【优化方案】高考理数大一轮总复习练习:3.1任意角和弧度制及任意角的三角函数(含答案解析)
- 格式:doc
- 大小:121.00 KB
- 文档页数:4
高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.(1)求经过1 s 后,∠BOA的弧度;(2)求质点A,B在单位圆上第一次相遇所用的时间.【答案】(1)+2.(2)s【解析】解:(1)经过1 s 后,∠BOA的弧度为+2.(2)设经过t s 后质点A,B在单位圆上第一次相遇,则t(1+1)+=2π,所以t=,即经过s 后质点A,B在单位圆上第一次相遇.3.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.4.点P从(1,0)出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点的坐标为()A.(-,)B.(-,-)C.(-,-)D.(-,)【解析】设α=∠POQ,由三角函数定义可知,Q点的坐标(x,y)满足x=cosα,y=sinα,∴x=-,y=,∴Q点的坐标为(-,).5.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.6. [2014·潍坊质检]已知角α的终边经过点P(m,-3),且cosα=-,则m等于()A.-B.C.-4D.4【答案】C【解析】cosα==- (m<0),解之得m=-4,选C项.7.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.【答案】B【解析】因为角终边上有一点,所以因此即角的终边上的点在第三象限,所以选C.【考点】三角函数定义8.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【解析】∵∴与是终边相同的角,且此时=是最小的,选A.9.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.10.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知点P落在角θ的终边上,且θ∈[0,2π],则θ的值为________.【答案】【解析】由题意可知,点P在第四象限,且点P落在角θ的终边上,所以tan θ=-1,故θ=.14.已知则= .【答案】【解析】.【考点】三角函数求值.15.已知角x的终边上一点坐标为,则角x的最小正值为( ) A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值17.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系18.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.19.求值:________.【答案】【解析】.【考点】三角函数的计算及诱导公式.20.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式21.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】C【解析】.故选C.【考点】扇形弧长公式.22.在平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则sin5α=.【答案】【解析】根据题意,由于平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则可知,那么可知sin5α=sin,故答案为【考点】三角函数定义点评:解决的关键是利用三角函数的定义来求解三角函数值,属于基础题。
第三章 三角函数、解三角形课时作业16 任意角、弧度制及任意角的三角函数一、选择题1.若α是第三象限的角,则π-α2是( ) A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角解析:由已知,得2kπ+π<α<2kπ+32π(k ∈Z). ∴-kπ+π4<π-α2<-kπ+π2(k ∈Z). ∴π-α2是第一或第三象限的角. 答案:B2.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点P ⎝⎛⎭⎫sin π8,cos π8,则sin ⎝⎛⎭⎫2α-π12=( ) A .-32 B .-12 C.12 D.32解析:∵tanα=cos π8sin π8=sin ⎝⎛⎭⎫π2-π8cos ⎝⎛⎭⎫π2-π8=tan 3π8,∴α=3π8+kπ,k ∈Z ,sin ⎝⎛⎭⎫2α-π12=sin 2π3=32. 答案:D3.若点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动23π弧长到达Q 点,则Q 的坐标为( )A.⎝⎛⎭⎫-12,32 B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32 D.⎝⎛⎭⎫-32,12 解析:Q(cos 2π3,sin 2π3),即Q(-12,32). 答案:A4.三角形ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sinA -cosB ,cosA -sinC),则sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|的值是( ) A .1B .-1C .3D .4解析:因为三角形ABC 是锐角三角形,所以A +B>90°,即A>90°-B ,则sinA>sin(90°-B)=cosB ,sinA -cosB>0,同理cosA -sinC<0,所以点P 在第四象限,θ是第四象限角,sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|=-1+1-1=-1,故选B. 答案:B5.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1B .4C .1或4D .2或4解析:设此扇形的半径为r ,弧长是l ,则⎩⎪⎨⎪⎧ 2r +l =6,12rl =2, 解得⎩⎪⎨⎪⎧ r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2. 从而α=l r =41=4或α=l r =22=1. 答案:C6.设集合M ={x|x =k 2·180°+45°,k ∈Z},N ={x|x =k 4·180°+45°,k ∈Z},那么( ) A .M =NB .M ⊆NC .N ⊆MD .M∩N =∅解析:方法1:由于M ={x|x =k 2·180°+45°,k ∈Z}={…,-45°,45°,135°,225°,…}, N ={x|x =k 4·180°+45°,k ∈Z}={…,-45°,0°,45°,90°,135°,180°,225°,…}, 显然有M ⊆N ,故选B.方法2:由于M 中,x =k 2·180°+45°=k·90°+45°=(2k +1)·45°,2k +1是奇数; 而N 中,x =k 4·180°+45°=k·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.答案:B7.若π4<θ<π2,则下列不等式成立的是( ) A .sinθ>cosθ>tanθB .cosθ>tanθ>sinθC .sinθ>tanθ>cosθD .tanθ>sinθ>cosθ解析:∵π4<θ<π2, ∴tanθ>1,sinθ-cosθ=2sin(θ-π4). ∵π4<θ<π2,∴0<θ-π4<π4, ∴sin(θ-π4)>0,∴sinθ>cosθ. 答案:D8.(2016·济南四校联考)已知角x 的终边上一点坐标为⎝⎛⎭⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A.5π6B.11π6C.5π3D.2π3解析:因为角x 终边上一点的坐标为⎝⎛⎭⎫12,-32,在第四象限,所以角x 是第四象限角,又tanx =-3212=-3,所以角x 的最小正值为5π3. 答案:C9.已知sinα>sinβ,那么下列命题成立的是( )A .若α,β是第一象限的角,则cos α>cosβB .若α,β是第二象限的角,则tanα>tanβC .若α,β是第三象限的角,则cosα>cosβD .若α,β是第四象限的角,则tanα>tanβ解析:由三角函数线可知选D.答案:D10.已知锐角θ的终边上有一点P(sin10°,1+sin80°),则锐角θ=( )A .85°B .65°C .10°D .5°解析:∵已知锐角θ的终边上有一点P(sin10°,1+sin80°),由任意角的正切函数的定义,可得ta nθ=1+sin80°sin10°=+2cos80° =+2cos 240°-sin 240°=cos40°+sin40°cos40°-sin40°=1+tan40°1-tan40°=tan(45°+40°)=tan85°, ∴锐角θ=85°.故选A.答案:A二、填空题11.已知角α的终边落在直线y =-3x(x<0)上,则|sinα|sinα-|cosα|cosα=________. 解析:因为角α的终边落在直线y =-3x(x<0)上,所以角α是第二象限角,因此sinα>0,cosα<0,故|sinα|sinα-|cosα|cosα=sinαsinα--cosαcosα=1+1=2. 答案:212.(2016·北京模拟)已知角α的终边经过点P(m ,-3),且cosα=-45,则m 等于________. 解析:∵角α的终边经过点P(m ,-3),∴r =m 2+9,又cosα=-45,∴cosα=m m 2+9=-45, ∴m =-4.答案:-413.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为________.解析:设扇形的半径为R ,则12R 2α=2,12R 2×4=2, R 2=1,∴R =1,∴扇形的周长为2R +α·R =2+4=6.答案:614.若0≤θ≤2π,则使tanθ≤1成立的角θ的取值范围是________.答案:[0,π4]∪(π2,54π]∪(32π,2π] 三、解答题15.如图所示,角α终边上一点P 的坐标是(3,4),将OP 绕原点旋转45°到OP′的位置,试求点P′的坐标.解:设P′(x ,y),sinα=45,cosα=35, ∴sin(α+45°)=7210,cos(α+45°)=-210. ∴x =5cos(α+45°)=-22,y =5sin(α+45°)=722. ∴P′⎝⎛⎭⎫-22,722 16.已知角α终边经过点P(x ,-3)(x≠0),且cosα=23x ,求sinα,tanα的值. 解:∵P(x ,-3)(x≠0).∴P 到原点的距离r =x 2+3.又cosα=23x , ∴cosα=x x 2+3=23x , ∵x≠0,∴x =±62,∴r =322. 当x =62时,点P 坐标为⎝⎛⎭⎫62,-3. 由三角函数定义,有sinα=-63,tanα=-2; 当x =-62时,点P 坐标为⎝⎛⎭⎫-62,-3. ∴sinα=-63,tanα= 2.。
[备考方向要明了] 考 什 么怎 么 考1.了解任意角的概念. 2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角三角函数(正弦、余弦、正切)的定义.1.考查形式为选择题或填空题.2.三角函数的定义与三角恒等变换等相结合,考查三角函数求值问题,如2011年新课标全国T5等. 3.三角函数的定义与向量等知识相结合,考查三角函数定义的应用,如2012年山东T16等. [归纳·知识整合] 1.角的有关概念 角的特点角的分类从运动的角度看角可分为正角、负角和零角从终边位置来看可分为象限角和轴线角α与β角的终边相同β=α+k·360°(kZ) (或β=α+k·2π,kZ) [探究] 1.终边相同的角相等吗?它们的大小有什么关系? 提示:终边相同的角不一定相等,它们相差360°的整数倍,相等的角终边一定相同. 2.锐角是第一象限角,第一象限角是锐角吗?小于90°的角是锐角吗? 提示:锐角是大于0°且小于90°的角,第一象限角不一定是锐角,如390°,-300°都是第一象限角.小于90°的角不一定是锐角,如0°,-30°都不是锐角. 2.弧度的概念与公式 在半径为r的圆中 分类定义(公式)1弧度的角把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示角α的弧度数公式|α|=(弧长用l表示)角度与弧度的换算①1°=rad 1 rad=°弧长公式弧长l=|α|r扇形的面积公式S=lr=|α|·r2 3.任意角的三角函数 三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cos α叫做α的正切,记作tan α 各象限符号正正正正负负负负正负正负口诀一全正,二正弦,三正切,四余弦三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线 [探究] 3.三角函数线的长度及方向各有什么意义? 提示:三角函数线的长度表示三角函数值的绝对值,方向表示三角函数值的正负. [自测·牛刀小试] 1.(教材习题改编)下列与的终边相同的角的表达式中正确的是( ) A.2kπ+45°(kZ) B.k·360°+π(kZ) C.k·360°-315°(kZ) D.kπ+(kZ) 解析:选C π=×180°=360°+45°=720°-315°, 与π终边相同的角可表示为k·360°-315°(kZ). 2.(教材习题改编)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定落在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:选D 由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半轴重合.由tanθ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限. 3.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是( ) A.1 B.4 C.1或4 D.2或4 解析:选C 设扇形的弧长为l,半径为r,则 解之得l=r=2或r=1,l=4, 故圆心角θ=1或4. 4.(教材习题改编)已知角α的终边经过点P(-x,-6),且cos α=-,则x的值为________. 解析:cos α===-, 解之得x=. 答案: 5.若点P在角的终边上,且|OP|=2,则点P的坐标是________. 解析:角π的终边落在第二象限, 可设P(x,y),其中x<0,y>0, 由题意得即 P(-1,). 答案:(-1,) 象限角及终边相同的角 [例1] (1)写出终边在直线y=x上的角的集合; (2)若角θ的终边与角的终边相同,求在[0,2π)内终边与角的终边相同的角; (3)已知角α为第三象限角,试确定2α的终边所在的象限. [自主解答] (1)在(0,π)内终边在直线y=x上的角是, 终边在直线y=x上的角的集合为. (2)θ=+2kπ(kZ), =+(kZ). 依题意0≤+<2π-≤k<,kZ. ∴k=0,1,2,即在[0,2π)内终边与相同的角为,,. (3)由α是第三象限角,得π+2kπ<α<+2kπ(kZ), 2π+4kπ<2α<3π+4kπ(kZ). 角2α的终边在第一、二象限及y轴的非负半轴. 在(3)的条件下,判断为第几象限角? 解:π+2kπ<α<+2kπ(kZ), +kπ<<+kπ(kZ). 当k=2n(nZ)时,+2nπ<<π+2nπ, 当k=2n+1(nZ)时,π+2nπ<<π+2nπ, 为第二或第四象限角. ——————————————————— 1.由α所在的象限,确定所在象限的方法 (1)由角α的范围,求出所在的范围; (2)通过分类讨论把角写成θ+k·360°(kZ)的形式,然后判断所在象限. 2.已知三角函数式的符号判断角所在的象限 可先根据三角函数式的符号确定三角函数值的符号,再判断角所在的象限. 1.(1)已知角α=2kπ-(kZ),若角θ与角α的终边相同,则y=++的值为( ) A.1 B.-1 C.3 D.-3 (2)已知点P(tan α,cos α)在第三象限,则角α的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:(1)选B 由α=2kπ-(kZ)及终边相同角的概念知,α的终边在第四象限,又θ与α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0. 因此,y=-1+1-1=-1. (2)选B 点P(tan α,cos α)在第三象限, ∴α是第二象限角. 三角函数的定义 [例2] 已知角α的终边上一点P(-,m)(m≠0),且sin α=,求cos α,tan α的值. [自主解答] 由题设知x=-,y=m, r2=|OP|2=(-)2+m2(O为原点), 得r=. 从而sin α===, r==2,于是3+m2=8,解得m=±. 当m=时,r=2,x=-, cos α=-=-,tan α=-; 当m=-时,r=2,x=-, cos α==-,tan α=. ——————————————————— 利用三角函数的定义求三角函数值的方法 利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x;纵坐标y;该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同). 2.已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值. 解:角α的终边在直线3x+4y=0上, 在角α的终边上任取一点P(4t,-3t)(t≠0), 则x=4t,y=-3t, r===5|t|. 当t>0时,即x>0时,r=5t, sin α===-,cos α===, tan α===-; 当t<0时,即x0部分时, sin α=-,cos α=,tan α=-; 当角α的终边在直线3x+4y=0的x<0部分时, sin α=,cos α=-,tan α=-.弧度制下扇形弧长与面积公式的应用 [例3] 已知扇形的圆心角是α,半径为R,弧长为l. (1)若α=60°,R=10 cm,求扇形的弧长l. (2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? (3)若α=,R=2 cm,求扇形的弧所在的弓形的面积. [自主解答] (1)α=60°=,R=10 cm, l=Rα=10×= cm. (2)扇形的周长20,2R+l=20, 即2R+Rα=20, S=R2α=R(20-2R)=-R2+10R =-(R-5)2+25, 当R=5时,扇形的面积最大,此时α==2, 即α=2弧度时,这个扇形的面积最大. (3)S弓形=R2α-R2sin =×4×-×4× =-, 即弓形的面积为- cm2. 若将本例(1)中的“R=10 cm”改为“扇形的弦AB=10 cm”求扇形的弧长l. 解:由题意得=sin 30°,即R=10, 故弧长l=Rα=10×= cm. ——————————————————— 弧度制的应用 (1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷. (2)从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值. 记住下列公式:l=αR;S=lR;S=αR2.其中R是扇形的半径,l是弧长,α(0<α<2π)为圆心角,S是扇形面积. 3.已知在半径为10的圆O中,弦AB的长为10, (1)求弦AB所对的圆心角α的大小; (2)求α所在的扇形弧长l及弧所在的弓形的面积S. 解:(1)如图所示,过O作OCAB于点C,则AC=5,在RtACO中, sinAOC===, AOC=30°,α=2AOC=60°. (2)60°=, l=|α|r=. S扇=lr=××10=. 又SAOB=×10×10sin =25, S弓形=S扇-SAOB=-25=50. 1条规律——三角函数值的符号规律 三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. 2个技巧——三角函数的定义及单位圆的应用技巧 (1)在利用三角函数定义时,点P可取终边上异于原点的任一点,如有可能则取终边与单位圆的交点,|OP|=r一定是正值. (2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 4个注意点——理解角的概念、弧度制及三角函数线应注意的问题 (1)第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角. (2)角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用. (3)要熟记0°~360°间特殊角的弧度表示. (4)要注意三角函数线是有向线段. 创新交汇——三角函数的定义与向量的交汇问题 三角函数的概念是考查三角函数的重要工具,在高考命题中很少单独考查,常结合三角函数的基础知识、三角恒等变换和向量等知识综合考查,涉及的知识点较多,但难度不大. [典例] (2012·山东高考)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为________. [解析] 因为圆心移动的距离为2,所以劣弧=2,即PCA=2,则PCB=2-,所以PB= sin=-cos 2,CB= cos=sin 2,所以xP=2-CB=2-sin 2,yP=1+PB=1-cos 2,所以=(2-sin 2,1-cos 2). [答案] (2-sin 2,1-cos 2) 1.本题具有以下创新点 (1)本题考查三角函数与向量的知识,表面看似向量问题,其实质是考查三角函数的概念问题. (2)通过静止问题解决动态问题,考查了考生处理变与不变的能力、运算求解能力、应用能力和创新能力. 2.解决本题的关键有以下几点 (1)正确理解圆的滚动过程,确定圆心C的坐标; (2)正确作出辅助线,并求得BP与BC的长度; (3)正确应用向量的坐标运算求出的坐标. 1.(2012·安徽高考)在平面直角坐标系中,点O(0,0),P(6,8),将向量绕点O按逆时针方向旋转后得向量,则点Q的坐标是( ) A.(-7,-) B.(-7,) C.(-4,-2) D.(-4,2) 解析:选A 设从x轴正方向逆时针到向量的角为α,则从x轴的正方向逆时针到向量的夹角为α+π,这里cosα=,sin α=.设Q坐标为(x,y),根据三角函数的定义x=10cos=10××=-7,y=10sin=-, 即Q(-7,-). 2.如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为( ) 解析:选C 如图取AP的中点为D. 设DOA=θ, 则d=2sin θ,l=2θ, 故d=2sin . 一、选择题(本大题共6小题,每小题5分,共30分) 1.若α=k·180°+45°(kZ),则α在( ) A.第一或第三象限 B.在第一或第二象限 C.第二或第四象限 D.在第三或第四象限 解析:选A 当k为偶数时,α的终边与45°角的终边相同,是第一象限角平分线;当k为奇数时,α的终边与45°角的终边在同一条直线上,是第三象限角平分线. 2.点A(sin 2 013°,cos 2 013°)在直角坐标平面上位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:选C 由2 013°=360°×5+(180°+33°)可知,2 013°角的终边在第三象限,所以sin 2 013°<0,cos 2 013°<0,即点A位于第三象限. 3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是( ) A.(-2,3] B.(-2,3) C.[-2,3) D.[-2,3] 解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y轴的正半轴上,所以有 即-2<a≤3. 4.若α是第三象限角,则y=的值为( ) A.0 B.2 C.-2 D.2或-2 解析:选A 由于α是第三象限角,所以是第二或第四象限角, 当是第二象限角时, y=+=1-1=0; 当是第四象限角时, y=+=-1+1=0. 5.点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点的坐标为( ) A. B. C. D. 解析:选A 由三角函数定义可知Q点的坐标(x,y)满足x=cos=-,y=sin=. 6.已知扇形的周长是4 cm,则扇形面积最大时,扇形的中心角的弧度数是( ) A.2 B.1 C. D.3 解析:选A 设此扇形的半径为r,弧长为l,则2r+l=4, 面积S=rl=r(4-2r)=-r2+2r=-(r-1)2+1, 故当r=1时S最大,这时l=4-2r=2. 从而α===2. 二、填空题(本大题共3小题,每小题5分,共15分) 7.若点P(x,y)是300°角终边上异于原点的一点,则的值为________. 解析:=tan 300°=tan(360°-60°)=-tan 60°=-. 答案:- 8.(2013·辽源模拟)若三角形的两个内角α,β满足sin αcos β<0,则此三角形为________. 解析:sin αcos β<0,且α,β是三角形的两个内角. sin α>0,cos β<0,β为钝角.故三角形为钝角三角形. 答案:钝角三角形 9.已知角α的终边过点P(-8m,-6sin 30°),且cos α=-,则m的值为________. 解析:r=,cos α==-, m>0,=,m=±. m>0,m=. 答案: 三、解答题(本大题共3小题,每小题12分,共36分) 10.已知角α的终边过点P(-3cos θ,4cos θ),其中θ,求α的三角函数值. 解:θ∈,-1<cos θ<0. r==-5cos θ, 故sin α=-,cos α=,tan α=-. 11.一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB. 解:设圆的半径为r cm, 弧长为l cm, 则解得 则圆心角α==2. 如图,过O作OHAB于H.则AOH=1, 故AH=1·sin 1=sin 1 cm,故AB=2sin 1 cm. 12.角α终边上的点P与A(a,2a)关于x轴对称(a>0),角β终边上的点Q与A关于直线y=x对称,求sin α·cosα+sin β·cos β+tan α·tan β的值. 解:由题意得,点P的坐标为(a,-2a),点Q的坐标为(2a,a). 所以,sin α==-, cos α==, tan α==-2, sin β==, cos β==, tan β==, 故有sin α·cos α+sin β·cos β+tan α·tan β =·+·+(-2)×=-1. 1.(1)把-1 480°写成α+2kπ(kZ)的形式,其中0≤α<2π; (2)在0°~720°的范围内,找出与终边相同的角. 解:(1)-1 480°=-1 480°×rad=-rad, 又-=-10π+=-5×2π+, 故-1480°=+(-5)×2 π. (2)=×180°=72°,终边与相同的角为θ=72°+k·360°(kZ).当k=0时,θ=72°;当k=1时,θ=432°,在0°~720°的范围内,与终边相同的角为72°,432°. 2.(1)如果点P(sin θcos θ,2cos θ)位于第三象限,试判断角θ所在的象限. (2)若θ是第二象限角,试判断的符号是什么? 解:(1)因为点P(sin θcos θ,2cos θ)位于第三象限, 所以sin θcos θ<0,2cos θ<0,即 所以θ为第二象限角. (2)2kπ+<θ<2kπ+π(kZ), -1<cos θ<0,4kπ+π<2θ<4kπ+2π(kZ), -1≤sin 2θ<0, sin(cos θ)<0,cos(sin 2θ)>0. <0.的符号是负号. 3.已知一扇形的圆心角为α(α>0),所在圆的半径为R.若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积? 解:扇形周长C=2R+l=2R+αR, R=, S扇=α·R2=α·2 =α·=·≤, 当且仅当α2=4,即α=2时,扇形面积有最大值. 4.设θ是第二象限角,试比较sin ,cos ,tan 的大小. 解:θ是第二象限角, +2kπ<θ<π+2kπ,kZ, +kπ<<+kπ,kZ, 是第一或第三象限的角. (如图阴影部分),结合单位圆上的三角函数线可得: 当是第一象限角时, sin=AB,cos =OA,tan =CT, 从而得,cos<sin<tan; 当是第三象限角时, sin=EF,cos=OE,tan=CT, 得sin<cos<tan . 综上所得,当在第一象限时,cos<sin <tan; 当在第三象限时,sin<cos<tan.。
专题5.1 任意角和弧度制及任意角的三角函数1.(2021·宁夏高三三模(文))已知角α终边经过点()1,2,P-则cosα=()A.12B.12-C D.【答案】D【解析】直接利用三角函数的定义即可.【详解】由三角函数定义,cos5α==-.故选:D.2.(2021·中牟县教育体育局教学研究室高一期中)已知角α的终边经过点()3,1P-,则cosα=()A B.C.D【答案】C【解析】由三角函数的定义即可求得cosα的值.【详解】角α的终边经过点(3,1)P-,cosα∴==故选:C.3.(2020·全国高一课时练习)若α=-2,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】练基础根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1 rad≈57.30°,所以-2 rad≈-114.60°,故α的终边在第三象限.故选:C.4.(2021·江苏高一期中)下列命题:①钝角是第二象限的角;②小于90︒的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,时针转过的角度为60︒;⑥若5α=,则α是第四象限角.其中正确的题的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】结合象限角和任意角的概念逐个判断即可.【详解】对于①:钝角是大于90小于180的角,显然钝角是第二象限角. 故①正确;对于②:锐角是大于0小于90的角,小于90的角也可能是负角. 故②错误;对于③:359-显然是第一象限角. 故③错误;对于④:135是第二象限角,361是第一象限角,但是135361<. 故④错误;对于⑤:时针转过的角是负角. 故⑤错误;对于⑥:因为157.3rad≈,所以5557.3=286.5rad≈⨯,是第四象限角. 故⑥正确.综上,①⑥正确.故选:B.5.(2021·辽宁高三其他模拟)装饰公司制作一种扇形板状装饰品,其圆心角为23π,并在扇形弧上正面等距安装7个发彩光的小灯泡且在背面用导线将小灯泡串连(弧的两端各一个灯泡,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线大致需要的长度约为()A.55厘米B.63厘米C.69厘米D.76厘米【答案】B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为在弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小, 所以可以用弧长近似代替弦长, 所以导线的长度为23020633ππ⨯=≈(厘米). 故选:B6.(2021·上海格致中学高三三模)半径为2,中心角为3π的扇形的面积等于( ) A .43π B .πC .23π D .3π 【答案】C 【解析】根据扇形的面积公式即可求解. 【详解】解:因为扇形的半径2r ,中心角3πα=,所以扇形的面积2211222233S r ππα==⨯⨯=, 故选:C.7.(2021·辽宁高三其他模拟)“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出人怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,其中OA =20cm ,∠AOB =120°,M 为OA 的中点,则扇面(图中扇环)部分的面积是( )A .50πcm 2B .100πcm 2C .150πcm 2D .200πcm 2【答案】B 【解析】根据扇形面积公式计算可得; 【详解】解:扇环的面积为22211332400100222883r S r r παααπ⎛⎫=-==⨯⨯= ⎪⎝⎭.故选:B8.(2021·重庆八中高三其他模拟)如图所示,扇环ABCD 的两条弧长分别是4和10,两条直边AD 与BC 的长都是3,则此扇环的面积为( )A .84B .63C .42D .21【答案】D 【解析】设扇环的圆心角为α,小圆弧的半径为r ,依题意可得4αr =且()310αr +=,解得α、r ,进而可得结果. 【详解】设扇环的圆心角为α,小圆弧的半径为r ,由题可得4αr =且()310αr +=,解得2α=,2r ,从而扇环面积()221252212S =⨯⨯-=. 故选:D .9.(2021·浙江高二期末)已知角α的终边过点(1,)P y ,若sin 3α=,则y =___________.【答案】【解析】利用三角函数的定义可求y . 【详解】由三角函数的定义可得sin α==y =故答案为:10.(2021·山东日照市·高三月考)已知函数()3sin,06log ,0xx f x x x π⎧≤⎪=⎨⎪>⎩,则13f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭______. 【答案】12- 【解析】利用分段函数直接进行求值即可. 【详解】∵函数()3,06log ,0xsinx f x x x π⎧≤⎪=⎨⎪>⎩, ∴311log 133f ⎛⎫=- ⎪⎝⎭=, ∴611(1)sin 32f f f π⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:12-.1.(2021·河南洛阳市·高一期中(文))点P 为圆221x y +=与x 轴正半轴的交点,将点P 沿圆周逆时针旋转至点P ',当转过的弧长为2π3时,点P '的坐标为( )A .1,2⎛ ⎝⎭B .12⎛- ⎝⎭C .21⎛⎫⎪ ⎪⎝⎭D .122⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】先求出旋转角,就可以计算点的坐标了. 【详解】设旋转角为θ,则22123θπππ⨯⨯=,得23πθ=,从而可得1(,22P '-. 故选:B.2.(2021·上海高二课时练习)若A 是三角形的最小内角,则A 的取值范围是( )练提升A .0,2π⎛⎫⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,32ππ⎛⎫ ⎪⎝⎭D .0,3π⎛⎤ ⎥⎝⎦【答案】D 【解析】由给定条件结合三角形三内角和定理即可作答. 【详解】设B ,C 是三角形的另外两个内角,则必有,A B A C ≤≤,又A B C π++=, 则3A A A A A B C π=++≤++=,即3A π≤,当且仅当3C B A π===,即A 是正三角形内角时取“=”,又0A >,于是有03A π<≤,所以A 的取值范围是(0,]3π.故选:D3.(2021·北京清华附中高三其他模拟)已知,R αβ∈.则“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】求解出sin 2sin 2αβ=成立的充要条件,再与,k k Z αβπ=+∈分析比对即可得解. 【详解】,R αβ∈,sin 2sin 2sin[()()]sin[()()]αβαβαβαβαβ=⇔++-=+--⇔2cos()sin()0αβαβ+-=,则sin()0αβ-=或cos()0αβ+=,由sin()0αβ-=得,k k k Z αβπαβπ-=⇔=+∈, 由cos()0αβ+=得,22k k k Z ππαβπαβπ+=+⇔=-+∈,显然s ,in 2sin 2k k Z απαββ=+∈=⇒,sin 2s ,in 2k k Z αβαβπ=+=∈,所以“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的充分不必要条件. 故选:A4.(2021·安徽池州市·池州一中高三其他模拟(理))已知一个半径为3的扇形的圆心角为()02θθπ<<,面积为98π,若()tan 3θϕ+=,则tan ϕ=( ) A .12-B .34C .12D .43【答案】C 【解析】由扇形的面积公式得4πθ=,进而根据正切的和角公式解方程得1tan 2ϕ=. 【详解】解:由扇形的面积公式212S r θ=得9928πθ=,解得4πθ=, 所以()tan tan 1tan tan 31tan tan 1tan θϕϕθϕθϕϕ+++===--,解得1tan 2ϕ=故选:C5.(2021·新蔡县第一高级中学高一月考)一个圆心角为60的扇形,它的弧长是4π,则扇形的内切圆(与扇形的弧和半径的相切)的半径等于( ) A .2 B .4 C .2π D .4π【答案】B 【解析】设扇形内切圆的半径为x ,扇形所在圆的半径为r ,求得3r x =,结合弧长公式,列出方程,即可求解. 【详解】如图所示,设扇形内切圆的半径为x ,扇形所在圆的半径为r , 过点O 作OD CD ⊥, 在直角CDO 中,可得2sin 30ODCO x ==,所以扇形的半径为23r x x x =+=, 又由扇形的弧长公式,可得343x ππ⨯=,解得4x =,即扇形的内切圆的半径等于4. 故选:B.6.(2021·安徽合肥市·合肥一中高三其他模拟(文))已知顶点在原点的锐角α,始边在x 轴的非负半轴,始终绕原点逆时针转过3π后交单位圆于1(,)3P y -,则sin α的值为( )A .6B C .16D .16【答案】B 【解析】根据任意角的三角函数的定义求出1cos()33πα+=-,然后凑角结合两角差的正弦公式求出sin α. 【详解】由题意得1cos()33πα+=-(α为锐角) ∵α为锐角,∴5336πππα,∴sin()03πα+>sin()sin sin ()3333πππααα⎡⎤⇒+=⇒=+-⎢⎥⎣⎦1132326⎛⎫=⨯--⨯=⎪⎝⎭ 故选:B7.(2020·安徽高三其他模拟(文))已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边经过点A (1,-3),则tan()4πα+=( )A .12B .12-C .1D .-1【解析】根据终边上的点求出tan 3α=-,再结合正切和公式求解即可. 【详解】由题知tan 3α=-,则tan tan3114tan()41321tan tan 4παπαπα+-++===-+-. 故选:B8.(2021·合肥一六八中学高三其他模拟(理))已知顶点在原点,始边在x 轴非负半轴的锐角α绕原点逆时针转π3后,终边交单位圆于P x ⎛ ⎝⎭,则sin α的值为( ) ABCD. 【答案】C 【解析】设锐角α绕原点逆时针转π3后得角β,由2113x +=,则x =,分x 的值结合三角函数的定义,求解即可,根据条件进行取舍. 【详解】设锐角α绕原点逆时针转π3后得角β,则3πβα=+,由α为锐角, 根据题意角β终边交单位圆于,3P x ⎛ ⎝⎭,则2113x +=,则3x =±若3x =,则sin ,cos 33ββ==所以sin sin sin cos cos sin 03336πππαβββ⎛⎫=-=-=< ⎪⎝⎭,与α为锐角不符合.若x =,则sin ββ==所以sin sin sin cos cos sin 0333πππαβββ⎛⎫=-=-=> ⎪⎝⎭,满足条件.9.(2021·安徽宣城市·高三二模(文))刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想.运用此思想,当π取3.1416时,可得sin 2︒的近似值为( )A .0.00873B .0.01745C .0.02618D .0.03491【答案】D 【解析】由圆的垂径定理,求得2sin 2AB =︒,根据扇形对应的弦长之和近似于单位圆的周长,列出方程,即可求解. 【详解】将一个单位圆分成90个扇形,则每个扇形的圆心角度数均为4︒由圆的垂径定理,可得每个圆心角所对的弦长221sin 22sin 2AB AC ==⨯⨯︒=︒, 因为这90个扇形对应的弦长之和近似于单位圆的周长, 所以9021sin 2180sin 22π⨯⨯⨯︒=︒≈, 所以22 3.1416sin 20.03491180180π⨯︒≈=≈. 故选:D .10.(2021·江苏南通市·高三其他模拟)某设计师为天文馆设计科普宣传图片,其中有一款设计图如图所示.QRT 是一个以点O 为圆心、QT 长为直径的半圆,QT =.QST 的圆心为P ,2dm PQ PT ==.QRT与QST 所围的灰色区域QRTSQ 即为某天所见的月亮形状,则该月亮形状的面积为___________2dm .6π 【解析】连接PO ,可得PO QT ⊥,求出23QPT π∠=,利用割补法即可求出月牙的面积. 【详解】解:连接PO ,可得PO QT ⊥,因为sin 2QO QPO PQ ∠==, 所以3QPO π∠=,23QPT π∠=,所以月牙的面积为2221121(21)dm 22326S πππ=⨯⨯-⨯⨯-⨯=.6π.1.(全国高考真题)已知角α的终边经过点(−4,3),则cosα=( )A .45B .35C .−35D .−45 练真题【答案】D【解析】由题意可知x=-4,y=3,r=5,所以cosα=x r =−45.故选D. 2.(2020·全国高考真题(理))若α为第四象限角,则( )A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0 【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.3.(2015·上海高考真题(文))已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ). A . B . C . D .【答案】D【解析】由题意,设OA 与x 轴所成的角为,显然,,故,故纵坐标为4.(2018·全国高考真题(文))已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1 , a),B(2 , b),且cos2α=23,则|a −b |= A .15 B .√55 C .2√55D .1 【答案】B【解析】由O,A,B 三点共线,从而得到b =2a ,因为cos2α=2cos 2α−1=2⋅(√a 2+1)2−1=23, 解得a 2=15,即|a |=√55, 所以|a −b |=|a −2a |=√55,故选B.5.(2017·北京高考真题(理))在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则()cos αβ-=___________. 【答案】79- 【解析】因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 6.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___. 【答案】512π(满足5,12k k Z πθπ=+∈即可) 【解析】根据,P Q 在单位圆上,可得,6πθθ+关于y 轴对称,得出2,6k k Z πθθππ++=+∈求解. 【详解】(cos ,sin )P θθ与cos ,sin66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称, 即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈, 则5,12k k Z πθπ=+∈, 当0k =时,可取θ的一个值为512π. 故答案为:512π(满足5,12k k Z πθπ=+∈即可).。
3.1 任意角和弧度制及任意角的三角函数[知识梳理]1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.(4)相关结论①象限角②轴线角2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)公式3.任意角的三角函数[诊断自测] 1.概念思辨(1)锐角是第一象限的角,第一象限的角也都是锐角.( )(2)一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位.( )(3)α∈⎝⎛⎭⎪⎫0,π2,则tan α>α>sin α.( )(4)α为第一象限角,则sin α+cos α>1.( ) 答案 (1)× (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A4P 9T 5)直径为4的圆中,36°的圆心角所对的弧长是( ) A.4π5 B.2π5 C.π3 D.π2答案 B解析 ∵36°=36×π180 rad =π5 rad ,∴36°的圆心角所对的弧长为l =π5×2=2π5.故选B.(2)(必修A4P 21T 9)设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 B解析 由θ在第三象限,所以2k π+π<θ<2k π+3π2(k ∈Z ),所以k π+π2<θ2<k π+3π4(k ∈Z ).又cos θ2≤0,故选B. 3.小题热身(1)(2017·石家庄模拟)已知角α的终边在直线y =-x 上,且cos α<0,则tan α=________.答案 -1解析 如图,由题意知,角α的终边在第二象限,在其上任取一点P (x ,y ),则y =-x ,由三角函数的定义得tan α=y x =-xx=-1.(2)(2018·黄浦模拟)如图,已知扇形OAB 和OA 1B 1,A 1为OA 的中点,若扇形OA 1B 1的面积为1,则扇形OAB 的面积为________.答案 4解析 设∠AOB =α,则S 扇形OA 1B 1=12OA 21·α=1,S 扇形OAB =12OA 2·α,OA =2OA 1,∴S 扇形OAB =12·(2OA 1)2·α=4.题型1 象限角及终边相同的角典例1设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k 2·180°+45°,k ∈Z ,N = ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,判断两集合的关系( ) A .M =N B .M N C .N MD .M ∩N =∅将描述法表示的集合变为列举法表示.答案 B解析 由于M =⎩⎪⎨⎪⎧x ⎪⎪⎪ x =k2·180°+45°,k ∈Z } ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M N .典例2 已知角α=2k π-π5(k ∈Z ),若角θ与角α终边相同,则y =sin θ|sin θ|+|cos θ|cos θ+tan θ|tan θ|的值为________.找α的终边,利用终边定号法.答案 -1解析 由α=2k π-π5(k ∈Z )及终边相同角的概念知,α的终边在第四象限,又θ与α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.因此,y =-1+1-1=-1.方法技巧象限角的两种判断方法1.图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.2.转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.提醒:注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k ·180°(k ∈Z )表示终边落在角α的终边所在直线上的角.冲关针对训练1.(2017·潍坊模拟)集合{|αk π+π4≤α≤k π+π2,k ∈Z}中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2, 此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.2.若sin θ2=45,且sin θ<0,则θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 C解析 ∵sin θ<0,∴2sin θ2cos θ2<0.又∵sin θ2=45,∴cos θ2<0.故θ2在第二象限,且2k π+π2<θ2<2k π+34π(k ∈Z ). ∴4k π+π<θ<4k π+32π,∴θ在第三象限.故选C.题型2 弧度制及扇形面积公式的应用典例 已知一扇形的圆心角为α,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?利用方程组法、二次函数求最值.解 (1)α=60°=π3 rad ,∴l =α ·R =π3×10=10π3 (cm).(2)由题意得⎩⎪⎨⎪⎧ 2R +R α=10,12α·R 2=4,解得⎩⎪⎨⎪⎧R =1,α=8(舍去),⎩⎪⎨⎪⎧R =4,α=12.故扇形圆心角为12.(3)由已知得,l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10,α=2.[条件探究] 将典例中的第(3)问推广为“若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?”解 扇形周长C =2R +l =2R +αR , ∴R =C2+α,∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 2α2·14+4α+α2=C 22·14α+4+α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216.方法技巧应用弧度制解决问题的方法1.利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.见典例(1). 2.求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.见典例(3).3.在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 提醒:弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.冲关针对训练(2018·大连模拟)一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积是( )A.R 22B.12R 2sin1·cos1 C.12R 2(2-sin1·cos1) D .R 2(1-sin1·cos1)答案 D解析 设圆心角为θ,由题知2R +R ·θ=4R ,得θ=2, 所以S 弓=S 扇-S三角形=12×2R ·R -12R 2·sin2=R 2-12R 2·sin2=R 2·⎝ ⎛⎭⎪⎫1-12sin2=R 2(1-sin1·cos1).故选D.题型3 任意角三角函数的定义及应用角度1 利用三角函数定义求值典例 已知角α的顶点在原点,始边为x 轴的非负半轴.若角α终边经过点P (-3,y ),且sin α=34y (y ≠0),则判断角α所在的象限,并求cos α和tan α的值.定义法.解 依题意,P 到原点O 的距离为 |PO |= (-3)2+y 2,∴sin α=y r=y3+y2=34y . ∵y ≠0,∴9+3y 2=16,∴y 2=73,∴y =±213.∴点P 在第二或第三象限. 当P 在第二象限时,y =213,cos α=x r =-34,tan α=-73. 当P 在第三象限时,y =-213,cos α=x r =-34,tan α=73. 角度2 利用三角函数线比较大小,解不等式典例 sin1,cos1,tan1的大小关系是( ) A .sin1>cos1>tan1 B .sin1>tan1>cos1 C .tan1>sin1>cos1D .tan1>cos1>sin1单位圆定义法.答案 C解析 作单位圆,作出锐角1弧度的正弦线BP ,余弦线OB ,正切线AT ,可得tan1>sin1>cos1.故选C.方法技巧三角函数定义问题的常见类型及解题策略1.已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.2.利用单位圆解三角不等式的步骤 (1)确定区域的边界(注意边界的虚实); (2)确定区域; (3)写出解集.3.三角函数值的符号及角的位置的判断.已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况.提醒:若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).冲关针对训练1.设π2<x <3π4,a =sin x ,b =cos x ,c =tan x ,则( )A .a <b <cB .c <b <aC .b <c <aD .b <a <c 答案 B解析 ∵π2<x <3π4,∴22<sin x <1,-22<cos x <0,tan x <-1. ∴c <b <a .故选B.2.(2017·兴庆区校级期中)已知角α的终边经过点P (x ,-2)(x >0),且cos α=36x, 求sin α+1tan α的值. 解 角α的终边经过点P (x ,-2)(x >0) ∵r =x 2+2,∵cos α=x r =36x , 可得x =10. 则r =2 3.sin α=y r =-223=-66,tan α=y x =-210=-55.那么sin α+1tan α=-66-5=-6+656.1.(2017·商丘期末)已知点P (-3,y )为角β的终边上的一点,且sin β=1313,则y 的值为( )A .±12 B.12 C .-12 D .±2答案 B解析 由题意可得:|OP |=y 2+3,所以sin β=y y 2+3=1313,所以y =±12,又因为sin β=1313,所以y >0,所以y =12.故选B. 2.(2018·东莞月考)角β的终边上有一点P (-m ,m ),其中m ≠0,则sin β+cos β的值为( )A. 2 B .- 2 C .0 D.2或- 2 答案 C解析 角β的终边上有一点P (-m ,m ),其中m ≠0, ∴r =|OP |=2|m |, 当m >0时,cos β=-m2|m |=-22,sin β=m2|m |=22,∴sin β+cos β=0; 当m <0时,cos β=-m2|m |=22,sin β=m 2|m |=-22,∴sin β+cos β=0.综上,sin β+cos β的值为0.故选C.3.(2017·连云港质检)已知角α的终边上一点的坐标为⎝⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π4 D.11π6答案 D解析 ∵⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3=⎝ ⎛⎭⎪⎫32,-12,∴角α为第四象限角,且sin α=-12,cos α=32.∴角α的最小正值为11π6.故选D. 4.(2017·河南八市联考)已知角α的顶点在原点,始边与x 轴非负半轴重合,点P (-4m,3m )(m >0)是角α终边上的一点,则2sin α+cos α=________.答案 25解析 ∵|OP |= (-4m )2+(3m )2=5|m |=5m (m >0), ∴sin α=3m 5m =35,cos α=-4m 5m =-45,∴2sin α+cos α=2×35-45=25.[基础送分 提速狂刷练]一、选择题1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确命题的个数为( )A .1B .2C .3D .4 答案 C解析 ①中-3π4是第三象限角,故①错.②中4π3=π+π3,从而4π3是第三象限角,故②正确.③中-400°=-360°-40°,从而③正确.④中-315°=-360°+45°,从而④正确.故选C.2.sin2·cos3·tan4的值( ) A .小于0 B .大于0 C .等于0 D .不存在答案 A解析 ∵π2<2<3<π<4<3π2,∴sin2>0,cos3<0,tan4>0.∴sin2·cos3·tan4<0.故选A.3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4 D .2或4答案 C解析 设此扇形的半径为r ,弧长是l ,则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.故选C.4.若π4<θ<π2,则下列不等式成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ答案 D解析 ∵π4<θ<π2,∴tan θ>1,sin θ-cos θ=2sin ⎝ ⎛⎭⎪⎫θ-π4.∵π4<θ<π2,∴0<θ-π4<π4,∴sin ⎝⎛⎭⎪⎫θ-π4>0,∴sin θ>cos θ.故选D.5.在△ABC 中,若sin A ·cos B ·tan C <0,则△ABC 的形状是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定答案 B解析 ∵△ABC 中每个角都在(0,π)内,∴sin A >0. ∵sin A ·cos B ·tan C <0,∴cos B ·tan C <0. 若B ,C 同为锐角,则cos B ·tan C >0. ∴B ,C 中必定有一个钝角. ∴△ABC 是钝角三角形.故选B.6.(2018·永昌县期末)已知角α的终边经过点(3a,4a )(a ≠0),则sin α+cos α的值为( )A.75 B .-75 C .±75 D .±34 答案 C解析 ∵角α的终边经过点(3a,4a )(a ≠0),当a >0时,r =5a ,sin α=y r =45,cos α=x r =35,sin α+cos α=75; 当a <0时,r =|5a |=-5a ,sin α=y r =-45,cos α=x r =-35,sin α+cos α=-75.综上可得,sin α+cos α=±75.故选C.7.已知sin α>sin β,那么下列命题成立的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan βC .若α,β是第三象限的角,则cos α>cos βD .若α,β是第四象限的角,则tan α>tan β 答案 D解析 由三角函数线可知,选D.8.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin2 C.2sin1 D .2sin1答案 C解析 如图,∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =ACsin ∠AOC =1sin1,即r =1sin1,从而弧AB 的长为l =|α|·r =2sin1.故选C. 9.若α是第三象限角,则下列各式中不成立的是( ) A .sin α+cos α<0 B .tan α-sin α<0 C .cos α-tan α<0 D .tan αsin α<0 答案 B解析 ∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,则可排除A ,C ,D.故选B.10.(2018·江西模拟)已知角α的终边经过点(m ,3m ),若α= 7π3,则m 的值为( ) A .27 B.127 C .9 D.19答案 B解析 角α的终边经过点(m ,3m ),若α=7π3,则tan 7π3=tan π3=3=3mm=m- 16,则m =127.故选B.二、填空题11.(2017·广州模拟)若角θ的终边经过点P (-3,m )(m ≠0)且 sin θ=24m ,则cos θ的值为________. 答案 -64解析 点P (-3,m )是角θ终边上一点,由三角函数定义可知sin θ=m3+m2.又sin θ=24m , ∴m3+m2=24m . 又m ≠0,∴m 2=5,∴cos θ=-33+m2=-64. 12.(2018·济南校级期末)已知1|sin α|=-1sin α,且lg cos α有意义,则α所在象限为第________象限.答案 四解析 由1|sin α|=-1sin α可知,sin α<0,∴α是第三或第四象限角或终边在y 轴的非正半轴上的角. 由lg cos α有意义可知cos α>0,∴α是第一或第四象限角或终边在x 轴的非负半轴上的角,综上可知角α是第四象限角.13.若角α的终边在直线y =-3x 上,则10sin α+3cos α=________.答案 0解析 设角α终边上任一点为P (k ,-3k )(k ≠0),则r =x 2+y 2=k 2+(-3k 2)=10|k |.当k >0时,r =10k . ∴sin α=-3k 10k =-310,1cos α=10kk =10.∴10sin α+3cos α=-310+310=0.当k <0时,r =-10k .∴sin α=-3k -10k =310,1cos α=-10kk =-10.∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.14.如图所示,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正方向滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________.答案 (2-sin2,1-cos2)解析 因为圆心由(0,1)平移到了(2,1),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切于点B ,过C 作PA 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝ ⎛⎭⎪⎫2-π2=-cos2,|CD |=cos ⎝ ⎛⎭⎪⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2), 即OP →的坐标为(2-sin2,1-cos2).三、解答题15.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解 设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr=2时,扇形面积取得最大值4. ∴弦长AB =2sin1×2=4sin1. 16.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tan α2sin α2cos α2的符号.解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故α角在第三象限,其集合为{α⎪⎪⎪⎭⎬⎫2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0,所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0,所以tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.。
高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是()A.(,)B.(π,)C.(,)D.(,)∪(π,)【答案】D【解析】由已知得,解得α∈(,)∪(π,).4.已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.【答案】cosα=-1,tanα=0.【解析】r2=x2+y2=y2+3,由sinα===y,∴y=±或y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0时,P(-,0),cosα=-1,tanα=0.5.设集合M=,N={α|-π<α<π},则M∩N=________.【答案】【解析】由-π<<π,得-<k<.∵k∈Z,∴k=-1,0,1,2,故M∩N=6.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.7. tan(-1 410°)的值为()A.B.-C.D.-【答案】A【解析】tan(-1 410°)=tan(-4×360°+30°)=tan 30°=8.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1) ();(2)少.【解析】(1)本题比较简单,就是利用扇形面积公式来计算弧田面积,弧田面积等于扇形面积对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得.试题解析:(1) 扇形半径, 2分扇形面积等于 5分弧田面积=(m2) 7分(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=. 10分平方米 12分按照弧田面积经验公式计算结果比实际少1.52平米.【考点】(1)扇形面积公式;(2)弧田面积的经验计算公式.9.在平面直角坐标系中,若角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点(其中)则的值为( )A.B.C.D.【答案】D【解析】,根据任意角的三角函数的定义得,,所以.【考点】任意角三角函数的定义.10.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值11.在平面直角坐标系中,已知角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点,则 .【答案】【解析】由任意角的三角函数的定义得:.【考点】任意角的三角函数的定义.12.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.13.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.14.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.15.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα=.【答案】.【解析】由题意及图所示,易知A点的横坐标为,所以.【考点】三角函数的定义.16.已知函数的定义域为[a,b],值域为[-2,1],则的值不可能是()A.B.C.D.【答案】C【解析】因的值域[-2,1]含最小值不含最大值,根据图象可知定义域小于一个周期,故选D.【考点】三角函数的定义域和值域.17.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.18.若,则角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第二或第四象限角【答案】D【解析】因为,则角是第二或第四象限角,选D19.点位于直角坐标面的A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,位于直角坐标面的第四象限,选D20.已知圆与轴的正半轴相交于点,两点在圆上,在第一象限,在第二象限,的横坐标分别为,则=( )A.B.C.D.【答案】B【解析】设与轴正半轴的夹角分别为则,21.已知动点在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是()A.[0, 4]B.[4,10]C.[10,12]D.[0,4]和[10,12]【答案】D【解析】解:设动点A与x轴正方向夹角为α,则t=0时α=π/ 3 ,每秒钟旋转π /6 ,在t∈[0,1]上α∈[π/ 3 ,π/ 2 ],在[7,12]上α∈[3π/ 2 ,7π /3 ],动点A的纵坐标y关于t都是单调递增的.故选D.22.曲线与坐标轴所围的面积是【答案】3【解析】据余弦函数的图象,23.已知,且在第二象限,那么在 ( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】解:∵sinθ="3" /4 ,且θ在第二象限,∴cosθ=-/4,所以sin2θ=2sinθcosθ=-3/16Cos2θ=1-2sin2θ=-1/8故2θ在第三象限。
高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.如果角的终边经过点,则()A.B.C.D.【答案】A【解析】直接利用三角函数的定义,求出.因为角θ的终边经过点,由三角函数的定义可知,,故选A.【考点】任意角的三角函数的定义.2.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.半径为,中心角为所对的弧长是().A.B.C.D.【答案】D.【解析】弧长cm,故选D.【考点】弧长公式:(其中的单位是弧度).5.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.6.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程7.与角-终边相同的角是()A.B.C.D.【答案】C【解析】与−终边相同的角为2kπ−,k∈z,当 k=-1时,此角等于,故选:C.【考点】终边相同的角的定义和表示方法.8.如图,长为4米的直竹竿AB两端分别在水平地面和墙上(地面与墙面垂直),T为AB中点,,当竹竿滑动到A1B1位置时,,竹竿在滑动时中点T也沿着某种轨迹运动到T1点,则T运动的路程是_________米.【答案】.【解析】如图可知,点运动的轨迹为一段圆弧,由题意已知:,,∴,∴点运动的路程为.【考点】弧度制有关公式的运用.9.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.10.若角的终边上有一点,则的值是()A.B.C.D.【答案】B.【解析】先利用诱导公式化简,根据三角函数的定义知,即,故选B.【考点】运用诱导公式化简求值;任意角的三角函数的定义.11. 60°=_________.(化成弧度)【答案】【解析】根据,可得.【考点】角度与弧度的互化.12.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角13.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.14.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.15.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.16.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.17.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.18.扇形的半径是,圆心角是60°,则该扇形的面积为 .【答案】π【解析】扇形的面积公式为.【考点】扇形的弧度制面积公式.19.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.20.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算21.已知扇形的圆心角为2rad,扇形的周长为8cm,则扇形的面积为___________cm2。
专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx(x ≠0). 三个三角函数的性质如下表:三角函数 定义域第一象限符号第二象限符号第三象限符号 第四象限符号sinαR+ + - - cosR+--+αtanα{α|α≠k π+π2,k ∈Z } +-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=x r,tan α=y x(x ≠0).重点难点突破 【题型一】角及其表示【典型例题】已知集合{α|2k πα≤2k π,k ∈Z },则角α的终边落在阴影处(包括边界)的区域是( )A .B .C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的X 围,然后根据k 的可能取值确定kα或αk的终边所在位置. 【题型二】弧度制 【典型例题】已知扇形的周长是6cm,面积是2cm2,试求扇形的圆心角的弧度数()A.1B.4C.1或 4D.1或 2【解答】解:设扇形的圆心角为αrad,半径为Rcm,则,解得α=1或α=4.故选:C.【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1 三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2 三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a =sin ,b =cos ,c =tan ,则( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c【解答】解:因为,所以cos sin ,tan 1,所以b <a <c . 故选:A .思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的X 围.基础知识训练1.【某某省某某市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()2,3-,则( )A .5B .15-C .15D .5-【答案】A【解析】由任意角的三角函数定义可知:3 tan2θ=-本题正确选项:A2.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是()A.B.C.D.【答案】C【解析】由题意可知:角的终边不能落在坐标轴上,当角终边在第一象限时,当角终边在第二象限时,当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P的坐标为,则sinα的值为()A.12B.1-2C3D.3【答案】B 【解析】解:角α的终边上一点P 的坐标为31,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【某某省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值X 围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sinα+cosα,tanα)在第四象限, ∴,由sinα+cosα2=(α4π+), 得2kπ<α4<π+2kπ+π,k∈Z,即2kπ4π-<α<2kπ34π+π,k∈Z. 由tanα<0,得kπ2π+<α<kπ+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【某某省示X 高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【某某省某某市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是() A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D. 7.【某某某某市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm .A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C.9.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是()A.钝角是第二象限角B.第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的X围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的X围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【某某省某某市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【某某省某某市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟,故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届某某省某某市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P --,则sin α的值为__________.【答案】43310-+ 【解析】解:∵点P (1,2)在角α的终边上,∴tan α2=, 将原式分子分母除以cos α,则原式故答案为:5.16.【某某省涟水中学2018-2019学年高二5月月考】欧拉公式(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3i e -表示的复数在复平面中位于第_______象限. 【答案】三 【解析】由题e -3i=cos3-i sin3,又cos3<0, sin3>0,故3i e -表示的复数在复平面中位于第三象限. 故答案为三17.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大? 【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100. 【解析】(1)设扇形的圆心角大小为α()rad ,半径为r ,则由题意可得:.联立解得:扇形的圆心角2α=. (2)设扇形的半径和弧长分别为r 和l , 由题意可得240r l +=, ∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2l rα,∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【某某市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD,,,平方海里,由题意建立平面直角坐标系,如图所示;由题意知,点P在圆B上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°X围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z};(2) {α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}. 【解析】(1)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z}={α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}.能力提升训练1.【某某省某某市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则( )A .B .C .D .【答案】D 【解析】∵点A 为单位圆上一点,,点A 沿单位圆逆时针方向旋转角α到点,∴A (cos ,sin ),即A (),且cos (α),sin (α).则sinα=sin[(α)]=sin (α)cos cos (α)sin,故选:D .2.【某某省某某实验中学2018-2019学年高一下学期期中考试】在ABC ∆中,若,那么ABC∆是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A.3.【某某省某某市2018-2019学年高一下学期期中考试】已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】由,得异号,则角是第二或第三象限角,故选:.【某某省某某市2018-2019学年高一下学期期中考试】已知角α的终边经过点P(-3,y),且y<0,cosα=-,4.则tanα=()A.B.C.D.【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【某某省某某市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,23)P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】 ∵已知角83πθ=的终边经过点(,23)P x ,∴23x,则2x =-,故选:C .6.【某某省某某市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( ) A .32B .33C .12D .3【答案】C 【解析】根据题意,,且123π<<,则.故选:C .7.【某某省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π 【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【某某省某某市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】 因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【某某省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sinα+cosα的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),∴sinα=则sinα+cosα=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】【解析】由于“”,故为第二象限角,故概率为.。
高考数学大一轮总复习 33(2)任意角、弧制及任意角的三角函数限时规范训练 理A 级 基础达标1.[2014·韶关调研]如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π3C.5π6D.π12解析:函数关于点(4π3,0)中心对称,则有3cos(2×4π3+φ)=0,即cos(8π3+φ)=0,∴cos(2π3+φ)=0,即2π3+φ=π2+k π,k ∈Z ,即φ=-π6+k π,k ∈Z ,∴当k=0时,|φ|=π6,此时|φ|最小.答案:A2.[2014·玉溪模拟]函数y =2sin(π6-2x )(x ∈[0,π])的增区间是( )A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]解析:y =2sin(π6-2x )=-2sin(2x -π6),由π2+2k π≤2x -π6≤32π+2k π,k ∈Z ,解得π3+k π≤x ≤56π+k π,k ∈Z ,即函数的增区间为[π3+k π,56π+k π],k ∈Z ,∴k =0时,增区间为[π3,56π],选C 项.答案:C3.已知函数f (x )=sin x +a cos x 的图象关于直线x =5π3对称,则实数a 的值为( )A .- 3B .-33C. 2D.22解析:由函数f (x )=sin x +a cos x 的图象关于直线x =5π3对称,可知f (5π3)=±a 2+1,可求得a =-33.故选B. 答案:B4.[2014·福建福州模拟]函数f (x )=2cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A ,B 分别为该部分图象的最高点与最低点,且这两点间的距离为42,则函数f (x )图象的一条对称轴的方程为( )A .x =π4B .x =π2C .x =4D .x =2解析:由题意知|AB |=42, 即最值之差为4,故T2=4,T =8,所以f (x )=2cos(π4x +φ)(0<φ<π),又f (x )=2cos(π4x +φ)(0<φ<π)为奇函数,f (0)=0,故φ=π2,令π4x +π2=k π,k ∈Z ,得x =-2+4k ,k ∈Z , 故x =2是一条对称轴.故选D. 答案:D5.[2014·青岛模拟]函数f (x )=12cos(ωx +φ)对任意的x ∈R ,都有f (π3-x )=f (π3+x ),若函数g (x )=3sin(ωx +φ)-2,则g (π3)的值是( )A .1B .-5或3C .-2D.12解析:由f (π3-x )=f (π3+x )知此函数的对称轴为x =π3,∴π3ω+φ=k π,k ∈Z ,∴sin(π3ω+φ)=0, ∴g (π3)=3sin(π3ω+φ)-2=0-2=-2.答案:C6.若函数f (x )=2sin(2x +φ)(|φ|<π2)与g (x )=cos(ωx -π6)(ω>0)的图象具有相同的对称中心,则φ=( )A.π6B.π3C .-π3D .-π6解析:由于两函数的对称中心相同,即两函数周期相同,故ω=2,从而g (x )=cos(2x -π6),其中一个对称中心为(π3,0).据题意(π3,0)也是y =2sin(2x +φ)的对称中心,由对称中心的几何意义可得2sin(2π3+φ)=0,又|φ|<π2,故φ=π3.答案:B7.设函数f (x )=3sin(π2x +π4),若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.解析:f (x )=3sin(π2x +π4)的最小正周期T =2π×2π=4,f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值,故|x 1-x 2|的最小值为T2=2.答案:28.[2014·西城区模拟]已知函数f (x )=sin(2x +π6),其中x ∈[-π6,a ].当a =π3时,f (x )的值域是________;若f (x )的值域是[-12,1],则a 的取值范围是________.解析:若-π6≤x ≤π3,则-π3≤2x ≤2π3,-π6≤2x +π6≤5π6,此时-12≤sin(2x +π6)≤1,即f (x )的值域是[-12,1].若-π6≤x ≤a ,则-π3≤2x ≤2a ,-π6≤2x +π6≤2a +π6.∵当2x +π6=-π6或2x +π6=7π6时,sin(2x +π6)=-12,∴要使f (x )的值域是[-12,1],则有π2≤2a +π6≤7π6,即π3≤2a ≤π,∴π6≤a ≤π2,即a 的取值范围是[π6,π2]. 答案:[-12,1] [π6,π2]9.设函数y =sin(ωx +φ)(ω>0,φ∈(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点(π4,0)对称;②图象关于点(π3,0)对称;③在[0,π6]上是增函数;④在[-π6,0]上是增函数,所有正确结论的编号为________.解析:∵T =π,∴ω=2.又2×π12+φ=k π+π2,∴φ=k π+π3.∵φ∈(-π2,π2),∴φ=π3,∴y =sin(2x +π3).由图象及性质可知②④正确. 答案:②④10.[2014·金华模拟]已知函数f (x )=A sin(ωx +φ)+1(ω>0,A >0,0<φ<π2)的周期为π,f (π4)=3+1,且f (x )的最大值为3.(1)写出f (x )的表达式;(2)写出函数f (x )的对称中心,对称轴方程. 解:(1)因T =π,∴ω=2,最大值为3,∴A =2.∴f (x )=2sin(2x +φ)+1, ∵f (π4)=3+1,∴2sin(π2+φ)+1=3+1,∴cos φ=32. ∵0<φ<π2,∴φ=π6.∴f (x )=2sin(2x +π6)+1.(2)由f (x )=2sin(2x +π6)+1,令2x +π6=k π,得x =k π2-π12(k ∈Z ),∴对称中心为(k π2-π12,1)(k ∈Z ),由2x +π6=k π+π2,得x =k π2+π6(k ∈Z ),∴对称轴方程为x =k π2+π6(k ∈Z ).11.[2014·河北质检]设函数f (x )=sin(πx 3-π6)-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,求当x ∈[0,1]时,函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin(πx 3-π3)-1,所以y =f (x )的最小正周期T =2ππ3=6.由2k π-π2≤π3x -π3≤2k π+π2,k ∈Z ,得6k -12≤x ≤6k +52,k ∈Z ,所以y =f (x )的单调递增区间为[6k -12,6k +52],k ∈Z .(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈[23π,π],sin(π3x -π3)∈[0,32],f (x )∈[-1,12],即此时y =g (x )的最大值为12.12.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6].∴sin(2x +π6)∈[-12,1],又∵a >0,∴-2a sin(2x +π6)∈[-2a ,a ].∴f (x )∈[b,3a +b ], 又∵-5≤f (x )≤1, ∴b =-5,3a +b =1, 因此a =2,b =-5. (2)由(1)得a =2,b =-5, ∴f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1, 又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k∈Z ,∴g (x )的单调增区间为(k π,k π+π6],k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为(k π+π6,k π+π3),k ∈Z .综上,g (x )的递增区间为(k π,k π+π6](k ∈Z );递减区间为(k π+π6,k π+π3)(k ∈Z ).B 级 知能提升1.[2014·金版]设函数f (x )=|sin(2x +π3)|,则下列关于函数f (x )的说法中正确的是( )A .f (x )是偶函数B .f (x )的最小正周期为πC .f (x )的图象关于点(-π6,0)对称D .f (x )在区间[π3,7π12]上是增函数解析:对于选项A ,由于f (π3)=|sin(2×π3+π3)|=0,而f (-π3)=|sin[2×(-π3)+π3]|=|sin π3|=32≠f (π3),所以f (x )不是偶函数;对于选项B ,由于f (x )=sin(2x +π3)的周期为π,而f (x )=|sin(2x +π3)|的图象是将f (x )=sin(2x +π3)的x 轴上方的图象保持不变,x 轴下方的图象关于x 轴对称到上方去,因此f (x )=|sin(2x +π3)|的周期为f (x )=sin(2x +π3)的周期的一半,故选项B 不正确;对于选项C ,由于f (x )=|sin(2x +π3)|的图象不是中心对称图形,因此也不正确;对于选项D ,由三角函数的性质可知,f (x )=|sin(2x +π3)|的单调递增区间是k π≤2x +π3≤k π+π2(k ∈Z ),即k π2-π6≤x ≤k π2+π12(k ∈Z ),当k =1时,x ∈[π3,7π12],故选D.答案:D2.已知函数f (x )=sin(ωx +π3)(ω>0)的单调递增区间为[k π-5π12,k π+π12](k ∈Z ),单调递减区间为[k π+π12,k π+7π12](k ∈Z ),则ω的值为________.解析:由(k π+7π12)-(k π-5π12)=π(k ∈Z )得函数f (x )的最小正周期为π,则ω=2.答案:23.已知函数f (x )=sin x +3cos x (x ∈R ),函数y =f (x +φ)(|φ|≤π2)的图象关于直线x =0对称,则φ的值为________.解析:f (x )=2sin(x +π3),y =f (x +φ)=2sin(x +π3+φ)的图象关于x =0对称,即f (x +φ)为偶函数.∴π3+φ=π2+k π,k ∈Z ,φ=k π+π6,k ∈Z , 又|φ|≤π2,∴φ=π6.答案:π64.[2014·天津一中模拟]已知函数f (x )=2cos x sin(x +π3)-3sin 2x +sin x cos x .(1)求函数f (x )的单调递减区间;(2)将函数f (x )的图象沿x 轴向右平移m 个单位后的图象关于直线x =π2对称,求m 的最小正值.解:(1)f (x )=2cos x (12sin x +32cos x )-3sin 2x +sin x cos x=sin x cos x +3cos 2x -3sin 2x +sin x cos x =sin2x +3cos2x =2sin(2x +π3),由π2+2k π≤2x +π3≤2k π+32π,k ∈Z , 得k π+π12≤x ≤k π+712π,k ∈Z .故函数f (x )的单调递减区间为[k π+π12,k π+7π12],k ∈Z .(2)y =2sin(2x +π3)―→y =2sin(2x +π3-2m ),∵y =2sin(2x +π3-2m )的图象关于直线x =π2对称,∴2·π2+π3-2m =k π+π2(k ∈Z ),∴m =-12k π+5π12(k ∈Z ),当k =0时,m 的最小正值为512π.。
任意角和弧度制及任意角的三角函数考纲要求 1.了解任意角的概念和弧度制的概念;2.能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.知识梳理1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线,余弦线和正切线.1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制必须一致,不可混用.3.象限角4.轴线角诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)锐角的取值范围是⎝⎛⎭⎫0,π2. (2)第一象限角不一定是锐角.2.已知角θ的终边过点P (-12,m ),cos θ=-1213,则m 的值为( )A.-5B.5C.±5D.±8答案 C解析 由三角函数的定义可知cos θ=-12(-12)2+m 2=-1213,解得m =±5.3.在-720°~0°范围内,所有与角α=45°终边相同的角β构成的集合为________. 答案 {-675°,-315°}解析 所有与角α终边相同的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ),得-765°≤k ×360°<-45°(k ∈Z ). 解得k =-2或k =-1,∴β=-675°或β=-315°.4.(2021·合肥期末)集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角α所表示的范围(阴影部分)是( )答案 C解析 当k 为偶数时,集合{α|k π+π4≤α≤k π+π2,k ∈Z }与⎩⎨⎧⎭⎬⎫α⎪⎪π4≤α≤π2表示的角终边相同,位于第一象限;当k 为奇数时,集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 与⎩⎨⎧⎭⎬⎫α⎪⎪5π4≤α≤3π2表示的角终边相同,位于第三象限.故选C.5.(2020·全国Ⅱ卷)若α为第四象限角,则( ) A.cos 2α>0 B.cos 2α<0 C.sin 2α>0D.sin 2α<0答案 D解析 ∵α是第四象限角,∴sin α<0,cos α>0,∴sin 2α=2sin αcos α<0,故选D.6.(2021·菏泽质检)密位广泛用于航海和军事,我国采取的“密位制”是6 000密位制,即将一个圆周分成6 000等份,每一等份是一个密位,那么60密位等于________rad. 答案π50解析 ∵周角为2π r ad , ∴1密位=2π6 000=π3 000(rad),∴60密位=π3 000·60=π50(rad).考点一 角的概念及其表示1.下列与角9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z ) C.k ·360°-315°(k ∈Z ) D.k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,排除A 、B ,易知D 错误,C 正确.2.(2021·海南调研)已知α为第三象限角,则α2的终边所在的象限是( )A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限答案 D解析 ∵α为第三象限角,∴π+2k π<α<3π2+2k π,k ∈Z ,∴π2+k π<α2<3π4+k π,k ∈Z , 当k =2m ,m ∈Z 时,π2+2m π<α2<3π4+2m π,m ∈Z ,此时α2在第二象限,当k =2m +1,m ∈Z 时,3π2+2m π<α2<7π4+2m π,m ∈Z , 此时α2在第四象限.综上,α2的终边在第二或第四象限.3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________________. 答案 ⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3解析 终边在直线y =3x 上的角α的集合为 ⎩⎨⎧⎭⎬⎫α|α=π3+k π,又由α∈[-2π,2π),即-2π≤π3+k π<2π,k ∈Z ,解得k =-2,-1,0,1,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.感悟升华 1.确定nα,αn(n ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出nα或αn 的范围,然后根据n 的可能取值讨论确定nα或αn的终边所在位置(也可采用等分象限角的方法).2.利用终边相同的角的集合求适合某些条件的角:先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. 考点二 弧度制及其应用【例1】已知一扇形的圆心角为α,半径为R ,弧长为l ,若α=π3,R =10 cm ,求:(1)扇形的面积;(2)扇形的弧长及该弧所在弓形的面积. 解 (1)由已知得α=π3,R =10,∴S 扇形=12α·R 2=12×π3×102=50π3(cm 2).(2)l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12×10π3×10-12×102×32=50π-7533(cm 2). 感悟升华 应用弧度制解决问题时应注意:(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【训练1】 (1)(2021·长沙质检)已知弧长4π的弧所对的圆心角为2弧度,则这条弧所在的圆的半径为( ) A.1B.2C.πD.2π(2)已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2. 答案 (1)D (2)4解析 (1)∵弧长4π的弧所对的圆心角为2弧度, ∴4πr =2,解得r =2π, ∴这条弧所在的圆的半径为2π. (2)设扇形半径为r cm ,弧长为l cm , 则2r +l =8,S =12rl =12r ×(8-2r )=-r 2+4r =-(r -2)2+4, 所以S max =4(cm 2).考点三 三角函数的定义及应用角度1 求三角函数值【例2】已知角α的终边与单位圆的交点为P ⎝⎛⎭⎫-12,y ,则sin α·tan α等于( ) A.-33B.±33C.-32D.±32答案 C解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3, 此时,sin α·tan α=-32.综上sin α·tan α=-32.角度2 由三角函数值求参数【例3】已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A.-12B.-32C.12D.32答案 C解析 由题意得点P (-8m ,-3),r =64m 2+9, 所以cos α=-8m64m 2+9=-45,所以m >0,解得m =12.角度3 三角函数值的符号【例4】(2020·北京海淀区质量监控)已知sin θ>0且cos θ<0,则角θ的终边所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限答案 B解析 由题意及三角函数的定义可知角θ终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,故选B. 感悟升华 1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值. 2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解. 【训练2】 (1)若sin θ·cos θ<0,tan θsin θ>0,则角θ是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)已知角θ的顶点与原点重合,始边与x 轴非负半轴重合,若A (-1,y )是角θ终边上的一点,且sin θ=-31010,则y =________.答案 (1)D (2)-3解析 (1)由tan θsin θ>0,得1cos θ>0,所以cos θ>0.又sin θ·cos θ<0,所以sin θ<0,所以θ为第四象限角.故选D.(2)因为sin θ=-31010<0,A (-1,y )是角θ终边上一点,所以y <0,由三角函数的定义,得y y 2+1=-31010.解得y =-3.考点四 三角函数线的应用【例5】函数y =lg(2sin x -1)+1-2cos x 的定义域为________. 答案 ⎣⎡⎭⎫2k π+π3,2k π+5π6(k ∈Z ) 解析 要使函数有意义,必须有⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12.如图,在单位圆中作出相应的三角函数线, 由图可知,原函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6(k ∈Z ).感悟升华 1.三角函数线是三角函数的几何表示,正弦线、正切线的方向同纵轴一致,向上为正,向下为负;余弦线的方向同横轴一致,向右为正,向左为负.2.利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围. 【训练3】若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是________.答案 sin α<cos α<tan α解析 如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知AT >OM >MP ,故有sin α<cos α<tan α.A 级 基础巩固一、选择题1.(2021·西安调研)小明出国旅游,当地时间比北京时间晚一个小时,他需要调整手表的时间,则时针转过的角的弧度数为( ) A.π3 B.π6 C.-π3D.-π6答案 B解析 因为当地时间比北京时间晚一个小时,所以时针应该是逆时针方向旋转,故时针转过的角的弧度数为π6.故选B.2.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( ) A.1个 B.2个 C.3个 D.4个答案 C解析 -3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,②正确.-400°=-360°-40°,从而-400°是第四象限角,③正确.-315°=-360°+45°,从而-315°是第一象限角,④正确.3.(2020·天津期末)在平面直角坐标系中,若角α以x 轴的非负半轴为始边,且终边过点⎝⎛⎭⎫-32,12,则sin α=( ) A.-32B.-12C.32D.12答案 D解析 由任意角三角函数的定义得sin α=12⎝⎛⎭⎫-322+⎝⎛⎭⎫122=12.故选D. 4.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A.2 B.4 C.6 D.8答案 C解析 设扇形的半径为r ,弧长为l ,则由扇形面积公式可得2=12|α|r 2=12×4×r 2,解得r =1,l =αr =4,所以所求扇形的周长为2r +l =6.5.若角α的终边在直线y =-x 上,则角α的取值集合为( ) A.⎩⎨⎧⎭⎬⎫α⎪⎪α=k ·2π-π4,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=k ·2π+3π4,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪α=k ·π-3π4,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k ·π-π4,k ∈Z 答案 D解析 由图知,角α的取值集合为⎩⎨⎧⎭⎬⎫α⎪⎪α=2n π+3π4,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫α⎪⎪α=2n π-π4,k ∈Z=⎩⎨⎧⎭⎬⎫α⎪⎪α=(2n +1)π-π4,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫α⎪⎪α=2n π-π4,k ∈Z=⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π4,k ∈Z .6.设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角答案 B解析 由θ是第三象限角知,θ2为第二或第四象限角,又⎪⎪⎪⎪cos θ2=-cos θ2,所以cos θ2<0, 综上可知,θ2为第二象限角.7.(2021·唐山模拟)已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边上一点 A (2sin α,3)(sin α≠0),则cos α=( ) A.12 B.-12C.32D.-32答案 A解析 由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.8.已知点P ⎝⎛⎭⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.5π6B.2π3C.11π6D.5π3答案 C 解析 因为点P ⎝⎛⎭⎫32,-12在第四象限,根据三角函数的定义可知tan θ=-1232=-33,又θ∈[0,2π),可得θ=11π6.二、填空题9.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________.答案 π3解析 设扇形半径为r ,弧长为l , 则⎩⎨⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.10.在平面直角坐标系xOy 中,点P 在角2π3的终边上,且|OP |=2,则点P 的坐标为________.答案 (-1,3)解析 设点P 的坐标为(x ,y ),由三角函数定义得⎩⎨⎧x =|OP |cos 2π3,y =|OP |sin 2π3,所以⎩⎨⎧x =-1,y =3,所以点P的坐标为(-1,3).11.(2021·河北九校联考)已知点P (sin 35°,cos 35°)为角α终边上一点,若0°≤α<360°,则α=________. 答案 55°解析 由题意知cos α=sin 35°=cos 55°,sin α=cos 35°=sin 55°,P 在第一象限,所以α=55°.12.函数y =2cos x -1的定义域为________________. 答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3 (k ∈Z ).B 级 能力提升13.设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N ={x |x =k4·180°+45°,k ∈Z },那么( )A.M =NB.M ⊆NC.N ⊆MD.M ∩N =∅答案 B解析 由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N . 14.在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是( ) A.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π C.⎝⎛⎭⎫π4,5π4D.⎝⎛⎭⎫π4,π∪⎝⎛⎭⎫5π4,3π2答案 C解析 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos5π4=-22,根据三角函数线的变化规律标出满足题中条件的角x ∈⎝⎛⎭⎫π4,5π4.15.一扇形的圆心角为2π3,则此扇形的面积与其内切圆的面积的比值为________.答案7+439解析 设扇形半径为R ,内切圆半径为r .则(R -r )sin π3=r ,即R =⎝⎛⎭⎫1+233r .又S 扇=12|α|R 2=12×2π3×R 2=π3R 2=7+439πr 2,所以S 扇πr 2=7+439.16.在平面直角坐标系中,劣弧AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段弧上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是________.答案 EF ︵解析 因为tan α<cos α,所以P 所在的圆弧不是GH ︵,因为tan α<sin α,所以P 所在的圆弧不是CD ︵,又cos α<sin α,所以P 所在的圆弧不是AB ︵,所以P 所在的圆弧是EF ︵.。
高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点的坐标为________.【答案】【解析】由三角函数定义可知Q点的坐标(x,y)满足x=cos=-,y=sin=.3.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cos α=________.【答案】-=,且A点在第二象限,又因为圆O为单位圆,所以A点横坐标【解析】因为A点纵坐标yAx=-,由三角函数的定义可得cos α=-.A4.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.5.如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;【答案】第二象限角【解析】因为点P(sinθ·cosθ,2cosθ)位于第三象限,所以sinθ·cosθ<0,2cosθ<0,即所以θ为第二象限角.6.若θ是第二象限角,试判断sin(cosθ)的符号.【答案】负号【解析】∵2kπ+<θ<2kπ+π(k∈Z),∴-1<cosθ<0,∴sin(cosθ)<0.∴sin(cosθ)的符号是负号.7.已知2rad的圆心角所对的弦长为2,求这个圆心角所对的弧长.【答案】【解析】如图,∠AOB=2rad,过O点作OC⊥AB于C,并延长OC交于D.∠AOD=∠BOD=1rad,且AC =AB=1.在Rt△AOC中,AO=,从而弧AB的长为l=|α|·r=8.已知角α(0≤α≤2π)的终边过点P,则α=__________.【答案】【解析】将点P的坐标化简得,它是第四象限的点,r=|OP|=1,cosα==.又0≤α≤2π,所以α=.9.若角α的终边与直线y=3x重合且sinα<0,又P(m,n)是角α终边上一点,且|OP|=,则m-n=________.【答案】2【解析】依题意知解得m=1,n=3或m=-1,n=-3.又sinα<0,∴α的终边在第三象限,∴n<0,∴m=-1,n=-3,∴m-n=2.10.等于()A.sin2-cos2B.cos2-sin2C.±(sin2-cos2)D.sin2+cos2【答案】A【解析】原式===|sin2-cos2|,∵sin2>0,cos2<0,∴原式=sin2-cos2.11.已知点P(sinπ,cosπ)落在角θ的终边上,且θ∈[0,2π),则θ的值为()A.B.C.D.【答案】D【解析】点P(sinπ,cosπ),即为P(,-),它在第四象限的角平分线上,且θ∈[0,2π),故选D.12.在单位圆中,一条弦AB的长度为,则弦AB所对的圆心角α是rad.【答案】π【解析】由已知R=1,∴sin==,∴=,∴α=π.13.已知角x的终边上一点坐标为,则角x的最小正值为( )A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值14.若角的终边上有一点,则的值是()A.B.C.D.【答案】B【解析】角600°的终边与角-120°的终边相同,且角-120°的终边在第三象限,,所以.故选B.或解:因为角角600°的终边在第三象限,第三象限角终边上的点任一点,,由选项可知,只有B满足.故选B.【考点】1.终边相同的角的运用;2.三角函数的定义的运用.15.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式16.运用物理中矢量运算及向量坐标表示与运算,我们知道:两点等分单位圆时,有相应正确关系为,三等分单位圆时,有相应正确关系为,由此推出:四等分单位圆时的相应正确关系为 .【答案】【解析】用两点等分单位圆时,关系为,两个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差为:,用三点等分单位圆时,关系为,此时三个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差与第三个角与第二个角的差相等,均为有,依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为,第二个角为,第三个角,第四个角为,即其关系为.【考点】三角函数的定义与三角恒等式.17.(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;(2)设.求证:.【答案】(1)详见解析;(2)详见解析.【解析】(1)由扇形周长为定值可得半径与弧长关系(定值),而扇形面积,一般地求二元函数最值可消元化为一元函数(见下面详解),也可考虑利用基本不等式,求出最值,并判断等号成立条件,从而得解;(2)这是一个双变元(和)的函数求最值问题,由于这两个变元没有制约关系,所以可先将其中一个看成主元,另一个看成参数求出最值(含有另一变元),再求解这一变元下的最值,用配方法或二次函数图象法. 试题解析:(1)证明:设弧长为,半径为,则, 2分所以,当时, 5分此时,而所以当时该扇形面积最大 7分(2)证明:9分∵,∴, 11分∴当时, 14分又,所以,当时取等号,即. 16分法二:9分∵,, 11分∴当时,, 14分又∵,∴当时取等号即. 16分【考点】扇形的周长和面积、三角函数、二次函数.18.若,则A.B.C.D.【答案】A【解析】因为,所以==,=,故选A.【考点】本题主要考查特殊角的三角函数值,诱导公式、和差倍半公式的应用。
第1讲 任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角W.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:角α的弧度数公式 |α|=lr(l 表示弧长)角度与弧度的换算①1°=π180rad ;②1 rad =⎝⎛⎭⎫180π°弧长公式 l =|α|r 扇形面积公式 S =12lr =12|α|r 2 (1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.导师提醒 1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角. (2)不相等的角未必终边不相同,终边相同的角也未必相等. 2.注意两个易错点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)在同一个问题中采用的度量制度必须一致,不能混用. 3.会用一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. 4.识记一个结论若α∈(0,π2),则tan α>α>sin α.5.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr,tanα=yx .判断正误(正确的打“√”,错误的打“×”) (1)小于90°的角是锐角.( )(2)三角形的内角必是第一、第二象限角.( ) (3)不相等的角终边一定不相同.( ) 答案:(1)× (2)× (3)×下列与9π4的终边相同的角的表达式中正确的是( )A .2k π-45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )解析:选C.与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有C 正确.故选C.若sin α<0,且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选C.由sin α<0知α的终边在第三、第四象限或y 轴的负半轴上;由tan α>0知α的终边在第一或第三象限,故α是第三象限角.故选C.已知角α的终边与单位圆的交点为P ⎝⎛⎭⎫x ,32,则tan α=( ) A. 3 B .± 3 C.33D .±33解析:选B.由|OP |2=x 2+34=1,得x =±12,所以tan α=y x =32÷⎝⎛⎭⎫±12=±3.故选B.(教材习题改编)已知角α的终边过点P (8m ,3),且cos α=-45,则m 的值为________.解析:由题意得8m (8m )2+32=-45,解得m =-12.答案:-12(教材习题改编)已知扇形的圆心角为60°,其弧长为2π,则此扇形的面积为________.解析:设此扇形的半径为r , 由题意得π3r =2π,所以r =6,所以此扇形的面积为12×2π×6=6π.答案:6π象限角及终边相同的角(自主练透) 1.给出下列四个命题: ①-3π4是第二象限角;②4π3是第三象限角; ③-400°是第四象限角; ④-315°是第一象限角. 其中正确命题的个数为( ) A .1 B .2 C .3D .4解析:选C.-3π4是第三象限角,故①错误;4π3=π+π3,所以4π3是第三象限角,故②正确; -400°=-360°-40°,所以-400°是第四象限角,故③正确; -315°=-360°+45°,所以-315°是第一象限角,故④正确,故选C. 2.若角α是第二象限角,则α2是( ) A .第一象限角 B .第二象限角 C .第一或第三象限角 D .第二或第四象限角解析:选C.因为α是第二象限角,所以π2+2k π<α<π+2k π,k ∈Z ,所以π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.所以α2是第一或第三象限角.3.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ),解得-765360≤k <-45360(k ∈Z ),从而k =-2和k =-1,代入得β=-675°和β=-315°. 答案:-675°和-315°4.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.解析:如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3; 在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.答案:⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3(1)终边在某直线上角的求法4步骤①数形结合,在平面直角坐标系中画出该直线; ②按逆时针方向写出[0,2π]内的角;③再由终边相同角的表示方法写出满足条件角的集合; ④求并集化简集合. (2)判断象限角的2种方法①图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角;②转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.(3)确定kα,αk (k ∈N *)的终边位置3步骤①用终边相同角的形式表示出角α的范围; ②再写出kα或αk的范围;③然后根据k 的可能取值讨论确定kα或αk的终边所在的位置.[提醒] 终边在一条直线上的角之间相差180°的整数倍;终边在互相垂直的两条直线上的角之间相差90°的整数倍.扇形的弧长及角度公式(师生共研)已知一扇形的圆心角为α ,半径为R ,弧长为l . (1)若α=60°,R =10 cm,求扇形的弧长l ;(2)已知扇形的周长为10 cm,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【解】 (1)α=60°=π3rad ,所以l =α·R =π3×10=10π3(cm).(2)由题意得⎩⎪⎨⎪⎧2R +Rα=10,12α·R 2=4⇒⎩⎪⎨⎪⎧R =1,α=8(舍去)或⎩⎪⎨⎪⎧R =4,α=12. 故扇形圆心角为12 rad.(3)由已知得l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5 cm 时,S 取得最大值25 cm 2, 此时l =10 cm ,α=2 rad.弧度制下有关弧长、扇形面积问题的解题策略(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.1.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C.2sin 1D .2sin 1解析:选C.如图,∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交AB ︵于D .则∠AOD =∠BOD =1弧度, 且AC =12AB =1,在Rt △AOC 中, AO =AC sin ∠AOC =1sin 1,即r =1sin 1,从而AB ︵的长为l =α·r =2sin 1.故选C.2.已知扇形弧长为20 cm,圆心角为100°,则该扇形的面积为________cm 2. 解析:由弧长公式l =|α|r , 得r =20100π180=36π,所以S 扇形=12lr =12×20×36π=360π.答案:360π3.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________. 解析:设圆半径为r ,则圆内接正方形的对角线长为2r ,所以正方形边长为2r ,所以圆心角的弧度数是2rr= 2. 答案: 2三角函数的定义(多维探究)角度一 利用三角函数的定义求值已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4,求cos α,tan α的值. 【解】 设P (x ,y ).由题设知x =-3,y =m , 所以r 2=|OP |2=(-3)2+m 2(O 为原点),r =3+m 2, 所以sin α=m r =2m 4=m 22,所以r =3+m 2=22,3+m 2=8,解得m =±5. 当m =5时,r =22,x =-3,y =5, 所以cos α=-322=-64,tan α=-153;当m =-5时,r =22,x =-3,y =-5, 所以cos α=-322=-64,tan α=153.角度二 三角函数值的符号判断(1)若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0D .cos 2α>0(2)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【解析】 (1)由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号,故sin 2α=2sin αcos α>0,故选C.(2)由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号,则α为第三象限角或第四象限角.综上可知,α为第三象限角.【答案】 (1)C (2)C角度三 三角函数线的应用函数y =lg(3-4sin 2α)的定义域为________.【解析】 因为3-4sin 2α>0,所以sin 2α<34,所以-32<sin α<32.利用三角函数线画出满足条件的α的终边范围(如图中阴影部分所示),所以α∈⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ).【答案】 ⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z )(1)用定义法求三角函数值的两种情况①已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;②已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.(2)判断三角函数值符号及角位置的方法已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置,注意终边在坐标轴上的特殊情况.(3)利用单位圆解三角不等式(组)的一般步骤 ①用边界值定出角的终边位置; ②根据不等式(组)定出角的范围;③求交集,找单位圆中公共的部分; ④写出角的表达式.1.已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B.由题意知tan α<0,cos α<0,故sin α>0,根据三角函数值的符号规律可知,角α的终边在第二象限.故选B.2.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选 C.如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.故选C.3.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________. 解析:因为角α的终边经过点P (-x ,-6), 且cos α=-513,所以cos α=-xx 2+36=-513,即x =52或x =-52(舍去),所以P ⎝⎛⎭⎫-52,-6,所以sin α=-1213,所以tan α=sin αcos α=125, 则1sin α+1tan α=-1312+512=-23.答案:-23[基础题组练]1.若角α的终边经过点P (1,3),则cos α+tan α的值为( ) A.1+232B.-1+32C.1+32D.-1+232解析:选A.因为角α的终边经过点P (1,3),则x =1,y =3,r =|OP |=2,所以cos α=x r =12,tan α=yx =3,那么cos α+tan α=1+232,故选A. 2.下列结论中错误的是( ) A .若0<α<π2,则sin α<tan αB .若α是第二象限角,则α2为第一象限或第三象限角C .若角α的终边过点P (3k ,4k )(k ≠0),则sin α=45D .若扇形的周长为6,半径为2,则其圆心角的大小为1弧度解析:选C.选项A ,若0<α<π2,则sin α<tan α=sin αcos α,A 正确;选项B ,若α是第二象限角,即α∈⎝⎛⎭⎫2k π+π2,2k π+π,k ∈Z ,则α2∈⎝⎛⎭⎫k π+π4,k π+π2,k ∈Z ,为第一象限或第三象限角,B 正确;选项C ,若角α的终边过点P (3k ,4k )(k ≠0),则sin α=4k 9k 2+16k 2=4k5|k |,不一定等于45,C 不正确;选项D ,若扇形的周长为6,半径为2,则弧长=6-2×2=2,其圆心角的大小为22=1弧度,D 正确.故选C.3.若角α与β的终边关于x 轴对称,则有( ) A .α+β=90°B .α+β=90°+k ·360°,k ∈ZC .α+β=2k ·180°,k ∈ZD .α+β=180°+k ·360°,k ∈Z解析:选C.因为α与β的终边关于x 轴对称,所以β=2k ·180°-α,k ∈Z ,所以α+β=2k ·180°,k ∈Z .4.下列选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0D .sin 10<0解析:选D.300°=360°-60°,则300°是第四象限角; -305°=-360°+55°,则-305°是第一象限角; 因为-22π3=-8π+2π3,所以-22π3是第二象限角;因为3π<10<7π2,所以10是第三象限角.故sin 300°<0,cos(-305°)>0,tan ⎝⎛⎭⎫-22π3<0,sin 10<0,故D 正确.5.集合⎩⎨⎧⎭⎬⎫α|k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C.当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,结合图象知选C.6.已知点P (sin x -cos x ,-3)在第三象限,则x 的可能区间是( ) A.⎝⎛⎭⎫π2,π B.⎝⎛⎭⎫-π4,3π4C.⎝⎛⎭⎫-π2,π2 D.⎝⎛⎭⎫-3π4,π4解析:选D.由点P (sin x -cos x ,-3)在第三象限,可得sin x -cos x <0,即sin x <cos x ,所以-3π4+2k π<x <π4+2k π,k ∈Z .当k =0时,x 所在的一个区间是⎝⎛⎭⎫-3π4,π4. 7.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B.由α=2k π-π5(k ∈Z )及终边相同的角的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.8.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0可得θ=-240°或θ=120°. 答案:120°或-240°9.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为________.解析:设圆的半径为R ,由题意可知,圆内接正三角形的边长为3R ,所以圆弧长为3R ,所以该圆弧所对圆心角的弧度数为3RR= 3. 答案: 310.一扇形的圆心角为120°,则此扇形的面积与其内切圆的面积之比为________. 解析:设扇形的半径为R ,其内切圆的半径为r . 则(R -r )sin 60°=r , 即R =⎝⎛⎭⎫1+233r .又S 扇=12|α|R 2=12×2π3×R 2=π3R 2=7+439πr 2,所以S 扇πr 2=7+439.答案:(7+43)∶911.已知角α的终边上一点P (5a ,-12a )(a ∈R 且a ≠0),求sin α,cos α,tan α的值. 解:角α的终边上一点P (5a ,-12a ),即x =5a ,y =-12a , 所以r =x 2+y 2=13|a |, 当a >0时,则sin α=y r =-1213,cos α=x r =513,tan α=y x =-125;当a <0时,则sin α=y r =1213,cos α=x r =-513,tan α=y x =-125.12.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又α为第四象限角,故m <0,从而m =-45,sin α=y r =m |OM |=-451=-45.[综合题组练]1.已知sin α>sin β,那么下列命题成立的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 解析:选D.由三角函数线可知选D.2.(应用型)如图,在Rt △PBO 中,∠PBO =90°,以O 为圆心、OB 为半径作圆弧交OP 于A 点.若圆弧AB 等分△POB 的面积,且∠AOB =α弧度,则αtan α=________. 解析:设扇形的半径为r ,则扇形的面积为12αr 2,在Rt △POB 中,PB =r tan α,则△POB 的面积为12r ·r tan α,由题意得12r ·r tan α=2×12αr 2,所以tan α=2α,所以αtan α=12.答案:123.(创新型)已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P沿着直线l 向右运动,Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是________.解析:设运动速度为m ,运动时间为t ,圆O 的半径为r ,则AQ ︵=AP =tm ,根据切线的性质知OA ⊥AP ,所以S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB ,所以S 1=S 2恒成立. 答案:S 1=S 24.(应用型)如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.(1)若点B 的横坐标为-45,求tan α的值;(2)若△AOB 为等边三角形,写出与角α终边相同的角β的集合; (3)若α∈⎝⎛⎦⎤0,2π3,请写出弓形AB 的面积S 与α的函数关系式.解:(1)由题意可得B ⎝⎛⎭⎫-45,35, 根据三角函数的定义得tan α=y x =-34.(2)若△AOB 为等边三角形,则∠AOB =π3,故与角α终边相同的角β的集合为⎩⎨⎧⎭⎬⎫β|β=π3+2k π,k ∈Z .(3)若α∈⎝⎛⎦⎤0,2π3,则S 扇形=12αr 2=12α,而S △AOB =12×1×1×sin α=12sin α,故弓形的面积S =S 扇形-S △AOB =12α-12sin α,α∈⎝⎛⎦⎤0,2π3.。
1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π
3 B.π6
C .-π3
D .-π6
解析:选C.将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的1
6.
即为-1
6×2π=-π3
.
2.已知角α的余弦线是单位长度的有向线段,那么角α的终边在( ) A .x 轴上 B .y 轴上 C .直线y =x 上
D .直线y =-x 上
解析:选A.|cos α|=1,则角α的终边在x 轴上.
3.(2016·潍坊模拟)集合⎩⎨⎧α⎪
⎪k π+π4≤α≤k π+π2,
⎭
⎬⎫
k ∈Z 中的角所表示的范围(阴影部分)是( )
解析:选C.当k =2n(n ∈Z)时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤
π
2表示的范围一样;当k =2n +1(n ∈Z)时,2n π+π+π4≤α≤2n π+π+π
2,此时α表示的
范围与π+π4≤α≤π+π
2表示的范围一样,故选C.
4.若sin αtan α<0,且cos α
tan α<0,则角α是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
解析:选C.由sin αtan α<0可知sin α,tan α异号,则α为第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号,则α为第三或第四象限角. 综上可知,α为第三象限角.
5.(2016·西安模拟)已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ
|sin θ|+
cos θ|cos θ|+tan θ
|tan θ|的值为( )
A .1
B .-1
C .3
D .-3
解析:选B.由α=2k π-π
5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,
又角θ与角α的终边相同, 所以角θ是第四象限角,
所以sin θ<0,cos θ>0,tan θ<0. 所以y =-1+1-1=-1.
6.(2016·安徽省十校协作体联考)已知锐角α,且5α的终边上有一点P(sin(-50°),cos 130°),则α的值为( ) A .8° B .44° C .26°
D .40°
解析:选B.因为sin(-50°)<0,cos 130°=-cos 50°<0,所以点P(sin(-50°),cos 130°)在第三象限.
又因为0°<α<90°,所以0°<5α<450°. 又因为点P 的坐标可化为(cos 220°,sin 220°), 所以5α=220°,所以α=44°,故选B.
7.若α是第三象限角,则180°-α是第________象限角.
解析:因为α是第三象限角,所以k·360°+180°<α<k·360°+270°,所以-k·360°-270°<-α<-k·360°-180°,
-(k +1)·360°+270°<180°-α<-(k +1)·360°+360°,其中k ∈Z ,所以180°-α是第四象限角. 答案:四
8.已知角α的终边上有一点的坐标为⎝⎛⎭⎫12,-3
2,若α∈(-2π,2π),则所有的α组成的
集合为________.
解析:因为角α的终边上有一点的坐标为⎝⎛⎭⎫12
,-3
2,所以角α为第四象限角,且tan α=
-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫
-π3,5π3.
答案:⎩⎨⎧⎭⎬⎫
-π3
,5π3
9.(2016·大同一模)已知角α的终边经过点P(-x ,-6),且cos α=-5
13,则x 的值为
________. 解析:因为cos α=
-x
(-x )2+(-6)
2=
-x
x 2+36
=-513, 所以⎩⎪⎨⎪⎧x>0,x 2x 2+36=25169,解得x =5
2.
答案:5
2
10.满足cos α≤-1
2的角α的集合为________.
解析:作直
线x =-1
2交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)
即为角α终边的范围,故满足条件的角α的集合为 ⎩⎨⎧⎭⎬⎫
α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .
答案:⎩⎨⎧⎭
⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z 11.已知角θ的终边上有一点P(x ,-1)(x≠0),且tan θ=-x ,求sin θ+cos θ的值. 解:因为θ的终边过点(x ,-1)(x≠0), 所以tan θ=-1
x .
又tan θ=-x , 所以x 2=1,即x =±1. 当x =1时,sin θ=-
22,cos θ=2
2
. 因此sin θ+cos θ=0;
当x =-1时,sin θ=-
22,cos θ=-22
, 因此sin θ+cos θ=- 2. 故sin θ+cos θ的值为0或- 2.
12.(1)一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB.
(2)已知A =⎩⎨⎧⎭
⎬⎫x ⎪⎪k π+π3≤x ≤k π+π2,k ∈Z
,B ={}x|4-x 2
≥0,求A∩B. 解:(1)设圆的半径为r cm ,弧长为l cm , 则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪
⎧r =1,l =2.
所以圆心角α=l
r
=2.
如图,过O 作OH ⊥AB 于H , 则∠AOH =1 rad.
所以AH =1·sin 1=sin 1(cm), 所以AB =2sin 1(cm).
(2)如图所示,集合A 表示终边落在阴影部分的角的集合(包括y 轴)
B ={}x|4-x 2
≥0
={}x|-2≤x≤2,
而π3<2<4
3π,-2π3<-2<-π2
, 所以A∩B =⎩⎨⎧x ⎪
⎪⎭⎬⎫-2≤x≤-π2或π3≤x ≤π2.。