化学选修三知识点总结:原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。
能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。
说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。
也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。
(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则。
洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中,全空状态的有4Be2s22p0、12Mg3s23p0、20Ca4s23d0;半充满状态的有:7N2s22p3、15P3s23p3、24Cr3d54s1、25Mn3d54s2、33As4s24p3;全充满状态的有10Ne2s22p6、18Ar3s23p6、29Cu3d104s1、30Zn3d104s2、36Kr4s24p6。
4.基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。
高中化学物质结构与性质知识点总结一、原子结构与周期表1. 原子结构原子是由质子、中子和电子组成的基本粒子。
质子和中子构成原子核,电子绕核运动。
质子带正电,中子不带电,电子带负电。
原子核的直径约为10^-15米,电子的轨道半径约为10^-10米,原子核的质量占整个原子的绝大部分。
2. 周期表周期表是根据元素的原子序数和元素周期律排列而成。
元素的周期表位置可以推测出该元素的原子结构和性质。
周期表也反映了不同元素之间的相似性和规律性。
二、分子结构与键1. 共价键共价键是化学键的一种,是由两个原子共享电子而形成的化学键。
共价键可以分为极性共价键和非极性共价键。
极性共价键是由两个不同电负性的原子间形成,使电子本身更倾向于位于电负性较高的原子周围,非极性共价键是由两个相同电负性的原子间形成。
2. 离子键离子键是由离子间的静电作用而形成的化学键。
通常由金属和非金属元素间形成。
3. 金属键金属键是金属元素间形成的化学键。
金属元素通常以离子形式排列,金属中的电子可以自由移动。
4. 其他键还有氢键、范德华力等其它类型的键。
三、物质的性质1. 物态物质可以存在于固态、液态和气态。
当温度或压力改变时,物质的物态也会发生改变。
2. 燃烧性燃烧性是物质在氧气中发生氧化反应并释放能量的性质。
3. 反应性物质在化学反应中的性质叫做反应性,可以通过物质的物态、颜色等来观察。
4. 溶解性溶解性是物质溶解于溶剂的能力,可以分为易溶性、难溶性和不溶性。
5. 导电性导电性是物质导电的能力,受物质的结构和性质影响。
6. 光学性物质在光线的照射下会发生反射、折射等光学现象。
7. 导热性导热性是物质传递热能的能力,受物质的结构和性质影响。
四、分子结构与物质性质的关系1. 结构与性质的关系分子的结构影响其化学物性。
分子之间的键合方式、原子间的电子分布等结构因素直接影响物质的性质。
2. 形成分子模型使用Lewis结构、VSEPR理论等模型对分子结构进行描述,可以预测其性质。
一、原子结构和元素性质方面1. 原子一般由质子、中子和核外电子构成。
但却只由质子和电子构成。
2. 金属元素原子的最外层电子数一般小于4,而非金属元素原子的最外层电子数一般大于或等于4。
但H、He、B的最外层电子数均小于4,其中H、B为非金属元素,而He为稀有气体元素;虽然Ge、Sn、Pb、Bi的最外层电子数均大于或等于4,但它们却为金属元素。
3. 稀有气体元素原子的最外层一般为8个电子的稳定结构。
但He的最外层为2个电子的稳定结构。
4. 主族元素的原子得失电子所形成的阴阳离子最外层一般具有8个电子的稳定结构。
但对核外只有一个电子层的离子来说,最外层却只有2个电子,如;而则是一个氢原子核。
5. 含金属元素的离子一般为阳离子。
但也存在某些阴离子,如等。
6. 只含非金属元素的离子一般为阴离子。
但也存在某些阳离子,如等。
7. 一种非金属元素一般形成一种阴离子。
但氧元素形成的离子除,还有。
8. 主族元素的最高化合价一般等于原子的最外层电子数。
但氟元素和氧元素的最高化合价却都不等于原子的最外层电子数,其中氟元素的最高化合价为0价(氟无正价),而氧的最高价为+2价(在OF2中)。
9. 氢元素在化合物中一般为+1价。
但在金属氢化物中却为-1价。
10. 氧元素在化合物中一般为-2价。
但在过氧化物(如等)中为-1价;在OF2中为+2价。
11. 对于对应阴阳离子具有相同的电子层结构的金属元素和非金属元素而言,金属元素的最高化合价一般低于非金属元素的最高化合价。
而和虽然电子层结构相同。
但钠、镁、铝的最高价(分别为+1、+2、+3价)却高于氟的最高价(0价)。
12. 原子的相对原子质量一般为保留一定位数的小数有效数字。
但12C的相对原子质量却为整数,并且是精确值。
13. 某原子的相对原子质量一般并不等同于对应元素的相对原子质量。
但对于某些只有一种核素的元素而言,原子的相对原子质量就是元素的相对原子质量,如:钠元素就只有一种核素,因此,Na原子的相对原子质量就是钠元素的相对原子质量。
化学选修三重点知识第一章原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。
能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。
说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。
也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。
(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(P a u l i)原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(H u n d)规则。
比如,p3的轨道式为或,而不是。
洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中,全空状态的有4B e2s22p0、12M g3s23p0、20C a4s23d0;半充满状态的有:7N2s22p3、15P3s23p3、24C r3d54s1、25M n3d54s2、33A s4s24p3;全充满状态的有10N e2s22p6、18A r3s23p6、29C u3d104s1、30Z n3d104s2、36K r4s24p6。
4.基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。
《原子结构与性质》知识清单一、原子结构1.在1911年前后,新西兰出生的物理学家卢瑟福把一束变速运动的α粒子(质量数为4的带2个正电荷的质子粒)射向一片极薄的金箔,他惊奇地发现,过去一直认为原子是―实心球‖,而这种―实心球‖紧密排列而成的金箔,竟为大多数α粒子畅通无阻的通过,就像金箔不在那儿似的,但也有极少数的。
粒子发生偏转,或被笔直地弹回。
根据以上实验现象能得出关于金箔中Au原子结构的一些结论,试写出其中的三点①______________________ ____________________________②_______________________________ ___________________③__________________________ _______________________1.能层与能级2.有A、B、C、D四种单质,在一定条件下,A、B、C与D分别发生化合反应,相应的生成X、Y、Z (X、Y、Z 每个分子中都含有10个电子),而B和C 发生化合反应生成W,另外又知这些单质化合物之间发生如下反应:①A+Y–→B+X, ②B+Z—→Y+W ③Z+W—→C+Y , 试回答下列问题:(1)单质D和化合物X、Y、Z、W的化学式是(2)反应①②③的化学方程式是①②③2.构造原理,能量最低原理、基态与激发态、光谱3.已知锰的核电荷数为25,以下是一些同学绘制的基态锰原子核外电子的轨道表示式(即电子排布图),其中最能准确表示基态锰原子核外电子运动状态的是()A B C D⑴、构造原理⑵、电子排布式⑶、简化的电子排布式电子排布式中的内层电子排布可用相应的稀有气体的元素符号加方括号来表示,以简化电子排布式。
如把钠的电子排布式写成[Ne]3s1⑷、外围电子排布式在原子的核外电子排布式中,省去稀有气体外加方括号部分后剩下部分称为外围电子排布式,也叫价电子排布式。
如氯的电子排布式为1s22s22p63s23p5,其简化电子排布式为,外围电子排布式为4.请用元素符号填空:(1)A元素基态原子的最外层有3对成对电子,次外层有2个电子,A为______。
原子结构与性质一 原子结构 1、原子的构成中子N(核素)原子核 近似相对原子质量质子Z → 元素符号原子结构 决定原子呈电中性 电子数(Z 个)体积小,运动速率高(近光速),无固定轨道核外电子 运动特征电子云(比喻) 小黑点的意义、小黑点密度的意义。
排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图2、三个基本关系(1)数量关系:质子数 = 核电荷数 = 核外电子数(原子中) (2)电性关系:①原子中:质子数=核电荷数=核外电子数②阳离子中:质子数>核外电子数 或 质子数=核外电子数+电荷数 ③阴离子中:质子数<核外电子数 或 质子数=核外电子数-电荷数 (3)质量关系:质量数 = 质子数 + 中子数二 原子核外电子排布规律决定 X)(A Z三相对原子质量定义:以12C原子质量的1/12(约1.66×10-27kg)作为标准,其它原子的质量跟它比较所得的值。
其国际单位制(SI)单位为1,符号为1(单位1一般不写)原子质量:指原子的真实质量,也称绝对质量,是通过精密的实验测得的。
如:一个氯原子的m(35Cl)=5.81×10-26kg。
核素的相对原子质量:各核素的质量与12C的质量的1/12的比值。
一种元素有几种同位素,就应有几种不同的核素的相对原子质量,相对诸量如35Cl为34.969,37Cl为36.966。
原子比较核素的近似相对原子质量:是对核素的相对原子质量取近似整数值,数值上与该质量核素的质量数相等。
如:35Cl为35,37Cl为37。
元素的相对原子质量:是按该元素各种天然同位素原子所占的原子个数百分比算出的平均值。
如:Ar(Cl)=Ar(35Cl)×a% + Ar(37Cl)×b%元素的近似相对原子质量:用元素同位素的质量数代替同位素相对原子质量与其原子个数百分比的乘积之和。
注意①、核素相对原子质量不是元素的相对原子质量。
原子结构与性质知识点总结一、原子的基本组成原子是物质的最小单位,由原子核和电子组成。
原子核位于原子的中心,由质子和中子组成。
质子带正电荷,中子没有电荷。
电子位于原子核外部,带有负电荷。
二、核结构原子核的直径约为10^-14米,但它含有原子几乎所有的质量。
原子核的质量数为A,等于质子数Z和中子数N的和,即A=Z+N。
原子核的电荷数等于质子数Z,即原子核的电荷数等于原子中正电子的数目。
三、电子结构电子分布在原子核外部的空间中,遵循能量最低原则填充电子壳层。
电子壳层是原子核的轨道,具有不同的能量级别。
电子壳层分为K、L、M、N等壳层,其中K壳层能量最低,L壳层次之,以此类推。
每个壳层可以容纳不同数量的电子,即2n^2个电子,其中n为壳层的编号。
四、周期表元素周期表是化学元素系统的组织形式,将元素按照化学性质和原子结构进行排列。
周期表分为横向周期和纵向族。
横向周期代表原子核中质子数增加的顺序。
纵向族指的是具有相似化学性质的元素列。
五、元素性质元素的性质与其原子结构密切相关。
原子中质子数Z决定了元素的原子序数,而原子核外电子的排布则决定了元素的化学性质。
元素的性质包括物理性质和化学性质。
1.物理性质:物理性质是不改变物质化学组成的性质。
它们包括原子半径、电离能、电负性、金属性等。
原子半径指的是原子的大小,随着周期上升而减小,周期内从左到右逐渐减小,从上到下逐渐增大。
电离能是电子从原子中被移除所需的能量,随着周期上升而增大,周期内从左到右逐渐增大,从上到下逐渐减小。
电负性是原子对电子的吸引能力,随着周期上升而增大,周期内从左到右逐渐增大,从上到下逐渐减小。
金属性指的是元素在化合物中释放电子的能力,金属元素通常具有良好的导电性和导热性。
2.化学性质:化学性质是物质变化组成的性质。
它们包括元素周期表中元素的活动性和化合价等。
元素的活动性指的是元素与其他元素进行化学反应的倾向。
活动性依赖于元素的电子层结构和原子尺寸。
一.原子结构与性质。
一。
认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义。
1。
电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图。
离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。
2。
(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布。
(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述。
在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子。
(2)。
原子核外电子排布原理.①。
能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道。
②。
泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③。
洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性。
如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1。
(3).掌握能级交错图和1—36号元素的核外电子排布式。
①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序.②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高.基态原子核外电子的排布按能量由低到高的顺序依次排布。
at i me an dAl lh原子结构与性质一 原子结构1、原子的构成中子N (核素)原子核近似相对原子质量质子Z → 元素符号原子结构 电子数(Z 个)体积小,运动速率高(近光速),无固定轨道核外电子 运动特征小黑点的意义、小黑点密度的意义。
排布规律 → 电子层数表示方法 → 原子(离子)的电子式、原子结构示意图2、三个基本关系(1)数量关系:质子数 = 核电荷数 = 核外电子数(原子中)(2)电性关系:①原子中:质子数=核电荷数=核外电子数②阳离子中:质子数>核外电子数 或 质子数=核外电子数+电荷数③阴离子中:质子数<核外电子数 或 质子数=核外电子数-电荷数(3)质量关系:质量数 = 质子数 + 中子数二 原子核外电子排布规律1各电子层最多能容纳 2n 2 个电子即:电子层序号 1 2 3456 7代表符号 K L M N OPQ最多电子数 2 8 18 32 50 72 982最外层电子数目不超过 8 个(K 层为最外层时不超过2个)。
3次外层电子数最多不超过 18 个,倒数第三层不超过 32 个。
4核外电子总是尽先排满能量最低、离核最近的电子层,然后才由里往外,依次排在能量较高,离核较远的电子层。
核外电子排布规律注意事项1.以上几点是相互联系的,不能孤立地理解,必须同时满足各项要求。
2.上述乃核外电子排布的初步知识,只能解释1~18号元素的结构问题,若要解释更多问题,有待进一步学习核外电子排布所遵循的其它规律。
X)(A Zan dAl l th i n三 相对原子质量定义:以12C 原子质量的1/12(约1.66×10-27kg )作为标准,其它原子的质量跟它比较所得的值。
其国际单位制(SI )单位为1,符号为1(单位1一般不写)原子质量:指原子的真实质量,也称绝对质量,是通过精密的实验测得的。
如:一个氯原子的m(35Cl)=5.81×10-26kg 。
核素的相对原子质量:各核素的质量与12C 的质量的1/12的比值。
一种元素有几种同位素,就应有几种不同的核素的相对原子质量,相对诸量如35Cl 为34.969,37Cl 为36.966。
原子比较核素的近似相对原子质量:是对核素的相对原子质量取近似整数值,数值上与该质量核素的质量数相等。
如:35Cl 为35,37Cl 为37。
元素的相对原子质量:是按该元素各种天然同位素原子所占的原子个数百分比算出的平均值。
如:Ar(Cl)=Ar(35Cl)×a% + Ar(37Cl)×b%元素的近似相对原子质量:用元素同位素的质量数代替同位素相对原子质量与其原子个数百分比的乘积之和。
注意 ①、核素相对原子质量不是元素的相对原子质量。
②、通常可以用元素近似相对原子质量代替元素相对原子质量进行必要的计算。
四 微粒半径的大小比较和10电子、18电子微粒1.原子半径和离子半径原子半径 1.电子层数相同时(同周期元素),随原子序数递增,原子半径减小 例:Na >Mg >Al >Si >P >S >Cl 2.最外层电子数相同时(同主族元素),随电子层数递增原子半径增大。
例:Li <Na <K <Rb <Cs离子半径1.同种元素的离子半径:阴离子大于原子,原子大于阳离子,低价阳离子大于高价阳离子。
例:Cl ―>Cl ,Fe >Fe 2+>Fe 3+2.电子层结构相同的离子,核电荷数越大,半径越小。
例:O 2―>F ―>Na +>Mg 2+>Al 3+3.带相同电荷的离子(同主族元素的离子),电子层越多,半径越大。
例:Li +<Na +<K +<Rb +<Cs +;O 2―<S 2―<Se 2―4.带电荷、电子层均不同的离子可选一种离子参照比较。
例:比较K +与Mg 2+可选Na +或Ca 2+为参照可知K +>Na +(或Ca 2+)>Mg 2+2.10电子的微粒:(1)分子: Ne 、CH 4、NH 3、H 2O 、HF ;(2)离子: Na +、Mg 2+、Al 3+、NH 4+、NH 2-、H 3O +、OH -、O 2-、F - 。
3.18电子的微粒:2.(1)(1)分子: Ar 、SiH 4、PH 3、H 2S 、HCl 、CH 3CH 3、N 2H 4、H 2O 2、F 2、CH 3OH 、CH 3F 等;(2)离子: S 2-、Cl -、K +、Ca 2+、HS - 。
t i me an dAl l t h 记忆10电子微粒的方法:首先找出10电子的原子(单原子分子)Ne ,然后向前寻找非金属元素对应的氢化物:CH 4~HF ,向后寻找金属形成的阳离子:Na +~Al 3+。
在氢化物的基础上增加或减少H +,可构成一系列的离子。
记忆18电子的微粒方法:首先找出18电子的原子(单原子分子)Ar ,然后向前寻找非金属元素对应的氢化物:SiH 4~HCl ,向后寻找金属形成的阳离子:K +~Ca 2+。
在氢化物的基础上减少H +,可构成一系列的离子。
还有部分18电子的分子可通过10电子的氢化物分析得到,10电子的氢化物分子去掉一个H 得到9电子的基团:—CH 3、—NH 2、—OH 、—F ,这些基团两两结合可形成18电子的分子。
元素周期律与元素周期表一 元素周期表的结构元素周期表的结构位置与结构的关系周期序数元素的种数第一周期① 2种 第二周期② 8种 短周期第三周期③8种第四周期④ 18种 第五周期⑤ 18种 第六周期⑥ 32种 周期长周期第七周期⑦ 32种(如果排满) 1.周期序数= 电子层数 2.对同主族元素若n≤2,则该主族某一元素的原子序数与上一周期元素的原子序数的差值为上一周期的元素种数。
若n≥3,则该主族某一元素的原子序数与上一周期元素的原子序数的差值为该周期的元素种数。
主族ⅠA 族~ⅦA 族由长周期和短周期元素共同构成的族最外层电子数= 主族族数 =价电子数零 族最外层电子数均为8个(He 为2个除外)副族IB 族~ⅦB 族只由长周期元素构成的族最外层电子数一般不等于族序数(第ⅠB 族、ⅡB 族除外);最外层电子数只有1~2个。
族第Ⅷ族有三列元素(8、9、10三个纵行)二 元素周期律涵 义元素性质随着元素原子序数的递增而呈周期性变化。
实 质元素的性质随着原子序数的递增而呈现周期性变化核外电子排布最外层电子数由1递增至8(若K 层为最外层则由1递增至2)而呈现周期性变化。
原子半径原子半径 由大到小 (稀有气体元素除外)呈周期性变化。
原子半径由电子层数和核电荷数多少决定,它是反映结构的一个参考数据。
主要化合价最高正价由 +1 递变到 +7 ,从中部开始(IVA 族)有负价,从 -4 递变至 -1 。
(稀有气体元素化合价为零), 呈周期性变化。
元素主要化合价由元素原子的最外层电子数决定,一般存在下列关系:最高正价数=最外层电子数,非金属元素的负价= 8-最外层电子数 。
元素及化合物的性质金属性 逐渐减弱 ,非金属性 逐渐增强 ,最高氧化物对应的水化物的碱性逐渐减弱 ,酸性 逐渐增强 ,呈周期性变化。
这是由于在一个周期内的元素,电子层数相同,最外层电子数逐渐增多,核对外层电子引力渐强,使元素原子失电子渐难,得电子渐易,故有此变化规律。
大小、单质金属性和非金属性强弱等,我们首先可以确定出元素的相对位置为,则问题容易解决。
三元素金属性和非金属性强弱的判断方法和规律1.根据元素周期表的知识进行判断①同一周期,从左到右,随着原子序数的递增,元素的金属性逐渐减弱,非金属性逐渐增强。
元素周期表中最活泼的金属是Fr,天然存在的最活泼的金属是Cs;最活泼的非金属元素是F。
②同一主族,从上到下,随着原子序数的递增,元素的金属性逐渐增强,非金属性逐渐减弱。
元素周期表左边为活泼的金属元素,右边为活泼的非金属元素;中间的第VIA、VA族则是从非金属元素过渡到金属元素的完整的族,它们的同族相似性甚少,但具有十分明显的递变性。
2.根据元素的单质及其化合物的性质进行判断。
(1)金属性强弱判断原则①根据单质与水(或酸)反应,置换出水(或酸)中的氢的难易程度来判断:一般地,能与水反应产生氢气的金属元素的金属性比不能与水反应的金属元素的强,与冷水反应产生氢气的金属元素的金属性比只能与热水反应产生氢气的金属元素的强。
②根据元素的最高价氧化物对应的水化物的碱性强弱来判断:一般地,元素的最高价氧化物对应的水化物的碱性越强,则对应的金属元素的金属性就越强。
反之,则越弱。
③根据置换反应进行的方向来判断:一般是“强”置换“弱”。
④根据金属元素的单质的还原性(或离子的氧化性)来判断:一般情况下,金属阳离子的氧化性越强,则对应的金属单质的还原性越弱,金属元素的金属性也就越弱。
⑤根据原电池的正、负极及金属腐蚀的难易程度来判断:一般地,负极为金属性强的元素的单质,容易腐蚀。
(2)非金属性强弱判断原则①根据单质与H2反应生成气态氢化物的剧烈程度或生成的气态氢化物的稳定性强弱来判断:一般地,单质与H2反应生成气态氢化物越容易,或反应生成的气态氢化物越稳定,则对应的非金属元素的非金属性越强;反之,则越弱。
②根据元素最高价氧化物对应的水化物的酸性强弱来判断:一般地,元素的最高价氧化物对应的水化物的酸性越强,则对应的非金属元素的非金属性就越强。
反之,则越弱。
③根据置换反应进行的方向来判断:一般是“强”置换“弱”。
④根据非金属单质的氧化性(或离子的还原性)强弱来判断:一般情况下,非金属阴离子的还原性越强,则对应的非金属单质的氧化性越弱,非金属性元素的非金属性也就越弱。
⑤根据与同一种金属反应,生成化合物中金属元素的化合价的高低进行判断。
例如:点燃,2Cu+S=Cu2S,即得非金属性:Cl2>S。
Cu Cl CuCl22at h i ng si nt hod 四 元素“位—构—性”之间的关系化学键一 化学键类型1.化学键的类型化学键类型离子键共价键金属键概念阴阳离子间通过静电引力作用所形成的化学键原子间通过共用电子对所形成的化学键金属阳离子与自由电子间通过相互作用而形成的化学键成键微粒阴阳离子原子金属阳离子和自由电子成键性质静电作用共用电子对电性作用形成条件活泼金属与活泼的非金属元素非金属与非金属元素金属内部实例NaCl 、MgOHCl 、H 2SO 4Fe 、Mg 2.共价键的类型非极性键极性键概念同种元素原子形成的共价键,共用电子对没有发生偏移不同种元素原子形成的共价键,共用电子对发生偏移原子吸引电子能力相同不同m共用电子对不偏向任何一方偏向吸引电子能力强的原子成键原子电性电中性显电性形成条件由同种非金属元素组成由不同种非金属元素组成二 极性分子与非极性分子根据共价分子中电荷分布是否对称,正负电荷重心是否重合,整个分子电性是否出现“两极”,把分子分为极性分子和非极性分子。