UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing
- 格式:pdf
- 大小:1.09 MB
- 文档页数:10
Model PH20 and FU20pH/Redox and Temperature sensorThe PH20 is nicknamed “Tempress” because of the patented compensation for changes in the process temperature andpressure. This simple mechanical feature makes the sensor more accurate, and gives it a longer lifetime. The compensation panels flex to accommodate changes in the avoiding large differential pressures across the diaphragm. This prevents most problems associated with the reference junction. Made in chemically resistant PVDF, this all-in-one sensor has elements to measure pH, ORP and temperature. The reference system is Silver/Silver Chloride, with a double junction and a gelled electrolyte to combat pollution. The Platinum Redox electrode doubles as a solution ground, essential for uncompromising accuracy, and for sensor diagnostic measurements.The FU20 combination sensors show how Yokogawa applies the motto “Simply the Best” to sensor technology. The wide body sensors (26 mm diameter) hold four separate elements in one unbreakable PPS 40GF (RytonTM) body. Installation is simple with the integrated industrial 3/4” tapered thread. The large volume gelled electrolyte and the double junction reference system slows down depletion and poisoning therefore extending the lifetime. The system is targeted at those applications where simplicity will result in accurate and reliable pH- or redoxmeasurements. This means that in 90% of the know applications this sensor will be an excellent choice.Features• Simultaneous pH- and ORP measurement • I ntegral Pt1000 temperature element for enhanced accuracy • Available with VP connector • D ouble junction and long diffusional path for reference pollution resistance • E xtended life time by large volume of polymerized electrolyte and porous PTFE diaphragm • S olid Glass/Platinum electrode for solution ground or ORP measurement• Simple maintenance by comprehensive design • Direct in-line, immersion or off-line installation • Calibration certificate delivered with each sensorGeneralSpecificationsGeneral Specifications PH20Measuring elements: p H glass electrode and Silver/Silver chloride reference system.: P latinum electrode and Pt1000temperature sensor. Construction materialsBody : PVDFEarthing pin : Solid platinum/glassO-ring : VitonReference junction : Porous PTFECable : Coaxial with 4 extra leads Sheetmaterial : Thermoplastic rubber Functional specifications (at 25°C)Isothermal point : pH 7Reference system : Ag/AgCl with saturated KCl Glass impedance : 200 MΩ (nominal), G-glass Junction resistance : 1 to10 kΩTemperature element : Pt1000 to IEC 751 Asymmetry potential : < 15 mVSlope : > 96 % (of theoretical value) Dynamic specifications (at 25°C)Response time pH step (7 to 4): < 10 sec for 90%Response time temp. step (10°C): < 3 min for 90 %Stabilisation time (0.02 pH/10 s): < 1 minuteOperating rangepH : 0 - 14*Temperature : -10 to 105ºC (14 to 212 °F) Pressure : 0 to 10 bar ( 0 to 142 PSIG) Conductivity : > 50 µS/cmStorage temperature : -30 to 50ºC (-22 to 122 °F)The erratic trend of the standard sensor shows the progressive contamination of its reference junction. The graph indicates between 0.1 to 0.4 pH error with the conventional sensor while the readings from the PH20 are extremely stable.General Specifications FU20Measuring elements : p H glass electrode and silverchloride reference system.Platinum electrode and Pt1000temperature sensor. Construction materialsBody : R yton R4TM (PPS 40GF) with glassfillingEarthing pin : Solid platinumO-ring : NoneReference junction : Porous PTFECable : Coaxial with 4 extra leads Sheetmaterial : Thermoplastic rubber Functional specifications (at 25°C)Isothermal point : pH 7Reference system : Ag/AgCl with saturated KCI Glass impedance- Dome shape : 350MΩ, G-glass- Flat Surface : 750MΩ, G-glassJunction resistance : 0.5 to 5 kΩTemperature element : Pt1000 to IEC 751Asymmetry potential : < 15 mVSlope : > 96 % (of theoretical value) Dynamic specifications (at 25°C)Response time pH step (7 to 4): < 15 sec for 90%Response time temp step (10°C)- Dome shape : < 3 min for 90%- Flat surface : < 6 min for 90%Stabilisation time (0.02 pH/10 s): < 2 minutesOperating rangepH : 0 - 14*Temperature : -10 to 105ºC (14 to 212 °F) Pressure : 0 to 10 bar ( 0 to 142 PSIG) Conductivity : > 50 µS/cmStorage temperature : -30 to 50ºC (-22 to 122 °F)* T he pH range at room temperature is 0 -14 pH, but at high temperatures the lifetime will be seriously shortened outside 2 - 12 pH range.2GS 12B6J3-E-E3 Dimensions4Installation examples using the PH20 adapter rangeUsing the /SF4 adapter, the PH 20 can be mounted in the standard range of conductivity flow fitting (FF40..), the immersion fittings (FD40-..) and sub-assemblies (FS40..). The adapter can be mounted on the front thread, or the back thread dependent on the required insertion depth.GS 12B6J3-E-EFD40 fittings (/FPS or K1523DD)Note: old part K1523DC is not compatible with VP connector.5GS 12B6J3-E-EInstallation examples using the FU20 adapter range6Model and Suffux codesModel Suffix Option DescriptionCode codePH20 4-in-1 pH sensorMaterial -F PVDFMembrane -G Dome shapedCable length -02 2 meter-05 5 meter-10 10 meter-20 20 meter-30 30 meterTemp. element -T1 Pt1000-N -A Always -N -AOptions*/SN3 S tainless steel 3/4” NPT adapter (316L)/SR3 S tainless steel 3/4” R adapter (316L)/FN4 P VDF 1” NPT adapter/FR4 P VDF 1” R adapter/PH8 A dapter for PH8 combi sensor fittings (only)/SF4 S tainless steel adapter for FF40, FS40 and FD40 fitings/HCNF H astelloy cleaning system* Note: Option /Q: Quality Inspection certificate is always included with the product.Model Suffix Option DescriptionCode codeFU20 Wide body sensor-VP Variopin connectorCable length -03 3 meter-05 5 meter-10 10 meter-20 20 meterTemp. element -T1 Pt1000Model -NPT Dome shape model-FSM Flat surface modelOptions*/HCNF H astelloy cleaning system/FPS Adapter F*40 from noryl/NSS 1” NPT adapter, SS (316L)/NTI 1” NPT adapter, Titanium/BSS 1” BSP adapter, SS (316L)/BTI 1” BSP adapter, Titanium* Note: Option /Q: Quality Inspection certificate is always included with the product.Model Suffix Code DescriptionWU10Sensor cableConnector type -V VariopinCable type -S Single CoaxCable length -02 2 meters-05 5 meters-10 10 meters-15 15 meters-20 20 metersGS 12B6J3-E-ECleaning system for FU20 & PH20Some applications require frequent cleaning of the electrode. For these applications Yokogawa designed a chemical cleaning system that can either be used in the Yokogawa fitting range (HCN2, HCN3 or HCN4) or as back-end mounting option for the PH20 and FU20. The /HCNF option comes with a hastelloy cleaning nozzle, Stainless steel mounting (and ferrules) sets and a nylon tube of 10 meters.7GS 12B6J3-E-ESpare parts PH20, FU20 and cleaning systemPart no. DescriptionK1500EK O-rings viton 6.07x1.78 (5x2)K1500ER O-ring set Viton FF20-S22K1511DP O-rings viton 21.9x2.62 (5x2)K1511DQ O-rings EPDM 21.9x2.62 (5x2)K1547PC /FN4 for PH20K1547PD /FR4 for PH20K1547PE /PH8 for PH20K1547PG Nozzle and mounting HCN4K1547PP Spare Part EPDM spraying valves K1547QA /SN3 for PH20K1547QB /SR3 for PH20K1547QF /SF4 for PH20K1500FR O-rings Viton 29.82x2.62 (5)K1500FS O-rings EPDM 29.82x2.62 (5)K1500FT O-rings Silicon, 29.82x2.62 (5)K1520ZD Mounting nut for PS20K1523DD /FPS, FU20-mounting in F*40K1547PK Adapter 1” NPT, SS 316 for FU20K1547PL Adapter 1” BSP, SS 316 for FU20K1547PM Adapter 1” NPT, Ti for FU20K1547PN Adapter 1” BSP, Ti for FU20K1547PJ Hast. cleaning unit HCNFK1547PFNozzle and mounting HCN2/3/FAccessories Buffer powder 6C231 Buffer powder pH 1.68 ; IEC 60746-26C232 Buffer powder pH 4.01 ; IEC 60746-26C236 Buffer powder pH 9.18 ; IEC 60746-26C237 Buffer powder pH 6.87 ; IEC 60746-2Connection equipment BA10 Junction box for pH extension cables WF10-xxx-F p H signal cable with terminated ends. Specifylength in whole metersGS 12B6J3-E-ESubject to change without notice Printed in The Netherlands, 11-705 (A) ICopyright©Conventional pH (& ORP) wiringConnect the PH20 or FU20 to the EXA or EXAxt PH analyzer as shown. With this configuration, it is possible to measure ORP (or rH) at the same time (Refer to the EXA or EXAxt manual for appropriate impedance jumper and Service Code settings).Wiring for ORP measurement with pH referenceConnect the PH20 or FU20 to the EXA Glass PH analyzer as shown. Refer to the EXA manual for appropriate impedance jumper and Service Code settings.Wiring for ORP measurement with normal referenceRefer to the EXA manual for appropriate impedance jumper and Service Code settings.Wiring of the PH20 / FU20。
㊀2019年㊀第4期仪表技术与传感器Instrument㊀Technique㊀and㊀Sensor2019㊀No 4㊀基金项目:天津市高等学校自然科学研究项目(2017KJ238);天津理工大学大学生创新创业训练计划项目(201710060011)收稿日期:2018-11-02新型聚合物凝胶全息传感器及其溶液pH值响应特性杜㊀睿1,于㊀丹1,王施婵2,刘丽丽1,顾永俊1,孟祥开1(1.天津理工大学理学院,天津㊀300384;㊀2.中国民航大学理学院,天津㊀300300)㊀㊀摘要:基于聚合物全息体光栅的环境传感装置工艺简单㊁成本低廉㊁传感现象显著㊁响应性能优异,近些年受到国内外广泛关注㊂记录于光致聚合物内的全息体光栅在外部环境改变时,能够引起光栅衍射光谱特征的显著变化,并将随之导致光谱峰值波长的偏移,从而应用全息光栅传感环境特征成为可能㊂然而基于丙烯酰胺光致聚合物的全息传感器由水溶性材料制成,因此对水溶液及其特征传感无法实现㊂为此研制了一种新型聚合物凝胶材料,该材料适用于对水溶液的传感㊂将其放置于水中,通过交联功能化单体,能够响应溶液酸碱度㊂实验测试了不同pH值情况下传感器的光谱偏移特征,并测试了不同厚度聚合物材料传感响应时间㊂最后全息溶液传感器的可逆性也得到了实验证实㊂实验结果为深入分析传感器的传感机制提供了实验基础,同时为改善全息传感器实用能力提供了重要手段㊂关键词:全息光学装置;聚合物;全息传感器;溶液中图分类号:O438㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1002-1841(2019)04-0005-05HolographicSensorBasedonNovelPolymerHydrogelandIt sSensingPerformanceforpHofSolutionDURui1,YUDan1,WANGShi⁃chan2,LIULi⁃li1,GUYong⁃jun1,MENGXiang⁃kai1(1.CollegeofScience,TianjinUniversityofTechnology,Tianjin300384,China;2.CollegeofScience,CivilAviationUniversityofChina,Tianjin300300,China)Abstract:Theenvironmentalsensingdevicebasedonpolymerholographicgratinghasreceivedextensiveattentionathomeandabroadinrecentyearsduetoitssimpleprocess,lowcost,remarkablesensingphenomenonandexcellentresponseperform⁃ance.Whentheexternalenvironmentchanges,theholographicgratingrecordedinthephotoinducedpolymercancausesignificantchangesinthediffractioncharacteristicsofthegrating,whichwillleadtotheshiftofthepeakwavelengthofthespectrum.There⁃fore,itispossibletoapplyholographicgratingsensingenvironmentcharacteristics.However,theholographicsensorbasedonac⁃rylamidephotopolymerismadeofwater⁃solublematerial,sothewatersolutionanditscharacteristicsensorcan tbeobserved.Therefore,wedevelopedanewtypeofpolymergelmaterial,whichissuitableforsensingwatersolutions.ItcanbeplacedinwaterandcrosslinkedbyfunctionalizedmonomerstorespondtothepHvalueofthesolution.ThespectrumcharacteristicsofsensorswithvariouspHvaluesweretested,andtheresponsetimeofpolymermaterialswithdifferentthicknesswastested.Finally,there⁃versibilityoftheholographicsolutionsensorwasalsoexperimentallyconfirmed.Theexperimentalresultsprovideanexperimentalbasisforin⁃depthanalysisofthesensorsensingmechanismandanimportantmeanstoimprovethepracticalabilityoftheholo⁃graphicsensor.Keywords:holographicopticalelement;photopolymer;holographicsensor;solution0㊀引言光致聚合物是一种对光敏感的有机材料,能够在曝光的条件下发生光化学反应而产生成分的变化与相应的折射率改变㊂当调制干涉光照射材料后,材料内成分会随着曝光的进行产生空间重新分布㊂从而导致折射率调制度的改变,进而写入全息体光栅,实现信息的记录[1-4]㊂由于其较低的制备成本,高衍射效率㊁快速的光响应能力㊁制备方法简单等优势,光致聚合物已经成为下一代全息数据存储的首选材料,并已经逐步迈向实用化㊂与此同时,光致聚合物基全息光学元器件已逐步应用于多种光学领域,如光纤调制器㊁光学数据存储[5-6]㊁光学传感器[7-8]等㊂其中全息传感器领域是其中有着较高探索与研究价值的新型光学传感领域㊂由于全息光学有着直观的图像存储与显示能力,使得㊀㊀㊀㊀㊀6㊀InstrumentTechniqueandSensorApr 2019㊀制备的传感器能够产生色彩鲜艳㊁图案美观的全息图,并在外界因素改变的同时,其材料自身色彩还能够发生相应的变化,因此有着十分重要的应用潜力与发展前景[9-10]㊂记录于光致聚合物内的全息体光栅在外部环境改变时,能够引起光栅衍射光谱特征的显著变化,并将随之导致光谱峰值波长的偏移,从而应用全息光栅传感环境特征成为可能[11-13]㊂然而基于丙烯酰胺光致聚合物的全息传感器由水溶性材料制成,因此对水溶液及其特征传感无法实现[14]㊂为此研制了一种新型聚合物凝胶材料,该材料适用于对水溶液的传感㊂将其放置于水中,通过交联功能化单体,能够响应溶液酸碱度㊂实验测试了不同pH值情况下传感器的光谱偏移特征,并测试了不同厚度聚合物材料传感响应时间㊂最后全息溶液传感器的可逆性也得到了实验证实㊂1㊀材料与实验装置为实现用于水溶液传感的聚合物全息传感器研制,研制了一种具有抗水性能[15-16],同时能够在水溶液中长期生存的新型聚合物凝胶材料㊂材料成分为:甲基丙烯酸羟乙酯单体(HEMA)㊁菲醌(PQ)光敏单体㊁偶氮二异丁氰热引发剂(AIBN)㊁二甲基丙烯酸酯共聚单体(EGDMA)㊂为实现对水溶液pH值敏感,甲基丙烯酸作为选择性传感功能化单体(MAA)[17]㊂材料的制备流程如图1(a)所示㊂首先将甲基丙烯酸羟乙酯通过超声振荡与其他成分按比例混合均匀㊂然后将混合液注入模具在70ħ下放置2h,并使其处于粗真空下㊂用于排除溶液中的氮气,并使热引发剂充分吸热㊂而后将混合液温度降至60ħ放置48h,用于材料均匀固化成型,最终脱模后制成样品㊂实验中采用倾斜反射式全息光栅记录装置记录体光栅,所用装置如图1(b)所示㊂反射式光栅两束记录光以120ʎ夹角交汇到样品内部,并通过光的干涉原理写入全息反射式体光栅㊂为了增加传感装置的敏感性,光栅倾角均为10ʎ㊂这样可以避免读出光的反射信号对探测信号的干扰㊂超连续谱激光光源作为光栅的探测白光源,沿着其中一束记录光的反方向入射至光栅㊂光栅的实时衍射光谱通过光纤光谱仪进行直接接收与处理㊂图1(c)展示了用于制作全息传感器的聚合物样品部分细节㊂2㊀实验结果聚合物基全息传感器的溶液特征传感原理如图2所示㊂首先基于光致聚合原理,通过相干光在材料内(a)新型聚合物材料制备流程(b)全息传感实验装置(c)研制的样品图1㊀全息传感器样品制备流程,实验装置与材料部写入反射式全息光栅,并将其作为传感主要单元㊂而后将材料置于溶液中用于传感溶液酸碱度㊂由于材料内部共聚功能化单体甲基丙烯酸具有羧基㊂在水溶液中能够与水溶液中的氢离子或氢氧根粒子进行静电相互作用㊂当溶液呈现酸性时,此时pH小于7㊂氢离子的静电排斥力使得材料呈现收缩趋势㊂当溶液呈现碱性时,pH大于7㊂溶液中氢氧根离子的静电吸引力将导致材料出现较大的溶胀㊂从而导致光栅衍射谱峰值发生响应的蓝移与红移㊂通过表征二者间的关系便能够实现新型溶液全息传感器的研制㊂该材料的优势在于聚甲基丙烯酸羟乙酯能够吸收水分而发生膨胀,但是并不影响材料内部的全息体光栅㊂光栅衍射性能仍然能够保持,从而用于实时反馈光谱移动㊂图3(a)为光栅衍射光谱二维分布随pH值的变化特征㊂图中归一化衍射光强度用于清晰对比波长移动特征㊂图3(b)为衍射光谱峰值位置与pH值间的关系㊂实线为线性拟合曲线㊂㊀㊀㊀㊀㊀第4期杜睿等:新型聚合物凝胶全息传感器及其溶液pH值响应特性7㊀㊀图2㊀聚合物基全息传感器溶液特征传感原理(a)衍射光谱峰值位移与溶液酸碱度间的二维关系(b)峰值波长与pH值间的线性关系图3㊀不同溶液pH值情况下传感器光谱响应特征实验仪器的误差为1nm㊂可以看出在pH值处于4 8范围内,峰值波长与pH值间符合很好的线性关系㊂这显示了新型pH值传感器能够适用于溶液酸碱度特征的实时表征㊂同时较大的波长移动范围(超过150nm)为该传感器的使用提供了重要基础㊂线性规律是传感器用于特征分析的重要基础㊂该溶液pH值全息传感器既证明了全息传感方式的可行性,也为新型光学传感提供了新的光学传感反馈途径㊂图4描述了材料在不同厚度下的溶液酸碱度传感时间特征㊂所选用的材料厚度分别为200㊁300㊁400㊁500μm㊂图4(a)研究了初始抑制时间对传感响应过程的影响㊂可以看出,在波长移动的初始阶段,有着一段波长没有任何变化的过程㊂在该时间段内,实际上材料已经与溶液进行了接触㊂这段时间随样品厚度的增加而显著增大㊂抑制时间反映的是水分子在材料内部的渗透过程需要一定的时间间隔㊂图4(b)显示厚度越大,所需时间越长㊂当水分子经扩散渗透进入材料内部后,才能由于离子的静电排斥作用导致材料显著膨胀,从而引起光栅间距增加,光栅衍射光谱红移㊂图4(c)描述的是初始抑制阶段结束后,不同厚度材料的光栅显著膨胀过程㊂光栅衍射光谱的红移在该阶段均呈现出很好的指数函数形式㊂经指数函数拟合后可以得到其时间常数,用于对比厚度的影响㊂图4(d)描述了时间常数随样品厚度的变化关系,二者符合典型的指数上升曲线㊂说明厚度的增加显著降低了光栅膨胀的速率㊂实验结果显示厚度是一个影响全息传感器响应速度的重要指标㊂在保证材料有足够的膨胀空间情况下,降低材料的厚度是改善材料响应的重要手段㊂为了验证新型全息传感器溶液传感响应过程中具备可逆性与可重复性,测试了材料多次反复的传感过程,实验结果如图5所示㊂图中数据点为提取的峰值波长随时间的二维变化关系㊂实线是指数函数的拟合曲线㊂多次反复的传感过程保持溶液在2种pH㊀㊀㊀㊀㊀8㊀InstrumentTechniqueandSensorApr2019㊀(a)不同厚度下的初始抑制时间㊀㊀㊀(b)相应的抑制时间与厚度的关系(c)不同厚度下的时间常数(时间常数采用指数函数拟合得到)㊀㊀㊀(d)相应的时间常数与厚度的关系曲线图4㊀不同厚度样品溶液全息传感响应特性间变化,分别为pH=4与pH=11㊂当处于较低的pH值时,材料出现显著收缩,从而导致衍射谱蓝移㊂当处于高pH值时,材料出现膨胀,导致衍射光谱红移㊂采用指数函数拟合蓝移与红移过程中光谱随时间变化的时间常数㊂结果证实多次重复的实验中时间常数均具有非常接近的数值㊂这证实了材料具有高度的可逆性与可重复性㊂这也为全息传感器的溶液传感响应实用化奠定了重要基础㊂3㊀结论本文研制了一种新型聚合物凝胶材料,该材料适用于对水溶液的传感㊂将其放置于水溶液中,通过交联功能化单体,能够响应溶液酸碱度㊂实验测试了不同pH值情况下传感器的光谱偏移特征,并测试了不同厚度聚合物材料传感响应时间㊂实验结果说明基于新材料的全息传感器能够在水溶液中长期稳定生存㊂衍射光谱峰值波长与pH值间符合很好的线性关系㊂这显示了新型pH值传感器能够适用于溶液酸碱度特征的实时表征㊂同时厚度是影响全息传感器响图5㊀新型全息传感器的可逆性与可重复性实验应速度的重要指标㊂在保证材料有足够的膨胀空间情况下,降低材料的厚度是改善材料响应的重要手段㊂新型全息传感器的可逆性与可重复性也得到了实验证实㊂全息传感器显象直观且成本低廉,将该装置的温度响应特性应用于演示教学将取得很好的教学效果㊂在显著传感现象的基础上,能够使学生了解并掌握全息光学装置科技前沿发展现状与最新应用㊀㊀㊀㊀㊀第4期杜睿等:新型聚合物凝胶全息传感器及其溶液pH值响应特性9㊀㊀领域㊂参考文献:[1]㊀FERNANDEZE,GARCIAC,PASCUALI,etal.Optimiza⁃tionofathickpolyvinylalcohol⁃acrylamidephotopolymerfordatastorageusingacombinationofangularandperistrophicholographicmultiplexing[J].AppliedOptics,2006,45(29):7661-7666.[2]㊀KRULL,MATUSEVICHV,HoffD,etal.Polymethylmethac⁃rylateasabaseforthermostableopticalrecordingmedia[J].OpticsExpress,2007,15(14):8543-8549.[3]㊀GALLEGOS,MARQUEZA,MARINIS.IndarkanalysisofPVA/AAmaterialsatverylowspatialfrequencies:phasemodulationevolutionanddiffusionestimation[J].OpticsExpress,2009,17:18279-18291.[4]㊀YUD,LIUH,JIANGY,etal.HolographicstoragestabilityinPQ⁃PMMAbulkphotopolymer[J].OpticsCommunica⁃tions,2010,283(21):4219-4223.[5]㊀YUD,LIUH,JIANGY,etal.MutualdiffusiondynamicswithnonlocalresponseinSiO2nanoparticlesdispersedPQ⁃PMMAbulkphotopolymer[J].OpticsExpress,2011,19(15):13787-13792.[6]㊀VENIAMINOVAV,SEDUNOVYN.DiffusionofPhenan⁃threnequinoneinPoly(methylmethacrylate):holographicmeasurements[J].PolymerScienceSeriresA,1996,38:56-63.[7]㊀ALEXEEVV,DASS,FINEGOLDD,etal.Photoniccrystalglucose⁃sensingmaterialfornoninvasivemonitoringofglu⁃coseintearfluid[J].ClinicChemical,2004,50:2353-2360.[8]㊀CONGJ,ZHANGX,CHENK,etal.FiberopticBragggrat⁃ingsensorbasedonhydrogelsformeasuringsalinity[J].SensorandActuatorsB,2002,87:487-490.[9]㊀MAOD,GENGY,LIUH,etal.Two⁃wayshiftofwavelengthinholographicsensingoforganicvaporinnanozeolitesdis⁃persedacrylamidephotopolymer[J].AppliedOptics,2016,55:6212-6221.[10]㊀LEITEE,NAYDENOVAI,MINTOVAS,etal.Photopoly⁃merisablenanocompositesforholographicrecordingandsensorapplication[J].AppliedOptics,2010,49:3652-3660.[11]㊀YUD,LIUH,MAOD,etal.Enhancementofspectrumstrengthinholographicsensinginnanozeolitesdispersedacrylamidephotopolymer[J].OpticsExpress,2015,23:29113-29126.[12]㊀NAYDENOVAI,JALLAPURAMR,TOALV,etal.Holo⁃gram⁃basedhumidityindicatorfordomesticandpackagingapplications[J].ProceedingofSPIE,2007,6528:652811.[13]㊀NAYDENOVAI,JALLAPURAMR,TOAL,etal.Character⁃isationofthehumidityandtemperatureresponsesofare⁃flectionhologramrecordedinacrylamide⁃basedphotopoly⁃mer[J].SensorsandActuatorsB:Chemical,2009,139:35-38.[14]㊀YUD,LIUH,MAOD,etal.Holographichumidityresponseofslantedgratingsinmoisture⁃absorbingacrylamidepho⁃topolymer[J].AppliedOptics,2015,54(22):6804-6812.[15]㊀LINS,CHOS,LINJ,etal.Influenceoffabricationcondi⁃tionsoncharacteristicsofphenanthrenequinone⁃dopedpoly(methylmethacrylate)photopolymerforholographicmemo⁃ry[J].OpticsCommunications,2014,320:145-150.[16]㊀LIUH,YUD,KEZ,etal.NovelpH⁃sensitivephotopolymerhydrogelanditsholographicsensingresponseforsolutioncharacterization[J].OpticsandLaserTechnology,2018,101:257-267.[17]㊀GERLACHG,GUENTHERM,SORBERJ,etal.ChemicalandpHsensorsbasedontheswellingbehaviorofhydrogels[J].SensorsandActuatorsB,2005,111-112:555-561.作者简介:杜睿(1999 ),主要研究方向为光致聚合物材料的全息传感性能测试㊂E⁃mail:1589823732@qq.com通讯作者:于丹(1983 ),副教授,博士,主要研究方向为全息传感装置及性能测试㊂E⁃mail:yudanhit@126.com(上接第4页)[8]㊀JASON,NILSSONJ.Robustnessanalysisofanintensitymod⁃ulatedfiber⁃opticpositionsensorwithanimagesensorread⁃outsystem[J].AppliedOptics,2013,52(16):3876-3883.[9]㊀胡浩,钟丽琼.一种对称式光纤束差压传感器及其性能研究[J].中国机械工程,2017,28(3):305-309.[10]㊀白忠臣,姜崇杰,秦水介,等.一种基于激光加工微型通道的光纤生物传感器[J].光电子㊃激光,2009,20(5):605-608.[11]㊀周晓军,杜东.偏振模耦合分布式光纤传感器空间分辨率研究[J].物理学报,2005,4(5):2106-2109.[12]㊀万生鹏,何赛灵.基于布里渊散射的光纤传感系统性能分析[J].传感技术学报,2004(2):322-324.[13]㊀ZAWAWIMA,KEFFES,LEWISE.Intensity⁃modulatedfiberopticsensorforhealthmonitoringapplications:acom⁃parativereview[J].SensorReview,2013,33(1):57-67.[14]㊀NEVSHUPAR,CONTEM,vanRIJINC.Measurementun⁃certaintyofafiber⁃opticdisplacementsensor[J].Measure⁃mentScienceandTechnology,2013,24(3):510-514.作者简介:胡浩(1980 ),讲师,博士,主要从事传感器技术的研究㊂E⁃mail:haohu0105@126.com。
葡萄糖生物传感器研究概况葡萄糖是动物和植物体内碳水化合物的主要组成部分,因此葡萄糖的定量测定在生物化学、临床化学和食品分析中都占有很重要的位置。
1954年Clark的氧电极分析方法使活体组织氧分压的无损测量成为可能,由此打开了生物传感器这一研究领域。
50多年来各国科研人员对生物传感器的研究和发展使得葡萄糖传感器在食品分析、发酵控制、临床检验等诸多方面得到应用并发挥了重要的作用。
本文对葡萄糖生物传感器的分类、原理及发展概况等作一简要概述。
1.概念生物传感器是用来侦测生体内或生体外的环境化学物质或与之起特异性交互作用后产生响应的一种装置,Gronow将其定义为“使用固定化的生物分子结合换能器”[1]。
它利用生物化学和电化学反映原理,将生化反应信号转换为电信号,通过对电信号进行放大和转换,进而测量被测物质及其浓度[2],是一种集现代生物技术与先进的电子技术于一体的高科技产品。
生物传感器可用于探索揭示生命系统中信息的产生、存储、传输、加工、转换和控制等基本规律,探讨应用于人类经济活动的基本方法。
葡萄糖传感器是生物传感器领域研究最多、商品化最早的生物传感器[3],为葡萄糖氧化酶,GOD)经固化后于氧电极组成成。
这一生物传感器可在非常短的响应时间(glucose oxidase内完成对葡萄糖的测定,其线性范围为0~30mg?dL-1,能稳定使用22d,测定的相对标准偏差小于1.2。
2.分类关于葡萄糖生物传感器的分类,不同的研究方向,有不同的分类方法,主要有以下三种分类。
一是根据生物传感器中分子识别元件即敏感元件划分为:酶传感器(enzyme sensor),微生)),组织传感器(tis-suesensor物传感器(microbial sensor),细胞传感器(original sensor和免疫传感器(immunolsensor)。
二是根据生物传感器的换能器即信号转换器分类,如:生物电极(bioelectrode)传感器,半),热生物传),光生物传感器(optical biosensor导体生物传感器(semi conduct biosensor)等。
基于多孔硅的分子印迹温敏水凝胶芯片传感器罗乔慧,邬建敏*浙江大学化学系,微分析系统研究所,杭州,310058*wjm-st1@将分子印迹温敏性水凝胶与多孔硅结合,发展出一种简便的,连续,无标记的抗生素检测传感器,以N-异丙基丙烯酰胺(NIPAm)为温敏单体,衣康酸(ITA)为功能单体,环丙沙星(CIP)为目标分子,Fe3+为螯合剂,2,2-二甲氧基-2-苯基苯乙酮(DMPA)为引发剂,通过光引发的方法在多孔硅表面原位聚合分子印迹温敏水凝胶膜,利用多孔硅反射干涉光谱可以检测多孔硅表面凝胶层的收缩/溶胀变化,考察凝胶膜结合模板分子前后对温度的响应值变化大小。
以ITA-Fe3+-CIP这个三元络合体系通过光引发的方法成功制备出能够对环丙沙星选择性吸附的温敏型分子印迹水凝胶膜,用反射干涉光谱可实时监测多孔硅/温敏凝胶复合材料的溶胀特性(Fig. 1)。
实验结果表明该复合材料对温度的有效光学厚度(EOT)响应值最大可达16000 nm(Fig. 2)。
此传感器有希望成为小分子检测的灵敏的无标记微型芯片传感器。
Fig.1 Reflection interference test device Fig.2 (a)Porous silicon reflection interference spectrum and FFT(b) EOT change upon heating-cooling cycles关键词:多孔硅;分子印迹温敏水凝胶;抗生素传感器参考文献[1] Qu, S.; Wang, X.; Tong, C.; Wu, J. Journal of Chromatography A. 2010, 1217(52): 8205-8211.[2] Wang, X.; Mu, Z.D.; Liu, R.; et al. Food Chemistry.2013, 141: 3947-3953.[3] Ester Segal; Loren A. Perelman; et al. Advanced Functional Materials.2007, 17: 1153-1162.Molecular imprinted thermosensitive hydrogel chip sensor based onporous siliconQiaohui Luo, Jianmin Wu,*Department of Chemistry, Zhejiang University, HangZhou, 310058A simple sensor for rapid and label-free detection of antibiotic was developed based on the combination of molecular imprinted thermosensitive hydrogel and porous silicon. Molecularly imprinted hydrogel membrane of ITA-Fe3 +-CIP system of the ternary complex has the good ciprofloxacin selective adsorption performance, the EOT response value of porous silicon/thermosensitive hydrogel up to 16000nm. This sensor is comprising of label-free and sensitive micro chip sensor for small molecules.。
水凝胶纤维传感
水凝胶纤维传感是一种新颖的传感技术,利用水凝胶纤维的特殊性质进行传感。
由于水凝胶纤维具有优异的柔软性、湿度响应性和生物相容性,它们在设备和机器中具有多功能的应用,包括传感器、执行器、光学器件和涂层。
水凝胶纤维传感器的制造方法包括将丙烯酰胺(AAm)和海藻酸钠通过模板法合成,然后封装在一层Ecoflex中。
两种纤维垂直交叉形成电容器,其中水凝胶和Ecoflex分别充当电极和介电层。
这种双峰传感器显示出极好的压力传感性能,包括高灵敏度、快速响应/恢复时间,和低检测限。
此外,水凝胶纤维还具有抗干燥、坚韧的特性,可以拉伸到1400%。
这些特点使得水凝胶纤维传感器在人体运动检测/监控和软致动器等领域具有广泛的应用前景。
然而,要实现这些基于水凝胶纤维的高性能软电子技术的实际应用,还需要进一步研究几个挑战,比如提高导电性、灵敏度和生物相容性。
化学工程师Chemical Engineer2021年第1期Sum304No.1科研与开发D0I:10.16247/ki.23—1171/tq.20210113无溶剂辐射固化丙烯酸压敏胶的性能和制备*邵康宸(西安航空职业技术学院航空材料工程学院,陕西西安710089)摘要:本文以聚氨酯丙烯酸酯(UV-7605)和环氧树脂(EP815)作为预聚体,丙烯酸作为增粘树脂,二甲基丙烯酸酯作为稀释剂,羟基环己基苯酮作为光引发剂,制备了性能优异的无溶剂辐射固化型丙烯酸压敏胶。
通过对丙烯酸压敏胶的成膜性、固化时间、初粘力、粘结强度、附着力和耐老化性能测试,研究讨论了预聚体、增粘树脂、单体稀释剂、光引发剂等对其性能的影响。
结果得出,各组分含量为:UV-7605:EP815为1:2,丙烯酸:%;光引发剂:3.5%,辐射固化时间为60s时,可制得成膜性好,初粘力高,附着力和耐老化性优良的辐射固化型丙烯酸压敏胶。
关键词:丙烯酸;压敏胶;辐射固化;增粘树脂中图分类号:TQ436.3文献标识码:AProperties and preparation of solvent-free radiation curing acrylic pressure sensitive adhesive*SHAO Kang-chen(College of Aeronautical Materials Engineering,Xi'an Aeronautical Polytechnic Institute,Xi'an710089,China) Abstract:In this paper,polyurethane acrylate(UV-7605)and epoxy were used as prepolymer,acrylic acid as tackifying resin,dimethyl acrylate as diluent and hydroxycyclohexyl phenyl ketone as photoinitiator,a solvent-free radiation curing acrylic pressure sensitive adhesive with excellent properties was prepared.The film-forming property,curing time,initial adhesion,adhesion strength,adhesion and aging resistance of acrylic pressure sensitive adhesive were tested,the effects of prepolymer,tackifying resin,monomer diluent and photoinitiator on their properties were discussed.The results showed that the content of each component was1:2for UV-7605:EP815,3%for acrylic acid,3.5%for photoinitiator and60s for radiation curing time,the radiation curing acrylic pressure sensitive adhesive with good film formation,high initial adhesion,excellent adhesion and aging resistance could be prepared.Key words:acrylic acid;pressure sensitive adhesive;radiation curing;tackifying resin化学在人们日常生活中的地位越来越重要,它带给人们方便和好处的同时也引起了一系列的问题,最为严重的问题即对环境的污染和破坏。
收稿日期:2007-03-08作者简介:王胜碧(1969 12~),女,安顺学院化学系讲师。
基于分子印迹聚合物的水杨酸电导型传感器王胜碧1吕瑞红2徐 岚3(1 安顺学院化学系,贵州 安顺561000)(2、3 西南大学化学化工学院,重庆400715)摘 要:以水杨酸为模板分子,通过制备印迹聚合物作为敏感材料,制成检测水杨酸的电导型传感器。
测试了水杨酸印迹聚物[P (SA)]对水杨酸(SA)的吸附特性。
该传感器在pH 6 0的缓冲介质中,对浓度范围为0 01~0 1mmol L -1的水杨酸有明显的电导响应,寿命为5个月。
通过对传感器选择性,灵敏度和稳定性测试,结果证明水杨酸分子印迹聚合物可以作为敏感物质用于水杨酸传感器的开发研制。
关键词:分子印迹;水杨酸;电导型传感器中图分类号:G646 文献标识码:A 文章编号:1673-9507(2007)02-0089-03由于分子印迹对目标分子有特异的识别性,有关分子印迹高聚物[M olecular impr inting polymer (M I P)]的研究和应用得到迅速发展[1]。
M I P 是在模板分子的存在下,与特定功能单体通过共价或非共价作用形成复合物,在复合物中加入交联剂,使其在复合物周围与功能单体发生共聚,得到高度交联的聚合材料,用物理或化学方法将模板分子从聚合物中取出,该聚合物中便产生与模板分子的形状、大小和官能团的固定排列匹配的印迹空穴,对模板分子具有 记忆 能力。
M I P 引起了人们极大的关注,主要是由于它具有简单廉价,易制备,可预设选择性,识别能力强,耐酸碱,高温和有机物等众多优点[2-12]。
M IPs 可适合于作为化学传感器中具有分子识别功能的敏感材料。
一些以M IPs 作为敏感材料的化学传感器,如电流型传感器[2],电容型传感器[13]和光纤传感器[14,15]等,已见报道。
已有文献以水杨酸为模板的分子印迹聚合物[P (SA)]的制备以及分子识别机理的研究[16]。
包装工程第45卷第1期·54·PACKAGING ENGINEERING2024年1月基于分子动力学的丝网印刷柔性传感器电极导电性机理研究潘云霄1,李艳1*,王云燕1,蔡子木1,彭拓凯2,许建林1,任铮1(1.北京印刷学院 a.数字化印刷装备北京市重点实验室 b.印刷装备北京市高等学校工程研究中心北京102600;2.北京化工大学软物质科学与工程高精尖创新中心,北京100029)摘要:目的研究提高丝网印刷柔性传感器电极的导电性,为提升柔性传感器的电学性能提供参考依据。
方法首先采用分子动力学(Molecular Dynamic,MD)模拟方法,建立在Wenzel模型下导电银浆团簇在不同粗糙因子下的对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)表面铺展的分子动力学模型,其次分别计算各体系下的结合能,用以表征不同体系下PET表面对导电银浆团簇结合能力,接下来通过丝网印刷实验的方法探究银浆与不同粗糙因子PET的结合能力对传感器电极的导电性的影响。
结果仿真结果表明,导电银浆团簇在不同粗糙因子的PET表面的铺展过程中会陷入粗糙表面的凹陷处,且导电银浆与基材的结合能随着PET粗糙因子的增加而增加。
实验结果表明,使用不同粗糙因子的PET 作为承印物能显著提升电极的导电性。
相比于未处理的PET,随着粗糙因子的增加,导电线条的电导率逐渐升高,电阻率逐渐降低,方块电阻逐渐降低。
电导率最大提升了77%,电阻率最大下降了43%,方块电阻最大下降了38%。
结论导电银浆在粗糙表面铺展的过程中会渗入基材的凹陷处,增加了吸附点位,使得银浆与基材的结合更加紧密,银颗粒之间距离变小导电性增强。
因此为了增加导电线条的导电性可以适当增加基材的粗糙度。
关键词:丝网印刷;柔性压力传感器;分子动力学;粗糙因子;结合能;导电性中图分类号:TS802.3 文献标志码:A 文章编号:1001-3563(2024)01-0054-08DOI:10.19554/ki.1001-3563.2024.01.007Mechanism of Electrode Conductivity in Screen Printing Flexible Sensors Based onMolecular DynamicsPAN Yunxiao1, LI Yan1*, WANG Yunyan1, CAI Zimu1, PENG Tuokai2, XU Jianlin1, REN Zheng1(1. a. Beijing Key Laboratory of Digitization Printing Equipment, b. Engineering Research Center of Printing Equipmentof Beijing Universities, Beijing Institute of Graphic Communication, Beijing 102600, China; 2. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology,Beijing 100029, China)ABSTRACT: The work aims to improve the conductivity of the electrode in the screen printing flexible sensor, and provide a reference for improving the electrical properties of the flexible sensor. Firstly, the molecular dynamic (MD) simulation method was used to establish the molecular dynamics model of conductive silver paste spreading on the surface of polyethylene terephthalate (PET) under different roughness factors in Wenzel model. Secondly, the binding收稿日期:2023-08-28基金项目:国家新闻出版署智能与绿色柔版印刷重点实验室招标课题(ZBKT202006);超弹性现象对柔版印刷质量影响研究(ZBKT202103)*通信作者第45卷第1期潘云霄,等:基于分子动力学的丝网印刷柔性传感器电极导电性机理研究·55·energy of each system was calculated to characterize the binding ability of PET surface to conductive silver paste clusters in different systems. Then, the effect of the binding ability of silver paste and PET with different roughness factors on the conductivity of sensor electrode was explored by screen printing experiment. The simulation results showed that the conductive silver paste fell into the depression of rough surface during the spreading on PET surface with different roughness factors, and the binding energy between conductive silver paste and substrate increased with the increase of PET roughness factors. According to the experimental results, the conductivity of the electrode was significantly improved by PET with different roughness factors as the substrate. Compared with untreated PET, with the increase of roughness factor, the conductivity of conductive lines gradually increased by 77%, the resistivity gradually decreased by 43%, and the block resistance gradually decreased by 38%. Conductive silver paste will penetrate into the depression of the substrate during the spreading on rough surface, which increases the adsorption point, making the combination of silver paste and substrate closer, narrowing the distance between silver particles and enhancing the conductivity. Therefore, in order to increase the conductivity of the conductive lines, the roughness of the substrate can be appropriately increased.KEY WORDS: screen printing; flexible pressure sensor; nolecular dynamics; roughness factor; binding energy; conductivity柔性电子技术是建立在可弯曲或可延伸基材上的新兴的电子技术,产生了柔性通信、柔性显示、柔性医疗、柔性传感等新的应用,要求产品在弯曲,压缩或拉伸状态下仍能正常工作,有着非常广阔的应用前景,受到学术界和产业界的广泛关注[1-5]。
专利名称:UV transparent pressure sensitive adhesive 发明人:HUSEMANN, MARC, DR.,ZOELLNER,STEPHAN, DR.申请号:EP04010516.5申请日:20040504公开号:EP1479747A3公开日:20060308专利内容由知识产权出版社提供摘要:the invention relates to a uv transparent haftklebemasse.erfindungsgem\u00e4\u00df is a haftklebemasse with an average molecular weight mw of less than 300 000 g \/ mol and a uv transparency in 300 nm of more than 95% for fully (a) a copolymerzusammensetzung, comprehensive (a1) 75 to 99.8 wt.%acryls\u00e4ureester and \/ or methacryls\u00e4ureester of formula ch2 = ch (r1) (coor2), where r1 represents h or ch3, and r2 is a alkylkette with 1 to 20 c atoms in it; (a2) from 0 to 10 wt.% acrylic acid and \/ or methacrylic acid of formula ch2 = ch (r1) (cooh), with r1 h or ch3 darste llt: (a3) 0.2 to 5% by weight.-% olefinisch unsaturated monomers having at least one uvvernetzende functional group per monomer components; and (a4) from 0 to 20 wt.% olefinisch unsaturated monomers, at least one functional group per monomer); and (b) 2 to 20% by weight.-%, based on the copolymerzusammensetzung, a silikatf\u00fcllstoffes, with a maximum of 50 nm silikatf\u00fcllstoff teilchendurchmesser exhibits; with the restl\u00f6sungsmittelanteil less than 1% relative to the haftklebemasse, respectively.申请人:TESA AG地址:Quickbornstrasse 24 20253 Hamburg DE国籍:DE更多信息请下载全文后查看。
简介控制聚合物分子的取向通常可以采用单轴定向拉伸、高电场薄膜极化、紫外偏振光照射含有光敏基团的聚合物等方法,也可以采用偏振激光辐射气相化学沉积法,得到单一取向的高分子薄膜。
目前,取向技术在压电材料、二阶非线性谐波材料以及液晶定向技术中得到广泛应用。
在液晶显示器制作中,聚合物表面取向的分子链用于控制液晶分子的定向方向,而取向分子链的获得主要是通过绒布摩擦法。
即将涂布于基板上的高分子薄膜(一般是聚酰亚胺)经过摩擦后,聚合物表面的部分分子链或链段发生了沿着摩擦方向排列的取向现象。
而其上的液晶分子因受到聚合物分子链各向异性的相互作用而引起定向排列。
为了进一步发展高性能的液晶显示器,必须了解磨擦取向高分子薄膜的取向特性,所以聚合物薄膜分子取向的表征技术得到了快速发展。
这其中包括傅立叶红外技术、偏振紫外技术、二次谐振产生(SHG)观察法、反射椭圆偏振技术(TRE)、近场X射线吸收精细结构谱(NEXAFS)[]、掠角X射线衍射技术(GIXS)[以及核磁共振技术等等。
01紫外-可见光谱法对有机二阶非线性光学材料,在极化前后,随着生色团取向的变化,豪合物的紫外-可见吸收光谱也会发生变化。
假定分子的跃迁矢量平行于其永久基态偶极矩,就可以用偏振垂直于极化方向的光测定膜的吸光度,由极化前后的吸光度可求其序参数:φ=(1-A1)/A0=(3cos²θ-1)/2,其中A0为极化前的吸光度,A1为极化后的吸光度,θ为薄膜的取向角,序参数可反映薄膜或基团的取向程度。
图中为极化前后含偶氮基团的聚胺酯酰亚胺(PUI)薄膜的紫外-可见吸收光谱。
从谱图可以看出,高电场极化使得偶极矩发生取向而引起分子二向色性的变化。
由于偶极矩发生面外取向,因而极化后膜的最大吸收峰值下降。
02傅立叶红外光谱技术对于透射红外光谱,化学基团的吸收是指该基团偶极矩在垂直于入射光平面上的分量的吸收,如果基团发生了面外的取向(如电极化,激光诱导等),则其偶极矩在入射光的垂直平面上的分量将减少,因此通过测定处理前后透射红外光谱的变化,可以了解化学基团的面外取向情况。
使用受激准分子激光产生的UV-引发的光反应交联丙烯酸酯压敏粘合剂摘要:立足于市场的紫外光交联技术允许生产多种带有有趣功能的紫外线(UV)交联的压敏胶粘剂(PSA)。
对于表征他们的性能,在交联不干胶涂层的黏性和粘结强度之间的平衡是关键。
特别对于以下这些性能,如粘附性,剥离力和自粘聚合物层的剪切强度,用受激准激光分子器和紫外光灯作为紫外光源能引发紫外光交联丙烯酸酯压敏胶。
据观察,和典型的用紫外光灯相比较,用准分子激光引发的紫外光交联的高品质的丙烯酸类PSA产品能获得具有优异的性能,如粘附性,剥离强度,剪切强度和收缩率。
引言由于在半个世纪前他们的引进,丙烯酸酯压敏胶粘剂(PSA)已被成功地应用于许多领域。
他们被应用在自粘胶带,胶带,保护膜,标签和保护膜以及皮肤剂量系统的药物应用和生物电极方面。
在表征压敏胶性能很有用的的三个性能指标的是粘附性,剥离强度(粘附力)和剪切强度(内聚力),第一个测定的是迅速粘接的附着能力,第二个是通过剥离测定抗移动能力和第三个是当受到剪切力时能保持原来位置的能力。
一般来说,前两个是彼此直接相关的,但与第三个呈负相关。
在确定光反应性丙烯酸酯压敏胶引发剂的类型,浓度和UV交联工艺的情况下,丙烯酸压敏胶的性能,如粘度,剥离强度,剪切强度和收缩,在很大程度上是由丙烯酸的分子量,聚合方法,特别是加入到PSA交联剂的种类和数量所决定的。
过去十年来紫外光可固化材料的在不干胶,自粘胶和其他涂料领域的工业应用发展迅速。
UV交联技术在各种各样的工业产品和工艺方面取得的成功可以归因于高产率,UV交联涂料性能的提高,能耗低和环境效益。
作为光源的紫外灯发射的光谱频率在200nm和400 nm之间的紫外光区域。
由受激辐射的光放大的话(激光)揭示了约45年,现有的技术。
它在治疗方面的使用是从离子交换纸色谱测定法中得知的。
对于PSA技术,准分子激光最经常被使用。
由激光发射的辐射有一些区别于传统的辐射源发射的辐射所不寻常的特性。
UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic SensingVolume8,Number1,February2016Li LiuPing LuShun WangXin FuYuan SunDeming LiuJiangshan ZhangHao XuQiuping YaoDOI:10.1109/JPHOT.2015.25098661943-0655Ó2015IEEEUV Adhesive Diaphragm-Based FPI Sensorfor Very-Low-Frequency Acoustic Sensing Li Liu,1Ping Lu,1Shun Wang,1Xin Fu,1Yuan Sun,1Deming Liu,1Jiangshan Zhang,2Hao Xu,3and Qiuping Yao31Wuhan National Laboratory for Optoelectronics,National Engineering Laboratory for NextGeneration Internet Access System,School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan430074,China2Department of Electronics and Information Engineering,Huazhong Universityof Science and Technology,Wuhan430074,China3Hubei Provincial Institute of Measurement and Testing,National Optical ProductsInspection Services Center,Wuhan430071,ChinaDOI:10.1109/JPHOT.2015.25098661943-0655Ó2015IEEE.Translations and content mining are permitted for academic research only.Personal use is also permitted,but republication/redistribution requires IEEE permission.See /publications_standards/publications/rights/index.html for more information.Manuscript received November9,2015;revised December9,2015;accepted December11,2015.Date of publication December17,2015;date of current version December30,2015.This work wassupported by the National Natural Science Foundation of China under Grant61275083and Grant61290315and in part by a grant from the Fundamental Research Funds for the Central Universities.Corresponding author:P.Lu(e-mail:pluriver@).Abstract:In this paper,we propose and demonstrate a fiber-optic extrinsic Fabry–Pérotinterferometer(FPI)sensor based on an ultraviolet(UV)adhesive diaphragm for very-low-frequency acoustic sensing.The sensing diaphragm is formed by the surface tensionof UV adhesive solution and exhibits a good acoustic response from1Hz to20kHz.Thesensor has a sensitivity of57.3mV/Pa at1000Hz and a flat frequency response rangingfrom1to2000Hz with a small fluctuation of about±1.5dB.The good response of infra-sound and rather simple fabrication process make it a wonderful candidate for very-low-frequency acoustic sensing.Index Terms:Fabry–Pérot interferometer(FPI),ultraviolet(UV)adhesive diaphragm,very-low-frequency,acoustic sensing.1.IntroductionVery-low-frequency acoustic sensors have been studied extensively for decades and used widely.Infrasound is a new horizon for the remote sensing of the Earth's atmospheric physical environment,and many previous reports have pointed out the existence of infrasound waves generated by many environmental such as sources,volcanic eruptions,ocean waves,earth-quakes[1].Besides,infrasound sensing has been used to detect nuclear explosion in military field[2].Pipeline leakage detection[3]and medical treatment[4]are also the significant ap-plications of infrasound detection.Due to the good dynamic performance,high sensitivity and signal-to-noise ratio(SNR),the capacitive or piezoelectric acoustic sensors such as MB2000 (France),B&K4193and4964are the main commercial products for low frequency measure-ment.Nevertheless,containing many electronic components and electric cable,they are not immune to electromagnetic interference and less practical in the application of long distance. For the unique advantages of high sensitivity,immunity to electromagnetic interference(EMI), remote detection and multiplexing capability[5],fiber optic acoustic sensors can remove these limitations.Fiber Bragg gratings(FBGs),the Mach-Zehnder interferometer(MZI)/Michelsoninterferometer(MI),and the Fabry–Pérot interferometer(FPI)are three major configurationsfor acoustic detection[6].FBGs can be modulated by the acoustic wave which wavelength issmaller than the FBG length,but they are insensitive to the low-frequency acoustic wave[7].MZI/MI based acoustic sensors are the most cost-effective and easy to implement.Zumbergehas proposed a MZI structure with two arms wrapped on a very long sealed tube(89m lengthand25mm diameter silicon rubber)to detect infrasound signal around1–10Hz[8].Eventhough the size of the MZI/MI sensing head can be reduced by using tapered or hollow-core fi-bers,the size is still larger[9],[10].FPI-based acoustic sensors which formed between a cleavedfiber end and a reflective diaphragm are the most sensitive fiber-optic acoustic sensors reportedso far and now starting to compete with the standard used piezoelectric transducer(PZT)sensors in terms of the frequency range,resolution,and sensitivity[6].In the last decades,vari-ous kinds of diaphragm materials have been studied for FPI pressure or acoustic sensors,suchas silicon[11],polymer[12],graphene[13],chitosan[14],and silver[15].Moreover,the sensitiv-ity of FPI acoustic sensors can be remarkably improved by reducing thickness-to-diameter ratioof diaphragm[11],[12].However,the production process of diaphragms such as polymer-basedfilm[16],metal-based film[15],micro-machined silicon diaphragm[17],or single/multi-mode fiberdiaphragm[18]is complex and costly,which involves mechanical spinning,chemical etching,ormicro-machining.Besides,most of FPI-based acoustic sensors haven't been designed to detectvery-low-frequency acoustic wave[11]–[15].In this paper,an UV adhesive diaphragm based sensor is proposed to offer high sensitivity,good low frequency response,low-cost and easy fabrication for the very low frequency acousticmeasurement.The UV adhesive diaphragm with a radius of1mm and a thickness of2.2∼6.4 m is formed by the surface tension of UV adhesive solution.Moreover,UV adhesive can becompletely solidified under the ultraviolet light and still keep flexibility,reflective and stability aftersolidifying.Due to the lower thickness-to-diameter ratio and larger elasticity of UV adhesive dia-phragm,the proposed sensor presents a preponderance to detect very-low-frequency acousticwave with a sensitivity of57.3mV/Pa at1000Hz and a flat frequency response ranging from1Hz to2000Hz with a small fluctuation about±1.5dB.2.Working Principle and Sensor FabricationWhen the acoustic pressure is applied to the diaphragm,this imposed pressure will cause thedeformation of diaphragm and result in change of the cavity length d.In our experiment,onlythe center deflection of diaphragm is of interest.For a rigidly clamped round diaphragm,thecenter deformation is given by[19]Ád¼3ð1À 2Þpr416Et3f2mnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif2mnÀf2ÀÁ2þ4f2 2q(1)where and E are Poisson's ratio and Young's modulus of the diaphragm material,r stands for the radius of the diaphragm,t is the diaphragm thickness,p is the sound pressure,f is the fre-quency of acoustic wave, is the damping coefficient,and f mn is the mn order natural frequency of the diaphragm.The first-order natural frequency of diaphragm can be described asf00¼10:17trffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiE12 ð1À Þs:(2)Equation(1)suggests that using lower Young's modulus materials,at the same time,reduc-ing the thickness-to-diameter ratio of diaphragm can improve obviously the sensitivity of FPI pressure sensors.Due to its preponderant physical properties such as low Young's modulus, non contraction after curing,flexible and light-reflecting,the3M RITE-LOK UV-60adhesive is selected to fabricate large area diaphragm for very low frequency acoustic sensing in this paper. The UV adhesive diaphragm fabrication process is schematically shown in Fig.1.To fabricate the UV adhesive diaphragm,5ml 3M RIT-LOCK UV-60adhesive solution is firstly prepared in the test tube,and then,a clearly stainless steel tube with 9mm length,1.25mm inner radius,and 1.5mm outer radius is inserted into the UV adhesive solution about 1mm ver-tically.After about 40s,the internal surface of stainless steel tube will adhere to UV adhesive solu-tion uniformly.Next,pull out the stainless steel tube from UV adhesive solution slowly.Because of the surface wettability of stainless steel tube and surface tension of UV adhesive solution,a thin UV adhesive diaphragm will be formed and its edge will be fixed on the internal surface of stainless steel tube.For purpose of improving the stability of diaphragm,the UV adhesive diaphragm is exposed to the UV light continuously for 10min.to solidify completely.At last,a diaphanous,smooth,stable and thin diaphragm is fabricated as shown in Fig.2(a).It is a re-markable fact that the whole process is rather cost-effective and simple.The thickness of UV adhesive diaphragm could be controlled by the depth of stainless steel tube in the UV adhesive and the speed of taking the stainless steel tube out from UV adhesive solution.Moreover,the thickness of diaphragm can be detected by calculating the free spectral range (FSR)from the interference spectrum of fiber-tip FPI as shown in Fig.2(c).For a low-finesse FPI,the total reflected light intensity collected by the SMF from fiber end,surfaces 1and surfaces 2can be expressed by [20]I ¼E 20þE 21þE 32À2E 0E 1cos 4 n air d þ2E 0E 2cos 4 ðn air d þn UV t Þ !À2E 1E 2cos 4n UV t (3)where E 0,E 1,and E 2are the amplitudes of three reflected waves;d is the length of FP cavity;t is the thickness of UV adhesive diaphragm; is the light wavelength;and n air and n UV are the refractive index of air and the UV adhesive diaphragm.Moreover,the interference spectrums of fiber-tip FPI with different thickness of UV adhesive diaphragm are shown in Fig.3.Since the UV adhesive diaphragm is very thin,the modulation of the fringe envelope in Fig.3isregarded Fig.2.(a)UV adhesive diaphragm.(b)Sectional view of UV adhesive diaphragm.(c)Schematic dia-gram of detecting thickness ofdiaphragm.Fig.1.Steps of fabrication UV adhesive diaphragm (1)–(4).as the result of the interference between surface 1and surface 2.Therefore,the thickness of UV adhesive diaphragm can be expressed ast ¼ 2ð2n UV FSR env Þ(4)where FSR env is the spacing of fringe-envelope in Fig.3and they are 110nm,165nm,190nm,240nm,and 335nm from state 1to 5,respectively.Moreover,n UV is about 1.5.Based on (4),the corresponding diaphragm thickness from state 1to 5are about 6.4,4.7,3.8,2.9,and 2.2 m,respectively.Considering the vibration of diaphragm as undamped vibration and f (f 00in formula (1),the deformation of diaphragm will be irrelevant to the frequency of acoustic wave and can be ex-pressed asÁd ¼3ð1À 2Þpr 416Et 3:(5)Therefore the maximum working frequency of the sensor should be considerably smaller than the resonant frequency of the diaphragm,but (5)and (2)suggest that the lower thickness-to-diameter ratio of diaphragm,the higher sensitivity,and the lower resonant frequency of FPI sensor head that can be obtained.The Young's modulus,Poisson's ratio and density of 3M RIT-LOCK UV-60adhesive are about 2.5GPa,0.4,and 850kg/m 3,respectively.Calculated by (4)and (2),the theoretical sen-sitivity and resonant frequency of UV adhesive diaphragm with 1mm radius and 6.4 m thick-ness are 250nm/pa and 5617Hz respectively.What is noteworthy is that the diaphragmisn't Fig.3.Interference spectrum of fiber-tip FPI with different thickness of UV adhesive diaphragm.fabricated at outermost tip of stainless steel tube but inside the tube and the thickness of diaphragm edge is gradually increased as shown in Fig.2(b),which can protect the diaphragm from outer damage in some degree.What's more,there is a relatively large contact area between the diaphragm and tube surface to ensure the diaphragm fixed on the tube firmly.The most im-portant,it will improve the natural frequency of diaphragm for the effective thickness increasing.The simulation values of first-order natural frequency of flat and gradually increased diaphragm calculated by ANSYS are about 5794and 15239HZ as show in Fig.4.It means that the UV ad-hesive diaphragm with 1mm radius and 6.4 m thickness can be selected as sensing diaphragm to achieve a high sensitivity and a relative high resonant frequency at the same time.To form an extrinsic FPI acoustic sensor,the ceramic ferrule of commercial SC or FC is in-serted in the stainless steel tube that includes an UV adhesive diaphragm.Then the stainless steel tube is fixed on the SC or FC by the 502glue,but the 502glue did not seal the FP cavity leaving a space to balance the pressure difference between inside and outside of FP cavity as shown in Fig.5.If ignoring the refection light of surfaces 2,the total refection light intensity in(2),which contains the acoustic signal traveling back along the SMF,can be expressedI %E 20þE 21À2E 0E 1cos 4 n air d :(6)Therefore,the acoustic signal can be demodulated directly by the reflection light intensity changes when a narrowband laser whose wavelength at Q-point is incident into a FPI acoustic sensor [21].3.Experiment Results and DiscussionIn order to demonstrate the potential of UV adhesive diaphragm-based FPI as a highly sensitive acoustic sensor,a contrast experiment is employed as shown in Fig.6.A tunable laser isused Fig.4.First-order modal modes of flat and gradually increased UV adhesivediaphragm.Fig.5.Configuration of fiber acoustic sensor.to keep FPI sensor head working at Q-point for maximizing the acoustic sensitivity [22].The reflected light of the FPI sensor head through an optical circulator is detected by a photo detector (PD,New Focus 1623).The acoustic signal is generated by the B&K High Pressure MicrophoneCalibrator Fig.6.Schematic diagram of experimental setup for acoustic pressuremeasurement.Fig.7.(a)Outputs of the acoustic sensor from 1to 20Hz and (b)their corresponding frequencyspectral after a FFT transformation.(c)Outputs of the acoustic sensor at 10000Hz and frequencyspectral after a FFT transformation.(HPMC)4221driven by B&K Generator module-LAN-XI Type 3160,which can worked as a sound source in the pressure field.The microphone of B&K 4193with a sensitivity of 12.5mV/Pa and a frequency response ranging from 0.07Hz to 20kHz is used for calibration and comparison with the FPI sensor head in the pressure field.They are both inserted into the HPMC 4421and the achieved acoustic signals of which are transmitted to Type 3160.The combination of inputs and output channels makes Type 3160one of the most versatile data acquisition modules avail-able,while interchangeable front-panels give the flexibility to use a wide range of transducers.Moreover,this low-frequency calibration system is only applicable in the pressure field.Fig.7(a)and (b)show the time domain waveform detected by the FPI sensor head at the same pressure of 538.3mPa from 1to 20Hz,as well as the corresponding frequency spectrum after FFT transform.From the experimental results,a stable signal-to-noise ratio (SNR)about 30dB with a noise floor at 0dB and a 2Hz resolution can be observed ranging from 1to 20Hz respectively,and its noise-limited minimum detectable pressure is about 11.2mPa/Hz 1/2.That means the very low frequency ranging from 1to 20Hz can be interrogated well by our pro-posed FPI acoustic sensor.The high frequency acoustic wave of 10000Hz is also detected by the acoustic sensor as shown in Fig.7(c).When the applied acoustic pressure is 93.5mPa,the proposed sensor shows a SNR of 46dB with a noise floor at −48dB and a resolution of 80Hz,and the corresponding noise-limited minimum detectable pressure is 52.4 Pa =Hz 1=2.The noise-limited minimum detectable pressure of low frequency is much higher than that of high frequency for the high noise floor at low frequency.The highly low-frequency noise can be further reduced by enhancing the packaging technology to decrease the noise from low fre-quency vibration and temperature change caused by ambient environment [22].The demodula-tion system also can be further improved by reducing the influence of power fluctuation and working point shift of acoustic sensors to increase the SNR [21],[23].Moreover,the harmonics shown in Fig.7(b)and (c)allow us to further identify the detected acoustic frequency [14].Fig.8shows the output voltage signal of the proposed sensor when the acoustic pressure is in-creased from 21.4mPa to 3.56Pa by controlling the voltage of Calibrator 4221at 1000Hz.The re-sult indicates the proposed sensor has a linear response with a linear correlation coefficient ðR 2Þof 0.99582under given sound pressure levels.From the slope of the fitted curve,the sensitivity of FPI acoustic sensor can be achieved about 57.3mV/Pa which is higher than that of B&K 4193.The frequency response of the proposed FPI acoustic sensor from 1Hz to 20kHz is shown in Fig.9.The acoustic pressures generated from B&K Calibrator 4221at different frequencies are calibrated by the microphone of B&K 4193.A dominant resonance peak at approximately 18kHz can be observed in Fig.9,which is close to the simulation value about 15239Hzand Fig.8.Output signal of the proposed sensors for varying applied acoustic pressure levels at the fre-quency of 1000Hz.suggests the gradually increased thickness of diaphragm edge can improve the natural fre-quency of diaphragm significantly.Because it is hard to measure the curvature of thickness change of diaphragm edge accurately,the resonance frequency of proposed fiber sensor is little different to the simulation value.The flat frequency response range is from 1Hz to 2000Hz with a small fluctuation about ±1.5dB.That means the FPI acoustic sensor can be used for very-low-frequency acoustic sensing very well.In addition,the working frequency range of pro-posed acoustic sensor can be further extended by reducing the radius and increasing the thick-ness of UV adhesive diaphragm to improve the resonance frequency of sensing diaphragm.As shown in Table 1,some kinds of diaphragms have been fabricated for fiber acoustic sens-ing and exhibit good performance in recent years,but the fabrication processes of them are costly and complex.In addition,they are insensitive to low-frequency acoustic wave,particularly for infrasound.The proposed FPI acoustic sensor has been demonstrated superior property of low-frequency acoustic sensing with high sensitivity and good infrasound response.Most im-portantly,the fabrication process of adhesive diaphragm is rather simple and low-cost,just cur-ing UV adhesive after diaphragm formed by surface tension.4.ConclusionIn summary,a novel UV adhesive diaphragm-base FPI fiber sensor for infrasound measurement has been proposed and experimentally demonstrated.The fabrication process of sensing TABLE 1Fabrication process and performance parameters of selected acoustic sensors in recentyearsFig.9.Frequency response of proposed FPI acoustic sensor.diaphragm is rather simple and low cost with no other chemical,except for UV adhesive.Theacoustic detection has been performed at the frequencies in the range of1Hz to20kHz,and thesensor exhibits a flat frequency response ranging from1Hz to2000Hz with a small fluctuationabout±1.5dB.The sensitivity and SNR of proposed sensor are57.3mV/Pa and30dB.The sen-sor exhibits a noise limited detectable pressure of52.4 Pa=Hz1=2at10kHz and11.2mPa/Hz1/2 ranging from1to20Hz.Such FPI fiber acoustic sensor can be applied as high sensitive andvery-low-frequency acoustic sensor for earthquake sound detection.References[1]Y.Ishihara et al.,“Infrasound observations at Syowa Station,east antarctica:Implications for detecting the surfaceenvironmental variations in the polar regions,”Geosci.Frontiers,2015,vol.6,no.2,pp.285–296,Mar.2015.[2]X.L.Pang,Y.Wang,Y.Ma,and X.-Y.Cheng,“Research on three-station location method for nuclear explosioninfrasound detection,”Appl.Mech.Mater.,vol.727/728,pp.651–655,Dec.2015.[3]F.Tanimola and D.Hill,“Distributed fibre optic sensors for pipeline protection,”J.Nat.Gas Sci.Eng.,vol.1,no.4/5,pp.134–143,Nov.2009.[4]G.V.Batanov,“Characteristics of etiology of immediate hypersensitivity in conditions of exposure to infrasound,”Radiats.Radioecol.Radioecol.,vol.35,no.1,pp.78–82,Jan./Feb.1994.[5]C.K.Kirkendall and A.Dandridge,“Overview of high performance fibre-optic sensing,”J.Phys.D,Appl.Phys.,vol.37,no.18,pp.R197–R216,Sep.2004.[6]J.G.V.Teixeira,I.T.Leite,S.Silva,and O.Frazão,“Advanced fiber-optic acoustic sensors,”Photon.Sensors,vol.4,no.3,pp.198–208,Sep.2014.[7]C.Davis et al.,“Reduced length fibre bragg gratings for high frequency acoustic sensing,”Meas.Sci.Technol.,vol.25,no.12,Oct.2014,Art.ID125105.[8]M.A.Zumberge et al.,“An optical fiber infrasound sensor:A new lower limit on atmospheric pressure noise between1and10Hz,”J.Acoust.Soc.Amer.,vol.113,no.5,pp.2474–2479,May2003.[9]A.Abdallah,C.Z.Zhang,and Z.Zhong,“Acoustic pressure sensing with hollow-core photonic bandgap fibers,”Appl.Mech.Mater.,vol.738/739,pp.61–64,Mar.2015.[10]B.Xu et al.,“Acoustic vibration sensor based on nonadiabatic tapered fibers,”Opt.Lett.,vol.37,no.22,pp.4768–4770,Nov.2012.[11]F.Wang et al.,“Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embosseddiaphragm,”J.Lightw.Technol.,vol.32,no.23,pp.4026–4034,Dec.2014.[12]Q.Wang and Q.Yu,“Polymer diaphragm based sensitive fiber optic Fabry–Pérot acoustic sensor,”Chin.Opt.Lett.,vol.8,no.3,pp.266–269,Mar.2010.[13]J.Ma et al.,“Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm,”IEEE Photon.Technol.Lett.,vol.25,no.10,pp.932–935,May2013.[14]L.H.Chen,C.C.Chan,W.Yuan,S.K.Goh,and J.Sun,“High performance chitosan diaphragm-based fiber-opticacoustic sensor,”Sensors Actuators A,Phys.,vol.163,no.1,pp.42–47,Sep.2010.[15]F.Xu et al.,“High-sensitivity Fabry–Pérot interferometric pressure sensor based on a nanothick silver diaphragm,”Opt.Lett.,vol.37,no.2,pp.133–135,Jan.2012.[16]J.Teng,Y.Song,X.Jian,and M.Zhao,“Optical properties of polymer poly(phthalazinone ether sulfone ketone)film waveguide,”Chin.Opt.Lett.,vol.6,no.1,pp.74–75,Jan.2008.[17]W.Xiaodong et al.,“An ultra-sensitive optical MEMS sensor for partial discharge detection,”J.Micromech.Microeng.,vol.15,no.3,pp.521–527,Mar.2005.[18]W.Jo,O.C.Akkaya,O.Solgaard,and M.J.F.Digonnet,“Miniature fiber acoustic sensors using a photonic-crystalmembrane,”Opt.Fiber Technol.,vol.19,no.6,pp.785–792,Dec.2013.[19]D.Giovanni,Flat and Corrugated Diaphragm Design Handbook.Boca Raton,FL,USA:CRC,1982.[20]C.Liao et al.,“Sub-micron silica diaphragm-based fiber-tip Fabry–Pérot interferometer for pressure measurement,”Opt.Lett.,vol.39,no.10,pp.2827–2830,May2014.[21]Q.Wang and Z.Ma,“Feedback-stabilized interrogation technique for optical Fabry–Pérot acoustic sensor using atunable fiber laser,”ser Technol.,vol.51,pp.43–46,Oct.2013.[22]P.Hu et al.,“Study on high temperature Fabry–Pérot fiber acoustic sensor with temperature self-compensation,”Opt.Eng.,vol.54,no.9,Sep.2015,Art.ID097104.[23]S.N.Wang,M.Y.Zhang,Y.H.Cao,and L.-J.Chen,“A micro-machined optical fiber acoustic sensor based onFabry–Pérot interferometer,”in Proc.ICOM,2013,pp.167–169.[24]F.Xu et al.,“Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm,”Opt.Lett.,vol.39,no.10,pp.2838–2840,May2014.。