成人高考高起点《数学》必考公式:数列
- 格式:pdf
- 大小:66.42 KB
- 文档页数:1
高考数学数列基础知识清单数列是数学中常见的概念,也是高考数学中的重要内容。
为了帮助同学们更好地掌握数列的基础知识,下面给出了数列相关的定义、性质和常见的求解方法。
同学们可以根据这个清单进行学习和复习,提高对数列的理解和应用能力。
一、数列的定义1. 数列是按照一定顺序排列的一串数。
2. 数列中的每个数称为数列的项,用一般表示为 an,其中 n 是项的位置。
二、等差数列1. 定义:如果一个数列中任意两个相邻的项的差值都相等,那么这个数列称为等差数列。
2. 通项公式:若等差数列的首项为 a₁,公差为 d,则它的通项公式为 an = a₁ + (n-1)d。
3. 前 n 项和公式:若等差数列的首项为 a₁,公差为 d,并且前 n 项和为 Sn,则有 Sn = (a₁ + an) / 2 * n。
三、等比数列1. 定义:如果一个数列中任意两个相邻的项的比值都相等,那么这个数列称为等比数列。
2. 通项公式:若等比数列的首项为 a₁,公比为 q,则它的通项公式为 an = a₁ * q^(n-1)。
3. 前 n 项和公式:若等比数列的首项为 a₁,公比为 q,并且前 n 项和为 Sn,则有 Sn = a₁ * (1-q^n) / (1-q)。
四、斐波那契数列1. 定义:斐波那契数列是一个特殊的数列,它的首两项都为 1,从第三项开始,每一项都是前两项的和。
2. 通项公式:斐波那契数列的通项公式为 an = an-1 + an-2,其中a₁ = a₂ = 1。
五、常见数列的求解方法1. 已知某个数列的通项公式和要求的项数,可以直接代入公式计算出对应的项。
2. 已知某个数列的前 n 项和和要求的项数,可以利用前 n 项和公式和通项公式求解未知项。
3. 已知某个数列的前 n 项和和通项公式,可以通过解方程组求解出数列的首项和公差(或公比)。
六、数列的应用1. 数列在数学中有广泛的应用,尤其在概率与统计、微积分、离散数学等领域。
成人高考高起专《数学》必考考点1、集合【注意:请不要忘记空集!!!】交集:A ∩B={x| x ∈A 且x ∈B}并集:A ∪B={x| x ∈A 或x ∈B}补集:C U A={x| x A 但x ∈U}2、数列(选择和填空中的数列请大家掌握)3、解不等式(含绝对值)a>0, |x|<a 则 –a<x<a |x|>a 则 x>a 或 x<-a4、平面向量 0 ,//21211221=+⇔⊥=⇔y y x x y x y x5、平均数、方差6、解三角形(1)正弦定理:Cc B b A a sin sin sin ==(已知两边一对角或已知双角必定用正弦) (2)三角形面积公式:A bc B ac C ab S sin 21sin 21sin 21===(3)余弦定理:(已知三条边或两边一夹角必定用余弦)2222cos a b c bc A =+-B ac c a b cos 2222-+=C ab b a c cos 2222-+=7、导数0)(='c (c 为常数),)()(1+-∈='N n nx x n n ,()x x e e ='8、求切线方程步骤【例题】求曲线y=x 3-4x+2在点(1,-1)处的切线方程①求导:y ’=3x 2-4②把x=1 代入○1中:y=3-4=-1(即切线方程的k 为-1)③y=-x+b④把点(1,-1)代入○3:-1=-1+b 得b=0⑤所以切线方程为:y=-x请大家大题目当中的倒数第二题的第一步求导,无论会不会做,第一步请求导。
大题目中的解三角形无论会不会做第一步请写公式。
成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
高起点数学部分公式考点:数列等差数列与等比数列:考点:三角函数同角三角函数关系式:平方关系是:1cossin22=+αα倒数关系是:1cottan=⋅αα商数关系是:αααcossintan=,αααsincoscot=。
考点:解三角形解斜三角形:余弦定理:2a=Abccb cos222-+2b=Bacca cos222-+2c=Cabba cos222-+正弦定理:abcbaCaccaBbccbA2cos,2bcos,2acos.222222222-+=-+=-+=的余弦乘积的两倍减去这两边与他们夹角于其余两边的平方的和三角形任一边的平方等面积公式:A bcB acC ab S abc sin 21sin 21sin 21===∆斜三角形的解法特点1、由题意画出示意图2、已知角求角用内角和定理求3、已知两角和其中一角的对边时用正弦定理求4、已知三边时用余弦定理求5、已知两边和它们的夹角时用余弦定理求6、已知边、边、角时用正弦定理求R cC R b B R a A R CcB b A a 2sin ,2sin ,2sin ,2sin sin sin 2======倍。
的值为三角形外接圆半径正弦比值都相等,该比三角形各边与它对角的1. 两点的距离公式:已知),(),,(222111y x P y x P 两点,其距离:22122121)()(y y x x P P -+-=2. 中点公式:已知),(),,(222111y x P y x P 两点,线段21P P 的中点的O 的坐标为),(y x ,则:2,22121y y y x x x +=+=考点:直线直线方程的几种形式:斜截式:b kx y += (可直接读出斜率k)一般式:0=++C By Ax (直线方程最后结果尽量让A>0)点斜式:)(00x x k y y -=-,(已知斜率k 和某点坐标),(00y x 求直线方程方法)两条直线的位置关系:直线222111b x k y l b x k y l +=+=:,: 两条直线平行:21k k = 两条直线垂直:121-=⋅k k点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=1.圆:1、圆的标准方程是:222)()(r b y a x =-+-,其中:半径是r ,圆心坐标为(a ,b ), 2、圆的一般方程是: 022=++++F Ey Dx y x 转化为:(x+D 2)2+(y +E 2)2=D 2+E 2−4F42.椭圆:定义 平面内到两定点的距离的和等于常数的点的轨迹:a PF PF 221=+焦点的位置 焦点在X 轴上焦点在Y 轴上标准方程12222=+by a x 12222=+bx a y 图形性质 长轴长是a 2,短轴长是b 2,焦距21F F =2c ,222c b a +=(a 最大)顶点 A 1(-a,0),A 2(a,0) B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b,0),B 2(b,0)焦点坐标 F 1(c,o) F 2(-c,o)F 1(o,c) F 2(o,-c)离心率ace =(0<e<1) 准线方程 ca x 2±=ca y 2±=3.双曲线:定义 平面内到两定点的距离的差的绝对值等于常数的点的轨迹:a PF PF 2-21=焦点的位置 焦点在X 轴上焦点在Y 轴上标准方程12222=-b y a x 12222=-bx a y yPxyPO xO图 形性质实轴长是a 2,虚轴长是b 2,焦距21F F =2c ,222b a c +=(c 最大)顶点A 1(-a,0),A 2(a,0)B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b,0),B 2(b,0)焦点坐标 F 1(c,o) F 2(-c,o)F 1(o,c) F 2(o,-c)离心率ace =(e>1) 准线方程ca x 2±=ca y 2±=渐近线x ab y ±= x ba y ±= 1. 若直线b kx y +=与圆锥曲线交于两点A(x 1,y 1),B(x 2,y 2),则弦长为2212))(1(x x k AB -+=4.标准方程焦点的位置焦点坐标准线方程图像px y 22=x 正半轴⎪⎭⎫⎝⎛02,p 2px -=px y 22-=x 负半轴⎪⎭⎫⎝⎛-02,p 2px =py x 22=y 正半轴⎪⎭⎫ ⎝⎛20p , 2p y -=py x 22-=y 负半轴⎪⎭⎫ ⎝⎛-20p ,2py =。
成人高考高起点数学基本公式及重要知识点【实数的分类】【自然数】表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
【倒数】1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。
【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式直线:(不定义)直线向两方无限延伸,它无端点。
射线:在直线上某一点旁的部分。
射线只有一个端点。
线段:直线上两点间的部分。
它有两个端点。
垂线:如果两条直线相交成直角,那么称这两条直线互相垂直。
其中一条叫另一条的垂线,它们的交点叫垂足。
斜线:如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
数列公式总结数列是数学中常见的概念之一,是按照一定规律排列的一组数的集合。
常见的数列有等差数列、等比数列和斐波那契数列等。
数列公式是数列中规律性的表达式,可以用来计算数列中任意项的值。
下面对常见的数列公式进行总结。
一、等差数列等差数列是指数列中相邻两项之差都相等的数列。
通常用字母a表示首项,d表示公差。
1. 第n项公式:an = a + (n-1)d2.前n项和公式:Sn=n/2(a+l)=n/2(a+a+(n-1)d)=(n/2)(2a+(n-1)d),其中l表示最后一项的值3. 通项公式逆推:an = a + (m-1)d,若已知m项与n项的值和公差,可以求出第n项的值二、等比数列等比数列是指数列中相邻两项之比都相等的数列。
通常用字母a表示首项,q表示公比。
1. 第n项公式:an = aq^(n-1)2.前n项和公式:Sn=a(1-q^n)/(1-q),当,q,<1时成立3. 通项公式逆推:an = aq^(m-1),若已知m项与n项的值和公比,可以求出第n项的值三、斐波那契数列斐波那契数列是指数列中每一项都是前两项之和的一种数列。
通常用字母f表示首项,s表示第二项。
1. 第n项公式:fn = fn-1 + fn-2,其中f1 = f, f2 = s2. 通项公式:fn = (sqrt(5) / 5) * (((1 + sqrt(5)) / 2)^n - ((1 - sqrt(5)) / 2)^n)四、算术-几何数列算术-几何数列是指数列中每一项由算术数列和几何数列的对应项相乘得到的一种数列。
通常用字母a表示首项,d表示算术数列的公差,r表示几何数列的公比。
1. 第n项公式:an = a * d^(n-1) * r^(n(n-1)/2)2.前n项和公式:Sn=a*(d^n-1)/(d-1)*(r^n-1)/(r-1),当,r,<1时成立五、其他数列除了以上常见的数列之外,还有一些特殊的数列有其独特的数列公式,例如:1. 平方数列:an = n^22. 立方数列:an = n^33. 斯特灵数列:an = n!4. 单位根数列:an = cos(nθ) + i · sin(nθ)数列公式的应用非常广泛,可以用来求解各种问题,例如在金融领域中可以用来计算存款利息,或者在物理领域中可以用来描述物体的运动规律等。
数列的知识点公式总结归纳一、定义与性质数列(sequence)是由一系列按照特定规律排列的数字组成的序列。
数列中的每一个数字称为该数列的项(term),项之间的关系由数列的规律决定。
数列通常用字母表示,如数列{an}。
数列可以分为等差数列和等比数列两种,它们具有不同的性质:1. 等差数列:若数列{an}满足an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数,则称数列{an}为等差数列。
等差数列的规律是每一项与前一项之间的差值相等。
2. 等比数列:若数列{an}满足an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数,则称数列{an}为等比数列。
等比数列的规律是每一项与前一项之间的比值相等。
二、常用公式1. 等差数列的公式:(1)首项:a1(2)第n项:an = a1 + (n-1)d(3)项数:n = (an - a1) / d(4)和:Sn = (n/2)(a1 + an) = (n/2)[2a1 + (n-1)d]2. 等比数列的公式:(1)首项:a1(2)第n项:an = a1 * r^(n-1)(3)项数:n = log以r为底(an / a1)+ 1(4)和(r ≠ 1):Sn = a1 * (1 - r^n) / (1 - r)三、常见问题与解决方法1. 已知等差数列的首项和公差,如何求特定项的值?答:根据等差数列的公式an = a1 + (n-1)d,代入已知的首项a1和公差d,即可求得特定项的值。
2. 已知等差数列的首项和项数,如何求公差和末项的值?答:根据等差数列的公式an = a1 + (n-1)d,代入已知的首项a1和项数n,即可求得公差d和末项an的值。
3. 已知等比数列的首项和公比,如何求特定项的值?答:根据等比数列的公式an = a1 * r^(n-1),代入已知的首项a1和公比r,即可求得特定项的值。
4. 已知等比数列的首项和项数,如何求公比和末项的值?答:根据等比数列的公式an = a1 * r^(n-1),代入已知的首项a1和项数n,即可求得公比r和末项an的值。
集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第一章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
知识点3:一元一次不等式组4. 定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组5. 解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。
数列公式大全范文一、等差数列等差数列是指数列中任意两个相邻项之差都相等的数列。
设数列的首项为a1,公差为d,则其通项公式为an = a1 + (n-1)d,其中n为项数。
1. 数列的前n项和公式:Sn = (a1 + an) * n / 22. 数列的第n项公式:an = a1 + (n-1)d3. 数列的公差d公式:d = (an - a1) / (n - 1)4. 数列的项数n公式:n = (an - a1) / d + 1二、等比数列等比数列是指数列中任意两个相邻项之比都相等的数列。
设数列的首项为a1,公比为q,则其通项公式为an = a1 * q^(n-1),其中n为项数。
1.数列的前n项和公式(首项不为0,公比不为1):Sn=a1*(1-q^n)/(1-q)2. 数列的第n项公式:an = a1 * q^(n-1)3. 数列的公比q公式:q = an / a(n-1)4. 数列的项数n公式:n = logq(an / a1) + 1三、斐波那契数列斐波那契数列是一个以递推的方法定义的数列,每一项等于前两项的和。
设数列的首两项为a1 = 1,a2 = 1,则其通项公式为an = an-1 +an-2,其中n >= 3四、调和数列调和数列是指数列中每一项的倒数构成的数列。
设数列的第n项倒数为hn,则其通项公式为hn = 1 / n。
五、几何数列几何数列是指数列中任意两个相邻项之比都相等的数列。
设数列的首项为a1,公比为r,则其通项公式为an = a1 * r^(n-1),其中n为项数。
六、平方数列平方数列是指数列中每一项都是一个完全平方数(一个数的平方)构成的数列。
设数列的第n项为an,则其通项公式为an = n^2七、立方数列立方数列是指数列中每一项都是一个立方数(一个数的立方)构成的数列。
设数列的第n项为an,则其通项公式为an = n^3其他类型的数列还包括等差-等比混合数列、倒数数列、阶乘数列、幂级数等。
成人高考高起点数学基本公式及重要知识点【实数的分类】【自然数】表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
【倒数】1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。
【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式直线:(不定义)直线向两方无限延伸,它无端点。
射线:在直线上某一点旁的部分。
射线只有一个端点。
线段:直线上两点间的部分。
它有两个端点。
垂线:如果两条直线相交成直角,那么称这两条直线互相垂直。
其中一条叫另一条的垂线,它们的交点叫垂足。
斜线:如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
成人高考高起点数学公式汇总1.平方差公式:(a+b)(a-b)=a^2-b^2,完全平方公式:(a±b)^2=a^2±2ab+b^2.2.一元二次方程ax^2+bx+c=0(a≠0)的求根公式为x=(-b±√(b^2-4ac))/(2a)。
3.充分条件与必要条件:若A能推出B,则A是B的充分条件;若A是B的必要条件,则A能推出B;若A既是B的充分条件又是必要条件,则A与B是充分必要条件。
4.函数定义域的求法:(1)分母不能为0;(2)偶次根内大于等于0;(3)对数的真数大于0.5.函数的奇偶性:奇函数的图像关于原点对称,如y=sin(x)、y=tan(x)、y=x^n(n为奇数);偶函数的图像关于y轴对称,如y=c(常量函数)、y=cos(x)、y=x^n(n为偶数)。
奇函数+奇函数=奇函数,偶函数+偶函数=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇偶函数。
6.二次函数的图像和性质:y=ax^2+bx+c(a≠0)。
当a>0时,图像开口向上,顶点坐标为(-b/(2a)。
c-b^2/(4a)),对称轴为x=-b/(2a),单调性为(-∞,-b/(2a)]为减区间,[ -b/(2a),+∞)为增区间,最小值为c-b^2/(4a);当a<0时,图像开口向下,顶点坐标为(-b/(2a)。
c-b^2/(4a)),对称轴为x=-b/(2a),单调性为(-∞,-b/(2a)]为增区间,[ -b/(2a),+∞)为减区间,最大值为c-b^2/(4a)。
7.指数及其性质:a^-n=1/(a^n),a^0=1,a^m×a^n=a^(m+n),(a^m)^n=a^(mn),a^(-m)=1/(a^m),a^m/a^n=a^(m-n)。
对数:log_a1=0,log_aa=1,log_a(MN)=log_aM+log_aN,log_a(M/N)=log_aM-log_aN,log_a(M^n)=nlog_aM。
学习必备欢迎下载成人高考高升专数学常用知识点及公式温馨提示:数学公式不能死记硬背,而是理解掌握后灵活运用,上课第一章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第二章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
第一章节公式1、数列极限的四则运算法则 如果,lim ,lim B y A x n n n n ==∞→∞→那么推广:上面法则可以推广到有限..多个数列的情况。
例如,若{}na ,{}nb ,{}nc 有极限,则:n n n n n n n n n n c b a c b a ∞→∞→∞→∞→++=++lim lim lim )(lim特别地,如果C 是常数,那么CA a C a C n n n n n ==∞→∞→∞→lim .lim ).(lim2、函数极限的四算运则 如果,)(lim ,)(lim B x g A x f ==那么推论设)(lim ),(lim ),......(lim ),(lim ),(lim 321x f x f x f x f x f n 都存在,k 为常数,n 为正整数,则有:3、无穷小量的比较:第二章节公式1.导数的定义:函数y =f (x )在x =x 0处的瞬时变化率是=,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0即f ′(x 0)=.2.导数的几何意义函数f (x )在x =x 0处的导数就是切线的斜率k ,即k ==f ′(x 0).3.导函数(导数)当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数),y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=.4.几种常见函数的导数(1)c ′=0(c 为常数),(2)(x n )′=nx n -1(n ∈Z ),(3)(a x )′=a x lna(a >0,a ≠1),(e x )′=e x(4)(ln x )′=,(log a x )′=log a e=ax ln 1(a >0,a ≠1) (5)(sin x )′=cos x ,(6)(cos x )′=-sin x(7)x x 2cos 1)'(tan =,(8)xx 2sin 1)'(cot -= (9))11(11)'(arcsin 2<<--=x xx ,(10))11(11)'(arccos 2<<---=x xx(11)211)'(arctan x x +=,(12)211)'cot (x x arc +-= 5.函数的和、差、积、商的导数(u ±v )′=u ′±v ′,(uv )′=u ′v +uv ′′=,(ku )′=cu ′(k 为常数).(uvw )′=u ′vw +uv ′w +uvw ′微分公式:(1)为常数)c o c d ()(=为任意实数))(a dx ax x d a a ()(21-=(7)dx x x d 2cos 1)(tan =,(8)dx xx d 2sin 1)(cot -= (9)dx xx 211)'(arcsin -=,(10)dx xx 211)'(arccos --=(11)dx x x d 211)(arctan +=,(12)dx xx arc d 211)cot (+-= 6.微分的四算运则d(u ±v )=d u ±d v ,d(uv )=vdu +udv)0()(2≠-=v vudvvdu v u d d(ku )=k du (k 为常数). 洛必达法则:在一定条件下通过分子分母分别求导,再求极限来确定未定式的值的方法。
2023年成人高考-高升专数学-习题及解析之数列求和1.在等比数列{a n}中,若a4a5=6,则a1a2a3a6a7=()A.12B.36C.24D.72【答案】B【考情点拨】本题考查了等比数列的知识点。
【应试指导】a₂a₃a₆a₇=a₂a7·a₃a6=(a₄a₅)²=36. 2.已知数列{a n}的前n项和为3n2,则a3=【答案】9【考情点拨】本题主要考查的知识点为数列的性质。
【应试指导】由题知S n=3n2,故有a1=32,a2=S1−a1=322−32=3,a3=S1−a2−a1=322−3−32=9.3.已知数列{a n}的前n项和s n=2n+1,则a₂= .【答案】2【考情点按】本题主要考查的知识点为数列的性质。
【应试指导】a:=S₁=2+1=3,故a₂=S₂-S₁=2×2+1-3=2.4.(本小题满分12分)等比数列{a.}中,已知a₂+a₄=-10.公比q=−13.(Ⅰ)求{a.}的通项公式;(Ⅱ)求{a n}的前4项和.解:(1)由已知得a₁q +a₁q 3=−10. 又q =−13,所以a 1(−13−127)=−10,解得a ₁=27.所以{a.}的通项公式为a n =27×(−13)n−1.(1)a 1+a 3=1q(a 2+a 4)又a ₂+a ₄=-10,故a ₁+a ₂+a ₃+a ₄=20.所以{a n }的前4项和为20. 5.(本小题满分12分)已知{a n }是等差数列,且a 2=−2,a 4=−1. (Ⅰ)求{a n }的通项公式; (Ⅱ)求{a n }的前n 项和S n . a 4=a ₂+2d=-2+2d -1. 可得d =12.故a n =a₁+(n −2)d2+(n −2)×12=n2−3. (Ⅱ)由(Ⅰ)可知a 1=12×1−3=−52,故S n =n (a 1+a n )2=n (−52+n2−3)2 =14n (n −11). 6.(本小题满分12分)已知数列a n 的前n 项和S n =23(4n −1).(Ⅰ)求a n 的通项公式;(Ⅱ)若a n=128求k解:(1)S n−1=23(4n−1−1),则a n=S n-S n−1=23(4n−1)−23(4n−1−1) =2²ⁿ⁻¹.(ii)a k=2*2k-1=128=27,∴2k-1=7,∴k=4.7.(本小题满分12分)设{a n)为等差数列,且a2+a4-2a1=8.(1)求{a n)的公差d;(2)若a1=2,求{a n)前8项的和S8.解:因为{ax}为等差数列,所以(Ⅰ)a₂+a₄-2a₂=a₁+d+a;+3d-2a; d=2.(1)S1=na1+n(n−1)2d=2×8+8×(8−1)2×2=72.8.(本小题满分12分)已知{a n}为等差数列,且a3=a5+1 (Ⅰ)求{a,}的公差d;(Ⅱ)若a1=2,求{a n}的前20项和S20 (Ⅰ)设公差为d,易知as=a₃+2d,故as=a₃+2d=a₃-1,因此有d=−12.(Ⅱ)由前n项和公式可得S20=20a1+20×(20−1)2×d=20×2+20×(20−1)2×(−12)=-55.9.(本小题满分12分)在△ABC中,B=120°,BC=4,△ABC的面积为求AC. 解.由△ABC的面积为得所以AB=4.因此AC²=AB²+BC²-2×AB×BC×cos120°=48. 所以AC=4√3。