四年级(下册)数学第认识方程
- 格式:pdf
- 大小:156.98 KB
- 文档页数:3
数学四年级认识方程知识点一、方程的概念方程是数学中的重要概念,它描述了一个等式中未知数与已知数之间的关系。
在数学中,我们通常用字母表示未知数,通过方程来求解未知数的值。
二、方程的表示方法 1. 使用字母表示未知数:通常我们用字母x、y、z等表示未知数,例如x + 3 = 7。
2. 使用符号“=”,表示两个表达式相等,例如2x + 5 = 15。
三、方程的解方程的解是使得方程成立的未知数的值。
对于一元一次方程来说,解就是使得方程左边等于右边的未知数的值。
四、方程的解的求解方法 1. 逐个尝试法:通过逐个尝试不同的值来验证是否满足方程。
例如,对于方程2x + 3 = 7,可以逐个尝试x的值,当x取2时,方程成立,所以x=2是方程的解。
2. 逆运算法:通过逆运算的方法来求解方程。
例如,对于方程2x + 3 = 7,可以通过减去3,然后除以2来得到x的值,即x = (7-3)/2= 2。
3. 方程的两边相等法则:对一个方程的两边同时进行相同的运算,可以保持等式的平衡不变。
例如,对于方程2x + 3 = 7,可以同时减去3,得到2x = 4,然后再除以2,得到x = 2。
五、方程的解的判断解方程时,需要判断方程的解是否存在。
对于一元一次方程来说,如果方程的系数非零,方程必定有解。
如果方程的系数为零,那么方程的解是一个全体解。
六、方程的应用方程在生活中有广泛的应用。
例如,通过解方程可以求解一些实际问题,比如求解一条直线与坐标轴的交点、求解两个物体相遇的时间等。
七、方程的拓展除了一元一次方程外,数学中还有其他类型的方程,如一元二次方程、二元一次方程等。
这些方程在高年级的学习中会逐渐接触到。
总结:方程是数学中的重要概念,它描述了一个等式中未知数与已知数之间的关系。
解方程的过程是通过找到使得方程成立的未知数的值。
解方程的方法有逐个尝试法、逆运算法和方程的两边相等法则等。
方程的应用广泛,可以用来解决实际问题。
第五单元:认识方程知识盘点1、用字母表示数:字母可以表示数,含有字母的式子即可以表示数量关系,也可以表示结果,它的值随字母的取值变化而变化。
如:一个文具盒18元,两个文具盒18×2=36(元),a 个文具盒就是18×a =18a (元)注意:在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“· ”表示或者省略不写,省略乘号时数字一般写在字母的前面。
当数字1与字母相乘时,数字1省略不写。
2、用字母表示图形的计算公式:图形的计算公式可以用字母来表示。
一般来说,图形的各部分名称用相对应的固定字母表示。
如用S 表示图形的面积,用C 表示图形的周长,用a 表示长方形的长,用b 表示长方形的宽,那么长方形的周长:C=(a +b )×2=2(a +b ),长方形的面积:S=a ×b=ab ;用a 表示正方形的边长,正方形的周长:C=4a ,正方形的面积:S=a ×a=a 2。
3、常见的等量关系:“等量关系”特指数量间的相等关系,是数量关系的一种。
(1)减法等量关系:被减数=减数+差;差=被减数-减数;减数=被减数-差(2)加法数量关系:加数=和-另一个加数;和=加数+加数(3)乘法等量关系:积=因数×因数;因数=积÷另一个因数;速度×时间=路程4、方程的含义:含有未知数的等式是方程。
方程一定是等式,但等式不一定是方程。
5、判断方程的方法:判断一个式子是不是方程有两大要素,缺一不可,第一,这个式子必须是等式;第二,这个式子中必须含有未知数。
6、用方程表示情景中的等量关系:首先要认真分析题意,找出等量关系,然后再根据等量关系列出方程。
列方程时,一般把未知数放在等号的左边。
7、等式基本性质1:等式的两边都加上或减去同一个数,等式仍然成立。
8、方程的解:使方程左右两边相等的未知数的值叫方程的解。
9、解方程:求方程解的过程叫解方程。
教案标题:2023-2024学年四年级下学期数学第五单元认识方程《方程》一、教学目标1. 知识与技能:使学生理解方程的概念,掌握方程的解法,能够运用方程解决实际问题。
2. 过程与方法:通过观察、操作、交流等活动,培养学生对方程的认识和运用能力。
3. 情感、态度与价值观:激发学生学习数学的兴趣,培养学生良好的数学思维品质。
二、教学内容1. 方程的概念2. 方程的解法3. 方程在实际问题中的应用三、教学重点与难点1. 教学重点:方程的概念及解法。
2. 教学难点:理解方程的意义,掌握方程的解法。
四、教学过程1. 导入新课通过一个实际问题,引导学生思考如何求解未知数,从而引出方程的概念。
2. 探究新知(1)方程的概念通过观察、分析实例,让学生理解方程的含义,明确方程是表示两个数量相等的式子。
(2)方程的解法通过操作、交流,让学生掌握方程的解法,包括移项、合并同类项、化简等。
(3)方程在实际问题中的应用通过实例分析,让学生体会方程在解决实际问题中的重要作用。
3. 巩固练习设计一些典型题目,让学生独立完成,巩固对方程的认识和运用。
4. 总结延伸对本节课所学内容进行总结,强调方程的概念和解法,以及方程在实际问题中的应用。
五、课后作业1. 完成课本相关练习题。
2. 结合生活实际,编写一道运用方程解决问题的题目,并解答。
六、板书设计1. 方程的概念2. 方程的解法3. 方程在实际问题中的应用七、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学质量。
通过本节课的学习,使学生掌握方程的概念、解法,并能够运用方程解决实际问题,为后续学习奠定基础。
同时,培养学生学习数学的兴趣,提高学生的数学素养。
2023-2024学年四年级下学期数学第五单元认识方程《方程》 (教案)教学目标:1. 让学生理解方程的概念,能够识别方程。
2. 培养学生运用等式的性质解方程的能力。
3. 引导学生运用方程解决实际问题,培养解决问题的能力。
四年级下册数学教案-第五单元《认识方程》|北师大版教案:四年级下册数学教案-第五单元《认识方程》|北师大版一、教学内容本节课的教学内容为北师大版四年级下册数学教材第五单元《认识方程》中的第107页至第109页。
这部分内容主要包括方程的定义、方程的解以及方程的解法等。
二、教学目标1. 让学生理解方程的概念,知道方程的解以及方程的解法。
2. 培养学生运用数学语言表达实际问题,提高学生解决问题的能力。
3. 培养学生的团队协作能力和自主学习能力。
三、教学难点与重点重点:让学生掌握方程的概念,理解方程的解以及方程的解法。
难点:如何让学生将实际问题转化为方程,并运用方程解决问题。
四、教具与学具准备教具:黑板、粉笔、课件学具:教科书、练习本、铅笔、橡皮五、教学过程1. 实践情景引入(5分钟)教师出示一个实际问题:小明有苹果5个,小红有苹果7个,请问他们一共有多少个苹果?让学生思考如何用数学语言表达这个问题。
2. 概念讲解(10分钟)教师引导学生思考实际问题中的数量关系,从而引入方程的概念。
讲解方程的解以及方程的解法。
3. 例题讲解(10分钟)教师出示例题:x + 3 = 7,引导学生运用方程的解法求解。
讲解解题过程,让学生理解方程的解法。
4. 随堂练习(10分钟)学生独立完成练习题,教师巡回指导。
六、板书设计方程的概念方程的解方程的解法七、作业设计(1)小明有苹果x个,小红有苹果3个,请问他们一共有多少个苹果?(2)小华买了5个铅笔,每个铅笔2元,请问他一共花了多少钱?答案:(1)x + 3 = 8,解:x = 5(2)5 × 2 = 10,解:10元(1)已知一个数的3倍加上5等于14,求这个数。
(2)已知一个数减去4等于6,求这个数。
答案:(1)3x + 5 = 14,解:x = 3(2)x 4 = 6,解:x = 10八、课后反思及拓展延伸本节课通过实际问题的引入,使学生理解了方程的概念,掌握了方程的解以及方程的解法。
教案标题:北师大版四年级数学下册第五单元《认识方程》复习课教案教学目标:1. 让学生通过复习,巩固对方程的认识和理解。
2. 培养学生运用方程解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 方程的定义和性质。
2. 解方程的方法和步骤。
教学难点:1. 方程的应用问题。
2. 解方程的方法和步骤。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾方程的定义和性质。
2. 提问:什么是方程?方程有什么特点?二、复习方程的基本概念(10分钟)1. 通过课件或黑板,展示方程的例子,引导学生观察和分析。
2. 引导学生总结方程的定义和性质。
3. 解答学生的疑问。
三、解方程的方法和步骤(15分钟)1. 通过课件或黑板,展示解方程的例子,引导学生观察和分析。
2. 引导学生总结解方程的方法和步骤。
3. 解答学生的疑问。
四、练习题(15分钟)1. 发给学生练习题,让学生独立完成。
2. 引导学生互相检查答案,讨论解题方法。
五、小组讨论(15分钟)1. 将学生分成小组,每个小组讨论一道应用题。
2. 每个小组派代表分享解题思路和答案。
六、总结和反思(5分钟)1. 引导学生总结本节课的学习内容和解题方法。
2. 鼓励学生提出疑问,解答学生的疑问。
教学延伸:1. 布置作业,让学生巩固本节课的学习内容。
2. 鼓励学生运用方程解决实际问题。
注意事项:1. 在教学过程中,要注重学生的参与和互动,鼓励学生积极思考和提问。
2. 在解答学生的疑问时,要耐心细致,引导学生理解问题的本质和解题的方法。
3. 在小组讨论时,要注重培养学生的团队合作能力和沟通能力。
教学评价:1. 通过课堂观察,评价学生对方程的认识和理解。
2. 通过练习题和小组讨论,评价学生运用方程解决问题的能力。
3. 通过学生的提问和讨论,评价学生的逻辑思维能力和团队合作能力。
重点关注的细节:解方程的方法和步骤补充和说明:解方程是本节课的重点内容,学生需要掌握解方程的方法和步骤。
北师大版数学四年级下册第五单元《认识方程》教学设计一. 教材分析《认识方程》是北师大版数学四年级下册第五单元的内容。
本节课主要让学生初步理解方程的概念,知道方程的意义,以及会用方程表示简单的数量关系。
教材通过生活中的实际问题,引导学生感受方程的作用,培养学生的数学思维能力。
二. 学情分析四年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学知识有一定的了解和掌握。
但是,对于方程这一概念,学生可能较为陌生,需要通过具体的生活情境来引导他们理解和掌握。
三. 教学目标1.让学生理解方程的概念,知道方程的意义。
2.培养学生用方程表示简单数量关系的能力。
3.培养学生解决实际问题的能力,提高学生的数学思维水平。
四. 教学重难点1.重点:让学生理解方程的概念,知道方程的意义。
2.难点:让学生会用方程表示简单的数量关系。
五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生感受方程的作用,理解方程的概念。
2.启发式教学法:在教学过程中,引导学生主动思考,发现问题的规律。
3.小组合作学习:让学生在小组内共同探讨问题,培养学生的合作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便在课堂上进行展示。
2.学具:为每个学生准备一些学习用品,如纸张、笔等。
3.教学素材:准备一些生活中的实际问题,用于引导学生理解和掌握方程。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实际问题,引导学生思考如何用数学方法来解决这些问题。
通过问题的引入,激发学生的学习兴趣,为后续学习方程打下基础。
2.呈现(10分钟)展示一些具体的例子,让学生观察和分析,引导学生发现方程的意义。
同时,讲解方程的概念,让学生理解方程的基本要素。
3.操练(10分钟)让学生分成小组,共同解决一些简单的方程问题。
教师在这个过程中给予适当的引导和指导,帮助学生掌握解方程的方法。
4.巩固(10分钟)让学生独立完成一些方程练习题,检验学生对方程的理解和掌握程度。
北师大版数学四年下册《认识方程:方程》说课稿及反思(一)一、说教材方程是小学数学(北师大版)四年级下册第五单元的第三课时,方程是量认识的一个飞跃,是学生今后学习运用方程解决整数、小数、分数和百分数问题的数学工具。
从列出算式解决问题发展到列出方程解,从未知数只是所求结果到未知数参与运算,这又是数学思想方法上的一次飞跃。
为了使学生体会方程是刻画现实世界的一个有效的数学模型,产生学习方程的欲望,教材设置了多方面的问题情境,让学生从这些具体的情境中获取信息,发现等量关系并用自己的语言加以表述,然后尝试用含有未知数的等式——方程表示各个相等关系。
教材非常重视对相等关系的挖掘和描述,为后面列方程解决实际问题打下了良好的基础。
二、说教学目标根据课标要求,结合教材的特点和学生已有的知识、生活经验,我制定了如下的教学目标:1、使学生通过活动初步理解方程的意义,并能正确判断。
2、使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受建模的数学思想和符号化数学思想,培养学生的观察、描述、分类、抽象和概括能力,发展学生的数学思维。
3、在数学教学的过程中,让学生获得成功的体验,建立学好数学的信心,激发学生学习数学的兴趣。
三、说教学重难点我们知道,用算术方法解题,列算式时的数量关系把已知和未知隔裂,已知条件作为一方,要求的问题为另一方,通过已知数量的运算得到未知数量。
而列方程的数量关系,把已知和未知融合起来,共同参与运算。
学生从列算式求答案的习惯思维转向列方程表示等量关系,必然会有困难。
基于以上思考,本节课的教学重点确定为:能准确从生活情境中建立方程的数学模型,然后用含有未知数的等式表示,理解方程的意义。
教学难点是理解方程的意义,并能正确判断。
四、说教法学法新课程标准指出“以学生发展为本”,教师要通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。
根据小学生的认知特点和规律及教材特点,这节课,我主要采用“直观教学法”、“启发引导法”等教学方法,为学生创设一个宽松的数学学习环境,通过合作共同解决所面临的问题。
四年级下册数学认识方程
四年级下册数学认识方程
一、引言
在数学学习中,方程是一个非常重要的概念。
四年级下册的数学学习,也将接触到这个概念。
对于学生来说,正确的认识方程对于日后的学
习非常有帮助。
本文将从什么是方程、方程的解、方程的应用等方面
详细介绍方程的相关概念。
二、什么是方程
方程是一种数学工具,用于表示一个等式,它的形式为“等号左边的式
子=等号右边的式子”。
例如,2x+3=7就是一个方程,其中“2x+3”和“7”
是两个不同的式子。
在这个方程中,x的值为2,因为将2带入方程中,等式左边和右边的值相等。
三、方程的解
解方程就是求方程中未知数的值。
通常采用恒等变形来解方程。
恒等
变形是指对方程进行加减乘除等运算,将“非x项”移到等式的右侧,将“x项”移到等式的左侧,最终得到“x=”的形式。
四、方程的应用
方程在生活中有着广泛的应用。
例如,人们在购物时可以用方程计算
折扣后的价格;在旅行中可以用方程计算时间、距离和速度之间的关
系等等。
因此,学好方程对于日常生活具有很大的帮助。
五、结尾点名主旨
通过对本文的阐述,我们可以知道什么是方程,如何解方程以及方程的应用。
在四年级下册的数学学习中,正确的认识并掌握方程的相关概念,对于今后的数学学习和生活都有着积极的作用。
第五单元认识方程
一、字母表示数
1.含有字母的式子既可以表示数,也可以表示数量间的关系。
2.用字母表示数、表示运算定律、表示有关公式。
①计算公式
长方形周长:C=(a+b)×2 长方形面积:S=ab
正方形周长:C=4×a 正方形面积:S=a2
②运算定律(一般用a,b,c表示三个数)
加法交换律:加法结合律:
乘法交换律:乘法结合律:
乘法分配律:
减法性质:除法性质:
3.格式:在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以省略,数字在前,字母在后。
系数是1的时候可以省略不写。
例如4×a=4a 1×c=c a×b=ab
4.两个字母相乘可写成字母的平方,例如:a×a=a2
三个字母相乘可写成字母的立方,例如:a×a×a=a3
二、方程
1.概念:含有未知数的等式叫方程。
2.方程与等式的区别:方程一定是等式,等式不一定是方程。
3.方程解题步骤:
①解:设未知数为X
②审题,找等量关系
③带入x列出方程,未知数要写在等号的左边。
④解方程,等号要对齐,方程不用写单位。
⑤验证答案,作答。
5.等式的性质
性质一:等式两边都加上(或减去)同一个数,等式仍然成立。
性质二:等式两边都乘同一个数(或除以一个不为零的数),等式仍然成立。
《认识方程》(教案)四年级下册数学北师大版教案:《认识方程》四年级下册数学北师大版作为一名经验丰富的教师,我深知方程在数学中的重要性。
方程是数学的基础,也是解决实际问题的关键。
因此,我希望通过本节课的教学,让学生深入理解方程的概念,并能够运用方程解决实际问题。
一、教学内容本节课的教学内容主要包括教材的第三章第一节《认识方程》。
这部分内容主要介绍方程的定义、方程的解法以及方程的实际应用。
通过学习,学生将能够理解方程的概念,掌握一元一次方程的解法,并能够运用方程解决实际问题。
二、教学目标1. 理解方程的定义,能够识别一元一次方程。
2. 掌握一元一次方程的解法,能够运用方程解决实际问题。
3. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。
三、教学难点与重点本节课的重点是一元一次方程的解法及其应用。
难点是理解方程的概念,以及如何将实际问题转化为方程。
四、教具与学具准备为了更好地进行教学,我准备了一些教具和学具,包括黑板、粉笔、多媒体设备、练习题等。
五、教学过程1. 实践情景引入:我通过一个简单的实际问题引入方程的概念,例如:“小明的年龄比小红大3岁,已知小红的年龄为x岁,求小明的年龄。
”2. 例题讲解:接着,我通过一个具体的例题,讲解一元一次方程的解法。
例如:“某个数的2倍加上5等于15,求这个数。
”3. 随堂练习:在讲解完例题后,我给学生提供一些随堂练习题,让学生独立解答,巩固所学知识。
4. 方程的应用:接着,我会通过一些实际问题,让学生运用方程解决问题,进一步加深学生对方程的理解。
5. 板书设计:在教学过程中,我会利用黑板进行板书设计,将重要的概念、步骤和公式展示给学生。
六、作业设计1. 请解释方程的概念,并给出一个一元一次方程的例子。
答案:方程是表示两个表达式相等的数学语句。
一元一次方程是指方程中只有一个未知数,并且这个未知数的最高次数为1。
例如:2x + 3 = 7。
2. 请解方程:3x 7 = 11。
20232024学年四年级下学期数学第五单元认识方程《方程》(教案)作为一名经验丰富的教师,我很荣幸向大家分享我在20232024学年四年级下学期数学第五单元《认识方程》的教学计划。
本节课我们将学习方程的概念和基本性质。
一、教学内容本节课的教学内容主要包括教材P74至P76页的第三章第二节,内容包括:1. 方程的定义:含有未知数的等式。
2. 方程的组成:左边是未知数,右边是已知数。
3. 方程的解:能使方程左右两边相等的未知数的值。
4. 方程的性质:方程两边同时加减乘除同一个数,方程的解不变。
二、教学目标通过本节课的学习,学生能够:1. 理解方程的概念,掌握方程的组成和性质。
2. 能够识别和列出简单的一元一次方程。
3. 能够运用方程解决实际问题。
三、教学难点与重点重点:方程的概念、组成和性质。
难点:一元一次方程的列法和求解。
四、教具与学具准备教具:黑板、粉笔、多媒体课件。
学具:笔记本、尺子、圆规。
五、教学过程1. 实践情景引入:讲述一个故事,介绍方程在实际生活中的应用。
例如,甲、乙两地相距100公里,甲地一辆汽车以每小时60公里的速度前往乙地,同时乙地一辆汽车以每小时80公里的速度前往甲地,问多少小时后两车相遇?2. 例题讲解:以故事中的问题为例,引导学生列出方程,求解未知数。
设x小时后两车相遇,根据题意可得:60x + 80x = 100140x = 100x = 100 / 140x = 5 / 7所以,5/7小时后两车相遇。
3. 随堂练习:让学生独立完成教材P75的练习题,并及时给予反馈和讲解。
4. 方程的性质:通过多媒体课件展示方程的性质,引导学生理解和掌握。
六、板书设计板书方程的定义、组成和性质,以及例题的解题过程。
七、作业设计1. 请列出一个小明和小华赛跑的问题,设小明跑x米,小华跑y 米,他们同时起跑,小明以每秒8米的速度跑,小华以每秒10米的速度跑,问多少秒后小明追上小华?2. 解方程:3x + 5 = 14。
《认识方程》教学反思(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、工作报告、合同范文、条据书信、演讲稿、职业规划、策划方案、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample articles, such as work summaries, work plans, work reports, contract samples, evidence letters, speeches, career plans, planning plans, teaching materials, and other sample articles. If you want to learn about different sample formats and writing methods, please pay attention!《认识方程》教学反思《认识方程》教学反思(精选11篇)身为一名刚到岗的教师,我们要在教学中快速成长,教学反思能很好的记录下我们的课堂经验,那么什么样的教学反思才是好的呢?以下是本店铺为大家整理的《认识方程》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
四年级(下册)数学第七单元认识方程
一、填空题。
(16分)
1、一个正方形的边长是a 厘米,它的周长是()厘米,面积是()平方厘米。
2、()的等式叫方程。
4、简写下面各式。
x ×0.8=()m ×n=()2×(a+c)=5、把0.75改写成三位小数是()。
6、用字母表示乘法的分配律是。
7、小红看一本书有a 页,她每天看5页,看了x 天后,一共看了()页,还剩(
)页。
8、成人脚的长度大约是身高的71
,如果一个成人的身高为x 米,那么他的脚长大
约是()米。
9、梨和苹果的单价分别是每千克4元和5元,买m 千克的梨和n 千克的苹果,共需()元。
10、右图是由等边三角形和正方形组成的,它的周长是()。
11、完成淘气的日记:今天是我最快乐的一天,我和同学们一起到欢乐谷玩。
车上有男同学m 人,女同学15人,共()人。
看到路边红花有50盆,黄花有n 盆,红花比黄花多()盆。
欢乐谷的成人票价为w 元,儿童票价为成人的一半,儿童的票价为()元。
二、选择题(请将正确答案的序号填在括号里)(18分)1、下列各式是方程的是()。
A 、10ⅹ=1B 、ⅹ+14C 、21—20=12、m 的2倍比52少多少,算式为()A 、2(m -52)B 、2m -52C 、52-2m 3、方程18-ⅹ=6的解是()。
A 、ⅹ=24B 、ⅹ=20C 、ⅹ=124、每千克苹果是m 元,买4千克要()元。
A 、m ÷4B 、4m C 、m-45、甲数是15,比乙数的3倍少3,乙数是()A 、4B 、5C 、6
6、妈妈今年a 岁,爸爸比妈妈大5岁,再过n 年后,爸爸比妈妈大()岁。
A 、a +5B 、5C 、5+n
7、把一个小数的小数点先向左移动两位,再向右移动三位,这个小数()。
A 、扩大10倍B 、缩小10倍C 、缩小100倍
8、练习本每本0.8元,词典每本x 元,买5本练习本和3本词典一共用了()元。
A 、5x +0.8×3
B 、(0.8+x)×(5+3)
C 、0.8×5+3x 9、甲数是a ,乙数是甲数的5倍,乙数比甲数多()A 、5a B 、4a C 、a
x
三、辨一辨(对的打“√”,错的打“×”)(10分)1、n ×5+9=5n +9()2、某种电脑降价x 元后是4999元,这种电脑原来的价格为(x +4999)元。
()3、方程是等式,等式也是方程。
()4、方程9x -6x=0.3的解是0.1。
()5、近似数1.5,1.50,1.500这三个数中,1.500最精确。
()6、方程一定是等式,等式不一定是方程。
()7、因为5+X 中含有未知数X ,所以这个式子是方程。
()8、等式的两边同时乘以或除以一个相同的数等式仍然成立。
()9、ɑ的3倍与3ɑ相等。
()10、如果ɑ=5,那么ɑ×ɑ=5ɑ。
()四、解方程(18分)5x +8x=260
x ÷3=4.6+5.65x +15=65
1.2x=480.5x -4=22m ÷0.7=1.2
五、看图列方程,并求方程的解。
(12分)1、2、每天修x 米,
3、
X 棵
3倍
枫树:
白杨:
共96棵
还剩500米
X
X
X
X
X
2500米
男生:
多3人
24人
女生:
x 人
六、列方程求ⅹ。
(6分)
(1)一个数比2.5多13.6,求这个数。
(2)ⅹ的5倍比28大1.5,求ⅹ。
七、解决问题。
(20分,每小题5分)
1、淘气买了10.5千克的苹果,交给售货员30元,找回4.80元,每千克苹果多少元?
2、爸爸今年32岁,比儿子的年龄的3倍还大5岁,儿子今年多少岁?(用方程解)
3、36名学生去划船,分乘4条大船和3条小船,每条大船坐6名学生,每条小船坐几名学生?
4、一盒牛奶2.4元,一袋豆浆0.8元。
小明家每天要买一盒牛奶和一袋豆浆,一个星期买牛奶和豆浆一共要花多少钱?。