过桥问题
- 格式:docx
- 大小:18.82 KB
- 文档页数:5
物理中的"过桥问题"通常指的是一个经典的力学问题,即一个桥上有若干人以不同的速度向对面走,问当他们相遇时,各自在桥上走了多少路程。
这个问题可以用物理学中的相对运动和速度的概念来解决。
基本公式可以通过以下步骤推导得到:
1. 假设桥长为L,两个人的速度分别为v1和v2(v1>v2)。
2. 假设两个人在桥上相遇时,走过的时间分别为t1和t2。
3. 根据相对运动的概念,两个人相遇时,两人在桥上走过的总路程应该是相等的,即v1*t1 = v2*t2。
4. 根据题目条件列出方程,并解方程组,就可以求解出t1和t2。
5. 最后代入 t1 和 t2 到距离公式 s = vt 中,就可以得到两个人在桥上走过的距离。
需要注意的是,这个问题的解法依赖于具体的题目条件,因此公式并非固定不变的,而是根据具体情况来推导和计算的。
1、一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?2、一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?3、某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?4、某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?5、一列火车全长265米,每秒行驶25米,全车要通过一座985米长的大桥,问需要多少秒钟?6、一列长50米的火车,穿过200米长的山洞用了25秒钟,这列火车每秒行多少米?7、一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?8、列货车全长240米,每秒行驶15米,全车连续通过一条隧道和一座桥,共用40秒钟,桥长150米,问这条隧道长多少米?9、一列火车开过一座长1200米的大桥,需要75秒钟,火车以同样的速度开过路旁的电线杆只需15秒钟,求火车长多少米?10、上下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?1、一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?2、一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?3、某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?4、某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?5、一列火车全长265米,每秒行驶25米,全车要通过一座985米长的大桥,问需要多少秒钟?6、一列长50米的火车,穿过200米长的山洞用了25秒钟,这列火车每秒行多少米?7、一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?8、列货车全长240米,每秒行驶15米,全车连续通过一条隧道和一座桥,共用40秒钟,桥长150米,问这条隧道长多少米?9、一列火车开过一座长1200米的大桥,需要75秒钟,火车以同样的速度开过路旁的电线杆只需15秒钟,求火车长多少米?10、上下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?。
四年级数学专题•火车过桥问题★总结火车过桥问题的一般数量关系:(1)路程=桥长+车长(2)车速=(桥长+车长)÷通过时间(3)通过时间=(桥长+车长)÷车速(4)桥长=车速×通过时间-车长(5)车长=车速×通过时间-桥长1、一列客车经过南京长江大桥,桥长6700米,这列客车车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?(6700+100)÷400=17(分钟)答:这列客车经过长江大桥需要17分钟。
2、一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?(160+440)÷30=600÷30=20(米/秒)答:这列火车每秒行20米。
3、一列火车长240米,这列火车每秒行15米,从车头进洞到全车出洞共用20秒,山洞长多少米?15×20-240=60(米)答:山洞长60米。
4、小明站在铁路边,一列火车从他身边开过用了2分钟,已知这列火车长900米,以同样的速度通过一座大桥,用了5分钟,这座大桥长多少米?900÷2=450(米/分)火车速度450×5-900=1350(米)答:桥长1350米。
5、一列火车车长180米,每秒行20米,另一列火车长200米,每秒行18米,两车相向而行,它们从头相遇到尾相离要经过多长时间?(180+200)÷(20+18)=10(秒)答:两车从相遇到相离共需10秒钟。
6、少先队员346人排成两路纵队去少年宫参观博物馆,队伍行进的速度是每分钟走23米,前后两人都是相距1米,现在队伍要通过长58米的一座桥,整个队伍从上桥到离桥共要多少时间?1×(346÷2-1)=172(米)(172+58)÷(23+0)=10(分钟)答:整个队伍通过大桥要10分钟。
过桥问题1.一列客车经过南京长江大桥,大桥长是6700米,这列客车长100米,客车每分钟行400米。
这列客车经过长江大桥需要多少分钟?2.一列火车长150米,以每秒18米的速度通过一座长300米的铁路桥。
那么这列火车需要多少秒?3.一辆汽车长8米,以每秒10米的速度通过一座长242米的隧道。
全车通过隧道需要多少秒?4.一列火车全长240米,每秒行驶30米,要全部通过一座长570米的大桥需要多少秒钟?5.一列火车长160米,全车通过440米的桥需要30秒钟。
这列火车每秒行多少米?6.一列长280米的火车,穿过838米长的山洞用了43秒。
这列火车每秒行驶多少米?7.一辆汽车长12米,通过长208米的松花江大桥用了20秒,这辆汽车每秒行多少米?8.一列火车长240米,这列火车每秒行15米,从车头进洞到全车出洞共用40秒,山洞长多少米?9.一列长250米的火车以每秒22米的速度正好用1分钟完全通过一座铁路大桥。
这座桥长多少米?10.一列客车长300米,以每秒15米的速度通过一条隧道,全车通过隧道用了50秒。
这条隧道长多少米?11.一辆汽车以每秒12米的速度通过一条长240米的隧道,全车通过隧道用了21秒。
这辆汽车长多少米?12.一列火车每秒行驶25米,全部通过一座长580米的大桥用了40秒钟。
这列火车长多少米?13.一列火车每秒行24米,全车通过440米的桥需要30秒钟。
这列火车长多少米?14.一列火车,以每秒30米的速度穿过838米长的山洞用了43秒。
这列火车长多少米?15.一列火车长300米,通过一条1140米的山洞时用了80秒;然后又用同样的速度通过另一条长870米的山洞。
需要多少秒钟?16.一列火车长200米,通过一座长250米的大桥用了30秒;这列火车又以同样的速度通过一条长400米的隧道。
需要多少秒?17.一辆汽车长10米,通过一座长270米的大桥用了20秒;这辆汽车又以同样的速度通过一条长410米的隧道。
火车过桥问题练习题1. 一列火车以每小时60公里的速度行驶,通过一座长1000米的桥。
如果火车完全通过桥需要1分钟,求火车的长度。
2. 某列火车通过一座长2500米的桥,火车的速度是每小时80公里。
如果火车通过桥的时间是3分钟,求火车的长度。
3. 一列火车以每小时100公里的速度行驶,通过一座长500米的桥。
如果火车完全通过桥需要30秒,求火车的长度。
4. 某列火车通过一座长1500米的桥,火车的速度是每小时120公里。
如果火车通过桥的时间是2分钟,求火车的长度。
5. 一列火车以每小时90公里的速度行驶,通过一座长800米的桥。
如果火车完全通过桥需要40秒,求火车的长度。
6. 某列火车通过一座长2000米的桥,火车的速度是每小时70公里。
如果火车通过桥的时间是2分30秒,求火车的长度。
7. 一列火车以每小时110公里的速度行驶,通过一座长1200米的桥。
如果火车完全通过桥需要1分15秒,求火车的长度。
8. 某列火车通过一座长3000米的桥,火车的速度是每小时150公里。
如果火车通过桥的时间是2分钟,求火车的长度。
9. 一列火车以每小时80公里的速度行驶,通过一座长1800米的桥。
如果火车完全通过桥需要1分30秒,求火车的长度。
10. 某列火车通过一座长2200米的桥,火车的速度是每小时95公里。
如果火车通过桥的时间是2分钟,求火车的长度。
11. 一列火车以每小时60公里的速度行驶,通过一座长1500米的桥。
如果火车完全通过桥需要1分45秒,求火车的长度。
12. 某列火车通过一座长2800米的桥,火车的速度是每小时100公里。
如果火车通过桥的时间是3分钟,求火车的长度。
13. 一列火车以每小时70公里的速度行驶,通过一座长1100米的桥。
如果火车完全通过桥需要50秒,求火车的长度。
14. 某列火车通过一座长3500米的桥,火车的速度是每小时130公里。
如果火车通过桥的时间是3分钟,求火车的长度。
15. 一列火车以每小时85公里的速度行驶,通过一座长2300米的桥。
过桥问题(1)1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。
根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。
路程是用桥长加上车长。
火车的速度是已知条件。
总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。
我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。
可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程:(米)火车速度:(米)答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。
火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。
这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:山洞长:(米)答:这个山洞长60米。
和倍问题1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年龄:8×4=32岁综合:40÷(4+1)=8岁8×4=32岁为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算结果符合条件,所以解题正确。
四上-过桥问题
1、一列80米长的队伍要通过一座400米长的大桥。
队伍前进的速度是每分钟60米,则从队伍的排头上桥到到队尾离桥需要几分钟?
2、一列长50米的火车,穿过300米的隧道用25秒钟,这列火车每秒行多少米?
3、一列火车长160米,每秒行驶25米,全车通过一条90米长的山洞,需要多少时间?
4、一辆长20米的汽车,以每秒16米的速度行驶,要全部通过316米的铁桥,要多长时间?
5、一列长120米的火车,以每秒12米的速度通过一个隧道,从车头进隧道到车尾出隧道共用70秒,这个隧道有多长?。
火车过桥问题练习题火车过桥问题是一类经典的逻辑推理题,通过这类问题的练习,可以提高我们思维的灵活性和逻辑推理能力。
本文将介绍几个常见的火车过桥问题,并逐步解答这些问题。
问题一:火车过1分钟长的桥有一座1分钟内可以过完的桥,假设有4辆火车分别需要1、2、5和10分钟过桥。
四辆火车一次只能容纳两辆过桥,也需要一个手电筒。
这个手电筒可以通过交换的方式传递。
在最短的时间内,如何让这4辆火车全部过桥?解答一:首先,我们需要找出最快和次快的两辆火车过桥的组合,以便最短的时间内完成过桥。
在这个问题中,我们可以让最快的火车和次快的火车一起过桥,花费2分钟。
然后,最快的火车带着手电筒返回,花费1分钟。
接下来,最慢的两辆火车中的任意一辆与次快的火车一起过桥,花费10分钟。
最后,次快的火车再带着手电筒返回,花费2分钟。
因此,总共需要花费的时间为2+1+10+2=15分钟。
问题二:增加过桥人数在问题一的基础上,现在有8辆火车分别需要1、2、3、4、5、6、7和8分钟过桥。
桥仍然需要1分钟才能过完,但是现在同时可以容纳3辆火车过桥。
在最短的时间内,如何让这8辆火车全部过桥?解答二:与问题一类似,我们需要找出最快和次快的两辆火车过桥的组合。
由于现在桥可以容纳三辆火车过桥,我们可以让最快的三辆火车一起过桥,花费3分钟。
然后,最快的火车带着手电筒返回,花费1分钟。
接下来,最慢的两辆火车中的任意一辆与次快的火车一起过桥,花费8分钟。
接着,次快的火车带着手电筒返回,花费2分钟。
然后,最快的三辆火车再一起过桥,花费3分钟。
最后,最快的火车带着手电筒返回,花费1分钟。
因此,总共需要花费的时间为3+1+8+2+3+1=18分钟。
问题三:加入不同速度的行人在问题二的基础上,现在桥只能容纳两辆火车过桥,并且有两个行人可以通过桥,分别花费2分钟和5分钟过桥。
在最短的时间内,如何让这8辆火车全部过桥?解答三:与前两个问题不同,现在我们需要考虑两个行人通过桥的时间。
初二物理过桥问题主要涉及路程、时间和速度的关系。
在解决这类问题时,首先要明确路程应为车长加隧道长或队伍长加桥长。
其次,要找准时间,车头(队首)走进隧道(走上桥头)为计时起点,车尾(队尾)走出隧道(走下桥头)为计时终点。
解题步骤可以总结为以下几点:
仔细阅读题目,了解问题背景和要求。
确定已知量和未知量,例如路程、时间和速度。
根据已知量设立方程,一般涉及速度等于路程除以时间的公式。
解方程求解未知量。
在解题过程中,要注意单位换算和计算准确性。
通过不断练习和总结,可以逐渐掌握解决这类问题的方法和技巧。
过桥问题的公式(二)过桥问题的公式在数学中,“过桥问题”是一个经典的问题,通常用于测试一个人在考虑多个因素时的决策能力和逻辑思维能力。
这个问题可以通过公式进行解析,下面将介绍过桥问题的公式、解释和举例。
1. 过桥问题的描述在过桥问题中,有n个人需要通过一座桥,每个人过桥的时间不同。
桥一次只能承受两个人,且需要一盏灯作为光源。
每次过桥时,过去的人需要手持灯返回,直到所有人都通过桥。
问最短需要多少时间,才能让所有人都过桥。
2. 公式解析过桥问题可以用如下公式进行解析:总时间 = 最短时间 + (n-2) * 最慢者过桥时间其中,最短时间是指最快的两个人一起过桥的时间,最慢者过桥时间是指整体最慢的一人过桥所需的时间。
3. 解释和举例过桥问题的解释如下:•最快者(a),次快者(b)一起过桥,耗时为t1•最快者(a)返程,耗时为t2•最慢者(c)与次慢者(d)一起过桥,耗时为t3•重复以上步骤,直到所有人都过桥过桥问题可以用如下示例进行解释:假设有四个人:a, b, c, d,他们过桥的时间分别为:1, 2, 5, 10。
1.最快者(a),次快者(b)一起过桥,耗时为2过程:a, b过桥,花费时间为22.最快者(a)返程,耗时为1过程:a返回,花费时间为13.最慢者(c)与次慢者(d)一起过桥,耗时为10过程:c, d过桥,花费时间为104.最快者(a),次快者(b)一起过桥,耗时为2过程:a, b过桥,花费时间为2总时间 = 2 + 1 + 10 + 2 = 15所以,最短需要15的时间,才能让所有人都过桥。
以上就是过桥问题的公式、解释和举例。
通过使用公式来解决过桥问题,我们可以更加高效地计算最短时间,对于类似的问题也可借鉴类似思路进行求解。
过桥问题(1)1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。
根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。
路程是用桥长加上车长。
火车的速度是已知条件。
总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。
我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。
可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程:(米)火车速度:(米)答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。
火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。
这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:山洞长:(米)答:这个山洞长60米。
和倍问题1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年龄:8×4=32岁综合:40÷(4+1)=8岁8×4=32岁为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。
看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。
根据条件需要先求出哥哥剩下多少本课外书。
如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。
根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。
于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。
最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。
列方程组解应用题(一)1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数B制出的盒身数×2=制出的盒底数用86张白铁皮做盒身,64张白铁皮做盒底。
奇数与偶数(一)其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用这个式子来表示偶数(这里是整数)。
因为任何奇数除以2其余数都是1,所以通常用式子来表示奇数(这里是整数)。
奇数和偶数有许多性质,常用的有:性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
偶数与整数的积是偶数。
性质3 任何一个奇数一定不等于任何一个偶数。
1. 有5张扑克牌,画面向上。
小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。
要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。
而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。
那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。
所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。
否则甲盒子中的黑子数不变。
也就是说,李平每次从甲盒子拿出的黑子数都是偶数。
由于181是奇数,奇数减偶数等于奇数。
所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
奥赛专题-- 称球问题例1 有4堆外表上一样的球,每堆4个。
已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解:依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解:第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。
若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。
把A、B两组分别放在天平的两个盘上去称,则(1)若A=B,则A、B中都是正品,再称B、C。
如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。
如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B >C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
奥赛专题-- 抽屉原理【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。
为什么?【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。
如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例2】任意4个自然数,其中至少有两个数的差是3的倍数。
这是为什么?【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。
而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。
我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。
换句话说,4个自然数分成3类,至少有两个是同一类。
既然是同一类,那么这两个数被3除的余数就一定相同。
所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
提问者评价谢谢您。