任意波形发生器的设计
- 格式:doc
- 大小:138.00 KB
- 文档页数:6
EDA课程设计--任意波形发生器EDA大作业学院:电子信息学院专业:通信专业102班姓名:许文博学号:41003030210EDA技术概述EDA是电子设计自动化(Electronic Design Automation)缩写,是90年代初从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。
EDA技术是以计算机为工具,根据硬件描述语言HDL( Hardware Description language)完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局布线、仿真以及对于特定目标芯片的适配编译和编程下载等工作。
典型的EDA工具中必须包含两个特殊的软件包,即综合器和适配器。
综合器的功能就是将设计者在EDA平台上完成的针对某个系统项目的HDL、原理图或状态图形描述,针对给定的硬件系统组件,进行编译、优化、转换和综合,最终获得我们欲实现功能的描述文件。
综合器在工作前,必须给定所要实现的硬件结构参数,它的功能就是将软件描述与给定的硬件结构用一定的方式联系起来。
也就是说,综合器是软件描述与硬件实现的一座桥梁。
综合过程就是将电路的高级语言描述转换低级的、可与目标器件FPGA/CPLD相映射的网表文件。
任意波形信号发生器的概述随着信息科技的发展,波形发生器在科技社会等多个领域发挥着越来越重要作用。
采用EDA技术利用MAX+PLUSII软件平台,设计的多功能波形发生器系统,大大简化其结构,降低成本,提高了系统的可靠性和灵活性。
设计中运用计数器,数据选择器,对所需的频率进行选择和同步。
使用宏功能模块存储波形。
然后多波形进行幅度的选择。
产生满足需要的不用频率和幅度的波形。
任意波形产生器构成:上图为任意波形发生器的构成图,sel为控制波形输出。
Kk为分频模块,与k步长调整波形输出的频率。
输出8位数字信号经过D/A转换输出负波形,再经过1:1比例反向放大器输出正向波形,施密特触发电路输出方波然后经测频模块由数码管显示出频率。
第2节 电子综合设计范例1----波形发生器的设计一、设计任务与要求1、设计任务设计制作一个波形发生器,该波形发生器能产生正弦波、方波、三角波和由用户编辑的特定形状波形。
示意图如下:2、设计要求⑴基本要求①具有产生正弦波、方波、三角波三种周期性波形的功能。
②用键盘输入编辑生成上述三种波形(同周期)的线性组合波形,以及由基波及其谐波(5次以下)线性组合的波形。
③具有波形存储功能。
④输出波形的频率范围为100Hz~20kHz(非正弦波频率按10次谐波计算);重复频率可调,频率步进间隔≤100Hz。
⑤输出波形幅度范围O~5V(峰—峰值),可按步进0.1V(峰—峰值)调整。
⑥具有显示输出波形的类型、重复频率(周期)和幅度的功能。
⑵发挥部分①输出波形频率范围扩展至100Hz~200kHz。
②用键盘或其他输入装置产生任意波形。
③增加稳幅输出功能,当负载变化时,输出电压幅度变化不大于±3%(负载电阻变化范围:100Ω~∞)。
④具有掉电存储功能,可存储掉电前用户编辑的波形和设置。
⑤可产生单次或多次(1000次以下)特定波形(如产生1个半周期三角波输出)。
⑥其他(如增加频谱分析、失真度分析、频率扩展>200kHz、扫频输出等功能)。
二、方案论证与比较1、常见信号源制作方法方案一:采用模拟分立元件或单片压控函数发生器MAX038,可产生正弦波、方波、三角波,通过用锁相式频率合成方案。
锁相式频率合成是将一个高稳定度和高精确度的标准频率经生器常采用的原理 DDFS 的基本原理框图如图1所示。
图1 DDFS 的基本原理框图输出波形的一个完整的周期、幅中。
当RAM 的地址变化时,DAC 的常数,便改变了每个周期中的点数,而这些点数正是用来改变整个波形的频率。
辨率在相位累加器的位数N 足够大时,理论上可以获得相应的分辨精度,这是调整外部元件可改变输出频率,但采用模拟器件由于元件分散性太大,即使使用单片函数发生器,参数也与外部元件有关,外接的电阻电容对参数影响很大,因而产生的频率稳定度较差、精度低、抗干扰能力低、成本也高;而且灵活性较差,不能实现任意波形以及波形运算输出等智能化的功能。
任意波形发生器的设计方案12电信1 张晓航 1200301108 一,选择课题:电子测量仪器设计——任意波形发生器设计二,设计要求:能产生方波、三角波、正弦波、锯齿波信号。
主要技术指标:(1)输出频率范围100HZ~1KHZ、1~10KHZ(2)输出电压:方波UPP=6V,三角波UPP=6V,正弦波UPP>1V,锯齿波UPP=6V。
三,仪器仪表清单:1.直流稳压电源 1台 2.双踪示波器 2台3.运放741(LM324n)*3 4.二极管 1N4154*2 1N4680*25.电位器50K*2 1K*1 6.电容1μF 47nF *17.电阻 100k 10k 5k 3k 4k 96k若干 8.面包板 1块9.剪刀1把 10.仪器探头线 2根11.电源线若干四,设计考虑因素:信号发生器可以通过多种方法设计产生,但是考虑到如果使用芯片去完成可能所需要的成本比较高,但如果用单片机等则设计太复杂,还需要嵌入相应代码,有点大材小用,综合多方面的因素考虑该方案是可行性比较高,性价比比较高的一种方案,同时,能够让我对于一些专业基础知识有了更深的了解。
元器件可重复利用,符合现在可持续发展的绿色思想。
该电路具有结构、思路简单,运行时性能稳定且能较好的符合设计要求,对原器件要求不高,且成本低廉、调整方便.五,函数发生器的总方案:为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波(锯齿波)—正弦波函数发生器的设计方法。
本课题中函数发生器电路组成框图如下所示:函数发生器电路组成框图由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
计算机应用基于DDS 技术的任意波形发生器设计浙江大学(杭州310027) 刘成尧 王小海 祁才君 王文华 摘 要 文章介绍了基于DDS 技术的任意波形发生器的设计。
详细讨论了CPLD 器件在DDS 技术实现中的具体应用。
该任意波形发生器具有输出频率稳定、准确,波形质量好和输出频率范围宽等优点。
关键词 直接数字频率合成 CPLD 任意波形发生器1 概述基于DDS 技术的任意波形发生器(AW G )利用高速存储器作为查找表,通过高速D/A 转换器对存储器的波形进行合成[1]。
它不仅可以产生正弦波、方波、三角波和锯齿波等规则波形,而且还可以通过上位机(或下位机)编辑,产生真正意义上的任意波形。
例如,它能模拟编码雷达信号、潜水艇特征信号、磁盘数据信号、机械振动瞬变过程、电视信号以及神经脉冲之类的波形,也能重演由数字示波器(DSO )捕获的波形。
DDS 技术的实现依赖于高速、高性能的数字器件。
可编程逻辑(CPLD )器件以其速度高、规模大、可编程,以及有强大EDA 软件支持等特性,十分适合实现DDS 技术。
本文中即将讨论的是EPF6016A 器件在DDS 技术实现任意波形发生器中的具体应用。
2 DDS 实现任意波形发生器的原理DDS 技术建立在采样定理的基础上,它首先对需要产生的波形进行采样,将采样值数字化后存入存储器作为查找表,然后再通过查表将数据读出,经过D/A 转换器转换成模拟量,把存入的波形重新合成出来。
DDS 原理如图1所示。
图1 DDS 的原理框图 利用上位机生成所需波形的数据,然后通过单片机将生成的数据写入波形存储器(RAM )中,再由DDS 系统将波形合成出来,这样就可以产生出所需的任意波形。
DDS 系统任意波产生的原理图如图2所示。
图2 DDS 系统任意波形的产生3 CPLD 在DDS 技术实现中的应用FL EX6016芯片的主要结构包括132个逻辑阵列块(logic array block )、快速通道(fast track )和I/O单元[2]。
任意波形发生器设计一、设计目标和需求分析在进行任意波形发生器设计之前,首先需要明确设计目标和需求。
根据实际应用需求,我们需要设计一种具有以下特点的任意波形发生器:1.多种波形形状:能够产生包括正弦波、方波、三角波、锯齿波等多种波形形状的输出信号。
2.高精度输出:能够提供稳定、精确的波形输出,满足对波形频率、幅度、相位等参数的要求。
3.宽频率范围:能够在较宽的频率范围内产生波形信号,适应不同应用场景的需求。
4.灵活性和操作便捷:具备灵活的参数调节和操作界面,方便用户配置所需波形信号。
二、电路设计和构成基于以上需求,我们可以采用数字/模拟混合电路来设计任意波形发生器。
整体电路结构包括信号发生器、波形调节电路、滤波器、放大器和输出接口等几大部分。
1.信号发生器:信号发生器是生成基本信号的核心部分。
可以采用数字逻辑电路,通过编程控制产生不同形状的基本波形,例如正弦波、方波、三角波、锯齿波等。
可以使用存储器来存储基本波形的采样点,并通过数字模拟转换器(DAC)将数字信号转换为模拟信号。
2.波形调节电路:波形调节电路用于调整波形的频率、幅度和相位等参数。
通过调整振荡电路中的电阻、电容或电感等元件,实现对基本波形的变换和调节。
可以设计多种电路模块来完成这一任务,例如可变电容二极管电路、可调电阻电路等。
3.滤波器:滤波器用于对产生的波形信号进行滤波处理,除去高频或低频的杂散分量,保留所需频率范围内的信号。
可以采用各种类型的滤波器电路,例如RC滤波器、有源滤波器或数字滤波器等。
4.放大器:放大器用于增强波形信号的幅度,确保输出的信号具备足够的驱动能力,可以驱动接收端电路。
可以采用运放等放大电路,根据需要选择合适的增益。
5.输出接口:输出接口用于将产生的波形信号输出给外部设备。
可以设计多种类型的输出接口,例如模拟输出接口(BNC接口)、数字输出接口(USB接口)等,方便用户接入不同类型的设备。
三、实现方法和关键技术在设计任意波形发生器时,需要考虑以下关键技术和实现方法:1.数字信号处理技术:通过数字信号处理技术,实现对基本波形的生成、存储和输出。
任意波形发生器设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN学号:毕业设计题目:任意波形发生器设计作者刘慧届别2016院部物理与电子学院专业电子科学与技术指导老师易立华职称副教授完成时间摘要任意波形发生器(Arbitrary Waveform Generator,AWG)作为一种多波型的信号发生器,它不仅可以产生锯齿波、正弦波等常规波形,而且还能表现出载波调制的多样化特点,使波形发生调幅、调相、调频和脉冲调制等。
甚至能利用计算机软件实现波形的编辑,生成用户所需要的任意波形。
任意波形发生器广泛应用于自动控制、电子电路和科学试验领域,是一款给电子测量工作提供符合技术要求的电信号设备。
因此在各个领域都得到迅猛的发展。
本论文设计一款任意波形发生器,该系统由输入模块、FPGA模块、DAC数模转换模块、显示模块4个部分组成。
该设计将虚拟化的仪器技术、串行总线接口技术和直接数字频率合成技术完美地结合在一起,以现场可编程门阵列(FPGA)作为硬件基础,然后再通过逻辑设计、系统软件设计和系统硬件电路设计,实现了一款基于直接数字频率合成技术的低成本、便携式、可扩展的可立即使用的任意波形发生器。
关键词:数字频率合成器;verilog;FPGA;仿真AbstractArbitrary waveform generator (Arbitrary Waveform Generator,AWG) is a multi wave signal generator. It can not only generates a sawtooth wave, sine wave and so on conventional waveform and the diversification of the modulated carrier, so that the waveform occurrence amplitude modulation, phase modulation, frequency modulation and pulse modulation. Can even use computer software to realize the waveform of the editor, the user needs to generate arbitrary waveform. Arbitrary waveform generator is widely used in the field of automatic control, electronic circuit and scientific experiment. It is an electrical signal equipment which meets the technical requirements for electronic paper designs an arbitrary waveform generator, which is composed of 4 parts, input module, FPGA module, DAC module and display module. The design the virtual instrument technology, serial bus interface technology and direct digital frequency synthesis technology perfect combination together, convertible to field programmable gate array (FPGA) as the basis of hardware, and then through the logic design, system software design and the hardware circuit design, and the implementation of a arbitrary waveform generator based on direct digital frequency synthesis technology of low cost, portable, scalable and can be immediately used.Keywords: Digital frequency synthesizer; Verilog; FPGA;Simulation目录摘要................................................................................................. 错误!未定义书签。
波形发生器设计波形发生器是一种用于产生特定频率、幅度和波形的电子器件。
它在电子实验、仪器测试和通信系统中应用广泛。
波形发生器可产生各种波形,如正弦波、方波、锯齿波、三角波等。
在设计波形发生器时,需要考虑输出频率的稳定性、幅度控制的精度、波形形状的准确性等因素。
1.频率稳定性:波形发生器的频率稳定性是指在长时间运行中,输出频率的变化幅度。
为了提高频率稳定性,可以采用晶振作为基准震荡源,并通过锁相环、频率合成等方法进行稳定化处理。
2.幅度控制:波形发生器需要具备可调节输出幅度的功能,可通过电压控制放大器或级联多个放大器来实现。
此外,还需要考虑输出幅度的精度和范围。
3.波形形状准确性:波形发生器输出的波形形状应尽量接近预期的理想波形。
对于正弦波发生器,可以采用反馈电路来实现,通过控制反馈增益和相位来调节输出波形的形状。
4.输出阻抗:波形发生器的输出阻抗要与负载匹配,以确保输出波形的稳定性和准确性。
通常可以通过选择合适的输出级的类型以及调节反馈电路中的参数来实现。
5.频率范围:波形发生器应具备较宽的频率范围,以适应不同的应用需求。
常见的波形发生器频率范围为几Hz到几GHz,可以根据具体需求进行选择。
6.数字控制:现代波形发生器常采用数字控制,可以通过面板、遥控等方式进行操作和控制。
数字控制可以提高操作的灵活性和方便性,并可实现一些高级功能,如频率扫描、脉冲调制等。
综上所述,波形发生器的设计需要考虑频率稳定性、幅度控制、波形形状准确性、输出阻抗、频率范围和数字控制等方面。
设计人员需要根据具体需求选择适当的电路拓扑结构、器件和控制方法,并进行系统性能测试和优化,以实现高稳定性、高精度和高可靠性的波形发生器。
1.设计思路在测量、自动控制、通信和遥控等许多技术领域都要用到各种各样的波形信号,这些不同的波形信号是由波形发生器产生的。
任意波形发生器的设计通常分为基于传统的设计方法和基于直接数字频率合成的设计方法两种。
传统的任意波形发生器采用可变时钟和计数器寻址波形存储器表,其取样时频率较高,对硬件的要求也较高,而且常需多级分频或采用高性能的锁相环,其中分频式的任意波形发生器频率分辨率低,锁相式的任意波形发生器频率切换速度慢。
而基于dds技术的任意波形发生器不仅能实现高稳定度、高精度、高分辨率的要求,还具有体积小、价格便宜的特点,是一种很有发展前途的信号源。
直接数字频率合成技术是根据奈奎斯特采样定律,从连续信号的相位出发将一个正弦信号取样、量化、编码,形成一个正弦函数表,存于RAM 中;合成时,通过改变相位累加器的频率控制字来改变相位增量。
相位增量不同,一个周期内的取样点数不同。
因角频率,在取样频率不变的情况下,通过改变相位累加器的频率控制字,将这种变化的相位/幅值量化的数字信号通过1/0转换及低通滤波器即可得到合成的相位变化的模拟信号频率。
相位累加器的结构如图2所示,由N位字长的二进制加法器与一个时钟取样所得的N位二进制相位累加寄存器级联构成,加法器的一个出入端与相位寄存器的输出端相连,另一个输入端是外部的频率控制字K。
每来一个时钟脉冲,加法器将频率控制数据与累加寄存器输出的累加相位数据相加,把相加后的结果送至累加寄存器的数据输入端。
累加寄存器将加法器在上一个时钟作用后所产生的新相位数据反馈到加法器的输入端,以使加法器在下一个时钟的作用下继续与频率控制数据相加。
这样,相位累加器在参考时钟的作用下,进行线性相位累加,当相位累加器加满时就会产生一个溢出,完成一个周期性的动作,这个周期就是DDS合成信号的一个频率周期,累加器的溢出频率就是DDS输出信号频率。
2.技术指标本设计要求的波形发生器可产生正弦波、方波、三角波以及便于产生频率可变而且具有高分辨率的波形。
2008级计算机科学与技术专业微机接口课程设计报告2010-2011学年第一学期项目名称:任意波形发生器姓名:_ 学号:成绩:姓名:学号:成绩:指导教师:一、设计:1、设计说明:利用实验仪上的数模转换器DAC0832,将程序中的一组波形的数据转换为电压的变化曲线,并用示波器测量模数转换器的输出端,观察生成的波形2、设计目标:设计一个简易波形发生器,要求该系统能通过开关或按钮有选择性的输出正弦波、三角波、方波、及阶梯波等四种波形,并且这四种波形的频率均可通过输入电位器在一定范围内调节3、实验电路图:4、设计内容: (1)主程序(2)子程序:方波程序、正弦波程序、锯齿波、三角波、键盘扫描与处理 各模块的流程图如下:A 、 主程序和键盘扫描流程:B 、 三角波、方波、正弦波、锯齿波解析如下:三角波的产生较为简单,因为它的上升沿遵循数据加1的规律。
下降沿则按数据减1的规律产生。
所以在波形的上升沿只要判断上一次的数据是否为最大值FFH ,如果不是最大值,将原数据加1输出;而在波形的下降沿只要判断上一次数据是否为0,如果不是0,则将原数据减1即可 方波只有两个值,可以采用两个极端值0和FFH正弦波使用查表法产生查表法是事先将正弦波的数据计算出来,列表放在程序中,运行时直接调取数据锯齿波与三角波类似,只是下降时直接降至0即可。
各流程图如下:延时N主程序处理流程 键盘扫描流程二、程序模块代码: .model small .stack;***********定义8255有关参数****************** addrA EQU 200h addrB EQU 201h addrC EQU 202h CTRL EQU 203h addrDA EQU 208h;*******************定义8279有关的参数*******************方波流程三角波流程锯齿波流程Z8279 EQU 212H ; 8279的控制口地址D8279 EQU 210H ; 8279的数据口地址LEDMOD EQU 00 ;左边输入,八位显示外部译码八位显示(8279的控制字)LEDFEQ EQU 38H ;8279 扫描频率;*************以上参数写在主程序开头*****************.codestart:mov al,90h ;方式0,A口输入,B、C口输出mov dx,CTRLout dx,almov ax,csmov ds,axcall CSH8279 ;调用子程序CSH8279call SMXS ;调用子程序SMXSs:call KeyPress;调用子程序keyscanmov di,offset KeyNummov si,offset XSDATAmov al,[di] ;波形号mov [si+6],almov al,[di+1] ;暂存值mov [si],almov al,[di+2] ;幅度mov [si+3],alcall SMXSmov di,offset KeyNummov al,[di]cmp al,1jne C1call A1 ;跳转到方波jmp s ;无条件跳转sC1:cmp al,2jne C2call A2 ;跳转到锯齿波jmp sC2:cmp al,3jne C3call A3 ;跳转到三角波jmp sC3:cmp al,4jne C4call A4 ;跳转到正弦波C4:jmp smov ah,4chint 21hKeyNum DB 0,0,0 ;波形参数,第一个为波形号,第二个为暂存值,第三个为幅度参数DMBIAO DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H DB 5EH,79H,71H,00h ;段码表,1亮,0灭,可以根据需要再设计显示字符;段中已有的显示字符是0--F和全灭。
DDS任意波形发生器的设计与实现DDS任意波形发生器的设计与实现近年来,随着电子技术的飞速发展,任意波形发生器在信号发生、测试、测量等领域扮演着重要的角色。
而Direct Digital Synthesis(DDS)任意波形发生器作为一种数字信号处理技术,由于其高精度、低失真、灵活性强等优点,成为了目前最为常用的任意波形发生器技术之一。
DDS任意波形发生器工作原理基于数字信号处理与相位累加器。
其主要组成部分包括振荡器、相位累加器、数字控制模块和DAC(数模转换器)模块。
其中,相位累加器用于产生一个累加的相位值,该相位值会被数字控制模块处理后再输入DAC模块进行数模转换,并输出到外部电路。
而该外部电路连接到输出端口,可以控制输出的幅值以及频率,从而生成所需的任意波形。
在DDS任意波形发生器的设计与实现过程中,需要考虑多个关键因素。
首先,选择合适的振荡器型号以及参考时钟。
振荡器的质量和稳定性直接影响到输出信号的频率稳定性。
而参考时钟的准确性则决定了相位累加器的性能。
其次,在相位累加器的设计中,需要合理选择累加的相位步进值以及相位累加位数。
过大的步进值可能导致相位分辨率降低,而过小的步进值会增加累加器的位数,增加系统的复杂度。
另外,数字控制模块的设计需要考虑到输入的频率、相位和幅度的变化。
最后,需要合理选择DAC模块以及输出电路,以确保输出信号的质量和稳定性。
在实际实现过程中,可以使用FPGA(Field-Programmable Gate Array)作为主要硬件实现平台,并利用VHDL(VHSIC Hardware Description Language)进行硬件描述,从而构建DDS任意波形发生器。
FPGA的高度灵活性使得其适用于DDS任意波形发生器的实现,并且其可重构的特点使得系统可以根据需要进行扩展和改进。
在软件方面,可以使用C语言编写相应的控制程序,以实现对DDS任意波形发生器的控制和调节。
基于DDS的任意波形发生器设计与实现基于DDS的任意波形发生器设计与实现一、引言任意波形发生器是一种能够产生各种复杂波形信号的仪器,广泛应用于电子测量、通信系统、医疗设备等领域。
传统的任意波形发生器需要通过外部模拟电路,通过改变电压来产生不同的电压信号,从而得到不同形状的波形。
但这种方式存在着设计复杂、波形精度有限等问题。
而现在,随着数字技术的快速发展,基于直接数字合成(DDS)的任意波形发生器逐渐成为了新的选择。
二、DDS的工作原理DDS基于数字信号处理技术,通过数字技术生成复杂波形信号,并将其转换为模拟信号输出。
其基本工作原理如下:1.时钟信号的产生DDS需要一个稳定的时钟信号,并且要求其频率远高于输出信号的最高频率。
常见的时钟源可以是晶振或者外部频率源。
2.相位累加器相位累加器是DDS的核心部件,其作用是将时钟信号进行频率除法,并将相位结果累加。
累加得到的相位值将作为波形图的横坐标,决定波形的频率。
3.频率累加器频率累加器用于通过改变累加阶数来控制相位累加器的工作速度,从而实现波形的频率可调控。
4.相位查找表(Phase Lookup Table,简称LUT)相位查找表存储了一系列的相位值对应的幅度。
通过输入相位信息,即可查找到相应的幅度值。
5.数字到模拟信号转换DDS通过数模转换器,将数字信号转换为模拟信号输出。
三、基于DDS的任意波形发生器的设计与实现基于DDS的任意波形发生器的设计与实现包括以下几个关键步骤:1.波形参数的输入与存储首先,用户需要通过控制面板或者计算机软件输入所需波形的参数信息,包括频率、幅度、相位等。
系统需要提供一个存储器,将这些参数信息进行存储。
2.DDS模块的设计DDS模块是该任意波形发生器的核心模块。
根据输入的波形参数信息,DDS模块将根据上述工作原理,计算出相应的相位序列,进而产生对应的波形信号。
3.时钟模块的设计时钟模块用于产生高稳定性的时钟信号,其频率要远高于输出信号的最高频率。
EDA课程设计一任意波形发生器DA大作业学院:电子信息学院专业:通信专业102班姓名:许文博学号:41003030210EDA技术概述EDA是电子设计自动化(Electronic Design Automation)缩写,是90年代初从CAD (计算机辅助设计)、CAM (计算机辅助制造)、CAT (计算机辅助测试)和CAE (计算机辅助工程)的概念发展而来的。
EDA技术是以计算机为工具,根据硬件描述语言HDL ( Hardware Description language)完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局布线、仿真以及对于特定目标芯片的适配编译和编程下载等工作。
典型的EDA工具中必须包含两个特殊的软件包,即综合器和适配器。
综合器的功能就是将设计者在EDA平台上完成的针对某个系统项目的HDL、原理图或状态图形描述,针对给定的硬件系统组件, 进行编译、优化、转换和综合,最终获得我们欲实现功能的描述文件。
综合器在工作前,必须给定所要实现的硬件结构参数,它的功能就是将软件描述与给定的硬件结构用一定的方式联系起来。
也就是说,综合器是软件描述与硬件实现的一座桥梁。
综合过程就是将电路的高级语言描述转换低级的、可与目标器件FPGA/CPLD相映射的网表文件。
任意波形信号发生器的概述随着信息科技的发展,波形发生器在科技社会等多个领域发挥着越来越重要作用。
采用EDA技术利用MAX+PLUSII软件平台,设计的多功能波形发生器系统,大大简化其结构,降低成本,提高了系统的可靠性和灵活性。
设计中运用计数器,数据选择器,对所需的频率进行选择和同步。
使用宏功能模块存储波形。
然后多波形进行幅度的选择。
产生满足需要的不用频率和幅度的波形。
任意波形产生器构成:•上图为任意波形发生器的构成图,sel 为控制波形输出。
• Kk 为分频模块,与k 步长调整波形输出的频率。
输出8位数字信号经过D/A 转换输出负波形,再经过1: 1比例反向放大器输出正向波形,施密 特触发电路输出方波然后经测频模块由数码管显示出频率。
任意波形发生器
任意波形发生器是现代电子测试领域应用最为广泛的通用仪器之一,它的功能远比函数发生器强,可以产生各种理想及非理想的波形信号,对存在的各种波雷达、导航、宇航等领域。
形都可以模拟,广泛应用于测试、通信、雷达、导航、宇航等领域。
本文介绍DDS任意波形发生器的设计。
任意波形发生器的功能
任意波形发生器既具有其他信号源的信号生成能力,又可以通过各种编辑手段产生任意的波形采样数据,方便地合成其他信号源所不能生成的任意波形,从而满足测试和实验的要求。
任意波形发生器的主要功能包括:
(1)函数发生功能
基础实验中,为了验证电路功能、稳定性和可靠性,需要给它施加理想波形,任意波形发生器能替代函数发生器提供正弦波、方波、三角波、锯齿波等波形,还具有各种调制和扫频能力。
利用任意波形发生器的这一基础功能。
基于EPP工作模式下的任意波形发生器的设计
摘要:本文介绍一种基于微机打印口EPP工作模式下的任意波形发生器。
它采用复杂可编程逻辑件、高速D/A转换和可编程平滑滤波等技术设计完成,具有软件设置信号频率、波形和输出电平的功能,操作简单,使用方便,有较强的实用价值。
关键词:任意波形发生器;EPP工作模式;平滑滤波器
1 引言
任意波形发生器(Arbitrary Waveform Generator,AWG)是随着众多领域对于复杂的、可由用户定义的测试波形的需要而形成和发展起来的,它的主要特点是可以产生任何一种特殊波形,输出信号的频率、电平以及平滑低通滤波的截至频率也可以作到程序设置,因此在机械性能分析、雷达和导航、自动测试系统等方面得到广泛的应用。
而对AWG的控制、数据传输、输出信号的频率和电平设置都可以通过微机打印口在EPP(增强并行接口)工作模式下设计完成。
这样不仅具有设计简单,占用微机资源较少的优点,而且操作简单,使用方便,易于硬件升级。
2 总体框图及设计原理
所设计的AWG可以产生多种任意波形模拟信号,包括正弦波、方波、三角波、梯形波、抛物线波、SINC波和伪随机信号等。
信号的产生采用直接数字合成的设计思想,所不同的是DDS产生的信号是固化在 ROM中的正弦波,通过波形查询表和数模转换器产生不同频率的正弦波,而AWG中存储波形的存储器是可以随机写入的,这样才可以真正产生任意波形。
此外,AWG的工作方式可以分为连续方式和突发方式。
连续工作方式是指存储在存储器中的数据在时钟的作用下连续不断的送给数模转换器,以获得周期的模拟信号;突发工作方式则是在特定的触发条件下,信号只输出一次。
触发条件包括软件内部触发和外部触发,外部触发又包括外部触发信号的上升沿、下降沿、正电平和负电平触发等。
AWG的总体设计框图如图1所示。
AWG的设计可以分为两部分:EPP接口电路和波形产生电路。
EPP接口电路是软件控制程序和波形产生电路的数据传输通道。
它采用ALTERA公司的复杂可编程逻辑器件EPM7128设计完成,负责并口和波形存储器之间的缓冲隔离、总线收发控制和地址产生。
波形产生电路主要任务是在EPP接口电路控制下产生任意波形信号。
来自并口的波形数据通过EPP写操作顺序写入波形存储器。
波形数据存储完后,由软件决定采用何种触发条件和工作方式,进而产生相应的控制信号。
时钟产生电路产生频率可控的时钟信号,作为波形存储器、地址发生器以及数模转换器的时钟。
在控制信号的控制下,地址发生器产生地址,读出和地址相对应的波形点数据送高速数模转换器产生模拟信号,最后对该模拟信号进行平滑滤波后
输出符合用户需要的波形。
3 主要硬件电路设计 3.1 EPP接口电路
计算机并行口的工作方式可设置为SPP、 EPP和 ECP三种工作方式。
EPP是一种与 SPP兼容且能完成双向数据传输的外围接口模式。
EPP最高传输速率可以达到2MBPS,并可双向工作,接近于PC机ISA总线的数据传输率。
它提供四种数据传输周期:数据写周期、数据读周期、地址写周期及地址读周期,数据读写和地址读写在微机中所占用的地址不同。
数据读写产生 DATASTB信号,地址读写产生ADDRSTB信号。
例如,数据写的工作过程为(1)WRITE信号保持低电平,若WAIT 信号为低,数据选通信号DATASTB有效(低电平)。
(2)等待WAIT信号变高,变高后数据线上数据生效。
(3)DATASTB信号由低变高。
(4)等待 WAIT信号由高变低,WAIT的上升沿释放数据线,结束读周期。
本文阐述的EPP任意波形发生器要用到数据写和地址写两个操作周期,其时序如图2所示。
EPP接口电路的设计由复杂可编程逻辑器件(CPLD)设计完成,负责AWG的逻辑控制和数据分配。
由图1可以看出所设计的AWG可以输出两路模拟信号,因此来自并口的波形数据应当分别写入两个波形存储器中,完成数据分配。
具体实现上是在CPLD为两个波形存储器分配不同的地址,首先由地址写操作决定后续的数据写入哪个地址端口,随后顺序将波形数据写入指定的波形存储器。
此外,整个电路的控制命令、输出波形电平设置以及平滑滤波器的截至频率设置也是由软件通过并口完成的,因此在CPLD中也应为其分配地址端口。
CPLD内部数据分配电路设计如图3所示。
并口数据端口的数据究竟是控制命令还是某个波形存储器的数据由其地址决定。
图3描述了地址产生的方法,从而完成了数据分配,具体工作过程如下:首先,地址选通信号(ADDRSTB)和数据选通信号(DATASTB)与写信号(WRN)相或,产生写地址选通信号(ADDRSTB_WRN)和写数据选通信号(DATASTB_WRN),从而区分读地址周期和读数据周期的操作;然后,发出地址写操作,决定后续数据发往哪个地址;最后是数据写操作。
从图3可以看出控制命令端口地址为0,而波形存储器A和波形存储器B的端口地址分别是1和2,波形电平设置端口地址为3和4,而平滑滤波器设置端口为5和6。
3.2 高速D/A转换电路
高速D/A转换电路不仅负责将波形存储器中的数据转换为模拟信号,还负责输出信号的电平设置,设计框图如图4所示。
输出信号电平设置电路主要由参考电压源AD1580、低速D/A转换器AD7524和高速D/A转换器AD9708设计完成。
AD1580为AD7524提供1.2V的电压基准,在8位数字(DB7~DB0)的控制下,AD7524内部的电阻网络将1.2V的电压基准转换为0.1V~1.2V电压输出。
而AD9708的参考电压正是AD7524的电压输出,从而实现了由DB7~DB0控制高速D/A转换电路的输出信号电平。
设DB7~DB0所表示的无符二进制数为M,AD7524电压输出为V REF,则:
设输入AD9708的数字量为N,AD9708的输出电压为V OUT,负载为R LOAD,则:
由(1)式和(2)式可得:
从(3)式可以看出,适当的选择M的值,可以设置输出信号的电平。
其中N来自波形存储器,M由程序设置,从而实现了程序控制输出信号的电平。
3.3 平滑滤波器
由于波形存储器中抽样信号的频谱是原信号频谱的周期延拓以及高速数模转换器的非线性,数模转换后的模拟信号除了基波外还有各次像频分量和基波的各次谐波分量,所以在数模转换器之后跟一个平滑低通滤波器以获得纯净的基波信号。
平滑低通滤波器的截至频率应当略大于输出信号的最高频谱,小于数模转换频率的一半。
为了获得不同频率的输出信号,采用了不同的数模转换速率,因此平滑低通滤波器的截至频率也应当由程序设定。
平滑低通滤波器采用LINEAR公司的10阶低通滤波器LTC1569-7设计完成。
设置LTC1569-7的截至频率有两种方式:外接电阻和外时钟输入。
外接电阻法通常要求采用数控电位器改变外接电阻的阻值,从而改变低通滤波器截至频率。
外时钟输入法是依靠改变外时钟的频率从而改变低通滤波器截至频率。
两种方法相比,外时钟输入法易于实现,设计方法如图5所示。
滤波器截至频率和外时钟频率之间关系为:
4 结论
所设计的AGW性能指标如下:
(1) 模块最高D/ A转换速率:4MHz;
(2) 存储深度:128K;
(3) 模拟信号幅度分辨率:8位;
(4) 输出电压幅度范围:±10V;
(5) 输出信号频率范围:100 Hz~300KHz;
实践证明,基于EPP工作模式下的任意波形发生器易于实现,使用方便灵活,具有较高的性能价格比。