2017年秋季学期新版新人教版八年级数学上学期15.3、分式方程同步练习47
- 格式:doc
- 大小:341.00 KB
- 文档页数:7
15.3《分式方程》一、单选题1.方程23x +=11x -的解为( ) A .x =3B .x =4C .x =5D .x =﹣5 2. 若关于x 的方程x−1x−3=m x−3−1无解,则m 的值为( )A.−3B.−1C.2D.−23. 分式方程x 2x -1+21-2x=3时,去分母化为一元一次方程,正确的是( ) A .x +2=3B .x -2=3C .x -2=3(2x -1)D .x +2=3(2x -1)4.对于实数a ,b ,定义一种新运算“”为:ab =3a 2-ab .若(-3)x =2,则x 的值为( ) A . -2 B . -52 C . 52 D . 725. 解分式方程1−x x−2+2=12−x 的结果是( )A.x =2B.x =3C.x =4D.无解 6. 若关于x 的方程x+2x -2=m x -2有增根,则m 的值与增根x 的值分别是 ( ) A .-4,2 B .4,2C .-4,-2D .4,-2 7.已知关于x 的分式方程m x−1+31−x =1的解是非负数,则m 的取值范围是( )A .m >2B .m≥2C .m≥2且m≠3D .m >2且m≠38.若关于x 的方程2x +a x -2=-1的解为正数,则a 的取值范围是( ) A . a >2且a ≠-4 B . a <2且a ≠-4C . a <-2且a ≠-4D . a <29. 分式方程2x−1+x+21−x =3的解是()A.x =−1B.x =74C.x =−3D.x =34 10. 某施工队铺设一条长96米的管道,开工后每天比原计划多铺设2米,结果提前4天完成任务,求实际每天铺设管道的长度和实际施工的天数.琪琪同学根据题意列出方程:96x -96x+2=4.则方程中的未知数x 表示 ( )A .实际每天铺设管道的长度B .原计划每天铺设管道的长度C .实际铺设管道的天数D .原计划铺设管道的天数 二、填空题11.分式方程1201x x-=-的解是_____. 12. 若式子1x -2和32x +1的值相等,则x =________. 13.当x =______时,分式15-x 与分式22-3x的值互为相反数. 14. 若分式方程x 2x−5+b 5−2x =1的解为x =3,则b 的值为________.15. 拓广应用已知关于x 的分式方程k x +1+x +k x -1=1的解为负数,则k 的取值范围是________________.16.若关于x 的方程3x +6x -1=mx +m x 2-x无解,则m =______. 三、解答题17.解分式方程:(1)1x x -﹣1=3 (2)=.(3)﹣1= (4)=118. 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比每本软面笔记本贵1.2元,则小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比每本软面笔记本贵a 元,是否存在正整数a ,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a 的值;若不存在,请说明理由.19.若关于x 的分式方程3-2x x -3+nx -2x -3=-1无解,求n 的值.20. 某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同. (1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。
人教版八年级数学上册《15.3 分式方程》练习题-附带有答案一、选择题1.下列关于x 的方程:①x−12=5 ,②1x =4x−1 ,③1x (x −1)+x =1 ,④x a =1b−1 中,分式方程有( ) A .4个B .3个C .2个D .1个 2.若分式 x 3x+4 的值为1,则x 的值是( )A .1B .2C .-1D .-2 3.解方程 1+2x−1=x−5x−3 时,去分母得( )A .(x −1)(x −3)+2(x −3)=(x −5)(x −1)B .(x −1)(x −3)+2(x −3)=(x +5)C .1+2(x −3)=(x −5)(x −1)D .(x −3)+2(x −3)=x −5 4.分式方程 3x−2=1 的解是 ( )A .x =5B .x =1C .x =−1D .x =2 5.关于x 的方程 m−1x−1+x 1−x =0 有增根,则m 的值是( )A .2B .1C .0D .-1 6.若关于x 的方程2x+m x−2+x−12−x =3的解是非负数,则m 的取值范围为( ) A .m ≤-7且m ≠-3B .m ≥-7且m ≠-3C .m ≤-7D .m ≥-77.一艘轮船在两个码头之间航行,顺水航行81km 所需的时间与逆水航行69km 所需的时间相同.已知水流速度是速度2km/h ,则轮船在静水中航行的速度是( )A .25km/hB .24km/hC .23km/hD .22km/h 8.若整数a 使关于y 的不等式组{2y−53≤y −13a −y +3≥0至少有3个整数解,且使得关于x 的分式方程3x(x−1)−a 1−x =2x 的解为正数,则所有符合条件的整数a 的和为( )A .-6B .-9C .-11D .-14 二、填空题9.关于x 的方程x−a x−1=12的解是x =3,则a = .10.当x = 时,分式32−x 比x−1x−2大2.11.若关于x 的方程1x−1+2x+m 1−x =1有增根,则m 的值是 . 12.若关于x 的分式方程2x−m x+1 =3的解是负数,则字母m 的取值范围是 .13.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224 000元,购买B型计算机需要240 000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三、解答题14.解方程:(1)3x =2x−2(2)2x2x−1+51−2x=315.冬季来临,某商场预购进一批毛衣.用9600元先购进一批毛衣,面市后因供不应求,商场决定又用16800元再次购进这批毛衣,所购数量是第一批购进量的2倍,但单价便宜了10元.该商场第一次购进这批毛衣的数量是多少?16.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?17.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?参考答案1.C2.D3.A4.A5.A6.B7.A8.C9.210.2311.-112.m>-3且m≠-213.240000x =224000x−40014.(1)解:3x =2x−23(x-2)=2x3x-6=2x3x-2x=6x=6经检验,x=6是原方程的解.(2)解:2x2x−1+51−2x=32x-5=3(2x-1)2x-6x=5-3-4x=2x=−12.经检验,x=−12是原方程的解.15.解:设该商场第一次购进这批毛衣的数量是x件,则第二次购进这批毛衣的数量是2x件根据题意,得:9600x −168002x=10解得:x=120经检验,x=120是所列方程的解答:该商场第一次购进这批毛衣的数量是120件.16.(1)解:设动漫公司第一次购x套玩具,由题意得:=10解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套(2)解:设每套玩具的售价y元,由题意得:≥20%解这个不等式,y≥200答:每套玩具的售价至少是200元17.(1)解:设每台空调的进价为m元,每台电冰箱的进价为元.根据题意得解得经检验符合题意故每台空调进价为1600元,电冰箱进价为2000元;(2)解:设购进电冰箱x台,则进购空调台解得:∵购进空调数量不超过电冰箱数量的2倍解得∵为正整数、35、36、37、38、39、40 共有七种合理的购买方案。
人教版八年级数学上册《15.3分式方程》同步练习题-带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.方程的解为()A.B.C.D.2.有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为x kg,由题意可列方程()A.B.C.D.3.随着快递业务量的增加,某快递公司为快递物品更换快捷的交通工具,公司投递快件的能力由每天300件提高到420件,平均每人每天比原来多投递8件,若快递公司的快递员人数不变,求原来平均每人每天投递快件多少件?设原来平均每人每天投递快件x件,根据题意列方程为()A.B.C.D.4.“五一劳动节”期间,某校开展了以“劳动光荣”以主题的教育活动,该校组织全校教师和部分学生去郊区植树,已知老师平均每小时比学生多植5棵,且老师植树60棵所需的时间与学生植树45棵所需的时间相同,老师平均每小时植树()A.10棵B.15棵C.20棵D.25棵5.解分式方程时,去分母正确的是()A.B.C.D.6.已知关于x的分式方程的解是非正数,则m的取值范围是()A.B.C.D.7.关于的方程会产生增根,则的值为()A.0 B.-4 C.0或-4 D.-4或68.若关于x的一元一次不等式组的解集为,且关于y的分式方程的解是负整数,则所有满足条件的整数a的值之和是()A.-26 B.-24 C.-15 D.-13二、填空题:(本题共5小题,每小题3分,共15分.)9.方程的解为.10.某物流仓储公司用A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为.11.已知关于x的方程的解是正数,则m的取值范围为:.12.我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用率,某住宅小区安装了循环用水装置.经测算,原来天用水吨,现在这些水可多用4天,现在每天比原来少用水吨.13.一项工程需在规定日期内完成,如果甲队单独做,就要超规定日期1天,如果乙队单独做,就要超过规定日期4天,现在由甲、乙两队共做3天,剩下的工程由乙队单独做,刚好在规定日期完成,则规定日期为天.三、解答题:(本题共5题,共45分)14.解分式方程(1);(2)15.A、B两地相距480km,甲、乙两人同时从A地匀速驶往B地,已知甲的行驶速度是乙的行驶速度的1.2倍,甲比乙提前1h到达B地,求甲、乙两人的行驶速度各是多少?16.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗,还可以通过运动做公益(如图).对比手机数据发现小强步行15000步与小丽步行11000步消耗的能量相同.若每消耗1千卡能量小强行走的步数比小丽多20步,求小丽,小强每消耗1千卡能量各需要行走多少步.17.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?18.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)分别求出每个甲种配件、每个乙种配件的价格为多少万元?(2)现投入资金40万元,根据维修需要预测,甲种配件要比乙种配件至少多25件,乙种配件最多可购买多少件?参考答案:1.B 2.C 3.D 4.C 5.C 6.A 7.D 8.D9.10.=11.m>﹣3且m≠﹣212.13.814.(1)解:方程两边同乘得:去括号得:解得:检验:当时所以是增根,原方程无解(2)解:方程的两边同乘(1−x)(1+x)得:2(1+x)+(1−x)(1+x)=x(1−x)解得:x=−3.检验:把x=−3代入(1−x)(1+x)=−8≠0.∴原方程的解为:x=−3.15.解:设乙的行驶速度为xkm/h,则甲的行驶速度为1.2xkm/h,由题意可得:解得: x=80经检验,x = 80是分式方程的根,且符合题意所以1.2x = 96.答:甲的行驶速度为96km/h,乙的行驶速度为80km/h.16.解:设小丽每消耗1千卡能量需要走x步,则小强走(x+20)步.根据题意得.=解得x=55经检验x=55是原方程的解x+20=75答:每消耗1千卡能量,小丽走55步,小强走75步.17.(1)解:设每个足球x元,每个篮球(2x-30)元根据题意得:解得x=60经检验x=60是方程的根且符合题意2x-30=90答:每个足球60元,每个篮球90元(2)解:设买篮球m个,则买足球(200-m)个由题意得:解得 .∵ m为正整数,∴最多购进篮球116个18.(1)解:设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元根据题意得:解得:x=1.2经检验,x=1.2是原分式方程的解∴x﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)解:设购买甲种配件m件,购买乙种配件n件根据题意得:0.8m+1.2n=40∴m=50﹣1.5n.∵m﹣n≥25∴50﹣1.5n﹣n≥25∴n≤10∵m,n均为非负整数∴n的最大值为10.答:乙种配件最多可购买10件。
人教版八年级数学上册第十五章15.3.1 分式方程及其解法 同步练习题一、选择题1.下列是分式方程的是(D)A.x x +1+x +43B.x 4+x -52=0C.34(x -2)=43xD.1x +2+1=0 2.解分式方程1-x x -2=12-x-2时,去分母变形正确的是(D) A.-1+x =-1-2(x -2) B.1-x =1-2(x -2)C.-1+x =1+2(2-x)D.1-x =-1-2(x -2)3.方程23x -1=3x的解为(C) A.x =311 B.x =113 C.x =37 D.x =734.解分式方程1x -1+1=0,正确的结果是(A) A.x =0 B.x =1 C.x =2 D.无解5.对于非零的两个实数a ,b ,规定a ⊕b =1b -1a,若2⊕(2x-1)=1,则x 的值为(A) A.56 B.54 C.32 D.-166.已知关于x 的分式方程2x -m x -3=1的解是非正数,则m 的取值范围是(A) A.m ≤3B.m <3C.m >-3D.m ≥-3二、填空题7.下列关于x 的方程:①23x 2=1;②2π-x 2=1;③23x =x ;④1x -2+3=x -1x -2;⑤1x=2,其中是分式方程的是③④⑤.(填序号)8.已知关于x 的方程10x +k -3x =1的解为x =3,则k =2.9.若式子x -2x -4的值是2,则x =6. 10.若关于x 的分式方程x +m x -2+2m 2-x=3的解为正实数,则实数m 的取值范围是m <6且m≠2. 11.当a =17时,关于x 的方程ax a -1-2x -1=1的解与方程x -4x=3的解相同. 三、解答题12.解分式方程:x x 2-4+2x +2=1x -2. 解:方程两边同乘(x +2)(x -2),得x +2(x -2)=x +2. 解得x =3.检验:x =3时,(x +2)(x -2)≠0. 所以原分式方程的解为x =3.13.解下列方程:(1)2x x -2=1-12-x; 解:方程两边同乘(x -2),得2x =x -2+1.解得x =-1.检验:当x =-1时,x -2≠0.所以原分式方程的解为x =-1.(2)23+x 3x -1=19x -3. 解:方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13.检验:当x =13时,9x -3=0. 因此x =13不是原方程的解. 所以原分式方程无解.14.解方程:6x -2=x x +3-1. 解:方程两边同乘(x -2)(x +3),得6(x +3)=x(x -2)-(x -2)(x +3).解得x =-43. 检验:当x =-43时,(x -2)(x +3)≠0. 所以原分式方程的解为x =-43. 15.解下列方程:(1)(宁夏中考)2x +2+1=x x -1; 解:方程两边同时乘(x +2)(x -1),得2(x -1)+(x +2)(x -1)=x(x +2).解得x =4.检验:当x =4时,(x +2)(x -1)=18≠0.∴原分式方程的根为x =4.(2)(广安中考)x x -2-1=4x 2-4x +4; 解:方程两边同时乘(x -2)2,得x(x -2)-(x -2)2=4.解得x =4.检验:当x =4时,(x -2)2=4≠0.∴原分式方程的根为x =4.(3)x +14x 2-1=32x +1-44x -2. 解:原方程可化为x +1(2x +1)(2x -1)=32x +1-22x -1. 两边同时乘(2x +1)(2x -1),得x +1=3(2x -1)-2(2x +1).解得x =6.检验:当x =6时,(2x +1)(2x -1)≠0.∴原分式方程的解为x =6.16.解关于x 的方程:m x -n x +1=0(m ≠n ≠0). 解:方程两边乘x(x +1),得m(x +1)-nx =0.解得x =-m m -n. 检验:当x =-m m -n时,x(x +1)≠0. 所以原分式方程的解为x =-m m -n . 17.如图,点A ,B 在数轴上,它们对应的数分别为-2,x x +1,且点A ,B 到原点的距离相等.求x 的值.。
人教版初二数学15.3 分式方程同步课时训练一、选择题1. 下列关于x的方程:+x=1,+===2,其中,分式方程有 ()A.1个B.2个C.3个D.4个2. 解分式方程+=,分以下四步,其中错误的一步是()A.最简公分母是(x-1)(x+1)B.方程两边乘(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=13. 把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2xC.x+4 D.x(x+4)4. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾所用的时间为x小时,根据题意可列出方程为()A.+=1B.+=C.+=D.+=15. [2018·益阳] 体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊速度的1.25倍,小进比小俊少用了40秒.设小俊的速度是x米/秒,则下列所列方程正确的是()A.40×1.25x-40x=800B.-=40C.-=40D.-=406. 若关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( ) A .-5 B .-8C .-2D .57.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A. -3B. -2C. -32D. 128. 若关于x 的方程=有增根,则m 的值与增根x 的值分别是( )A .-4,2B .4,2C .-4,-2D .4,-2二、填空题9. 分式方程5y -2=3y 的解为________.10. 若关于x 的方程ax +1x -1-1=0有增根,则a 的值为________.11. 若式子1x -2和32x +1的值相等,则x =________.12. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.13. 若分式方程x -ax +1=a 无解,则a 的值为________.14. 在正数范围内定义一种运算“※”,其规则为a ※b=+,如2※4=+=.根据这个规则求得x ※(-2x )=的解为 .15. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.16. 拓广应用已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是________________.三、解答题17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 解分式方程:(1)23+x3x-1=19x-3;(2)xx+2=2x-1+1;(3)7x2+x+3x2-x=6x2-1.19. 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比每本软面笔记本贵1.2元,则小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比每本软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.20. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版初二数学15.3 分式方程同步课时训练-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】B[解析] 由甲、乙两车合作1.2小时完成整个工作的一半,可得+=.5. 【答案】C [解析] 小进跑800米用的时间为秒,小俊跑800米用的时间为秒.∵小进比小俊少用了40秒, ∴所列方程是-=40.6. 【答案】A[解析] 分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x 的值,代入整式方程求出m 的值即可.具体的解答过程如下: 去分母,得3x -2=2x +2+m.由分式方程无解,得到x +1=0,即x =-1. 代入整式方程,得-5=-2+2+m. 解得m =-5. 故选A.7.【答案】B【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a ,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.8. 【答案】B二、填空题9. 【答案】y =-3[解析] 去分母,得5y =3y -6,解得y =-3.经检验,y =-3是分式方程的解. 则分式方程的解为y =-3.10.【答案】-1【解析】将方程两边同时乘以x -1,得ax +1-x +1=0,则(a -1)x +2=0,∵原方程有增根,∴x =1,将x =1代入(a -1)x +2=0中,得a -1+2=0,a =-1.11. 【答案】7 11.1512. 【答案】±1[解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解. 故答案为±1.13. 【答案】17 [解析] 由方程x -4x =3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x=3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.14. 【答案】x=[解析] x ※(-2x )=+=,即-=,解得x=.经检验,x=是原分式方程的解.15. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13. 检验:当x =13时,9x -3=0, 所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2), 得x(x -1)=2(x +2)+(x -1)(x +2). 解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0. 所以原分式方程的解为x =-12. (3)方程两边同乘x(x +1)(x -1),得16. 【答案】k>-12且k≠0 [解析] 去分母,得k(x -1)+(x +k)(x +1)=(x +1)(x -1).整理,得(2k +1)x =-1.因为方程kx +1+x +k x -1=1的解为负数,所以2k +1>0且x≠±1, 即2k +1>0且-12k +1≠±1. 解得k>-12且k≠0,即k 的取值范围为k>-12且k≠0. 故答案为k>-12且k≠0.三、解答题17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x +2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】x-1)+3(x+1)=6x.解得x=1.检验:当x=1时,x(x+1)(x-1)=0,所以x=1不是原方程的解.故原分式方程无解.19. 【答案】解:(1)设买每本软面笔记本花费x元,则买每本硬面笔记本花费(x+1.2)元.由题意,得=,解得x=1.6.经检验,x=1.6是原分式方程的解.此时==7.5(不符合题意),∴小明和小丽不能买到相同数量的笔记本.(2)存在.设买每本软面笔记本花费m元(1≤m≤12,且m为整数),则买每本硬面笔记本花费(m+a)元.由题意,得=,解得a=m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,==1.5(不符合题意).∴a的值为3或9.20. 【答案】解:(1)1(2)设该商品在乙商场的原价为x元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。
15.3 分式方程(时间:45分钟满分:100分)一、选择题(每题3分,共18分)1.下列方程不是分式方程的是( )2.(荆州中考)解分式方程时,去分母后可得到( ) A.x(2+x)-2(3+x)=1 B.x(2+x)-2=2+xC.x(2+x)-2(3+x)=(2+x)(3+x)D.x-2(3+x)=3+x 3.(毕节中考)分式方程3x =2x -1的解是( )A .x =-3B .x =-35C .x =3D .无解4.(德州中考)分式方程的解是( )A.x=1B.x=-1+5C.x=2D.无解5.(北海中考)北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是( ) A.210x +1.8=2101.5x B.210x -1.8=2101.5x C.210x +1.5=2101.8x D.210x -1.5=2101.8x6.(黑河中考)若关于x 的分式方程x x x m 2132=--+无解,则m 的值为( ) A.-1.5 B.1 C.-1.5或2D.-0.5或-1.5 二、填空题(每题4分,共16分)7.当x=___时,两分式44-x 与13-x 的值相等. 8.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产____台机器.9.今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为____元.10.(齐齐哈尔中考)若关于x 的分式方程22231--=-x a x x 有非负数解,则a 的取值范围是____. 三、解答题(共66分)11.(20分)解下列方程: (1)(舟山中考)x x +1-4x 2-1=1; (2)2x x -1+11-x =3; (3)5x -4x -3+13=6x +53x -9; (4)x x 2-4+2x +2=1x -2.12.(6分)已知关于x 的方程的根是x=1,求a 的值.13.(8分)(玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?14.(10分)(贺州中考)马小虎的家距离学校1 800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.15.(10分)(六盘水中考)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x 在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x 是多少?16.(12分)(济宁中考)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x 天完成,乙做另一部分用了y 天完成,其中x 、y 均为正整数,且x <46,y <52,求甲、乙两队各做了多少天?参考答案1.B2.C3.C4.D5.D6.D7.-88.2009.2 200 10.a ≥-34且a ≠32 11.(1)x=-3. (2)x=2. (3)x=2. (4)x =3. 12.-21. 13.排球的单价为50元,则篮球的单价为80元. 14.马小虎的速度是80米/分. 15.(1)设参赛学生人数有x 人,由题意得,x <200且x +45≥200,解得155≤x <200.答:参赛学生人数在155≤x <200范围内.(2)根据题意得,900x ×12=900x +45×15.解得x =180.经检验,x =180是原方程的解.答:参赛学生人数是180人.16.(1)设乙工程队单独完成这项工作需要x 天,由题意得30120+36(1120+1x )=1,解得x =80.经检验,x =80是原方程的解.答:乙工程队单独做需要80天完成.(2)∵甲队做其中一部分用了x 天,乙队做另一部分用了y 天,∴x 120+y 80=1,即y =80-23x.又∵y <52,∴80-23x<52.解得x>42.又∵x <46,∴42<x <46.∵x 、y 均为正整数,∴x =45,y =50.答:甲队做了45天,乙队做了50天.。
15.3 分式方程(2)一、选择题1.分式方程的解是( ) A . x =﹣3B .C . x =3D . 无解 2.分式方程0242=+-xx 的解是( ) . A.2-=x B. 0=x C.2=x D.无解3.下列说法中,错误的是 ( )A .分式方程的解等于0,就说明这个分式方程无解B .解分式方程的基本思路是把分式方程转化为整式方程C .检验是解分式方程必不可少的步骤D .能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解4.解分式方程22311x x x 时,去分母后变形为( )A .2+(x+2)=3(x-1)B .2-x+2=3(x-1)C .2-(x+2)=3(1- x )D . 2-(x+2)=3(x-1)5.关于x 的方程()a 1x 4x 3+=+的解是负数,则a 的取值范围是( ).A .aB .a <3C .a≥3D .a≤36.已知m=-1,则方程mx -1=m+x的解的情况是( ).A .有唯一的解B .有两个解C .无解D .任何有理数都是它的解7.若方程342(2)a x x x x =+--有增根,则增根可能为( ) A :0 B :2 C.0或2 D :1二、填空题9.方程012=++x x x 的解是_________________. 10.若代数式的值为零,则x= .11.分式方程的解为 . 12.分式方程21311x x x +=--的解是 . 13.若关于x 的方程211=--ax a x 的解是x=2,则a= ; 14.若分式方程21321-+=+-x a x 有增根,则a 的值是 . 15.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围是 . 16.若关于x 的分式方程的解为正数,那么字母a 的取值范围是 . 17.若关于x 的方程=+1无解,则a 的值是 .18.若关于x 的方程2x-2 +x+m 2-x=2有增根,则m 的值是 . 三、解答题19.解下列分式方程(1)313221x x +=-- (2)11222x x x -=---(3)271326x x x +=++; (4)xx x --=+-34231.20.设23111x A B x x ==+--,,当x 为何值时,A 与B 的值相等?21.当x 为何值时,分式x x --23的值比分式21-x 的值大3?22.已知关于的取值范围。
人教版八年级数学上册《15.3 分式方程》练习题-附参考答案一、选择题1.下列关于x的方程是分式方程的是()A.2+x5=3+x6B.x2−3=x3C.x−17+x=3D.35x=12.某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.600x−50=450xB.600x+50=450xC.600x =450x+50D.600x=450x−503.若关于x的分式方程x−3x−1=mx−1+2产生增根,则m的值为()A.−1B.−2C.1 D.24.解分式方程2x−1+x+21−x=3时,去分母后变形正确的是()A.2+(x+2)=3(x−1)B.2−(x+2)=3(1−x) C.2+(x+2)=3(1−x)D.2−(x+2)=3(x−1)6.关于x的方程2x+ax−1=1的解是正数,则a的取值范围是()A.a>−1B.a>−1且a≠0C.a<−1D.a<−1且a≠−27.若关于x的分式方程6x−1=x+3x(x−1)−kx无解,则k的取值是()A.k=−3B.k=−3或k=−5 C.k=1D.k=1或k=−58.已知x=1是方程m2−x −1x−2=3的解,那么实数m的值为()A.−2B.2 C.−4D.4整数a的值之积是()A.0 B.4 C.5 D.6二、填空题9.若关于x 的方程2x−2+2x−m 2−x=3有增根,则m 的值是 .10.若yx+y =12.则xy = .11.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .12.若关于x 的分式方程3xx−1=m1−x +4的解为正数,则m 的取值范围是 .13.为深入践行“绿水青山就是金山银山”的发展理念,我国绿色发展成就显著,在今年的植树造林活动期间,某苗圃公司第一天卖出一批小叶榄仁树苗共收款8000元,第二天又卖出同样的树苗收款17000元,所卖数量是第一天的2倍,售价比第一天每棵多了5元,第二天每棵树苗售价是 元. 三、解答题 14. 解方程. (1)x2x−1+21−2x =3; (2)4x 2−4−1x−2=0.15.某玩具店用2000元购进一批玩具,面市后,供不应求,于是店主又购进同样的玩具,所购的数量是第一批数量的3倍,但进价贵了4元,结果购进第二批玩具共用了6300元,若两批玩具的售价都是120元,且两批玩具全部售完,求该玩具店销售这两批玩具共盈利多少?16.某快餐店欲购进A 、B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多10元,且用120元购进的A 种型号的餐盘与用90元购进的乙餐盘的数量相同. (1)A 、B 两型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过3000元的前提购进A .B 两种型号的餐盘80个,求最多购进A 种型号餐盘多少个?17.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元. (1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有哪几种方案?参考答案1.C 2.B 3.B 4.D 6.D 7.B 8.BD9.2 10.111.120x =180x+312.m>−4且m≠−313.8514.(1)解:原方程去分母得:x﹣2=3(2x﹣1)去括号得:x﹣2=7x﹣3移项,合并同类项得:﹣5x=﹣4系数化为1得:x=12经检验,x=15故原方程的解为x=45;(2)解:原方程去分母得:4﹣(x+2)=0去括号得:4﹣x﹣3=0移项,合并同类项得:x=2经检验,x=3是分式方程的增根故原方程无解.15.解:设第一批购进书包的单价是x元.则:.解得:x=80.经检验:x=80是原方程的根.则 ×(120﹣80)+ ×(120﹣84)=3700(元).答:商店共盈利3700元.16.(1)解:设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为元,解得经检验是方程的解且符合实际情况∴B 型号的餐盘单价为(元);答:A 、B 两型号的餐盘单价分别为40元、30元. (2)解:设购进A 种型号餐盘m 个解得;答:最多购进A 种型号餐盘60个17.(1)解:设甲种套房每套提升费用为x 万元,乙种套房每套提升费用为(x +3)万元 依题意,可得625x=700x+3解得:x =25经检验:x =25符合题意 x +3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元. (2)解:设甲种套房提升m 套,那么乙种套房提升(80−m)套 依题意,得{25m +28×(80−m)≥209025m +28×(80−m)≤2096 解得:48≤m ≤50 因为m 取整数即m =48或49或50,所以有三种方案方案一:甲种套房提升48套,乙种套房提升32套. 方案二:甲种套房提升49套,乙种套房提升31套 方案三:甲种套房提升50套,乙种套房提升30套.。
15.3分式方程实际问题学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 甲、乙两个工程队共同参与一项筑路工程,甲队单独施工需90天完成.甲队先单独施工30天,然后增加了乙队,两队又合做了15天,总工程刚好全部完成.设乙队单独施工需x天完成.根据题意可得方程( )A.4590+15x=1 B.3090+15x=1 C.1590+30x=1 D.1590+45x=12. 铜仁市碧江区瓦屋油菜花基地要筑一条水坝,需在规定的日期内完成,如果由甲队做,恰能如期完成;如果由乙队做,需超过规定日期3天完成.现甲、乙两队合做2天后,余下的工程由乙队独做,恰能在规定的日期完成,设规定日期为x天,下面的方程中,错误的是( )A.2x +xx+3=1 B.1x+1x+3=1 C.2(1x+1x+3)+x−2x+3=1 D.2x=3x+33. “十•一”期间,数学活动小组的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设数学活动小组有x人,则所列方程为()A.180x −180x−2=3 B.180x−180x+2=3 C.180x+2−180x=3 D.180x−2−180x=34. 某边防哨卡运来一筐苹果,共有60个,计划每名战士分得数量相同的若干个苹果,结果还剩5个苹果;改为每名战士再多分1个,结果还差6个苹果.若设该哨卡共有x名战士,则所列方程为( )A.60+6x =60−5x−1 B.60+6x=60−5x+1 C.60−6x=60+5x−1 D.60−6x=60+5x+15. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )A.3(x−1)=6210x B.6210x−1=3 C.3x−1=6210xD.6210x=36. 娅倩同学借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是( )A.140x +140x−21=14 B.280x+280x+21=14C.140x +140x+21=14 D.10x+10x+21=17. 某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x天,下面所列方程中错误的是()A.2x +xx+3=1 B.2x=3x+3C.(1x+1x+3)×2+x−2x+3=1 D.1x+xx+3=18. “绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.60×(1+25%)x −60x=30 B.60(1+25%)x−60x=30C.60x −60(1+25%)x=30 D.60x−60×(1+25%)x=309. 甲乙两地之间的高速公路全长200千米,比原来国道的长度减少20千米,高速公路通车后,某长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间缩短了一半,设该长途汽车在国道上行驶的速度是x千米/小时,依题意得方程是()A.200x =180x−45⋅12B.200x=220x−45⋅12C.200x+45=180x⋅12D.200x+45=220x⋅1210. 在抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务.设原来每天生产x台呼吸机,下列选项所列方程正确的是( )A.150x +150x+20=300x+2 B.150x+300x+20=300x+2C.150 x+20=300x−2 D.150x+20=150x−211. 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为________.12. 2019年2月,全球首个5G火车站在上海虹桥火车站启动,虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输8千兆数据,5G网络快720秒,求这两种网络的峰值速率,设4G网络的峰值速率为每秒传输x千兆,依题意,可列方程为________.13. 在读书活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人,甲班学生读书480本,乙班学生读书360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45.求甲、乙两班各有多少人?设乙班有x人,则甲班有(x+3)人,依题意,可列方程为________.14. 某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设xm管道,那么根据题意,可得方程________.15. 某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务. 求该灯具厂原计划每天加工这种彩灯的数量.16. 贞丰县为了落实中央的“精准扶贫政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?17. 北湖区政府为了落实中央的“强基惠民工程”,计划将三里田村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)完成这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?18. 某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价B种口罩单价的1.2倍:(1)求A、B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B 两种口罩的进价不变,求A种口罩最多能购进多少个?19. 9月26日华为新推出mate30手机,某华为手机专卖网店抓住商机,购进10000台”mate30” 手机进行销售,每台的成本是4400元,在线同时向国内、国外发售.第一个星期,国内销售每台售价是5400元,共获利100万元,国外销售也售出相同数量该款手机,但每台成本增加400元,获得的利润却是国内的6倍.(1)求该店销售该款华为手机第一个星期在国外的售价是多少元?(2)受中美贸易战影响,第二个星期,国内销售每台该款手机售价在第一个星期的基础上降低m%,销量上涨5m%;国外销售每台售价在第一个星期的基础上上涨m%,并且在第二个星期将剩下的手机全部卖完,结果第二个星期国外的销售总额比国内的销售总额多6993万元,求m的值.15.3 分式方程实际问题答案1.【答案】A2.【答案】B3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】D8.【答案】A9.【答案】D10.【答案】D11.【答案】160x +240(1+20%)⋅x=1812.【答案】8x −810x=72013.【答案】480x+3×45=360x14.【答案】120x +300−120(1+20%)x=3015.【答案】解:设原计划每天加工x个,根据题意,得6000x −60001.5x=5,解得:x=400.经检验,x=400是原方程的解,且符合题意. 答:原计划每天加工400个彩灯.16.【答案】解:(1)设这项工程的规定时间是x天,根据题意得:(1x +11.5x)×15+5x=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(130+11.5×30)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.17.【答案】解:(1)设这项工程的规定时间是x天,根据题意得:(1x +11.5x)×15+5x=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(130+11.5×30)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.18.【答案】解:(1)设B种口罩单价为x元/个,则A种口罩单价为1.2x元/个,根据题意,得:1500x +15001.2x=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴ 1.2x=3.答:A种口罩单价为3元/个,B种口罩单价为2.5元/个.(2)设购进A种口罩m个,则购进B种口罩(2600−m)个,依题意,得:3m+2.5(2600−m)≤7000,解得:m≤1000.答:A种口罩最多能购进1000个.19.【答案】解:(1)设该店销售该款华为手机第一个星期在国外的售价是x元,⋅[x−(4400+400)]=6×100,根据题意得:1005400−4400解得:x=10800,答:该店销售该款华为手机第一个星期在国外的售价是10800元.(2)第一个星期国内销售手机的数量为:1000000=1000(台),5400−4400由题意得:10800(1+m%)×[10000−2000−1000(1+5m%)]−5400(1−m%)×1000(1+5m%)=69930000,10800(1+m%)(7000−5000m%)−5400×1000(1−m%)(1+5m%)= 69930000,1080(1+m%)(7−5m%)−540(1−m%)(1+5m%)=6993,设m%=a,则原方程化为:1080(1+a)(7−5a)−540(1−a)(1+5a)=6993,360(1+a)(7−5a)−180(1−a)(1+5a)=2331,解得:a2=0.01, a=0.1或−0.1(舍),∴m=10.。
人教版数学八年级上册 第15章 分式 15.3 分式方程 同步练习题1.若关于x 的分式方程x x -2=2-m 2-x 的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,32.对于非零的两个实数a 、b ,规定a *b =3b -2a,若5]( ) A.56 B.34 C .23 D.163.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎩⎪⎨⎪⎧ 13x +x -a <0无解,且使关于x 的分式方程x x -3·a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A .-3B .-2C .-32 D.124.分式方程2x -1x -2=1的解为( ) A .x =-1 B .x =12C .x =1D .x =2 5.若关于x 的方程m x -2=1-x x -2有增根,则m 的值为( ) A .0 B .1 C .-1 D .26.关于x 的方程3x -2x +1=2+m x +1无解,则m 的值为( ) A .-5 B .-8 C .-2 D .57.若关于x 的方程2x -3=1-m x -3无解,则m 的值为 . 8.已知关于x 的分式方程x +k x +1-k x -1=1的解为负数,则k 的取值范围是 .9.嘉淇同学解分式方程x -3x -2+1=32-x时,她是这样做的: 方程两边同时乘以(x -2),得x -3+1=-3,第一步移项且合并同类项,得:x =-1,第二步检验:把x =-1代入x -2,得:x -2=-1-2=-3≠0,第三步所以x =-1是原分式方程的解,第四步(1)嘉淇的解法从第一步开始出现错误,事实上,这个分式方程的解是x =1;(2)解分式方程:2x 2-1+x 1-x=-1.10.设A =xx -1,B =3x 2-1+1,当x 为何值时,A 与B 的值相等?11.如图,点A 、B 在数轴上,它们所对应的数分别是-4,2x +23x -5,且点A 、B 到原点的距离相等,求x 的值.12.若方程3-2x x -3+2-mx 3-x=-1无解,求m 的值.答案:1---6 CBBAC A7. -28. k >12且k≠1 9. 解:(1)方程两边同时乘以(x -2),得:x -3-2+x =-3,移项且合并同类项,得:x =1,检验:把x =1代入x -2,得:x -2=1-2=-1≠0,所以x =1是原分式方程的解,故答案为一,x =1;(2)方程两边同时乘以(x 2-1),得:2-x(x +1)=-x 2+1,去括号,得:2-x 2-x =-x 2+1,移项且合并同类项,得:x =1,检验:把x =1代入x 2=1,得:x 2-1=1-1=0,所以x =1是原分式方程的增根,即原分式方程无解.10. 解:由A =B 得x x -1=3x 2-1+1.解得x =2,经检验x =2是原方程的解,∴当x =2时,A =B.11. 解:由题意,得2x +23x -5=4,∴x =115,经检验,x =115是原方程的解. 12. 解:∵方程无解,即解方程所得的根可能为增根,根据增根的意义,方程若有增根,增根为x =3.原方程去分母,得(3-2x)-(2-mx)=3-x.整理,得(m -1)x=2.若m -1=0,即m =1时,方程(m -1)x =2无解;若m -1≠0,则x =2m +1是增根.此时2m -1=3.解得m =53.所以m 的值为1或53.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版 八年级数学 15.3 分式方程 同步训练一、选择题(本大题共10道小题)1. 下列各式是分式方程的是()A.x -15+34=1 B.3π+2x =3 C.1x -1=2D.x +2x -x +332.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A. 13x =18x -5B. 13x =18x +5C. 13x =8x -5D. 13x =8x +53. 用换元法解方程x 2-12x -4x x 2-12=3时,设x 2-12x =y ,则原方程可化为( )A. y -1y -3=0B. y -4y -3=0C. y -1y +3=0D. y -4y +3=0 4. 甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000 kg 所用时间与乙搬运8000 kg 所用时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运x kg 货物,则可列方程为( )A. 5000x -600=8000xB. 5000x =8000x +600C. 5000x +600=8000xD. 5000x =8000x -6005. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾所用的时间为x 小时,根据题意可列出方程为 ( ) A .+=1 B .+= C .+= D .+=16. 若方程m x +2mx -1=6的解是x =2,则m 的值为( ) A .2B .-2C .2.4D .-2.47. 若关于x 的方程=有增根,则m 的值与增根x 的值分别是( )A .-4,2B .4,2C .-4,-2D .4,-28. 某施工队铺设一条长96米的管道,开工后每天比原计划多铺设2米,结果提前4天完成任务,求实际每天铺设管道的长度和实际施工的天数.琪琪同学根据题意列出方程:-=4.则方程中的未知数x 表示( )A .实际每天铺设管道的长度B .原计划每天铺设管道的长度C .实际铺设管道的天数D .原计划铺设管道的天数9. 若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A. m <92B. m <92且m ≠32C. m >-94D. m >-94且m ≠-3410. 若关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( )A .-5B .-8C .-2D .5二、填空题(本大题共7道小题)11. 方程 12x =2x -3的解是________.12. 分式方程1x -2=3x 的解是________.13. 分式方程5y -2=3y 的解为________.14. 若分式方程x -ax +1=a 无解,则a 的值为________.15. 已知分式方程=无解,则m= .16. 若分式方程x -ax +1=a 无解,则a 的值为________.17. 当a =________时,关于x 的方程ax a -1-2x -1=1的解与方程x -4x =3的解相同.三、解答题(本大题共4道小题)18. 小明暑假准备从距上海2160千米的某地去上海迪斯尼乐园参观游览.如图是他在火车站咨询得到的信息,根据图中信息,求小明乘坐城际直达动车到上海所需的时间.19.某一公路的道路维修工程,准备从甲、乙两个工程队中选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?20. 已知关于x 的方程:ax +1x -1-21-x=1.(1)当a =3时,求这个方程的解; (2)若这个方程无解,求a 的值.21. 整体换元法阅读下列材料,回答问题:方程1x +1-1x =1x -2-1x -3的解为x =1;方程1x -1x -1=1x -3-1x -4的解为x =2;方程1x -1-1x -2=1x -4-1x -5的解为x =3;……(1)请你观察上述方程及其解的特征,写出能反映上述方程一般规律的方程,并写出这个方程的解;(2)根据(1)中所得的结论,写出一个解为x =-5的分式方程.人教版 八年级数学 15.3 分式方程 同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2.【答案】B 【解析】根据题意可知:8x 的倒数18x 比3x 的倒数13x 小5,所以可列方程为13x =18x +5.3. 【答案】B 【解析】原方程可化为:y -4y =3,即y -4y-3=0,故选B.4. 【答案】B 【解析】甲每小时搬运xkg货物,则乙每小时搬运(x+600)kg货物,甲搬运5000 kg货物所用时间为5000 x小时,乙搬运8000 kg货物所用时间为8000x+600小时,根据等量关系“甲搬运5000kg所用时间与乙搬运8000 kg所用时间相等”列方程:5000x=8000x+600.5. 【答案】B[解析] 由甲、乙两车合作1.2小时完成整个工作的一半,可得+=.6. 【答案】C7. 【答案】B8. 【答案】B[解析] 设原计划每天铺设管道x米,则实际每天铺设管道(x+2)米,根据题意,得-=4.9. 【答案】B【解析】由x+mx-3+3m3-x=3,得x+mx-3-3mx-3=3,解得x=9-2m2,解方程组⎩⎪⎨⎪⎧9-2m2>09-2m2≠3,得m<92且m≠32,故选B.10. 【答案】A[解析] 分式方程去分母转化为整式方程,由分式方程无解得到x +1=0,求出x的值,代入整式方程求出m的值即可.具体的解答过程如下:去分母,得3x-2=2x+2+m.由分式方程无解,得到x+1=0,即x=-1.代入整式方程,得-5=-2+2+m.解得m=-5.故选A.二、填空题(本大题共7道小题)11. 【答案】x=-1【解析】化简12x=2x-3得x-3=4x,则-3x=3,所以x=-1,经检验x=-1是原方程的根.12.【答案】x =3【解析】去分母,两边同乘x(x -2)得x =3(x -2),去括号得x =3x -6,移项并合并同类项得x =3,经检验x =3是原分式方程的根.13. 【答案】y =-3[解析] 去分母,得5y =3y -6,解得y =-3.经检验,y =-3是分式方程的解. 则分式方程的解为y =-3.14. 【答案】17[解析] 由方程x -4x =3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x =3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.15. 【答案】3或1 [解析] 去分母,得x-2=mx ,即(m-1)x=-2.由分式方程无解,得x+1=0,即x=-1①或m-1=0②. 把x=-1代入整式方程,得-(m-1)=-2,解得m=3. 由m-1=0,得m=1. 综上,m=3或m=1.16. 【答案】17 [解析] 由方程x -4x =3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x=3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.17. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13. 检验:当x =13时,9x -3=0, 所以x =13不是原方程的解. 所以原分式方程无解. (2)方程两边同乘(x -1)(x +2), 得x(x -1)=2(x +2)+(x -1)(x +2). 解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0. 所以原分式方程的解为x =-12. (3)方程两边同乘x(x +1)(x -1),得三、解答题(本大题共4道小题)18. 【答案】解:设小明乘坐城际直达动车到上海需要x 小时. 根据题意,得=×1.6,解得x=10.经检验,x=10是原方程的解且符合题意. 答:小明乘坐城际直达动车到上海需要10小时.19. 【答案】原题信息 整理后的信息一 两队合做此项维修工程,6天可以完成,单独完成此项维修工程,甲队比乙队少用5天 1x +1x +5=16二 两队合做此项维修工程,6天可以完成,共需工程费用385200元,每天的工程费用甲队比乙队多4000元6y +6(y -4000)=385200依据题意可以列方程:1x +1x +5=16,(2分)解得x 1=10,x 2=-3(舍去), 经检验x =10是原方程的解;设甲队每天的工程费用为y 元,则乙队每天的工程费用为(y -4000)元,依据题意得:6y +6(y -4000)=385200,(4分) 解得y =34100,∴甲队单独完成此项工程费用为:34100×10=341000元 , 乙队单独完成此项工程费用为:30100×15=451500元 , ∵341000<451500, ∴选择甲工程队.答:从节省资金的角度考虑,应该选择甲工程队.(5分)20. 【答案】解:(1)当a =3时,原方程为3x +1x -1-21-x=1. 方程两边同乘(x -1),得3x +1+2=x -1. 解这个整式方程,得x =-2.检验:当x =-2时,x -1=-2-1=-3≠0. 所以x =-2是原方程的解.(2)方程两边同乘(x -1),得ax +1+2=x -1, 即(a -1)x =-4.①当a =1时,此方程无解. ②当x =1时,原分式方程无解, 将x =1代入整式方程,得a -1=-4. 解得a =-3.综上,a 的值为1或-3.21. 【答案】解:(1)分式方程中的四个分母都可看作是未知数与一个整数的差,这四个整数左边两个连续,右边两个连续,左右两边不连续,但只间隔一个整数,每个分式的分子都是1,方程的解正好是中间被省略的那个整数,即1x -(n -2)-1x -(n -1)=1x -(n +1)-1x -(n +2),方程的解是x =n(n 为整数).(2)将n =-5代入上式,可得所求分式方程为 1x +7-1x +6=1x +4-1x +3.一天,毕达哥拉斯应邀到朋友家做客。
15.3分式方程(应用题) 同步练习一.选择题1.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.2.成都西站至成飞工业园之间在建的9号地铁,现有甲、乙两个工程队从两头开始施工,已知,每天甲队比乙队多修8米,甲施工150米所用的时间与乙施工120米所用的时间相等,设甲每天施工x米,下列方程正确的是()A.=B.=C.=D.=3.某公益组织在国外采购某医疗物资,每名志愿者平均每天只能采购到该物资1万个,原计划采购该物资200万个.实际采购中,在当地又招募到10名志愿者,结果比原计划推迟一天结束采购任务并实际购得300万个.设原有采购志愿者x名.则据题意可列方程为()A.=1B.=1C.=1D.=14.在2018年太原国际马拉松赛中,小张参加了迷你马拉松(全程约4.2km)项目,已知小张全程匀速前进,若将速度每小时加快2km,则正好比实际提前10min到达终点.设小张的速度为xkm/h,那么可列方程为()A.B.C.D.5.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同,求甲、乙两种兰花每株成本分别为多少元?若设乙种兰花的成本是x元.则下列方程正确的是()A.=B.=C.=D.=6.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多20元.李老师购买篮球花费900元,购买足球花费400元,结果购得的篮球数量是足球数量的1.5倍.设购买的足球数量是x个,则下列选项中所列方程正确的是()A.=+20B.=+20C.=+20D.=+207.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为()A.B.C.D.8.圣湖路全长为600米,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,设原计划每天整改x米,则下列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=59.疫情期间嘉祥外国语学校用4200元钱到商场去购买“84”消毒液,经过协商议价,每瓶便宜1元,结果比用原价多买了140瓶,求原价每瓶多少元?若设原价每瓶x元,则可列出方程为()A.﹣=140B.﹣=140C.﹣=1D.﹣=110.“绿水青山就是金山银山”.为改造太湖水质,某工程队对2400平方公里的水域进行水质净化,实际工作时每天的工作效率比原计划提高了20%,结果提前了40天完成任务.设实际每天净化的水域面积为x平方公里,则下列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=40二.填空题11.甲、乙两组学生去距学校4千米的敬老院开展慰问活动,甲组学生步行出发20分钟后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知骑自行车速度是步行速度的3倍,设步行速度为x千米/时,则根据题意可以列出方程.12.某工程队修建一条长1200m的道路;采用新的施工方式,工效提升了50%,结果提前4天完成任务,设这个工程队原计划每天修建道路xm,则列出的方程为.13.甲和乙同时从A地出发,匀速行走到B地.甲走完一半路程时,乙才走了4千米,乙走完一半路程时,甲已走了9千米.当甲走完全程时,乙未走完的路程还有千米.14.某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲队单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲队单独做,则延误两天完成,那么规定时间是天.15.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B的全程能比走路线A少用15分钟,若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程.三.解答题16.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?17.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?参考答案一.选择题1.解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,依题意,得:=.故选:C.2.解:根据题意得,=,故选:C.3.解:设原有采购志愿者x名.根据题意,得=1.故选:B.4.解:设小张的速度为xkm/h,则加快后的速度是(x+2)km/h,根据题意,得.故选:C.5.解:设乙种兰花的成本是x元,则甲种兰花的成本为(x+100)元,根据题意可得:=.故选:B.6.解:设购买的足球数量是x个,则购买篮球数量是1.5x个,根据题意,得=+20.故选:C.7.解:设乙车间每天生产x个,则=.故选:C.8.解:设原计划每天铺设x米管道,则实际施工每天铺设(1+20%)x米管道,根据题意列得:﹣=5.故选:C.9.解:设原价每瓶x元,根据题意,得﹣=140.故选:B.10.解:设实际每天净化的水域面积为x平方公里,根据题意可得:﹣=40.故选:A.二.填空题11.解:设步行速度为x千米/时,则骑自行车速度为3x千米/时,依题意,得:﹣=.故答案为:﹣=.12.解:设原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,根据题意,列方程为:﹣=4.故答案是:﹣=4.13.解:设A,B两地之间的路程为x千米,依题意,得:=,化简,得:x2=144,解得:x1=12,x2=﹣12,经检验,x1=12,x2=﹣12均为原方程的解,x1=12符合题意,x2=﹣12不符合题意,舍去,∴x﹣4×2=4.故答案为:4.14.解:设规定的时间是x天,则甲队单独完成需要(x+32)天,乙队单独完成需要(x+12天),由题意,得20×+=1,解得:x=28.经检验,x=28是元方程的解.答:规定的时间是28天.故答案是:28.15.解:设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为(1+60%)x 千米/小时,依题意,得:﹣=.故答案为:﹣=.三.解答题16.解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣=20,解得:x=70,经检验,x=70是原方程的解,且符合题意.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.17.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.。
15.3 分式方程第1课时 分式方程及其解法1.在下列方程中,关于x 的分式方程的个数有( )①12x 2-23x +4=0;②x a =4;③a x=4; ④x 2-9x +3=1;⑤1x +2=6;⑥x -1a +x -1a =2. A .2个 B .3个 C .4个 D .5个2.下列方程:①x -12=16;②x -2x =3;③x (x -1)x =1;④4-x π=x 3;⑤3x +x -25=10;⑥1x+2y=7,其中整式方程有 ,分式方程有 . 3.解分式方程2x -1+x +21-x=3时,去分母变形后,得( ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(x -1)D .2-(x +2)=3(1-x)4.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A .方程两边分式的最简公分母是(x -1)(x +1)B .方程两边都乘(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C .解这个整式方程,得x =1D .原分式方程的解为x =15.已知关于x 的方程10x +k -3x=1的解为x =3,则k = . 6.解下列方程:(1)2x x -2-1=1x -2; (2)32x +2=1-1x +1;(3)2-x x -3+13-x =1; (4)23+x 3x -1=19x -3; (5)4x 2-4=3x +2+1x -2.7.小明解方程1x -x -2x=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x ,得1-(x -2)=1……①去括号,得1-x -2=1……②合并同类项,得-x -1=1……③移项,得-x =2……④解得x =-2……⑤∴原方程的解为x =-2……⑥8.对于非零的两个实数a ,b ,规定a ⊕b =1b -1a,若2⊕(2x -1)=1,则x 的值为( ) A.56 B.54 C.32 D .-169.关于x 的分式方程7x x -1+5=2m -1x -1无解,则m 的值为( ) A .1 B .3 C .4 D .510.已知关于x 的分式方程m x -1+31-x=1的解是x ≠1的非负数,则m 的取值范围是 . 11.解下列方程:(1)x -3x -2+1=32-x ; (2)3x 2-9+x x -3=1; (3)x +14x 2-1=32x +1-44x -2.12.方程1x +1-1x =1x -2-1x -3的解为x =1,方程1x -1x -1=1x -3-1x -4的解为x =2;方程1x -1-1x -2=1x -4-1x -5的解为x =3;…;按此规律,解为x =6的方程应表示为 . 13.若关于x 的分式方程2x -2+mx x 2-4=3x +2无解,则m = .参考答案:15.3 分式方程第1课时 分式方程及其解法1.B2. ①④⑤, ②③⑥.3.C4.D5.2.6.(1)2x x -2-1=1x -2; 解:方程两边同时乘以x -2,得2x -(x -2)=1,解得x =-1.检验将x =-1代入x -2≠0.∴x =-1是原分式方程的根.(2)32x +2=1-1x +1; 解:方程两边同乘2(x +1),得3=2x +2-2.解得x =32. 检验:当x =32时,2(x +1)≠0. ∴原分式方程的解为x =32. (3)2-x x -3+13-x=1; 解:整理,得1-x x -3=1. 1-x =x -3.解得x =2.检验:当x =2时,x -3≠0.∴原分式方程的解为x =2.(4)23+x 3x -1=19x -3; 解:方程两边同乘9x -3,得2(3x -1)+3x =1.解得x =13. 检验:当x =13时,9x -3=0, 因此x =13不是原方程的解. ∴原分式方程无解.(5)4x 2-4=3x +2+1x -2. 解:方程两边同乘(x +2)(x -2),得4=3(x -2)+(x +2).解得x =2.检验:当x =2时,(x +2)(x -2)=0.∴原分式方程无解.7.解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥缺少检验.正确解法为:方程两边同乘x ,得1-(x -2)=x.去括号,得1-x +2=x.移项,得-x -x =-1-2.合并同类项,得-2x =-3.解得x =32. 检验:当x =32时,x ≠0. 所以,原分式方程的解为x =32. 8.A9.C10.m ≥2且m ≠3.11.(1)x -3x -2+1=32-x; 解:两边同乘(x -2),得x -3+x -2=-3,解得x =1.检验:当x =1时,x -2≠0.∴原分式方程的解为x =1.(2)3x 2-9+x x -3=1; 解:去分母,得3+x(x +3)=x 2-9,3+x 2+3x =x 2-9.解得x =-4.检验:当x =-4时,x 2-9≠0.∴原分式方程的解为x =-4.(3)x +14x 2-1=32x +1-44x -2. 解:原方程变形为x +1(2x +1)(2x -1)=32x +1-22x -1, 两边同乘(2x +1)(2x -1),得x +1=3(2x -1)-2(2x +1),x +1=6x -3-4x -2,解得x =6.检验:当x =6时,(2x +1)(2x -1)≠0.∴原分式方程的解是x =6.12.1x -4-1x -5=1x -7-1x -8.13.-4或6或1.解析:方程两边都乘(x +2)(x -2),得2(x +2)+mx =3(x -2),化简,得(m -1)x =-10. ①当m =1时,整式方程无解;②x =-2时,有x 2-4=0,则-2(m -1)=-10,解得m =6;③x =2时,有x 2-4=0,则2(m -1)=-10,解得m =-4.综上所述,当m =-4或6或1时,原方程无解.。
15.3分式方程同步测试一.选择题1.方程=1的解是()A.1B.0C.无解D.22.解分式方程,两边要同时乘以()A.x﹣1B.x C.x(x﹣1)D.x(x+1)3.解分式方程+=分以下四步,其中错误的一步是()A.最简公分母是(x+1)(x﹣1)B.去分母,得2(x﹣1)+3(x+1)=6C.解整式方程,得x=1D.原方程的解为x=14.已知关于x的方程=3的解是正数,那么m的取值范围是()A.m<6且m≠4B.m<6C.m>6且m≠8D.m>65.若关于x的方程=0有增根,则m的值是()A.B.﹣C.3D.﹣36.元旦期间,某水果店第一天用320元钱购进苹果销售,第二天又用800元钱购进这种苹果,所购数量是第一天购进数量的2倍,但每千克苹果的价格比第一天购进价多1元,若设水果店第一天购进水果x千克苹果,则可列方程为()A.﹣=1B.=C.﹣=1D.﹣=17.已知关于x的分式方程的解为正数,则k的取值范围为()A.k>﹣2B.k>﹣2且k≠1C.k<2D.k<2且k≠18.已知x=2是分式方程+=1的解,那么实数k的值为()A.3B.4C.5D.69.对于两个不相等的实数a,b,我们规定符号Max{a,b}表示a,b中的较大的值,如Max{2,4}=4,按照这个规定,方程Max{,}=1﹣的解是()A.x=4B.x=5C.x=4或x=5D.无实数解10.抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务.设原来每天生产x台呼吸机,下列列出的方程中正确的是()A.+=+2B.+=+2C.=﹣2D.=﹣2二.填空题11.方程=的解是.12.关于x的分式方程=﹣1的解是负数,则m的取值范围是.13.小颖在解分式方程+2时,△处被污染看不清,但正确答案是:此方程无解.请你帮小颖猜测一下△处的数应是.14.若关于x的分式方程=的解为非负数,则实数a的取值范围是.15.某校学生到离学校15km处植树,部分学生骑自行车出发40min后,其余学生乘汽车出发,汽车速度是自行车速度的2倍,全体学生同时到达目的地.设自行车速度是xkm/h,则根据题意列得方程.三.解答题16.解方程:(1)=;(2)=+1.17.当m为何值时,方程会产生增根.18.某快餐店欲购进A、B两种型号的餐盘,每个A种型号的餐盘比每个B种型号的餐盘费用多10元,且用120元购进的A种型号的餐盘与用90元购进的B餐盘的数量相同.(1)A、B种两型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过3000元的前提购进A、B两种型号的餐盘80个,求最多购进A种型号餐盘多少个?参考答案一.选择题1.解:去分母得:1=1﹣x,解得:x=0,经检验x=0是分式方程的解.故选:B.2.解:解分式方程,两边要同时乘以x(x﹣1).故选:C.3.解:解分式方程+=分以下四步,第一步:最简公分母为(x+1)(x﹣1),第二步:去分母得:2(x﹣1)+3(x+1)=6,第三步:解整式方程得:x=1,第四步:经检验x=1是增根,分式方程无解.故选:D.4.解:去分母得:2x﹣m=3(x﹣2),去括号得:2x﹣m=3x﹣6,解得:x=6﹣m,由分式方程的解为正数,得到6﹣m>0,且6﹣m≠2,解得:m<6且m≠4.故选:A.5.解:由=0得6﹣x﹣2m=0,∵关于x的方程=0有增根,∴x=3,当x=3时,6﹣3﹣2m=3﹣3,解得m=,故选:A.6.解:设水果店第一天购进水果x千克苹果,则第二天购进水果2x千克,根据题意得,﹣=1.故选:D.7.解:∵,∴=2,∴x=2﹣k,∵该分式方程有解,∴2﹣k≠1,∴k≠1,∵x>0,∴2﹣k>0,∴k<2,∴k<2且k≠1.故选:D.8.解:把x=2代入分式方程得:﹣1=1,解得:k=4.故选:B.9.解:当>,即x<0时,方程为=1﹣,去分母得:1=x﹣3,解得:x=4(舍去),当<,即x>0时,方程为=1﹣,去分母得:2=x﹣3,解得:x=5,经检验,x=5是分式方程的解.故选:B.10.解:设原来每天生产x台呼吸机,根据题意可列方程:+=﹣2,整理,得:=﹣2,故选:D.二.填空题11.解:去分母得:2x+4=3x﹣1,解得:x=5,经检验x=5是分式方程的根.故答案为:x=5.12.解:∵=﹣1,∴x=﹣2m﹣1,∵关于x的分式方程=﹣1的解是负数,∴﹣2m﹣1<0,解得:m>﹣0.5,当x=﹣2m﹣1=﹣1时,方程无解,∴m≠0,∴m的取值范围是:m>﹣0.5且m≠0.故答案为:m>﹣0.5且m≠0.13.解:去分母得:x﹣2=△+2(x﹣3),由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:△=1.故答案为:1.14.解:去分母得:6x﹣3a=x﹣2,解得:x=,由分式方程的解为非负数,得到≥0,且≠2,解得:a≥且a≠4.故答案为:a≥且a≠4.15.解:由题意可得,,即,故答案为:.三.解答题16.解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3x=2x+3x+3,解得:x=﹣,经检验x=﹣是分式方程的解.17.解:去分母得:6x+4=m,由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=﹣1或x=1,当x=1时,m=10,当x=﹣1时,m=﹣2,故当m=﹣2或10时,方程有增根.18.解:(1)设A型号的餐盘单价为x元,则B型号的餐盘单价为(x﹣10)元,由题意可列方程=,解得x=40.经检验:x=40是原分式方程的根.则x﹣10=40﹣10=30.答:A型号的餐盘单价为40元,B型号的餐盘单价为30元;(2)设购进A种型号餐盘m个,由题可知40m+30(80﹣m)≤3000,解得m≤60.答:最多购进A种型号餐盘60个.。
15.3分式方程同步测试一.选择题1.下列等式是四位同学解方程﹣1=过程中去分母的一步,其中正确的是()A.x﹣1=2x B.x﹣1=﹣2x C.x﹣x﹣1=﹣2x D.x﹣x+1=﹣2x 2.若x=3是分式方程﹣=0的解,则m的值是()A.﹣5B.5C.﹣3D.33.方程=的解为()A.B.﹣C.1D.﹣14.方程=的解为()A.x=﹣4B.x=4C.x=1D.x=﹣15.八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20B.﹣=20C.﹣=D.﹣=6.若解关于x的分式方程=1时出现了增根,则m的值为()A.﹣4B.﹣2C.4D.27.已知关于x的分式方程﹣1=无解,则m的值是()A.﹣2或﹣3B.0或3C.﹣3或3D.﹣3或08.现有A、B两工厂每小时一共能做9000个N95口罩,两个工厂运作相同的时间后.得到A工厂做的960个口罩,B工厂做的840个口罩,设A工厂每小时能做x个口罩,根据题意列出分式方程正确的是()A.=B.=C.=D.=9.分式方程+2=的解为()A.x=﹣1B.x=1C.x=2D.x=10.关于x的方程=2的解为正数,则m的取值范围是()A.m<B.C.m<且m≠D.m<且m≠0二.填空题11.已知关于x的方程﹣=有增根,则常数a=.12.若关于x的方程的解为负数,则a的取值范围为.13.用换元法解方程﹣=1时,如果设=y,那么原方程可化为关于y的整式方程是.14.甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用时间相等.若设乙机器人每小时检测零件x个,依题意列分式方程为.15.对于实数a,b定义运算“◎”如下:a◎b=,如5◎2==2,(﹣3)◎4==﹣1,若(m+2)◎(m﹣3)=2,则m=.三.解答题16.解下列方程:(1)(2)17.广南到那洒高速公路经过两年多的建设,于2020年6月30日24时正式通车运营,全长49km的广那高速结束了广南县城不通高速公路的历史.它将有力助推全县全面打赢脱贫攻坚战,从广南到那洒还有条全长58km的普通公路,某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快30km/h,由高速公路从广南到那洒所需要的时间是由普通公路从广南到那洒所需时间的一半,求该客车由高速公路从广南到那洒需要几小时.18.“京张高铁”是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中北京北站到清河站分为地下的清华园隧道12千米和地上的清河段10千米两部分,地下与地上的运行速度之比为2:3,地下比地上的运行时间多2分钟,求通过地下的清华园隧道所需的速度.参考答案一.选择题1.解:两边都乘以x﹣1,得:x﹣(x﹣1)=﹣2x,即x﹣x+1=﹣2x,故选:D.2.解:把x=3代入分式方程得,解得m=5.故选:B.3.解:两边都乘以x(x﹣1),得:3(x﹣1)=6x,解得x=﹣1,检验:当x=﹣1时,x(x﹣1)=﹣1×(﹣2)=2≠0,∴分式方程的解为x=﹣1,故选:D.4.解:方程的两边同乘(x﹣3)(x﹣2)得,x﹣2=2(x﹣3),解这个方程得,x=4,经检验,x=4是原方程的解.故选:B.5.解:设骑车学生的速度为xkm/h,则乘车学生的速度为2xkm/h,依题意,得:﹣=.故选:C.6.解:方程两边都乘以x﹣2,得:2x+m=x﹣2,∵分式方程有增根,∴分式方程的增根为x=2,将x=2代入2x+m=x﹣2,得:4+m=0,解得m=﹣4,故选:A.7.解:两边都乘以x(x﹣3),得:x(x+m)﹣x(x﹣3)=x﹣3,整理,得:(m+2)x=﹣3,解得,①当m+2=0,即m=﹣2时整数方程无解,即分式方程无解,②∵关于x的分式方程﹣1=无解,∴或,解得m=﹣3.∴m的值是﹣2或﹣3.故选:A.8.解:设A工厂每小时能做x个口罩,则B工厂每小时能做(9000﹣x)个口罩,依题意,得:=.故选:A.9.解:+2=,去分母得:x﹣1+2(x﹣2)=﹣3,解得:x=,经检验x=是分式方程的解.故选:D.10.解:两边都乘以x﹣1,得:x﹣m﹣2m=2(x﹣1),解得x=2﹣3m,∵方程=2的解为正数,∴2﹣3m>0,且2﹣3m≠1,解得m<,且m≠,故选:C.二.填空题11.解:去分母得,4x+2a=3(x﹣1)分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:a=﹣2,故答案为:﹣2.12.解:当x≠﹣1时,2x﹣a=0,x=<0,解得a<0,且,解得a≠﹣2.综上所述a<0且a≠﹣2.故答案为:a<0且a≠﹣2.13.解:设=y,原式可转化为y﹣﹣1=0.整理,得y2﹣y﹣2=0.故答案为:y2﹣y﹣2=0.14.解:∵乙机器人每小时检测零件x个,甲比乙每小时多检测10个,∴甲机器人每小时检测零件(x+10)个.依题意,得:=.故答案为:=.15.解:根据题意得,方程两边同乘m﹣3,得:m+2﹣1=2(m﹣3),解这个方程,得:m=7.故答案为:7.三.解答题16.解:(1)两边都乘以x(x﹣2),得:3x=9(x﹣2),解得x=3,检验:当x=3时,x(x﹣2)=3≠0,∴分式方程的解为x=3;(2)两边都乘以3(x﹣2),得:3(5x﹣4)=4x+10﹣3(x﹣2),解得x=2,检验:当x=2时,3(x﹣2)=0,∴x=2是分式方程的增根,∴分式方程无解.17.解:设该客车由高速公路从广南到那洒需要x小时,则该客车由普通公路从广南到那洒需要2x小时,依题意,得:﹣=30,解得:x=,经检验,x=是原方程的解,且符合题意.答:该客车由高速公路从广南到那洒需要小时.18.解:设通过地下的清华园隧道的速度为2x千米/时,则通过地上的清河段的速度为3x 千米/时,依题意,得:﹣=,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴2x=160.答:通过地下的清华园隧道的速度为160千米/时.。
16.3.1 分式方程 同步测试
◆知能点分类训练
知能点1 分式方程
1.下列方程中分式方程有( )个.
(1)x 2-x+1x (2)1a
20103(4)x x y x y
-=-+-=1 A .1 B .2 C .3 D .以上都不对
2.下列各方程是关于x 的分式方程的是( ).
A .x 2+2x-3=0
B .22215(0).5x x x a
C a x
--=≠=-3 D .a x 2+bx+c=0 3.观察下列方程: 211143882(1) 1.6;(2)1;(3)1;(4).0.30.51132
x x x x x x x x x +--++-=+=-==-- 其中是关于x 的分式方程的有( )
A .(1)
B .(2)
C .(2)(3)
D .(2)(4)
知能点2 分式方程的解法
4.解方程:(1)
21;2x x =- 15(2)1
x x x x +++
(3)22122563
x x x x x x x --=--+-。
5.解下列分式方程:
(1)
22142361;(2)11111
x x x x x x +-=+=--+--.
6.解方程:
45785689x x x x x x x x -----=-----.
7.解下列关于x 的方程:
(1)
1(1);(2)1a m n b b x a x x +=≠--+=0(m ≠0).
8.解方程:2155(
)14x x x x ---=.
9.在式子
50s s a a b +=+中,s>0,b>0,求a .
◆规律方法应用
10.已知关于x 的方程4433x m m x x
---=--无解,求m 的值.
11.a 为何值时,关于x 的方程
223242ax x x x +=--+会产生错误?
12.已知分式方程
21x a x +-=1的解为非负数,求a 的取值范围.
◆开放探索创新
13.阅读并完成下列问题:通过观察,发现方程x+
1x =2+12的解是x 1=2,x 2=12;x+1x =3+13 的解是x 1=3,x 2=13;x+1x =4+14的解是x 1=4,x 2=14
,… (1)观察上述方程的解,猜想关于x 的方程x+
1x =5+15
的解是_______. (2)根据上面的规律,猜想关于x 的方程x+1x =c+1c 的解是______. (3)根据上面的规律,可将关于x 的方程2221111
x x a x a -+=-+--变形为_______,方程的解是_________,•解决这个问题的数学思想是_________.
◆中考真题实战
14.解方程:
31144x x x --=--; 15.解方程:541x x
-+=0.
16.解方程:21
1
33
x
x x
-
=-
--
; 17.解方程:
53
11
x x
=
-+
.
18.解方程:
25
2112
x
x x
+
--
=3.
答案:
1.B 2.C 3.C
4.解:(1)方程两边同乘以x-2,得2x=x-2,
解得x=-2.经检验,x=-2是原方程的解.
(2)方程两边同乘以x(x+1),得(x+1)2+5x2=6x(x+1),即x2+2x+1+5x2=6x2+6x,
解得x=1
4
.经检验,x=
1
4
是原方程的解.
(3)方程两边同乘以(x-2)(x-3),
得x(x-3)-(1-x2)=2x(x-2),
解得x=1.经检验,x=1是原方程的解.5.解:(1)方程两边同乘以(x-1)(x+1),得(x+1)2-4=x2-1,化简得2x-2=0,∴x=1.检验:当x=1时,(x-1)(x+1)=0,
∴x=1不是原方程的解,即原方程无解.(2)方程两边同乘以(x+1)(x-1),得
2(x-1)+3(x+1)=6,∴x=1.
检验:当x=1时,(x+1)(x-1)=0.
∴x=1是原方程的增根,即原方程无解.6.解:方程两边各自通分,得
22
(4)(6)(5)(7)(9)(8)(5)(6)(8)(9)24256364(5)(6)(8)(9)
x x x x x x x x x x x x x x --------=------=----整理得 即x 2-11x+30=x 2-17x+72,解得x=7.
检验:把x=7代入原方程各分母,显然(x-5)(x-6)(x-8)(x-9)≠0,
∴原方程的解为x=7.
7.解:(1)移项:a x a
-=1-b , 去分母:a=(1-b )(x-a ),
去括号:a=(1-b )x-a (1-b ),
移项:(1-b )x=a+a (1-b ).
∵b ≠1,∴1-b ≠0.
方程两边同除以1-b ,得x=
21a ab b --. 检验:当x=21a ab b
--时,x-a ≠0, ∴x=21a ab b
--是原方程的解. (2)移项:1
m n x x =+, 去分母:m (x+1)=nx ,
去括号:mx+m=nx ,
移项、合并:(m-n )x=-m .
∵m ≠n ,∴m-n ≠0.
方程两边同除以m-n ,得x=-
m m n -. 检验:当x=-
m m n -时,x+1≠0, ∴x=-m m n
-是原方程的解. 8.解:原方程可化为:(1x x -)2-14=5(1x x
-). 设1x x
-=y ,则原方程可化为:y 2-5y-14=0, 即(y-7)(y+2)=0,∴y-7=0或y+2=0,
则y 1=7或y 2=-2.
当y 1=7时,即1x x -=7,则x 1=-16
;
当y 2=-2时,即1
x x -=-2,则x 2=1
3.
经检验,x 1=-16,x 2=1
3都是原方程的解.
9.解:方程两边同乘以a (a+b ),得
s (a+b )=a (s+50),去括号得sa+sb=sa+50a ,
移项,合并得50a=sb ,解得a=50sb
.
检验:由于b>0,s>0,当a=50sb
时,a (a+b )≠0,
∴x=50sb
是原方程的解.
10.解:去分母,整理得
(m+3)x=4m+8, ①
由于原方程无解,故有以下两种情况:
(1)方程①无实数根,即m+3=0,
而4m+8≠0,此时m=-3.
(2)方程①的根x=483m m ++是增根,则48
3m m ++=3,解得m=1.
因此,m 的值为3或1.
11.解:方程两边同乘以x 2-4,得
2(x+2)+ax=3(x-2). ①
因为原方程有增根,而增根为x=2或x=-2,
所以这两个增根是整式方程①的根.
将x=2代入①,得2×(2+2)+2a=0,解得a=-4.将x=-2代入①,得0-2a=3×(-2-2),•解得a=6.
所以当a=-4或a=6时,原方程会产生增根.
12.解:去分母,得2x+a=x-1,
解得x=-a-1.
依题意,得10,(1)
10.(2)a a --≥⎧⎨--≠⎩
由(1)得a ≤-1,由(2)得a ≠-2.
所以a ≤-1且a ≠-2.
13.(1)x 1=5,x 2=1
5 (2)x 1=c ,x 2=1
c
(3)x-1+121
1
1,111a
a x a x x a a =-+==--- 转化思想
14.x=3是原方程的解.15.x=4是原方程的解.16.x=2是原方程的解.17.x=-4是原方程的解.
18.x=-1
2
是原方程的解.。