2020年人教版七年级数学下册第一次月考试题及答案
- 格式:doc
- 大小:157.00 KB
- 文档页数:3
人教版数学七年级下册第一次月考试题一、单选题1.下列图形中∠1和∠2是对顶角的是( )A .B .C .D .2.在以下实数1.212, 1.010010001…,2π34中无理数有( ) A .4个 B .3个 C .2个 D .1个 3.下列各式计算正确的是 ( )A 3=±B .3=C 3=-D 2=- 4.下列各组数中互为相反数的是( )A .|﹣2|与2B .﹣2C .﹣2与-12D .﹣2 5.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来的方向相反,那么两次拐弯的角度可能是是( )A .第一次右拐60°,第二次左拐120°B .第一次左拐60°,第二次右拐60°C .第一次左拐60°,第二次左拐120°D .第一次右拐60°,第二次右拐60° 6.如图,点E 在BC 的延长线上,下列条件中不能判定AB//CD 的是( )A .∠1=∠2B .∠3=∠4C .∠B =∠DCED .∠D +∠DAB =180° 7.已知下列命题:①相等的角是对顶角;②在同一平面内,垂直于同一条直线的两条直线平行;③互补的两个角一定是一个锐角,另一个为钝角;④在同一平面内,平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的个数为()A.3个B.2个C.1个D.0个8.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°9=()A.0.006356 B.0.6356 C.63.56 D.635.610.若∠A与∠B的两边分别平行,∠A=60°,则∠B=()A.30°B.60°C.30°或150°D.60°或120°11.如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°12.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.105°B.120°C.135°D.150°二、填空题13.我们规定向东和向北方向为正,如向东走4米,向北走走6米,记为(4,6),则向西走5米,向北走3米,记为_______;14的平方根是.15.将“等角的余角相等”改写成“如果……,那么……”的形式____________16.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为.17.已知,如图,直线a∥b,则∠1、∠2、∠3、∠4之间的数量关系为__________________18.如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC、∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=1 2∠BAC,其中正确的结论有______ ((填序号)三、解答题19.计算:(1(2)||)﹣2|.20.解下列方程(1)4x 2﹣16=0 (2)(x ﹣1)3=﹣12521.完成下面推理过程如图,已知DE ∥BC ,DF 、BE 分别平分∠ADE 、∠ABC ,可推得∠FDE=∠DEB 的理由:∵DE ∥BC (已知)∴∠ADE= .( )∵DF 、BE 分别平分∠ADE 、∠ABC ,∴∠ADF=12 ,∠ABE=12 .( ) ∴∠ADF=∠ABE∴DF ∥ .( )∴∠FDE=∠DEB . ( )22.若2a-5和a+8是一个正数的平方根,那么这个正数是多少?.23.实数a 、b 互为相反数,c 、d 互为倒数,x ,29y =,求2()x a b x ++的值.24.如图,12180AGF ABC ∠=∠∠+∠=,.()1试判断BF与DE的位置关系,并说明理由;()2若2150∠的度数.BF AC,,求AFG⊥∠=25.数学老师在课堂上提出一个问题:“,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1的小数部分是a b,求a+2b的值.(2)已知,其中x是一个整数,0<y<1,求2x+(y)2018的值.26.如图,已知l1//l2,射线MN分别和直线l1,l2交于点A,B,射线ME分别和直线l1,l2交于点C,D,点P在射线MN上运动(P点与A,B,M三点不重合),设∠PDB=α ,∠PCA=β ,∠CPD=γ .(1)如果点P在A,B两点之间运动时,α,β,γ之间有何数量关系?请说明理由;(2)如果点P在A,B两点之外运动时,α,β,γ之间有何数量关系?参考答案1.D【解析】试题解析:根据对顶角的概念可知,A. B. C 中的∠1与∠2都不符合对顶角的特征,而D 图中的∠1与∠2只有一个公共顶点且两个角的两边互为反向延长线,属于对顶角. 故选D.2.B【解析】解:无理数有:1.010010001…,22,π,共3个.故选B . 3.D【解析】解:A 3=,故A 错误;B .3=± ,故B 错误;C 3=,故C 错误;D 2=-,正确.故选D .4.D【解析】解:∵|﹣2|=2,∴|﹣2|与2相等;2=-,∴﹣∵(﹣2)×(﹣12)=1,∴﹣2与﹣12互为倒数;2=,∴﹣2故选D.5.C【解析】试题分析:两次拐弯以后方向相反,那么2次同方向拐弯之和是180°.故选:C.6.B【解析】【分析】根据平行线的判定方法直接判定.【详解】选项A中,∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行),故A正确;选项B中,∵∠3=∠4,∴AD∥BC(内错角相等,两直线平行),不能判断AB∥CD,故B 错误;选项C中,∵∠B=∠DCE,∴AB∥CD(同位角相等,两直线平行),故C正确;选项D中,∵∠D+∠DAB=180°,∴AB∥CD(同旁内角互补,两直线平行),故D正确.故选B.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.A【解析】解:①对顶角既要考虑大小,还要考虑位置,相等的角不一定是对顶角,故①错误;②在同一平面内,垂直于同一条直线的两条直线平行,故②正确;③互补的两个角也可以是两个直角,故③错误;④平行于同一条直线的两条直线平行,是平行公理,故④正确;⑤邻补角的平分线的夹角正好是平角的一半,是直角,所以互相垂直,故⑤正确.所以真命题有②④⑤三个.故选A.8.C【解析】【分析】根据“两直线平行,同位角相等”可得出∠BCD=∠1=40°,再根据DB⊥BC,得出∠BCD+∠2=90°,通过角的计算即可得出结论.【详解】∵AB∥CD,∠1=40°,∴∠BCD=∠1=40°.又∵DB⊥BC,∴∠BCD+∠2=90°,∴∠2=90°-40°=50°.故选C.【点睛】考查了平行线的性质以及垂直的性质,解题的关键是找出∠BCD=∠1=40°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.9.B【解析】解:,=0.6356.故选B.点睛:本题考查了算术平方根,用到的知识点是被开方数向左移动两位,则它的算术平方根向左移动一位.10.D【解析】解:如图(1).∵AC∥BD,∠A=60°,∴∠A=∠1=60°.∵AE∥BF,∴∠B=∠1,∴∠A=∠B=60°.如图(2).∵AC∥BD,∠A=60°,∴∠A=∠1=60°.∵DF∥AE,∴∠B+∠1=180°,∴∠A+∠B=180°,∴∠B=180°﹣∠A=180°﹣60°=120°,∴一个角是60°,则另一个角是60°或120°.故选D.点睛:本题考查的是平行线的性质,解答此题的关键是要分两种情况讨论,不要漏解.11.C【解析】【分析】构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系【详解】延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°-α;△EHD中,∠2=β-γ,∵AB∥EF,∴∠1=∠2,∴90°-α=β-γ,即α+β-γ=90°.故选C.【点睛】考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.12.C【解析】解:∵四边形ABCD是长方形,∴AD∥BC.∵∠DEF=15°,∴∠EFB=∠DEF=15°,根据折叠得:∠CFE=180°﹣15°﹣15°﹣15°=135°.故选C.点睛:本题考查了平行线的性质和折叠的性质,能根据折叠性质得出∠CFE=180°﹣3∠EFB 是解答此题的关键.13.(-5,3);【解析】解:∵向东走为+,向北走为+,∴向西走为﹣,向南走为﹣,∴向西走5米,再向北走3米,记作(﹣5,3).14.±2.【解析】【详解】解:±2.故答案为±2.15.如果两个角相等,那么它们的余角也相等;【解析】【分析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】根据命题的特点,可以改写为:“如果两个角相等,那么它们的余角也相等”,故答案为如果两个角相等,那么它们的余角也相等.【点睛】考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.16.125°【解析】试题分析:Rt△ABE中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.考点:翻折变换(折叠问题).17.∠1+∠4=∠2+∠3【解析】试题分析:如图,作a∥b∥c∥d,则∠2=∠6+∠7,然后根据平行线的性质,可知∠1=∠5,∠6=∠7,∠4=∠3+∠7,由此可知∠1+∠4=∠5+∠4=∠5+∠3+∠6=∠2+∠3.故答案为∠1+∠4=∠2+∠3.点睛:此题主要考查了平行公理及其推论,解题关键是合理添加辅助线,然后根据平行线的性质,利用等量代换可求解.18.①②③⑤【解析】【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【详解】∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=18 0°,∴∠ADC=180°-(∠DAC+∠ACD)=180°-12(∠EAC+∠ACF)=180°-12(∠ABC+∠ACB+∠ABC+∠BAC)=180°-12(180°-∠ABC)=90°-12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°-12∠ABC,∴∠ADB不等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴⑤正确;即正确的有①②③⑤,故答案为①②③⑤.【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察推理能力,有一定的难度.19.(1)1;(2)﹣2.【解析】试题分析:(1)先把各部分利用平方根、立方根的定义化简,再进行计算即可;(2)先根据绝对值的意义去掉绝对值号,再进行加减运算即可.试题解析:(1)原式=2﹣32﹣12+1=1;(2)原式﹣2.20.(1)x=±2;(2)x=﹣4.【解析】试题分析:(1)根据平方根的定义计算即可;(2)根据立方根的定义计算即可. 试题解析:(1)4x 2=16,x 2=4,x=±2;(2)x ﹣1=﹣5,x=﹣4.21.∠ABC ;两直线平行,同位角相等;12∠ADE ;12∠ABC ;角平分线定义;DF ∥BE ;同位角相等,两直线平行;两直线平行,内错角相等【解析】【分析】根据平行线的性质得出∠ADE=∠ABC ,根据角平分线定义得出∠ADF=12∠ADE ,∠ABE=12∠ABC ,推出∠ADF=∠ABE ,根据平行线的判定得出DF ∥BE 即可.【详解】∵DE ∥BC (已知),∴∠ADE=∠ABC (两直线平行,同位角相等),∵DF 、BE 分别平分ADE 、∠ABC ,∴∠ADF=12∠ADE , ∠ABE=12∠ABC (角平分线定义), ∴∠ADF=∠ABE ,∴DF ∥BE (同位角相等,两直线平行),∴∠FDE=∠DEB (两直线平行,内错角相等).故答案是:∠ABC ,两直线平行,同位角相等,∠ADE ,∠ABC ,角平分线定义,BE ,同位角相等,两直线平行,两直线平行,内错角相等.【点睛】考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键. 22.这个正数为441或49【解析】试题分析:直接利用平方根的定义分析得出答案.试题解析:解:由题可知:①当2a-5=a+8时,解得:a=13,那么a+8=21,∴正数为441;②当2a-5+a+8=0时,解得:a=-1,那么a+8=7,∴正数为49.∴这个正数为441或49.23.3或9【解析】【分析】首先根据a、b互为相反数,c、d互为倒数,可得:a+b=0,cd=1;然后根据x,y2=9,分别求出x、y的值各是多少,再代入x2+(a+b)y,求出算式的值是多少即可.【详解】解:由题可知:,y2=9则y=3,-3,∴①原式=6+0-1×3=6-3=3∴②原式=6+0-1×(-3)=6+3=9∴式子的值为3或9.【点睛】考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24.(1)BF∥DE,理由见解析;(2)60°.【解析】【分析】(1)由∠AGF=∠ABC,根据同位角相等,两直线平行可得GF∥BC,从而可得∠1=∠3,再根据已知条件∠1+∠2=180°,利用等量代换可得∠3+∠2=180°,根据同旁内角互补,两直线平行即可判定BF//DE;(2)由BF⊥AC,可得∠AFB=90°,根据∠1+∠2=180°,∠2=150°,可得∠1=30°,从而即可求得∠AFG=60°.【详解】(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF⊥AC,∴∠AFB=90°,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=∠AFB-∠1=90°-30°=60°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.25.(1)12;(2)15.【解析】【分析】(1的大致范围,然后可求得a、b的值,然后再求代数式的值即可.(2)先求得x的值,然后再表示出【详解】解:(1)∵22 <7<32a,又∵72 <51<82的整数部分是b为7∴a+2b=12(2)∵,其中x是一个整数,0<y<1,∴x=7,y=6∴2x+(y2018=2×7+2018=14+1=15【点睛】本题主要考查的是估算无理数的大小,求得26.解:(1)γ=α+β;(2)(2)点P在射线AN上时:γ=α-β,点P在射线BM上时γ=β-α,理由见解析.【解析】(1)过点P作PF∥l1,根据l1∥l2,可知PF∥l2,故可得出∠α=∠DPF,∠β=∠CPF,试题分析:由此即可得出结论;(2)点P在A、B两点之外运动时,分点P在MB上运动与点P在AN上运动两种情况讨论.试题解析:解:(1)∠γ=α+∠β,理由:过点P作PF∥l1(如图1).∵l1∥l2,∴PF∥l2,∴∠α=∠DPF,∠β=∠CPF,∴∠γ=∠DPF+∠CPF=∠α+∠β,即γ=α+β;(2)当点P在MB上运动时(如图2).∵l1∥l2,∴∠β=∠CFD.∵∠CFD是△DFP的外角,∴∠CFD=∠α+∠γ,∴γ=β-α;同理可得,当点P在AN上运动时,γ=α-β;点睛:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.。
人教版2020年七年级下册数学第一次月考试卷2020年七年级下册数学第一次月考试卷测试范围:相交线与平行线,实数姓名分数一、选择题(每小题3分,共30分)1.9的算术平方根是()。
A。
±3 B。
3 C。
±3 D。
2.2的立方根是()。
A。
2 B。
±2 C。
2 D。
±23.下列各式中,错误的是()。
A。
16=±4 B。
±16=±4 C。
(-4)^2=4 D。
3-27=-34.已知正方体表面积为24dm,则这个正方体的棱长为()。
A。
2dm B。
6dm C。
2dm D。
4dm5.已知12-n是正整数,则整数n的最大值为()。
A。
12 B。
11 C。
8 D。
36.如图,直线AB与CD相交于点O,∠COE=2∠XXX。
若∠AOC=120°,则∠BOE等于()。
A。
15° B。
20° C。
25° D。
30°7.如图,能判定AD∥BC的条件是()。
A。
∠3=∠2 B。
∠1=∠2 C。
∠B=∠D D。
∠B=∠88.下列命题是真命题的是()。
A。
若x>y,则x>y B。
若|a|=|b|,则a=b C。
若a>|b|,则a>b D。
若a1/a9.将长方形纸片ABCD折叠,使D与B重合,点C落在C'处,折痕为EF,若∠AEB=70°,则∠XXX'的度数是()。
A。
125° B。
120° C。
115° D。
110°10.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°。
其中正确的结论个数是()。
A。
1个 B。
2个 C。
3个 D。
4个二、填空题(共6小题,每小题3分,满分18分)11.计算:4=_______;(-3)^2=_______;3-8/27=_______。
七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7二、填空题(每小题3分,共30分)11.4是的算术平方根.12.的相反数是.13.已知,则.14.若x,y为实数,且+|y+2|=0,则xy的值为.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=度.19.如图,若AB∥CD,那么∥3=∥4,依据是.20.已知的整数部分是a,小数部分是b,则ab的值为.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF∥AB∥CD.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.甘肃省定西市安定区公园路中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣【考点】实数的性质.【分析】首先利用立方根的定义化简,然后利用绝对值的定义即可求解.【解答】解:=|﹣3|=3.故选A.2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移即可得到答案.【解答】解:根据平移的定义可得左图中的福娃“欢欢”通过平移可得到的图为C,故选:C.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°【考点】平行线的判定.【分析】根据平行线的判定定理逐一判断,排除错误答案.【解答】解:∥∥3=∥4,∥AD∥BC,故A错误;∥∥B=∥DCE,∥AB∥CD;故B正确;∥∥1=∥2,∥AB∥CD,故C正确;∥∥D+∥DAB=180°,∥AB∥CD,故D正确;故选A.4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.【考点】平方根.【分析】一个正数的平方根有两个,它们互为相反数,据此求出4的平方根是多少即可.【解答】解:∥±=±2,∥是4的平方根的是±2.故选:A.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等故选B.6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°【考点】对顶角、邻补角.【分析】因∥1和∥2是邻补角,且∥1=40°,由邻补角的定义可得∥2=180°﹣∥1=180°﹣40°=140°.【解答】解:∥∥1+∥2=180°又∥1=40°∥∥2=140°.故选C.7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个【考点】平行公理及推论;相交线;垂线.【分析】根据平行公理,垂线的定义,相交线的性质对各小题分析判断即可得解.【解答】解:①同位角相等,错误,只有两直线平行,才有同位角相等;②应为:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;③应为:过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个交点或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,正确的只有⑤共1个.故选A.8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:实数,π2,,,中,无理数有:π2,共2个.故选B.9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∥∥1=∥2=50°,∥若∥5=50°,则AB∥CD,故本选项正确;B、∥∥1=∥2=50°,∥若∥4=180°﹣50°=130°,则AB∥CD,故本选项正确;C、∥∥3=∥4=130°,∥若∥3=130°,则AB∥CD,故本选项正确;D、∥∥1=∥2=50°是确定的,∥若∥2=150°则不能判定AB∥CD,故本选项错误.故选D.10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7【考点】实数的运算.【分析】利用平方根,立方根定义计算即可得到结果.【解答】解:根据题意得:8的立方根是2,=9,9的平方根是±3,则8的立方根与的平方根之和为5或﹣1,故选C二、填空题(每小题3分,共30分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∥42=16,∥4是16的算术平方根.故答案为:16.12.的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:的相反数是﹣=.故答案为:.13.已知,则 1.01.【考点】算术平方根.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:∥,∥ 1.01;故答案为:1.01.14.若x,y为实数,且+|y+2|=0,则xy的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质可求出x、y的值,进而可求出xy的值.【解答】解:由题意,得:x﹣1=0,y+2=0;即x=1,y=﹣2;因此xy=1×(﹣2)=﹣2,故答案为:﹣2.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答即可.【解答】解:∥CD∥AB,∥CD<CA(垂线段最短),故答案为:垂线段最短.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=4.【考点】实数的运算.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:12∥4===4,故答案为:4【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=52度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∥AOE=90°,根据角的和差,可得∥AOD的度数,根据邻补角的定义,可得答案.【解答】解:∥OE∥AB,∥∥AOE=90°,∥∥AOD=∥AOE+∥EOD=90°+38°=128°,∥∥AOC=180°﹣∥AOD=180°﹣128°=52°,故答案为:52.19.如图,若AB∥CD,那么∥3=∥4,依据是两直线平行,内错角相等.【考点】平行线的性质.【分析】根据题意利用平行线的性质定理进而得出答案.【解答】解:两直线平行,内错角相等,故答案为:两直线平行,内错角相等.20.已知的整数部分是a,小数部分是b,则ab的值为.【考点】估算无理数的大小.【分析】只需首先对估算出大小,从而求出其整数部分a,再进一步表示出其小数部分即可解决问题.【解答】解:∥<<,∥2<<3;所以a=2,b=﹣2;故ab=2×(﹣2)=2﹣4.故答案为:2﹣4.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+=1;(2)原式=﹣+2=+.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.【考点】立方根;平方根.【分析】(1)先移项,系数化为1,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.【解答】解:(1)x2=4,x=±2 ;(2)x3=﹣,x=﹣.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.【考点】平方根.【分析】根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.【解答】解:∥一个数的两个平方根分别是3a+2和a+14,∥(a+3)+(2a﹣15)=0,a=4,a+3=4+37.7的平方是49.∥这个数是49.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.【考点】平行线的判定与性质.【分析】此题要首先根据∥1和∥2的特殊的位置关系以及数量关系证明c∥d,再根据平行线的性质求得∥4即可.【解答】解:∥∥1=72°,∥2=108°,∥∥1+∥2=72°+108°=180°;∥c∥d(同旁内角互补,两直线平行),∥∥4=∥3(两直线平行,内错角相等),∥∥3=69°,∥∥4=69°.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF内错角相等,两直线平行∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF内错角相等,两直线平行∥AB∥CD平行公理的推论.【考点】平行线的判定与性质.【分析】根据平行线的判定与性质进行填空即可.【解答】解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF(内错角相等,两直线平行)∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF(内错角相等,两直线平行)∥AB∥CD(平行公理的推论).故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行公理的推论.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∥2=∥3,求出∥1=∥3,根据平行线的判定得出即可.【解答】证明:∥EF∥AD,∥∥2=∥3,∥∥1=∥2,∥∥1=∥3,∥DG∥AB.第11页共11页。
七年级(下)第一次月考数学试卷一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.5.下列图形不是由平移而得到的是()A.B.C.D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐13012.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角.14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移格,再向上平移格.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为度.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是度.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?-学年七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:∥FEB=∥ECD,∥AEG=∥DCH,∥HCE=∥AEG错误,因为它们不是GE、CH被截得的同位角或内错角;∥GEC=∥HCF正确,因为它们是GE、CH被截得的内错角.故选C.2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE【考点】平行线的判定.【分析】根据内错角相等,两直线平行;以及平行线的传递性即可求解.【解答】解:∥∥1=∥2=∥3=∥4,∥AB∥CD,BC∥DE,CD∥EF,∥AB∥CD∥EF.故选:D.3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【考点】平行线的性质.【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选D.4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,对选项进行一一分析,排除错误答案.【解答】解:A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.5.下列图形不是由平移而得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得A、B、C都是平移得到的,选项D中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答】解:A、图形是由平移而得到的,故此选项错误;B、图形是由平移而得到的,故此选项错误;C、图形是由平移而得到的,故此选项错误;D、图形是由旋转而得到的,故此选项正确;故选:D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质作答.【解答】解:观察图形可知C中的图形是平移得到的.故选C.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据平行线的性质,结合各选项进行判断即可.【解答】解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【考点】平行线.【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补以及内错角相等即可解答,此题在解答过程中,需添加辅助线.【解答】解:过点E作EF∥AB,则EF∥CD.∥EF∥AB∥CD,∥∥α+∥AEF=180°,∥FED=∥γ,∥∥α+∥β=180°+∥γ,即∥α+∥β﹣∥γ=180°.故选C.10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行【考点】平行线的判定.【分析】判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理判断.【解答】解:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,内错角相等;和第三条直线平行的和两直线平行.故选C.11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.12.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条【考点】点到直线的距离.【分析】本题图形中共有6条线段,即:AC、BC、CD、AD、BD、AB,其中线段AB的两个端点处没有垂足,不能表示点到直线的距离,其它都可以.【解答】解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选C.二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角∥1=∥5.【考点】平行线的性质.【分析】AB∥CD,则这两条平行线被直线EF所截;形成的同位角相等,内错角相等.【解答】解:∥AB∥CD,∥∥1=∥5(答案不唯一).14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是20°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等的性质求出∥AEC的度数,再根据三角形的内角和等于180°列式进行计算即可得解.【解答】解:∥AE∥BD,∥2=40°,∥∥AEC=∥2=40°,∥∥1=120°,∥∥C=180°﹣∥1﹣∥AEC=180°﹣120°﹣40°=20°.故答案为:20°.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是∥1=∥2+∥3.【考点】平行线的判定;三角形内角和定理.【分析】根据三角形的内角和等于180°,两直线平行同旁内角互补可得.【解答】解:∥AB∥CD,∥∥1+∥C=180°,又∥∥C+∥2+∥3=180°,∥∥1=∥+∥3.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为48度.【考点】三角形的外角性质;平行线的性质.【分析】根据平行线的性质得∥BFD=∥B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∥D=∥BFD﹣∥E,由此即可求∥D.【解答】解:∥AB∥CD,∥B=68°,∥∥BFD=∥B=68°,而∥D=∥BFD﹣∥E=68°﹣20°=48°.故答案为:48.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是70度.【考点】平行线的性质.【分析】根据两直线平行,同位角相等解答.【解答】解:∥DE∥BC,∥B=70°,∥∥ADE=∥B=70°.故答案为:70.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?【考点】平行线的性质.【分析】首先设∥1=2x°,∥D=3x°,∥B=4x°,根据两直线平行,同旁内角互补即可表示出∥GCB、∥FCD的度数,再根据∥GCB、∥1、∥FCD的为180°即可求得x的值,进而可得∥1的度数.【解答】解:∥∥1:∥D:∥B=2:3:4,∥设∥1=2x°,∥D=3x°,∥B=4x°,∥AB∥DE,∥∥GCB=°,∥DE∥GF,∥∥FCD=°,∥∥1+∥GCB+∥FCD=180°,∥180﹣4x+x+180﹣3x=180,解得x=30,∥∥1=60°.20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.【分析】根据平行线的性质求出∥2=∥4.求出∥1=∥4,根据平行线的判定得出AB∥CE,根据平行线的性质得出∥B+∥BCE=180°,求出∥3+∥BCE=180°,根据平行线的判定得出即可.【解答】证明:∥AC∥DE,∥∥2=∥4.∥∥1=∥2,∥∥1=∥4,∥AB∥CE,∥∥B+∥BCE=180°,∥∥B=∥3,∥∥3+∥BCE=180°,∥AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.【考点】平行线的判定与性质.【分析】求出EF∥CD,根据平行线的性质得出∥AEF=∥ACD,∥EDC=∥BCD,根据角平分线定义得出∥AEF=∥FED,推出∥ACD=∥BCD,即可得出答案.【解答】解:∥DE∥BC,∥∥EDC=∥BCD,∥EF平分∥AED,∥∥AEF=∥FED,∥EF∥AB,CD∥AB,∥EF∥CD,∥∥AEF=∥ACD,∥∥ACD=∥BCD,∥CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.【分析】(1)利用角平分线的定义可以求得∥DAB的度数,再依据∥DAB+∥D=180°求得∥D 的度数,在∥ACD中利用三角形的内角和定理.即可求得∥DCA的度数;(2)根据(1)可以证得:AB∥DC,利用平行线的性质定理即可求解.【解答】解:(1)∥AC平分∥DAB,∥∥CAB=∥DAC=25°,∥∥DAB=50°,∥∥DAB+∥D=180°,∥∥D=180°﹣50°=130°,∥∥ACD中,∥D+∥DAC+∥DCA=180°,∥∥DCA=180°﹣130°﹣25°=25°.(2)∥∥DAC=25°,∥DCA=25°,∥∥DAC=∥DCA,∥AB∥DC,∥∥DCE=∥B=95°.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.【考点】平行线的判定与性质.【分析】首先判断∥AED与∥ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【解答】证明:∥∥1+∥4=180°(平角定义),∥1+∥2=180°(已知),∥∥2=∥4,∥EF∥AB(内错角相等,两直线平行),∥∥3=∥ADE(两直线平行,内错角相等),∥∥3=∥B(已知),∥∥B=∥ADE(等量代换),∥DE∥BC(同位角相等,两直线平行),∥∥AED=∥ACB(两直线平行,同位角相等).24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.【考点】平行线的判定.【分析】根据角平分线的性质可得∥1=∥CAB,再加上条件∥1=∥2,可得∥2=∥CAB,再根据内错角相等两直线平行可得CD∥AB.【解答】证明:∥AC平分∥DAB,∥∥1=∥CAB,∥∥1=∥2,∥∥2=∥CAB,∥CD∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?【考点】平行线的判定.【分析】先由∥AGE=∥DHF根据同位角相等,两直线平行,得到AB∥CD,再根据两直线平行,同位角相等,可得∥AGF=∥CHF,再由∥1=∥2,根据平角的定义可得∥MGF=∥NHF,根据同位角相等,两直线平可得GM∥HN.【解答】解:图中的平行线有2对,分别是AB∥CD,GM∥HN,∥∥AGE=∥DHF,∥AB∥CD,∥∥AGF=∥CHF,∥∥MGF+∥AGF+∥1=180°∥NHF+∥CHF+∥2=180°,又∥∥1=∥2,∥∥MGF=∥NHF,∥GM∥HN.26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?【考点】平行公理及推论.【分析】由平行线的传递性容易得出结论.【解答】解:a与d平行,理由如下:因为a∥b,b∥c,所以a∥c,因为c∥d,所以a∥d,即平行具有传递性.。
2020年人教版数学七年级下册第一次月考模拟试卷105一、选择题(共10小题,每小题3分,满分30分)1.点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各图中,∠1与∠2是对顶角的是()A. B.C.D.3.下列各数中:,﹣3.5,0,,π,0.1010010001…,是无理数的有()A.1个B.2个C.3个D.4个4.下列说法中正确的是()A.36的平方根是6 B.8的立方根是2C.的平方根是±2 D.9的算术平方根是﹣35.如图,已知a∥b,∠1=70°,则∠2=()A.40°B.70°C.110°D.130°6.体育课上,老师测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线7.如图,不能判定AD∥BC的条件是()A.∠B+∠BAD=180°B.∠1=∠2 C.∠D=∠5 D.∠3=∠4 8.如图,图中A、B两点的坐标分别为(﹣3,5)、(3,5),则C的坐标为()A.(﹣1,7)B.(1,2)C.(﹣3,7)D.(3,7)9.对于点A(3,﹣4)与点B(﹣3,﹣4),下列说法不正确的是()A.将点A向左平移6个单位长度可得到点BB.线段AB的长为6C.直线AB与y轴平行D.点A与点B关于y轴对称10.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,10,…,顶点A1,A2,A3,A4,A5,A6…的坐标分别为A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1),A5(﹣2,﹣2),A6(﹣2,2),…,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13)C.(﹣14,﹣14)D.(14,14)二、填空题(共8小题,每小题2分,满分16分)11.的相反数是.12.“同位角相等”是命题(填真或假).13.如图,AB⊥CD于点O,EF经过点O,∠1=28°,∠COF=.14.点A的坐标(﹣3,4),它到y轴的距离为.15.若(a+1)2+=0,则a﹣b的值为.16.在平面直角坐标内,将△ABC平移得到△DEF,且点A(﹣2,3)平移后与点D(1,2)重合,则△ABC内部一点M(3,﹣1)平移后的坐标为.17.已知点A(a,0)和点B(0,5),且直线AB与坐标轴围成的△AOB的面积等于10,则a的值是.18.如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′上,EC′交AD于点G,已知∠EFG=58°,那么∠BEG=度.三、解答题(满分54分,)19.计算:(1)+|1﹣|+﹣;(2)已知4x2﹣16=0,求x的值.20.已知:如图,D、E、F分别是BC、CA、AB上的点,ED∥AB,DF∥AC,试说明∠FDE=∠A 解:∵DE∥AB(已知)∴∠A=∵DF∥AC(已知)∴∴∠A=∠FDE.21.如图,已知:∠1=∠2,∠3=108°,求∠4的度数.22.如图,△ABC在直角坐标系中(1)点A坐标为(,),点C坐标为(,).(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,画出平移后的图形.(3)三角形ABC的面积是.23.已知,a、b互为倒数,c、d互为相反数,求的值.24.如图:已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.25.阅读下列解题过程:==﹣,==﹣,请回答下列回题:(1)观察上面的解答过程,请写出=;=;(2)利用上面的解法,请化简:+++…++.26.如图建立平面直角坐标系,长方形OABC中A(8,0),点C(0,10),点P从原点出发,以每秒1个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线运动到点O停止,设点P运动时间为t秒.(1)写出点B的坐标(,),当t=13时点P坐标为(,)(2)在点P运动过程中,当点P到x轴的距离为4个单位长度时,则点P运动的时间为秒.(3)若点P出发11秒时,点Q以每秒2个单位长度的速度也沿着O﹣C﹣B﹣A﹣O的路线运动到点O停止,求t为何值时点P、Q在运动路线上相距的路程为5个单位长度?并直接写出此时P点的坐标.2020年人教版数学七年级下册第一次月考模拟试卷105参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据平面直角坐标系中各个象限的点的坐标的符号特点可知:点P(﹣3,2)位于第二象限.解答:解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列各图中,∠1与∠2是对顶角的是()A. B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义对各选项分析判断后利用排除法求解.解答:解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.点评:本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.3.下列各数中:,﹣3.5,0,,π,0.1010010001…,是无理数的有()A.1个B.2个C.3个D.4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,π,0.1010010001…共3个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.下列说法中正确的是()A.36的平方根是6 B.8的立方根是2C.的平方根是±2 D.9的算术平方根是﹣3考点:平方根;算术平方根;立方根.分析:根据立方根、平方根和算术平方根的定义判断即可.解答:解:A、36的平方根是±6,错误;B、8的立方根是2,正确;C、的平方根是±,错误;D、9的算术平方根是3,错误;故选B点评:本题考查了平方根,一个正数的平方根有两个,它们互为相反数.5.如图,已知a∥b,∠1=70°,则∠2=()A.40°B.70°C.110°D.130°考点:平行线的性质.分析:先根据对顶角的性质求出∠3的度数,再由平行线的定义即可得出结论.解答:解:∵∠1与∠3是对顶角,∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2=∠3=70°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.体育课上,老师测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线考点:垂线段最短.专题:应用题.分析:此题为数学知识的应用,由实际出发,老师测量跳远成绩的依据是垂线段最短.解答:解:体育课上,老师测量跳远成绩的依据是垂线段最短.故选:C.点评:此题考查知识点垂线段最短.7.如图,不能判定AD∥BC的条件是()A.∠B+∠BAD=180°B.∠1=∠2 C.∠D=∠5 D.∠3=∠4考点:平行线的判定.分析:分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.解答:解:A、∵∠B+∠BAD=180°,∴BC∥AD,本选项不合题意;B、∵∠1=∠2,∴BC∥AD,本选项不合题意;C、∵∠D=∠5,∴AB∥CD,本选项不符合题意;D、∵∠3=∠4,∴AB∥CD,本选项符合题意.故选:D.点评:此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.如图,图中A、B两点的坐标分别为(﹣3,5)、(3,5),则C的坐标为()A.(﹣1,7)B.(1,2)C.(﹣3,7)D.(3,7)考点:坐标确定位置.分析:根据已知两点坐标确定坐标系,然后确定其它点的位置.解答:解:由A,B两点的坐标分别为(﹣3,5),(3,5),可知,坐标原点不在图中出现,是以线段AB的中垂线为y轴,且向上为正方向,最下的水平线的纵坐标是2,以水平线为x轴,且向右为正方向,则C点的坐标为(﹣1,7).故选A.点评:此题考查了坐标确定位置,解题的关键是确定坐标原点和x,y轴的位置及方向,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.9.对于点A(3,﹣4)与点B(﹣3,﹣4),下列说法不正确的是()A.将点A向左平移6个单位长度可得到点BB.线段AB的长为6C.直线AB与y轴平行D.点A与点B关于y轴对称考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:根据已知确定A,B两点位置,进而分别判断各选项得出答案即可.解答:解:如图所示:A、将点A向左平移6个单位长度可得到点B,此命题正确,不符合题意;B、线段AB的长为6,此命题正确,不符合题意;C、直线AB与x轴平行,此命题不正确,符合题意;D、点A与点B关于y轴对称,此命题正确,不符合题意.故选:C.点评:此题主要考查了坐标与图形的性质以及关于x轴、y轴对称点的坐标,根据A,B位置得出是解题关键.10.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,10,…,顶点A1,A2,A3,A4,A5,A6…的坐标分别为A1(﹣1,﹣1),A2(﹣1,1),A3(1,1),A4(1,﹣1),A5(﹣2,﹣2),A6(﹣2,2),…,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13)C.(﹣14,﹣14)D.(14,14)考点:规律型:点的坐标.分析:计算55÷4知道是第14个正方形的顶点,且在第一象限,根据正方形的边长求出即可.解答:解:55÷4=13…3,∴顶点A55的坐标:横坐标是13+1=14,纵坐标是13+1=14,∴A55(14,14),故选D.点评:本题主要考查对正方形的性质,坐标与图形性质等知识点的理解和掌握,能根据已知找出规律是解此题的关键.二、填空题(共8小题,每小题2分,满分16分)11.的相反数是﹣.考点:实数的性质.专题:存在型.分析:直接根据相反数的定义进行解答即可.解答:解:∵与﹣是只有符号不同的两个数,∴的相反数是﹣.故答案为:﹣.点评:本题考查的是上实数的性质,即只有符号不同的两个数叫互为相反数.12.“同位角相等”是假命题(填真或假).考点:命题与定理.分析:根据平行线的性质进行判断.解答:解:同位角不一定相等,所以命题“同位角相等”是假命题.故答案为假.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.13.如图,AB⊥CD于点O,EF经过点O,∠1=28°,∠COF=62°.考点:对顶角、邻补角;余角和补角.分析:先根据垂直的定义求出∠2,再根据对顶角相等解答即可.解答:解:∵AB⊥CD,∴∠1+∠2=90°,∴∠2=90°﹣28°=62°,∴∠COF=∠2=62°.故答案为:62°.点评:本题考查了对顶角相等的性质,余角的定义,是基础题.14.点A的坐标(﹣3,4),它到y轴的距离为3.考点:点的坐标.分析:根据点到y轴的距离是点的横坐标的绝对值,可得答案.解答:解:点A的坐标(﹣3,4),它到y轴的距离为|﹣3|=3,故答案为:3.点评:本题考查了点的坐标,点到y轴的距离是点的横坐标的绝对值,点到x轴的距离是点的纵坐标的绝对值.15.若(a+1)2+=0,则a﹣b的值为﹣3.考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:由题意得,a+1=0,b﹣2=0,解得,a=﹣1,b=2,则a﹣b=﹣3,故答案为:﹣3.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.在平面直角坐标内,将△ABC平移得到△DEF,且点A(﹣2,3)平移后与点D(1,2)重合,则△ABC内部一点M(3,﹣1)平移后的坐标为(6,﹣2).考点:坐标与图形变化-平移.分析:先根据点A(﹣2,3)平移后与点D(1,2)重合的平移规律,得出点M(3,﹣1)平移后的坐标即可.解答:解:∵点A(﹣2,3)平移后与点D(1,2)重合,∴△ABC应先向右移动3格,再向下移动1格,∵M(3,﹣1),∴平移后为:(6,﹣2),故答案为:(6,﹣2).点评:本题考查了坐标与图形的平移,熟知平面直角坐标系内:上加下减、右加左减的规律是解答此题的关键.17.已知点A(a,0)和点B(0,5),且直线AB与坐标轴围成的△AOB的面积等于10,则a的值是4或﹣4.考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据三角形面积公式得到×5×|a|=10,然后解绝对值方程即可.解答:解:根据题意得×5×|a|=10,解得a=4或a=﹣4.故答案为4或﹣4.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.18.如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′上,EC′交AD于点G,已知∠EFG=58°,那么∠BEG=64度.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:因为平行所以有∠EFG=∠CEF,又由题意可知∠FEC和∠FEG本就是同一个角,所以相等,根据平角概念即可求出∠BEG.解答:解:∵AD∥BC,∴∠EFG=∠CEF=58°,∵∠FEC=∠FEG,∴∠FEC=∠FEG=∠EFG=58°,∴∠BEG=180°﹣58°﹣58°=64°.点评:此题主要考查了折叠的性质和平行线的性质.学生平时要多进行观察,总结规律.明白折叠后等角是哪些角.三、解答题(满分54分,)19.计算:(1)+|1﹣|+﹣;(2)已知4x2﹣16=0,求x的值.考点:实数的运算;平方根.专题:计算题.分析:(1)原式第一项利用算术平方根定义计算,第二项利用绝对值的代数意义化简,第三项利用立方根定义计算,合并即可得到结果;(2)已知方程变形后,开方即可求出解.解答:解:(1)原式=3+﹣1﹣2﹣=0;(2)方程变形得:x2=4,开方得:x=±2.点评:此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.20.已知:如图,D、E、F分别是BC、CA、AB上的点,ED∥AB,DF∥AC,试说明∠FDE=∠A 解:∵DE∥AB(已知)∴∠A=∠CED(两直线平行,同位角相等)∵DF∥AC(已知)∴∠CED=∠FDE(两直线平行,内错角相等)∴∠A=∠FDE.考点:平行线的性质.专题:推理填空题.分析:根据平行线的性质填空即可.解答:解:∵DE∥AB(已知)∴∠A=∠CED(两直线平行,同位角相等),∵DF∥AC(已知)∴∠CED=∠FDE(两直线平行,内错角相等),∴∠A=∠FDE.故答案为:∠CED(两直线平行,同位角相等);∠CED=∠FDE(两直线平行,内错角相等).点评:本题考查了平行线的性质,准确识图是解题的关键.21.如图,已知:∠1=∠2,∠3=108°,求∠4的度数.考点:平行线的判定与性质.分析:由∠1=∠2,根据同位角相等,两直线平行,即可求得AB∥CD,又由两直线平行,同旁内角互补,即可求得∠4的度数.解答:解:∵∠1=∠2,∴AB∥CD.∴∠3+∠4=180°,∵∠3=108°,∴∠4=72°.点评:此题考查了平行线的判定与性质.注意同位角相等,两直线平行与两直线平行,同旁内角互补.22.如图,△ABC在直角坐标系中(1)点A坐标为(﹣2,﹣2),点C坐标为(0,2).(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,画出平移后的图形.(3)三角形ABC的面积是7.考点:作图-平移变换.分析:(1)根据直角坐标系的特点写出点A、C的坐标;(2)分别将点A、B、C向上平移2个单位,再向左平移1个单位,然后顺次连接;(3)用三角形ABC所在的矩形的面积减去三个小三角形的面积即可得解.解答:解:(1)A(﹣2,﹣2),C(0,2);(2)所作图形如图所示:(3)S△ABC=4×5﹣×2×4﹣×3×5﹣×1×3=7.故答案为:﹣2,﹣2,0,2;7.点评:本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.23.已知,a、b互为倒数,c、d互为相反数,求的值.考点:实数的运算.分析:由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.解答:解:依题意得,ab=1,c+d=0;∴==﹣1+0+1=0.点评:本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.24.如图:已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:根据BC平分∠ACD,∠1=∠2,求证∠2=∠BCD,然后利用同位角相等两直线平行即可证明AB∥CD.解答:证明:∵BC平分∠ACD,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).点评:此题主要考查学生对平行线判定的理解和掌握,证明此题的关键是求证∠2=∠BCD.25.阅读下列解题过程:==﹣,==﹣,请回答下列回题:(1)观察上面的解答过程,请写出=﹣1;=﹣;(2)利用上面的解法,请化简:+++…++.考点:分母有理化.专题:规律型.分析:(1)直接利用已知将各式分母有理化进而得出即可;(2)利用已知首先将原式分母有理化,进而得出即可.解答:解:(1)==﹣1;==﹣;故答案为:﹣1;﹣;(2)由已知可得:原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=9.点评:此题主要考查了分母有理化,正确根据规律化简各式是解题关键.26.如图建立平面直角坐标系,长方形OABC中A(8,0),点C(0,10),点P从原点出发,以每秒1个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线运动到点O停止,设点P运动时间为t秒.(1)写出点B的坐标(8,10),当t=13时点P坐标为(3,10)(2)在点P运动过程中,当点P到x轴的距离为4个单位长度时,则点P运动的时间为4或24秒.(3)若点P出发11秒时,点Q以每秒2个单位长度的速度也沿着O﹣C﹣B﹣A﹣O的路线运动到点O停止,求t为何值时点P、Q在运动路线上相距的路程为5个单位长度?并直接写出此时P点的坐标.考点:坐标与图形性质.专题:动点型.分析:(1)根据矩形的性质,可得B点坐标,根据速度乘以时间,可得P点的横坐标,根据平行线的性质,可得P点的纵坐标;(2)根据速度乘以时间,可得路程,可得OP的长,根据线段的和差,可得AP的长,可得答案;(3)根据P、Q间的距离,可的关于t的方程,根据解方程,可得答案.解答:解:(1)由长方形OABC中A(8,0),点C(0,10),得B(8,10),由OC+CP=13,得CP=3,P(3,10);(2)当OP=4时,t=4÷1=4s,当AP=4时,OC+BC+BP=24,t=24÷1=24s,故答案为:(8,10),(3,10),4或24;(3)设P运动了t秒时点P、Q在运动路线上相距的路程为5个单位长度,当P在前面时,t﹣2(t﹣11)=5,解得t=17,P(7,10);当Q在前面时,2(t﹣11)﹣t=5,解得t=27,P(8,1).点评:本题考查了坐标与图形的性质,利用了矩形的性质,路程、时间、速度的关系,利用两点间的距离得出方程是解题关键,要分类讨论,以防遗漏.。
七年级下学期数学第一次月考试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第二章《整式的乘法》班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 用加减法解方程组{2x −3y =53x +2y =−4时,下列变形正确的是( )A. {6x −9y =56x +4y =−4 B. {4x −6y =109x +6y =−12 C. {6x −3y =156x +2y =−12D. {2x −6y =103x +6y =−122. 下面运算结果为a 6的是( )A. a 3+a 3B. a 8÷a 2C. a 2⋅a 3D. (−a 2)33. 已知二元一次方程组{x −3y =4(1)y =2x −1(2),把(2)代入(1),整理,得( )A. x −2x +1=4B. x −2x −1=4C. x −6x −3=6D. x −6x +3=44. 现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是( )A. 50B. 60C. 70D. 805. 在下列的计算中,正确的是( )A. m 3+m 2=m 5B. m 5÷m 2=m 3C. (2m)3=6m 3D. (m +1)2=m 2+16. 下列整式的运算可以运用平方差公式计算的有( )①(2m +n)(n −2m);②(a 2−4b)(4b −a 2);③(x +y)(−x −y); ④(3a +b)(−3a +b)A. 1个B. 2个C. 3个D. 4个7. 学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A. 3种B. 4种C. 5种D. 6种8. 若代数式M ⋅(3x −y 2)=y 4−9x 2,那么代数式M 为( )A. −3x −y 2B. −3x +y 2C. 3x +y 2D. 3x −y 29. 方程(m −2016)x |m|−2015+(n +4)y |n|−3=2018是关于x 、y 的二元一次方程,则( )A. m =±2016;n =±4B. m =2016,n =4C. m =−2016,n =−4D. m =−2016,n =410. 若(x 2+px +q)(x −2)展开后不含x 的一次项,则p 与q 的关系是( )A. p =2qB. q =2pC. p +2q =0D. q +2p =0第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 若关于x ,y 的二元一次方程组{x −y =4kx +y =2k的解也是二元一次方程2x −y =−7的解;则k 的值是______.12. (−0.5)2013×(−2)2014=______.13. 在等式y =kx +b 中,当x =3时,y =−2;当x =−1时,y =4,则k +b 的值为______.14. 若x +y =4,xy =3,则x 2+y 2= ______ .15. 已知二元一次方程2x +3y =18的解为正整数,则满足条件的解共有______对. 16. 计算:2(1+12)(1+122)(1+124)(1+128)+1214=______. 17. 如图,长方形ABCD 中放置9个形状、大小都相同的小长方形,相关数据如图中所示,则图中阴影部分的面积为__________(平方单位).18. 我们知道下面的结论,若a m =a n (a >0,且a ≠1),则m =n ,利用这个结论解决下列问题:设2m =3,2n =6,2p =12,现给出m 、n 、p 三者之间的三个关系式:①m +p =2n ,②m +n =2p −3,③m 2−mp =1,其中正确的是________.(填编号) 三、解答题(本大题共7小题,共78.0分)19. (10分)计算下列各式:(1)(3a −2)(4a −1);(2)3a(−a −4)+(3a −1)(a +3).20. (10分)已知,关于x ,y 的方程组{x −y =4a −3x +2y =−5a 的解为x 、y .(1)x =______,y =______(用含a 的代数式表示); (2)若x 、y 互为相反数,求a 的值;21. (10分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人? (2)若学生都去参观历史博物馆,则能节省票款多少元?22.(10分)如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式;(2)选取1张A型卡片,10张C型卡片,______张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为______;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.23.(12分)先阅读后解答:根据几何图形的面积关系可以说明一些等式.例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:__________________________.(2)已知等式(x+1)(x+3)=x2+4x+3,请你画出一个相应的几何图形加以说明(仿照图①或图②画出图形即可).24.(12分)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?25.(14分)某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?答案1.B2.B3.D4.B5.B6.B7.B8.A9.D10.B11.−112.−213.114.1015.216.417.1818.①②19.解:(1)(3a−2)(4a−1)=12a2−3a−8a+2=12a2−11a+2.(2)3a(−a−4)+(3a−1)(a+3)=−3a2−12a+3a2+9a−a−3 =−4a−3.20.解:(1)a−2−3a+1(2)由题意得,a−2+(−3a+1)=0,解得,a=−1.221.解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得{x +y =15010x +20y =2000, 解得{x =100y =50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人. (2)2000−150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.22.解:(1)方法1:大正方形的面积为(a +b)2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b)2=a 2+2ab +b 2,(2)由面积拼图可知a 2+10ab +25b 2=(a +5b)2, 故答案为:25,(a +5b), (3)由图形面积之间的关系可得,S 阴影=12m 2−12n(m −n)=1m 2−1mn +1n 2 =12[(m +n)2−3mn] =12(102−3×19) =432.23.解:(1)(2a +b)(a +2b)=2a 2+5ab +2b 2;(2)由题意,可画出几何图形如下:其中一条边可看做x +1,另一条边可看做x +3,四个区域面积的和即为计算结果.24.解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:{2x +3y =803x +2y =95解得:{x =25y =10,答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元; (2)设购进A 型汽车m 辆,购进B 型汽车n 辆, 依题意,得:25m +10n =200, 解得:m =8−25n , ∵m ,n 均为正整数,∴{m 1=6n 1=5,{m 2=4n 2=10,{m 3=2n 3=15,∴共3种购买方案:方案一:购进A 型车6辆,B 型车5辆; 方案二:购进A 型车4辆,B 型车10辆; 方案三:购进A 型车2辆,B 型车15辆;(3)方案一获得利润:8000×6+5000×5=73000(元); 方案二获得利润:8000×4+5000×10=82000(元); 方案三获得利润:8000×2+5000×15=91000(元). ∵73000<82000<91000,∴购进A 型车2辆,B 型车15辆获利最大,最大利润是91000元.25.解:(1)设需要甲车x 辆,乙车y 辆,根据题意可得{600x +800y =11400500x +600y =8700解得{x =3y =12;(2)设需要甲车x 辆,乙车y 辆,根据题意得 600x +800y +900(15−x −y)=11400, 整理得3x +y =21, ∵x ,y 都是正整数,x +y <15 x =4,5,6 ,方案一:甲车4辆,乙车9辆,丙车2辆,运费8800元 方案二:甲车5辆,乙车6辆,丙车4辆,运费8900元方案三:甲车6辆,乙车3辆,丙车6辆,运费9000元∵8800<8900<9000∴方案一运费最省,运费是8800元.。
七年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第五章《相交线与平行线》~第六章《实数》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A. 65°B. 60°C. 55°D. 75°2.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°3.下列语句正确的是()A. 4是16的算术平方根,即±√16=4B. −3是27的立方根C. √64的立方根是2D. 1的立方根是−14.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. −a>b5.如图,在下列给出的条件中,不能判定AB//DF的是()A. ∠A=∠3B. ∠A+∠2=180°C. ∠1=∠4D. ∠1=∠A6. 如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF//BC 时,∠EGB 的度数是( )A. 135°B. 120°C. 115°D. 105°7. 若a 2=4,b 2=9,且ab <0,则a −b 的值为( )A. −2B. ±5C. 5D. 58. 下列结论正确的是( )A. 数轴上任意一点都表示唯一的有理数B. 数轴上任意一点都表示唯一的无理数C. 两个无理数之和一定是无理数D. 数轴上任意两点之间还有无数个点9. 下列说法中,不正确的有( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π−4)2的算术平方根是π−4;⑤算术平方根不可能是负数,A. 2个B. 3个C. 4个D. 5个10. 如图,AF//CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC//BE ;③∠CBE +∠D =90°;④∠DEB =2∠ABC ,其中结论正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)11. 若√3a −23与√2−b 3为相反数,且b ≠0,则ab 的值为________. 12. 已知y =√x −3+√3−x +1,则x +y 的算术平方根是________. 13. 如图,有下列3个结论:①能与∠DEF 构成内错角的角的个数是2;②能与∠EFB 构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是______.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.15.若√2a−2与|b+2|互为相反数,则(a−b)2的平方根=______.16.一个正数x的两个不同的平方根是2a−3和5−a,则x的值是________.17.如图所示,AB//CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为______.18.已知直线a//b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是______.19.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC//DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为_____.20.已知一个数的平方根是3a+1和a+11,求这个数的立方根是______.三、解答题(本大题共6小题,共80.0分)21.(12分)计算:3;(1)(−1)3+|1−√2|+√8(2)(−3)2+2×(√2−1)−|−2√2|.22.(12分)阅读下列材料∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).规定实数m的整数部分记为[m],小数部分记为{m).如:[√7]=2,{7}=√7−2.解答以下问题:(1)[√10]=________,{√5}=________;(2)求{√5}+{5−√5}的值.23.(12分)工人师傅准备从一块面积为16平方分米的正方形工料上裁剪出一块面积为12平方分米的长方形的工件。
华南师范大学中山附属中学数学试卷 命题:聂少林 测试时间:2010年3月19日10:30-12:00七年级数学月考考试试卷 第 1 页 共 2 页河城中学2020-2021学年第二学期七年级第一次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分)每小题四个选项中只有一个正确,请将正确答案填在括号内.1.如图所示,∠1和∠2是对顶角的是( )ABC D121212122.如图,a ∥b ,∠1=72021∠2的度数是( )A.72021B.800C. 82021D.10803.如图,由AB ∥CD ,可以得到( )A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4 4.如图AB ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF=( )A.1800B. 2700C.3600D.54005. 点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(3,2) B.(3,2--) C.(2,3-) D.(2,3-)6.线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点为C(4,7),则点B(- 4,- 1)的对应点D 的坐标为( )A . (2,9)B . (5,3) C. (1,2) D. (-9,-4)二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在横线上.7.在同一平面内,两条直线的位置关系只有________和________两种. 8.如下图,三条直线相交于同一点,则∠1+∠2+∠3=_______度. 9.如下图,要从小河引水到村庄A ,请先作出最佳路线,再写出理由:_________________________.10.从甲处观察乙处是北偏东2021,那么从乙处观察甲处的方位角是_______________. 11.点)4,3(-A 在第 象限,点)3,2(--B 在第 象限.12.x 轴上的点的坐标的特点是 _坐标为0;y 轴上的点的坐标的特点是 坐标为0.三、解答题(本大题共7小题,共40分) 13.动手操作(1)(2分)如图:将四边形ABCD 进行平移后,使点A 的对应点为点1A ,请你画出平移后所得的四边形1111A B C D .(2)(2分)过点1A 作直线AB 的垂线..,垂足为点O, 量得点1A 到直线AB 的距离约为_______(精确到0.1).14.(6分)以正方形ABCD 的顶点D 为原点,以边CD 所在的直线为x 轴,以边AD 所在的直线为y 轴,建立平面直角坐标系.若此正方形的边长为4,写出A 、B 、C 三点的坐标. 解:15.(每空1分,共7分)如图,AB ⊥BD,CD ⊥BD ,∠A +∠AEF =180°.求证:CD ∥EF. 某同学证法如下,请在横线上填写其推理过程或理由. 证明:因为AB ⊥BD,CD ⊥BD(_________) 所以 ∠ABD =∠CDB =90°(_________________________)所以 ∠ABD +∠CDB =180°,所以 AB ∥(_____)(___________________________________) 因为∠A +∠AEF =180°(_________)所以AB ∥EF(________________________________)所以 CD ∥EF(_____________________________________)班 级试室号座位号姓 名○密○封○线○F ED C B A华南师范大学中山附属中学数学试卷命题:聂少林 测试时间:2010年3月19日10:30-12:00七年级数学月考考试试卷 第 1 页 共 2 页16.(6分)如图,AB ⊥CD 于点O ,EF 经过点O ,∠COF =4∠BOF.求∠COF 和∠BOE 的度数. 解:17.(6分)如图,已知BC DE //,65B ∠=, 56=∠C ,求ADE ∠和DEC ∠的度数. 解:18. 如图,已知AC ⊥AE ,BD ⊥BF ,∠1=35°,∠2=35°,AC 与BD 平行吗?AE 与BF 平行吗?为什么?(6分) :19.(5分)图中标明了李明家附近的一些地方, 某周日早晨,李明从家里出发后,沿(-1,2)、(2,1)、(1,0)、(0,-1)、(-3,-1)表示的地点转了一圈,又回到了家里,写出他路上经过的地方. 解:四、解答题(本大题共3小题,共24分)2021(8分)在平面直角坐标系中,点A 、B 的坐标分别是(0,-2),(0,2),点C 在x 轴上,如果△ABC 的面积为6,求点C 的坐标. 解:22. (8分)如图,EB ∥DC ,∠C=∠E ,请写出理由说明∠A=∠ADE. 解:23.如图,EF ∥AD,∠1=∠2,∠BAC=70°.将求∠AGD 的过程填写完整. 解: 因为EF ∥AD ,所以∠2=____ (_________________________________) 又因为∠1=∠2所以∠1=∠3 (__________________)所以AB ∥_____ (___________________________________) 所以∠BAC+______=180°(___________________________) 因为∠BAC=70°所以∠AGD=_______.(5分)C 321GD F EBA12图12B AGEFC D。
七年级数学下学期第一次月考试卷一.选择题(共12小题)1.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x32.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±203.如图,直线a,b被直线c所截,且a∥b,下列结论不正确的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠2=∠34.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.5.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a>0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm26.如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65° B.75° C.115°D.125°7.如图,下列条件能判断两直线AB,CD平行的是()A.∠1=∠2 B.∠3=∠4 C.∠1=∠5 D.∠3=∠58.某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价m%,再降价n% B.先涨价n%,再降价m%C.行涨价%,再降价% D.先涨价%,再降价%9.已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对10.代数式+相乘,其积是一个多项式,它的次数是()A.3 B.5 C.6 D.211.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定12.下列语句正确的是()A.过一点有且只有一条直线与已知直线平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线相交,交点叫做垂足D.过直线上一点只能作一条直线和这条直线相交二.填空题(共4小题)13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1= .14.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E= 度.15.若(x﹣1)x+1=1,则x= .16.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+=三.解答题(共7小题)17.计算:(1)(2).18.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.19.已知a+b=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.20.先化简,在求值:(2a﹣b)(2a+b)+b(a+b),其中 a=2,b=﹣1.21.如图,DB∥EC,点A在FG上,∠ABD=60°,∠GAC=∠ACE=36°,AP平分∠BAC.求∠PAG的度数.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP 顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B 转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD ⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案与试题解析一.选择题(共12小题)1.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3【解答】解:A、x•x6=x7,原式计算错误,故本选项错误;B、(x2)3=x6,原式计算正确,故本选项正确;C、(x+2)2=x2+4x+4,原式计算错误,故本选项错误;D、(2x)3=8x3,原式计算错误,故本选项错误.故选B.2.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选B.3.如图,直线a,b被直线c所截,且a∥b,下列结论不正确的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠2=∠3【解答】解:∵a∥b,∴∠1=∠3,故A正确∵∠3=∠4,∴∠1=∠4,故C正确,∵∠2+∠1=180°,∴∠2+∠4=180°,故B正确,故选D.4.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选D.5.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a>0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm2【解答】解:长方形的面积为:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).答:矩形的面积是(6a+15)cm2.故选:D.6.如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65° B.75° C.115°D.125°【解答】解:∵l1∥l2,∴∠1=∠3=65°,∵∠3+∠2=180°,∴∠2=180°﹣65°=115°,故选:C.7.如图,下列条件能判断两直线AB,CD平行的是()A.∠1=∠2 B.∠3=∠4 C.∠1=∠5 D.∠3=∠5【解答】解:能判断直线AB∥CD的条件是∠3=∠4;理由如下:∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行);A、C、D不能判定AB∥CD;故选B.8.某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价m%,再降价n% B.先涨价n%,再降价m%C.行涨价%,再降价% D.先涨价%,再降价%【解答】解:经过计算可知A、100(1+m%)(1﹣n%);B、100(1+n%)(1﹣m%);C、100(1+%)(1﹣%);D、100(1+%)(1﹣%).∵0<n<m<100,∴100(1+n%)(1﹣m%)最小.故选B.9.已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选D.10.代数式+相乘,其积是一个多项式,它的次数是()A.3 B.5 C.6 D.2【解答】解:∵(a2b2)(a+b)(1++)=a3b2+ab2+a3+a2b+a2b3+b3.∴根据结果可知,它的次数是5.故选B.11.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定【解答】解:a2+b2+c2﹣ab﹣ac﹣bc,=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc),= [(a2+b2﹣2ab)+(a2+c2﹣2ac)+(b2+c2﹣2bc)],= [(a﹣b)2+(a﹣c)2+(b﹣c)2],∵a﹣b=2,a﹣c=,∴b﹣c=﹣,∴原式=(4++)=.故选A.12.下列语句正确的是()A.过一点有且只有一条直线与已知直线平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线相交,交点叫做垂足D.过直线上一点只能作一条直线和这条直线相交【解答】解:A、过一点须指明过直线外一点,错误;B、在同一平面内,过一点有且只有一条直线与已知直线垂直,是垂线的性质,正确;C、只有垂直相交,交点才叫垂足,错误;D、过直线上一点与已知直线相交的直线有无数条,错误.故选B.二.填空题(共4小题)13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1= 45°.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠2=30°,∴∠EPM=∠2=30°,又∵∠EPF=75°,∴∠FPM=45°,∴∠1=∠FPM=45°,故答案为:45°.14.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E= 80 度.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.15.若(x﹣1)x+1=1,则x= ﹣1或2 .【解答】解:当x+1=0,即x=﹣1时,原式=(﹣2)0=1;当x﹣1=1,x=2时,原式=13=1;当x﹣1=﹣1时,x=0,(﹣1)1=﹣1,舍去.故答案为:x=﹣1或2.16.若实数a满足a3+a2﹣3a+2=﹣﹣,则a+= 2或﹣3 【解答】解:∵实数a满足a3+a2﹣3a+2=﹣﹣,∴a3+a2﹣3a+2﹣++=0,∴a3++a2++2﹣3(a+)=0,(a+)(a2﹣1+)+(a+)2﹣3(a+)=0,(a+)(a2﹣1++a+﹣3)=0,∴(a+)[(a+)2+(a+)﹣6]=0,∴(a+)(a++3)(a+﹣2)=0,而a+≠0,∴a++3=0,或a+﹣2=0,∴a+=﹣3或2.故答案为:﹣3或2.三.解答题(共7小题)17.计算:(1)(2).【解答】解:(1)原式=﹣9+49﹣×16=40﹣4=36;(2)原式=1﹣1+27÷3=9.18.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.【解答】解:原式=(x3y2﹣x2y﹣x2y+x3y2)÷3x2y=.19.已知a+b=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.【解答】解:当a+b=0时,原式=a2+4ab﹣a2+4b2=4ab+4b2=4b(a+b)=020.先化简,在求值:(2a﹣b)(2a+b)+b(a+b),其中 a=2,b=﹣1.【解答】解:当a=2,b=﹣1时,原式=4a2﹣b2+ab+b2=4a2+ab=4×4+2×(﹣1)=1421.如图,DB∥EC,点A在FG上,∠ABD=60°,∠GAC=∠ACE=36°,AP平分∠BAC.求∠PAG的度数.【解答】解:∵DB∥FG∥EC,∴∠BAG=∠ABD=60°,∠CAG=∠A CE=36°,∴∠BAC=∠BAG+∠CAG=96°;∵AP为∠BAC的平分线,∴∠BAP=∠CAP=48°,∴∠PAG=∠CAP﹣∠GAC=12°.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.【解答】解:(1)CD∥EF,理由:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP 顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B 转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD ⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.【解答】解:(1)∵a、b满足|a﹣3b|+(a+b﹣4)2=0,∴a﹣3b=0,且a+b﹣4=0,∴a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(20+t)×1,解得t=10;②当60<t<120时,3t﹣3×60+(20+t)×1=180°,解得t=85;③当120<t<160时,3t﹣360=t+20,解得t=190>160,(不合题意)综上所述,当t=10秒或85秒时,两灯的光束互相平行;(3)设A灯转动时间为t秒,∵∠CAN=180°﹣3t,∴∠BAC=45°﹣(180°﹣3t)=3t﹣135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°﹣3t=180°﹣2t,而∠ACD=90°,∴∠BC D=90°﹣∠BCA=90°﹣(180°﹣2t)=2t﹣90°,∴∠BAC:∠BCD=3:2,即2∠BAC=3∠BCD.。
2020~2020学年七年级下期第一次月考试卷(含答案)数学1、选择题(每小题3分,共21分)1、下列各式计算正确的是()A、B、C、D、2、下列各式中,不能用平方差公式计算的是( )A、B、C、 D 、3、下列运算中,正确的个数有()①;②;③;④;⑤; ⑥A、1个B、2个C、3个D、4个4、如图直线AB和CD相交于O,,∴,其推理依据是()A、同角的余角相等B、等角的余角相等C、同角的补角相等D、等角的补角相等第4题图第5题图第6题图第7题图5、已知AB∥DE,∠A=150,∠D=140,则∠C的度数是()A、60B、75C、70D、506、如图:平分,则图中与相等的角有()个、A、2B、3C、4D、57、如图,下列能判定AB∥CD的条件有几个、(1)∠B+∠BCD=180 ;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5、A、1个B、2个C、3个D、4个二、填空题(每小题3分,共27分)8、已知=,则的对顶角是度,的余角是度,的补角是度。
9、根据你学习的数学知识,写出一个运算结果为a6的算式、10、已知一粒米的质量是0、千克,这个数字用科学记数法表示为_________千克、11、如图,计划把河水引到水池A中,先引AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是_________________________________第11题图第12题图第16题图12、如图,给出了过直线外一点作已知直线的平行线的方法,其依据是13、计算:_____________14、若,则________、15、若是一个完全平方式,则________、16、如图,,,垂足为D,则下列结论:①AB与AC互相垂直;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离、其中正确的是三、解答题(共52分)17、计算(每题3分,共计12分)(1)(2)(简便运算)座号(3)(4)AOB18、(4分)用尺规作一个角等于已知角(不要求写作图步骤,但必须保留作图痕迹)19题(5分)如图,已知直线a∥b,c∥d,∠1=105,求∠2、∠3的度数。
人教版2020年七年级下册数学第一次月考试题五一.选择题(共10小题,满分30分,每小题3分)1.(3分)四条直线相交于一点,总共有对顶角()A.8对B.10对C.4对D.12对2.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.(3分)某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.164.(3分)如图,∠AOB=50°,CD∥OB交OA于E,则∠AEC的度数为()A.120°B.130°C.140°D.150°5.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行 B.垂直 C.平行或垂直D.无法确定6.(3分)如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠3=∠5 D.∠1+∠3=180°7.(3分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个8.(3分)把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值9.(3分)学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25° D.65°10.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E 不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.12.(3分)如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC= ,∠COB= .13.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.14.(3分)如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF= °15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度16.(3分)如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC= .三.解答题(共8小题,满分72分)17.(8分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.18.(8分)已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).19.(8分)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)20.(8分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN 上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA 度数;若不存在,说明理由.21.(8分)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE 与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°= °;根据当∠ECB+∠CBD= °时,可得CE∥AB.所以∠ECB= °此时CE与BC的位置关系为.22.(10分)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN 与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.24.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).参考答案与试题解析1.【解答】解:如图所示,,共有12对,故选D.2.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.3.【解答】解:l1、l2被l3所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16对.故选:D.4.【解答】解:∵CD∥OB,∠AOB=50°,∴∠AOB=∠CEO=50°,∵∠AEC+∠CEO=180°,∴∠AEC=180°﹣50°=130°.故选:B.5.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.6.【解答】解:A、∠1=∠2不能判断直线l1∥l2,故此选项错误;B、∠1=∠5不能判断直线l1∥l2,故此选项错误;C、∠3=∠5不能判断直线l1∥l2,故此选项错误;D、∠1+∠3=180°,能判断直线l1∥l2,故此选项正确.故选:D.7.【解答】解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.8.【解答】解:(1)当两斜边重合的时候可组成一个矩形,此时x=2,y=3,x+y=5;(2)当两直角边重合时有两种情况,①短边重合,此时x=2,y=3,x+y=5;②长边重合,此时x=2,y=5,x+y=7.综上可得:x+y=5或7.故选:B.9.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选A.10.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.11.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.12.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠EOD=26°,∴∠AOC=∠BOD=90°﹣26°=64°,∴∠BOC=180°﹣∠AOC=180°﹣64°=116°,故答案为:64°,116°.13.【解答】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.14.【解答】解:根据折叠的特性,G、H、D共线,∠DEF=∠FEG=∠EFG=19°,根据三角形的外角等于不相邻的内角的和,如图②,∠DGF=2∠E=2×19°=38°,如图③,同理∠DHF=38°+19°=57°.故答案为:57.15.【解答】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .16.【解答】解:设∠EFC=x,∠1=y,则∠BFC′=x﹣y,∵∠BFC′比∠BFE多6°,∴x﹣2y=6,∵x+y=180°,可得x=122°故答案为122°.17.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.18.【解答】解:如图所示,直线CD即为所求.19.【解答】解:(1)∵∠BOD=∠AOC=76°,又∵OE平分∠BOD,∴∠DOE=∠BOD=×76°=38°.∴∠COE=180°﹣∠DOE=180°﹣38°=142°,∵OF平分∠COE,∴∠EOF=∠COE=×142°=71°,∴∠BOF=∠EOF﹣∠BOE=71°﹣38°=33°.(2)∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE=x,则∠DOE=x,故∠COA=2x,∠EOF=∠COF=x+36°,则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,解得:x=36°,故∠AOC=72°.(3)设∠BOE=x,则∠DOE=x,则∠COA=2x,∠BOF=90°﹣x,∵|∠AOC﹣∠BOF|=α°,∴|2x﹣(90°﹣x)|=α°,解得:x=()°+α°或x=()°﹣α°,当x=()°+α°时,∠AOC=2x=()°+α°,∠BOF=90°﹣x=()°﹣α°;当x=()°﹣α°时,∠AOC=2x=()°﹣α°,∠BOF=90°﹣x=()°+α°.20.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时,∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合,所以,不存在.21.【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.22.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,(两直线平行,同旁内角互补)∵∠A=∠B,∴∠A+∠O=180°,(等量代换)∴OB∥AC.(同旁内角互补,两直线平行)(2)(ⅰ)∵∠A=∠B=100°,由(1)得∠BOA=180°﹣∠B=80°;∵∠FOC=∠AOC,并且OE平分∠BOF,∴∠EOF=∠BOF,∠FOC=∠FOA,∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°.(ⅱ)∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2.(ⅲ)∵OB∥AC,∴∠OCA=∠BOC,设∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β,∠OEB=∠EOC+∠ECO=α+β+β=α+2β,∵∠OEB=∠OCA,∴2α+β=α+2β,∴α=β,∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.故答案是:60°.23.【解答】解:(1)∵AB∥CD,∴∠AMN+∠CNM=180°,∵ME,NE分别是∠AMN与∠CNM的平分线,∴∠EMN=∠AMN,∠ENM=∠MNC,∴∠EMN+∠ENM=90°,即∠MEN=90°,又∵NG⊥EN,∴∠MEN+∠ENH=180°,∴EM∥NG;(2)设∠HEG=x,则∠HGE=∠MEG=x,∠NEH=90°﹣2x,∵EP平分∠FEH,∴∠FEH=2∠PEH=2(∠PEG+x),又∵∠FEH+∠HEN=180°,∴2(∠PEG+x)+90°﹣2x=180°,解得∠PEG=45°.24.【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)如图2,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n =∠BEC,∴当∠E n=α度时,∠BEC等于2nα度.第11 页共11 页。
2020年人教版七年级数学下册第一次月考试卷2020年人教版七年级下册第一次月考数学试卷一、选择题(共10小题,每小题2分,满分20分)1.如图中,∠1与∠2是对顶角的是()A.B.C.D.2.在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是()A.B.C.D.3.下列语句中,真命题有()①经过直线外一点,有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线平行;③有理数与数轴上的点是一一对应的;④对顶角相等;⑤平方根等于它本身的数是0,1.A.2个B.3个C.4个D.5个4.已知2m﹣4与3m﹣1是同一个正数的两个平方根,则m的值是()A.0 B.1 C.2 D.35.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°6.一个数的平方根与它的算术平方根相等,这样的数有()A.无数个B.2个C.1个D.0个7.下列说法正确的是()A.8的平方根是±2B.﹣7是49的平方根C.立方根等于它本身的数只有0和1D.的算术平方根是98.在实数:3.14159,,1.010010001…,,π,中,无理数的()A.1个B.2个C.3个D.4个9.如图,∠1=∠2,∠3=80°,则∠4=()A.100°B.110°C.120°D.130°10.如果两个角的两边分别平行,其中一个角比另一个角的2倍少36°,那么这两个角是()A.72°,108°B.都是36°C.72°,108°或36°,36°D.以上都不对二、填空题(本大题共6小题,共18分)11.在同一平面内,两条直线的位置关系只有两种,.12.的绝对值是.13.若(a﹣2)2+=0,则b a=.14.设m是的整数部分,n是的小数部分,则2m﹣n=.15.如图,已知直线L1∥L2,将等边三角形如图放置,若∠ɑ=40°,则∠β等于.2020年人教版七年级数学下册第一次月考试卷16.如图,∠ACB=90°,CD ⊥AB,点A到CD边的距离是线段的长.三、解答题(本大题62分)17.(8分)求下列各式中的x的值:(1)(x+1)2=9(2)x3+216=0.18.(8分)如图,已知:AD ⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD 平分∠ABC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G()∴∠ADC=∠EGC=90°()∴AD∥EG()∴∠1=∠2()=∠3 ()又∵∠E=∠1(已知)∴∠2=∠3()∴AD平分∠ABC ()19.(8分)已知2m﹣1的平方根是±3,5n+32的立方根是﹣2,求:(1)m,n的值;(2)4m+n的算术平方根.20.(8分)如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.21.(10分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用2020年人教版七年级数学下册第一次月考试卷﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a ,的整数部分是b,求a+b ﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2015的值22.(10分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.23.(10分)(1)如图①,若AB∥CD,则可得到∠B,∠BPC,∠C之间有什么关系?直接写出结论;(2)若将点P移至图②所示的位置,AB∥CD,此时∠B,∠BPC,∠C之间有什么关系?请说明理由.2020年人教版七年级数学下册第一次月考试卷2020年人教版七年级下册第一次月考数学试卷一、选择题(每小题3分,共45分)1.(3分)在图中,∠1和∠2是对顶角的是()A.B .C.D.2.(3分)如图,已知直线AB、CD相交于点O,OA平分∠EOC ,∠EOC=100°,则∠BOE 的大小为()A.100°B.110°C.120°D.130°3.(3分)的平方根是()A.4 B.±4 C.2 D.±24.(3分)下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动5.(3分)下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC .∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD 6.(3分)如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度7.(3分)若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根8.(3分)如图,直线a,b相交于点O,OE⊥a于点O,OF⊥b于点O,若∠1=40°,则下列结论正确的是()A.∠2=∠3=50°B.∠2=∠3=40°C.∠2=40°,∠3=50°D.∠2=50°,3=40°9.(3分)估计的值()A.在4和5之间B.在3和4之间C .在2和3之间D.在1和2之间10.(3分)下列说法错误的是()A.的平方根是±2 B.是无理数C.是有理数D.是分数11.(3分)在实数﹣,0,,﹣3.14,无理数有()A.1个B.2个C.3个D.4个2020年人教版七年级数学下册第一次月考试卷12.(3分)下列说法中不正确的是()A.在同一平面内,经过一点能画一条且只能画一条直线与已知直线垂直B .从直线外一点到这条直线的垂线段叫做点到直线的距离C.一条直线的垂线可以画无数条D.连接直线外一点与直线上各点的所有线段中,垂线段最短13.(3分)如图,已知AB∥CD,则∠1、∠2和∠3之间的关系为()A.∠2+∠1﹣∠3=180°B.∠3+∠1=∠2C.∠3+∠2+∠1=360°D.∠3+∠2﹣2∠1=180°14.(3分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°15.(3分)已知x,y是实数,且+(y﹣3)2=0,则xy的值是()A.4 B.﹣4 C.D.﹣二、填空题(每小题3分,共15分)16.(3分)如图,把一张长方形纸条ABCD沿AF折叠,使D落在D′处,若∠ABD=30°,AD′∥DB,则∠DAF=°.17.(3分)两个角的两边分别平行,其中一个角比另一个角的4倍少30°,这两个角是.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于.19.(3分)估计与0.5的大小关系是:(填“>”、“<”或“=”).20.(3分)若•(x2﹣3)=0,则x的值为.三、解答题21.(8分)计算:(1)|﹣2|+﹣(﹣1)2007;(2)6×.22.(8分)求下列各式中的x:(1)(x﹣2)3=8;(2)64x2﹣81=0.23.(6分)如图所示,一辆汽车在直线AB上由A向B行驶,M、N分别是位于公路AB两侧的两个村庄.(1)设汽车行驶到公路AB上点P的位置时,距离村庄M最近;行驶到点Q的位置时,距离N村庄最近,请你在图中的公路上分别画出点P、Q的位置.(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M、N两村庄越来越近,在哪一段路上距离村庄N越来越近,而离村庄M越来越远?(分别用文字表述你的结论,2020年人教版七年级数学下册第一次月考试卷不必说明理由)24.(9分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.25.(9分)已知直线l1∥l2,A是l1上一点,B是l2上一点,直线l3和直线l1,l2交于点C 和D,在直线CD上有一点P(1)如果P点在C、D之间运动时,问∠PAC、∠APB、∠PBD有怎样的数量关系?请说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC、∠APB、∠PBD之间的关系又是如何?(请直接写出答案,不需要证明)。
2020年春学期七年级数学下册第一次月考卷【考时90分钟;满分120分】一、选择题(共10小题,每小题3分,共30分)1.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由左图中所示的图案平移后得到的图案是( )A B C D2.有下列各数:722、 3.1415、5、2π、•-3.0、2.3030030003……(相邻两个3之间0的个数逐次增加1),其中无理数有()A .2个B .3个C .4个D .5个3.如图,点O 在直线DB 上,OA ⊥OC ,⊥1=20°,则⊥2的度数为( )A .110°B .120°C .150°D .100° 4.下列四个命题:⊥同旁内角互补;⊥一组邻补角的平分线互相垂直;⊥经过直线外一点,有且只有一条直线与这条直线平行;⊥直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中是真命题的有( )A .⊥⊥B .⊥⊥C .⊥⊥⊥D .⊥⊥⊥5.下列说法正确的是( )A .9的立方根是3B .算术平方根等于它本身的数一定是1C .﹣2是4的一个平方根D .4的算术平方根是26.如图,点E 在AB 的延长线上,下列条件中能判断AD ⊥BC 的是( )A .⊥1=⊥3B .⊥2=⊥4C .⊥C =⊥CBED .⊥C +⊥ABC =180° 7.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为y 轴正方向建立平面直角坐标系,则驼峰所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知直线l 1⊥l 2,一块含30°角的直角三角板如图所示放置,⊥1=35°,则⊥2等于( ) (第6题图)(第3题(第7题图) (第8题图)A .25°B .35°C .40°D .45°9.在平面直角坐标系中,点P (a ,b )在第二象限,则( )A .a +b <0B .a ﹣b >0C .ab >0 D.0<b a 10.如图,数轴上表示2的数对应的点为A 点,若点B为在数轴上到点A 的距离为1个单位长度的点,则点B 所表示的数是( )A .12+-B .12+C .21-或21+D .12-或12+二.填空题(共8小题,每小题3分,共24分)11.比较大小:﹣5 26-(填“>”“=”或“<”).12.如图是一把剪刀,若⊥AOB +⊥COD =60°,则⊥BOD = °.13.如图,已知AC ⊥BC ,CD ⊥AB ,其中AC =6,BC =8,AB =10,CD =4.8,那么点B 到AC 的距离是 .14.若点P (12-a ,a +1)在平面直角坐标系的y 轴上,则点P 的坐标为 .15.如图所示,三角形ABC 沿直线AB 向下平移可以得到三角形DEF ,如果AB =8,BD =5,那么BE = .16.如图,AB ⊥CD ,FB 平分⊥EFD ,若⊥B =32°,则⊥1的度数是 .17.如图,若在象棋盘上建立平面直角坐标系xOy ,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为 .18.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2019次运动后,动点P 的坐标是 .(第12题图) (第13题图) (第16题图) (第18题图) (第17题图)(第15题图)三.解答题(共8小题,共66分)19.求出下列x 的值(每小题3分,共6分)(1) 08142=-x (2)()27183=+x20.计算(每小题4分,共8分)(1) ()320182781231-++---- (2)()31323222⨯+-+21.(8分)如图,直线AB 、CD 相交于点O ,过点O 作OE ⊥AB ,OF 平分⊥BOD .(1)直接写出⊥AOC 的邻补角;(2)若⊥AOC =40°,求⊥EOF 的度数.22.(8分)已知a ﹣4的立方根是1,3a ﹣b ﹣2的算术平方根是3,13的整数部分是c ,求2a ﹣3b +c 的平方根.23.(12分)如图,已知EF⊥BC,⊥1=⊥C,⊥2+⊥3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:⊥⊥1=⊥C,(已知)⊥⊥,()⊥⊥2=.()又⊥⊥2+⊥3=180°,(已知)⊥⊥3+=180°.(等量代换)⊥⊥,()⊥⊥ADC=⊥EFC.()⊥EF⊥BC,(已知)⊥⊥ADC=⊥EFC=90°,⊥⊥.24.(7分)如图,平面直角坐标系中,三角形ABC的顶点坐标为:A(1,2),B(2,﹣1),C(4,3).(1)将三角形ABC向左平移5个单位长度,再向下平移2个单位长度,得三角形A'B'C'.画出三角形A'B'C',并写出三角形A'B'C'的顶点坐标;(2)直接写出三角形A'B'C'的面积.25.(7分)已知:如图,EG⊥FH,⊥1=⊥2.判断直线AB与CD的位置关系,并说明理由.26.(10分)如图,已知点E、F在直线AB上,点M在射线CE上,点G在线段CD上,ED与FG交于点H,⊥C=⊥3,⊥1=⊥2.(1)试判断⊥AED与⊥D之间的数量关系,并说明理由;(2)若⊥EHF=80°,⊥D=30°,求⊥AEM的度数.四.能力拓展(有能力的同学可选择完成)27.(10分)已知直线AB⊥CD.(1)如图1,直接写出⊥ABE,⊥CDE和⊥BED之间的数量关系是.(2)如图2,BF,DF分别平分⊥ABE,⊥CDE,那么⊥BFD和⊥BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,D F仍平分⊥ABE,⊥CDE,请直接写出⊥BFD和⊥BED的数量关系.。
123
(第三题)1
A B
O
F
D E
C (第18题)
第17题
A B C
D
M
N
12
A B C
D E F G H 第13题
A B C D 1234(第2题)12345678(第4题)
a b c A
E
D
B C A B C
D
E (第10题)
A B C
D E
F
14
23第19题)
七年级数学下册第一次月考试卷
一、单项选择题(每小题3分,共 30 分)
1、如图所示,∠1和∠2是对顶角的是( ) A B C D 12121212
2、如图AB ∥CD 可以得到( ) A 、∠1=∠2 B 、∠2=∠3 C 、∠1=∠4 D 、∠3=∠4
3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140°
4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④
5、一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的 方向上平行前进,那么这两次转弯的角度可以是( )。
A 、先右转80°,再左转100° B 、先左转80°,再右转80° C 、先左转80°,再右转100° D 、先右转80°,再右转80°
6、下列哪个图形是由左图平移得到的( )
B
D
7、点P 为直线l 外一点,点A 、B 、C 为直线l 上三点,PA =4cm ,PB=5cm ,PC=2cm , 则点P 到直线l 的距离为( )。
A 、4cm
B 、5cm
C 、小于2cm
D 、不大于2cm 8、下列现象属于平移的是( )
① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门, ⑤ 汽车在一条笔直的马路上行走
A 、③
B 、②③
C 、①②④
D 、①②⑤ 9、下列命题中,真命题有( )。
(1)有且只有一条直线与已知直线平行 (2)垂直于同一条直线的两条直线互相垂直 (3)两条直线被第三条直线所截,内错角相等
(4)在平面内过一点有且只有一条直线与已知直线垂直。
A 、1个 B 、2个 C 、3个 D 、4个 10、直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( )
A 、23°
B 、42°
C 、65°
D 、19°
二、填空题(本大题共8小题,每小题3分,共24分)
11、直线AB 、CD 相交于点O ,若∠AOC =100°,则∠AOD =___________。
12、若AB ∥CD ,AB ∥EF ,则CD _______EF ,其理由
是_______________________。
13、如图,在正方体中,与线段AB 平行的线段有_______________。
14、如图,AB CD ⊥于点B BE ,是ABD ∠的平分线, 则CBE ∠的度数为 .
15、把命题“等角的补角相等”写成如果……那么……” 的形式是:___________________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的
度数之比是2:7,那么这两个角分别是_______。
三 、(简答题,共72分) 17、(本题7分)如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数。
18、(本题7分)如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数。
19、(本题6分)如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2, ∠C =∠D ,那么DF ∥AC ,请完成它成立的理由 ∵∠1=∠2,∠2=∠3 ,∠1=∠4 ∴∠3=∠4
∴________∥_______ ( )
∴∠C =∠ABD ( )
∵∠C =∠D ( ) ∴∠D =∠ABD ( )
A O D
B E C
A
B C
∴DF ∥AC ( )
20、(本题7分)△ABC 经过平移后,点A 移到了点A ,请表格中作出平移后的△A ′B ′C ′.
'
21、(本题8分)如图,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .
求证:∠1+∠2=90°
22、(本题9分把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°,求∠1和∠2的度数。
23、(本题8分)如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度
数.
24、(本题9分)如图,直线CD 与直线AB 相交于C ,根据下列语句画图
(1)过点P 作PQ ∥CD ,交AB 于点Q (2)过点P 作PR ⊥CD ,垂足为R (3)若∠DCB =1200,猜想∠PQC 是多少度?并说明理由
26、(本题12分)如图,DO 平分∠AOC ,OE 平分∠BOC ,若OA ⊥OB , (1)当∠BOC =30°,∠DOE =_______________(2分) 当∠BOC =60°,∠DOE =_______________(2分)
(2)通过上面的计算,猜想∠DOE 的度数与∠AOB 有什么关系, 并说明(8分)
参考答案
B A
C D E
F G M
N 1
2
C
D
E
A'
P D
C B A
一、单项选择题
1、D;
2、C
3、C;
4、A;
5、B;
6、C;
7、D;
8、D;
9、A 10C
二、填空题
11、80°;
12、∥,平行于同一条直线的两条直线互相平行;
13、EF、HG、DC;
14、135°
15、如果两个角相等,那么这两个角的补角也相等;
16、40°,140°。
三、(简答题)
17、105°
18、∠COB=40°,∠BOF=100°;
19、DB∥EC
内错角相等,两直线平行
两直线平行,同位角相等
已知
等量代换
内错角相等,两直线平行
21、略
22、∠1=70°,∠2=110°
23、∠D=53°
24、(1)略(2)略(3)∠PQC=60°25、、(1)45°,45°,
(2)∠DOE=
2
1∠AOB。