最新中考数学试题分类汇编-平移旋转轴对称中心对称汇总
- 格式:doc
- 大小:2.54 MB
- 文档页数:23
专题17 图形变换(平移、旋转、对称)一.选择题1.(2022·湖南娄底)下列与2022年冬奥会相关的图案中,是中心对称图形的是()A.B.C.D.【答案】D【分析】中心对称图形定义:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,根据中心对称图形定义逐项判定即可.【详解】解:根据中心对称图形定义,可知D符合题意,故选:D.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解决问题的关键.2.(2022·四川自贡)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A.B.C.D.【答案】D【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A不符合题意;∵不是轴对称图形,∴B不符合题意;∵不是轴对称图形,∴C不符合题意;∵是轴对称图形,∴D符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合,熟练掌握定义是解题的关键.3.(2022·山东泰安)下列图形:其中轴对称图形的个数是()A.4B.3C.2D.1【答案】B【分析】对每个图形逐一分析,能够找到对称轴的图形就是轴对称图形.【详解】从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图找不到对称轴,不是轴对称图形,不符合题意;第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意;因此,第1、2、4都是轴对称图形,共3个.故选:B.【点睛】本题考查轴对称图形的概念,解题的关键是寻找对称轴.0,2,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针4.(2022·江苏苏州)如图,点A的坐标为()m,则m的值为()方向旋转60°得到线段AC.若点C的坐标为(),3A B C D【答案】C【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得⊥ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB=,可得BD=,即可解得m=.OB=m【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:⊥CD⊥x轴,CE⊥y轴,⊥⊥CDO=⊥CEO=⊥DOE=90°,⊥四边形EODC是矩形,⊥将线段AB绕点A按逆时针方向旋转60°得到线段AC,⊥AB=AC,⊥BAC=60°,⊥⊥ABC是等边三角形,⊥AB=AC=BC,⊥A(0,2),C(m,3),⊥CE=m=OD,CD=3,OA=2,⊥AE=OE−OA=CD−OA=1,⊥AC BC AB=,在Rt⊥BCD中,BD=在Rt⊥AOB中,OB=⊥OB+BD=OD=m,m=,化简变形得:3m4−22m2−25=0,解得:m=或m=(舍去),⊥m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.5.(2022·浙江湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A.2cm B.3cm C.4cm D.5cm【答案】C【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.6.(2022·浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心'''',形成一个“方吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C D胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.1)cm D.-1)cm【答案】D【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.7.(2022·湖南怀化)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.4【答案】C【分析】根据题意判断BE的长就是平移的距离,利用已知条件求出BE即可.【详解】因为ABC沿BC方向平移,点E是点B移动后的对应点,所以BE的长等于平移的距离,由图像可知,点B、E、C在同一直线上,BC=5,EC=2,所以BE=BC-ED=5-2=3,故选C.【点睛】本题考查了平移,正确找出平移对应点是求平移距离的关键.8.(2022·湖南邵阳)下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形【答案】B【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.9.(2022·江苏连云港)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.(2022·四川遂宁)下面图形中既是轴对称图形又是中心对称图形的是( )科克曲线笛卡尔心形线阿基米德螺旋线赵爽弦图A .科克曲线B .笛卡尔心形线C .阿基米德螺旋线D .赵爽弦图【答案】A 【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A 、科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B 、笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C 、阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D 、赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.(2022·新疆)平面直角坐标系中,点P (2,1)关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1-D .()2,1--【答案】B【分析】直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P(2,1)关于x轴对称的点的坐标是(2,-1).故选:B.【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.12.(2022·天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选:D.【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.13.(2022·天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB AN⊥∠=∠D.MN AC∥C.AMN ACN=B.AB NC【答案】C【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN =∠B ,而∠CAB 不一定等于∠B ,∴∠ACN 不一定等于∠CAB ,∴AB 与CN 不一定平行,故选项B 不符合题意;∵△ABM ≌△ACN ,∴∠BAM =∠CAN ,∠ACN =∠B ,∴∠BAC =∠MAN ,∵AM =AN ,AB =AC ,∴△ABC 和△AMN 都是等腰三角形,且顶角相等,∴∠B =∠AMN ,∴∠AMN =∠ACN ,故选项C 符合题意;∵AM =AN ,而AC 不一定平分∠MAN ,∴AC 与MN 不一定垂直,故选项D 不符合题意;故选:C .【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.14.(2022·江苏扬州)如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③【答案】D【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∵将ABC 以点A 为中心逆时针旋转得到ADE ,∴ADE ABC ≌,E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故①正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故②正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC △△,CAE CDF ∴∠=∠,CDF BAD ∠=∠∴,故③正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.15.(2022·四川南充)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A .90︒B .60︒C .45︒D .30【答案】B 【分析】根据直角三角形两锐角互余,求出BAC ∠的度数,由旋转可知BAC B AC ''∠=∠,在根据平角的定义求出BAC '∠的度数即可.【详解】∵3090∠=︒∠=︒,B C ,∴90903060BAC B ∠=︒-∠=︒-︒=︒,∵由旋转可知60B A BAC C ''∠=︒∠=,∴618060860100C B A BA BA C C '''=︒-∠=︒-︒-︒=︒∠∠-,故答案选:B .【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键. 16.(2022·山东泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( )A .(2.8,3.6)B . 2.8,6()3.--C .(3.8,2.6)D .( 3.8, 2.6)--【答案】A 【详解】分析:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,再根据P 1与P 2关于原点对称,即可解决问题.详解:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1.∵P (1.2,1.4),∴P 1(﹣2.8,﹣3.6).∵P 1与P 2关于原点对称,∴P 2(2.8,3.6). 故选A .点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.(2022·湖北宜昌)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是( ) A .B .C .D .【答案】D 【分析】中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义逐项判定即可.【详解】解:根据中心对称图形定义,可知符合题意,故选:D .【点睛】本题考查中心对称图形,掌握中心对称图形定义,能根据定义判定图形是否是中心对称图形是解决问题的关键.18.(2022·湖南常德)如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,点A 、B 的对应点分别是D ,E ,点F 是边AC 的中点,连接BF ,BE ,FD .则下列结论错误的是( )A .BE BC =B .BF DE ∥,BF DE =C .90DFC ∠=︒D .3DG GF =【答案】D【分析】根据旋转的性质可判断A ;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B ;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C ;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D .【详解】A .∵将△ABC 绕点C 顺时针旋转60°得到△DEC ,∴∠BCE =∠ACD =60°,CB =CE ,∴△BCE 是等边三角形,∴BE =BC ,故A 正确;B .∵点F 是边AC 中点,∴CF =BF =AF =12AC ,∵∠BCA =30°,∴BA =12AC ,∴BF =AB =AF =CF ,∴∠FCB =∠FBC =30°,延长BF 交CE 于点H ,则∠BHE =∠HBC +∠BCH =90°,∴∠BHE =∠DEC =90°,∴BF //ED ,∵AB =DE ,∴BF =DE ,故B 正确.C .∵BF ∥ED ,BF =DE ,∴四边形BEDF 是平行四边形,∴BC =BE =DF ,∵AB =CF , BC =DF ,AC =CD ,∴△ABC ≌△CFD ,∴=90DFC ABC ∠=∠︒,故C 正确;D .∵∠ACB =30°, ∠BCE =60°,∴∠FCG =30°,∴FG =12CG ,∴CG =2FG .∵∠DCE =∠CDG =30°,∴DG =CG ,∴DG =2FG .故D 错误.故选D .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键. 19.(2022·湖南常德)国际数学家大会每四年举行一届,下面四届国际数学家大会会标中是中心对称图形的是( ) A . B .C .D .【答案】B【分析】根据中心对称的概念对各图形分析判断即可得解.【详解】解:A 不是中心对称图形,故A 错误;B 是中心对称图形,故B 正确;C 不是中心对称图形,故C 错误;D 不是中心对称图形,故D 错误;故选B .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180︒后两部分重合,理解并掌握如何判断中心对称图形的条件是解题的关键.20.(2022·河北)题目:“如图,⊥B =45°,BC =2,在射线BM 上取一点A ,设AC =d ,若对于d 的一个数值,只能作出唯一一个⊥ABC ,求d 的取值范围.”对于其答案,甲答:2d ≥,乙答:d =1.6,丙答:d =则正确的是( )A .只有甲答的对B .甲、丙答案合在一起才完整C .甲、乙答案合在一起才完整D .三人答案合在一起才完整【答案】B 【分析】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=,发现若有两个三角形,两三角形的AC 边关于A C '对称,分情况分析即可【详解】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=⊥⊥B =45°,BC =2,CA BM '⊥⊥BA C '是等腰直角三角形⊥A C BA ''==⊥A A BA ''''=⊥2A C ''=若对于d 的一个数值,只能作出唯一一个⊥ABC通过观察得知:点A 在A '点时,只能作出唯一一个⊥ABC (点A 在对称轴上),此时d = 点A 在A M ''射线上时,只能作出唯一一个⊥ABC (关于A C '对称的AC 不存在),此时2d ≥,即甲的答案, 点A 在BA ''线段(不包括A '点和A ''点)上时,有两个⊥ABC (二者的AC 边关于A C '对称);选:B【点睛】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC 边关于A C '对称21.(2022·山西)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是( )A .B .C .D .【答案】B【分析】利用中心对称图形的定义直接判断.【详解】解:根据中心对称图形的定义,四个选项中,只有B 选项的图形绕着某点旋转180°后能与原来的图形重合,故选B .【点睛】本题考查中心对称图形的判定,掌握中心对称图形的定义是解题的关键.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.22.(2022·河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将⊥OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,⊥AP =1, AO =2,⊥OP A =90°,⊥OP⊥A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,;第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1;⊥将⊥OAP 绕点O 顺时针旋转,每次旋转90°,⊥4次一个循环,⊥2022÷4=505……2,⊥经过第2022次旋转后,点A 的坐标为(-1,,故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.23.(2022·四川宜宾)如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP的延长线上,且AP 的长为2,则2CE = )A .①②④B .①②③C .①③④D .①②③④ 【答案】B【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④. 【详解】解:ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-= FC AH ∥1tan 2GD H GH ∴==22GH GD a ∴==325AH AG GH a a a ∴=+=+= AH ⊥CE ,FAH FCE ∴∽CF CE AF AH ∴=4455CF a AF a ∴==则45CF AF =;故③正确 如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '==,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒,30PCD ∠=︒,DC ∴=,DC AD =,2AP =,则)12AP AD DP DP =-==,1DP ∴==,2AP =,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二.填空题24.(2022·云南)点A (1,-5)关于原点的对称点为点B ,则点B 的坐标为______.【答案】(-1,5)【分析】根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.【详解】解:∵点A (1,-5)关于原点的对称点为点B ,∴点B 的坐标为(-1,5).故答案为:(-1,5)【点睛】本题主要考查了平面直角坐标系内点关于原点对称的特征,熟练掌握若两点关于坐标原点对称,横纵坐标均互为相反数是解题的关键.25.(2022·湖南湘潭)如图,一束光沿CD 方向,先后经过平面镜OB 、OA 反射后,沿EF 方向射出,已知120AOB ∠=︒,20CDB ∠=︒,则∠=AEF _________.【答案】40°##40度【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,⊥120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,⊥18040OED ODE AOB ∠=-∠-∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键. 26.(2022·浙江丽水)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是___________cm .【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN =,即可得. 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质,旋转的性质,解题的关键是掌握这些知识点.27.(2022·河南)如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若⊥O =90°,OA =2,则阴影部分的面积为______.【答案】3π+【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2, AOB ∠=90°,将扇形AOB 沿OB 方向平移,90A O O ''∴∠=︒1cos 2OO COB OC '∴∠==60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯3π=故答案为:3π【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.28.(2022·河南)如图,在Rt⊥ABC 中,⊥ACB =90°,AC BC ==D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当⊥ADQ =90°时,AQ 的长为______.【分析】连接CD ,根据题意可得,当⊥ADQ =90°时,Q 点在CD 上,且1CQ CP ==,勾股定理求得AQ 即可.【详解】如图,连接CD ,在Rt⊥ABC 中,⊥ACB =90°,AC BC ==4AB ∴=,CD AD ⊥,122CD AB ∴==,根据题意可得,当⊥ADQ =90°时,Q 点在CD 上,且1CQ CP ==,211DQ CD CQ ∴=-=-=,在Rt ADQ △中,AQ =【点睛】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点Q 的位置是解题的关键.29.(2022·浙江金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+8+【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键. 30.(2022·四川德阳)如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【分析】根据D 为AB 中点,得到AD =CD =BD ,即有∠A =∠DCA ,根据翻折的性质有∠DCA =∠DCE ,CE =AC ,再根据CE⊥AB,求得∠A=∠BCE,即有∠BCE=∠ECD=∠DCA=30°,则有∠A=30°,在Rt△ACB中,即可求出AC,则问题得解.【详解】∵∠ACB=90°,∴∠A+∠B=90°,∵D为AB中点,∴在直角三角形中有AD=CD=BD,∴∠A=∠DCA,根据翻折的性质有∠DCA=∠DCE,CE=AC,∵CE⊥AB,∴∠B+∠BCE=90°,∵∠A+∠B=90°,∴∠A=∠BCE,∴∠BCE=∠ECD=∠DCA,∵∠BCE+∠ECD+∠DCA=∠ACB=90°,∴∠BCE=∠ECD=∠DCA=30°∴∠A=30°,∴在Rt△ACB中,BC=1,则有13 tan tan30BCACA===∠∴CE AC==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出∠BCE=∠ECD=∠DCA=30°是解答本题的关键.31.(2022·山东泰安)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是__________________.【答案】23π 【分析】连接OO ′,BO ′,根据旋转的性质得到AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒,推出△OAO ′是等边三角形,得到60AOO '∠=︒,因为∠AOB =120°,所以60O OB '∠=︒,则OO B '是等边三角形,得到120AO B '∠=︒,得到30O B B O BB ''''∠=∠=︒,90B BO '∠=︒,根据直角三角形的性质得24B O OB '==,根据勾股定理得B B '=,用B OB '△的面积减去扇形O OB '的面积即可得.【详解】解:如图所示,连接OO ′,BO ′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒∴△OAO ′是等边三角形,∴60AOO '∠=︒,OO OA '=,∴点O '在⊙O 上,∵∠AOB =120°,∴60O OB '∠=︒,∴OO B '是等边三角形,∴120AO B '∠=︒,∵120AO B ''∠=︒,∴120B O B ''∠=︒, ∴11(180)(180120)3022O B B O BB B O B ''''''∠=∠=︒-∠=⨯︒-︒=︒,∴180180306090B BO OB B B OB '''∠=︒-∠-∠=︒-︒-︒=︒,∴24B O OB '==,在Rt B OB '中,根据勾股定理得,B B '=∴图中阴影部分的面积=2160222=223603B OB O OB S S ''⨯-=⨯⨯扇形ππ,故答案为:23π. 【点睛】本题考查了圆与三角形,旋转的性质,勾股定理,解题的关键是掌握这些知识点.32.(2022·湖南怀化)已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.【答案】5【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称,∴2a =,3b =-,∴()235a b -=--=故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.33.(2022·浙江台州)如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ⊥B ′C ′,⊥四边形B ′C ′CB 为平行四边形, ⊥BB ′⊥BC ,⊥四边形B ′C ′CB 为矩形,⊥阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC =S 矩形B ′C ′CB =4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.解答题34.(2022·湖南湘潭)如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()1,1A -,()4,0B -,()2,2C -.将ABC 绕原点O 顺时针旋转90︒后得到111A B C △.(1)请写出1A、1B、1C三点的坐标:1A_________,1B_________,1C_________(2)求点B旋转到点1B的弧长.【答案】(1)(1,1);(0,4);(2,2)(2)2π【分析】(1)将⊥ABC绕着点O按顺时针方向旋转90°得到⊥A1B1C1,点A1,B1,C1的坐标即为点A,B,C 绕着点O按顺时针方向旋转90°得到的点,由此可得出结果.(2)由图知点B旋转到点1B的弧长所对的圆心角是90º,OB=4,根据弧长公式即可计算求出.(1)解:将⊥ABC绕着点O按顺时针方向旋转90°得到⊥A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O 按顺时针方向旋转90°得到的点,所以A1(1,1);B1(0,4);C1(2,2)(2)解:由图知点B旋转到点1B的弧长所对的圆心角是90度,OB=4,⊥点B旋转到点1B的弧长=904 180π⨯⨯=2π【点睛】本题考查点的旋转变换和弧长公式,解题的关键是熟练掌握旋转变换的定义和弧长公式.35.(2022·湖北武汉)如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D ,E 分别是边AB ,AC 与网格线的交点.先将点B 绕点E 旋转180︒得到点F ,画出点F ,再在AC 上画点G ,使DG BC ∥;(2)在图(2)中,P 是边AB 上一点,BAC α∠=.先将AB 绕点A 逆时针旋转2α,得到线段AH ,画出线段AH ,再画点Q ,使P ,Q 两点关于直线AC 对称.【答案】(1)作图见解析(2)作图见解析【分析】(1)取格点,作平行四边形,利用平行四边形对角顶点关于对角线交点对称即可求点F ;平行四边形对边在网格中与格线的交点等高,连接等高点即可作出DG BC ∥;(2)取格点,作垂直平分线即可作出线段AH ;利用垂直平分线的性质,证明三角形全等,作出P ,Q 两点关于直线AC 对称(1)解:作图如下:取格点F ,连接AF ,AF BC ∥且AF BC =,所以四边形ABCF 是平行四边形,连接 BF ,与AC 的交点就是点E ,所以BE =EF ,所以点F 即为所求的点;连接CF ,交格线于点M ,因为四边形ABCF 是平行四边形,连接DM 交AC 于一点,该点就是所求的G 点;(2)解:作图如下:。
新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。
中考数学一轮复习专题过关检测卷—轴对称、平移、旋转(含答案解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.下列图形中,对称轴最多的图形是()A.B.C.D.【答案】A【解答】解:A.该图有无数条对称轴;B.该图有一条对称轴;C.该图有两条对称轴;D.该图有三条对称轴.所以对称轴最多的图形是选项A.故选:A.2.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为()A.12B.13C.19D.20【答案】B【解答】解:由折叠可知,AD=CD,∵AB=7,BC=6,∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.故选:B.3.在平面直角坐标系中,点(3,2)关于x轴对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣2,3)【答案】B【解答】解在平面直角坐标系中,点(3,2)关于x轴对称的点是(3,﹣2).故选:B.4.在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【答案】D【解答】解:将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为(﹣3+5,﹣2),即(2,﹣2),故选:D.5.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则重叠部分的小正方形边长为()A.1cm B.2cm C.D.【答案】C【解答】解:∵四边形ABCD是正方形,∵AB=AD=2cm,∠A=90°,∴BD=AB=2(cm),由平移变换的性质可知BB′=1cm,∴DB′=BD﹣BB﹣1)cm,∴小正方形的边长=DB′=×(2﹣1)=(2﹣)cm,故选:C.6.如图,把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,若四边形ABFD的周长为10,则三角形ABC的周长为()A.8B.10C.12D.14【答案】A【解答】解:∵把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,∴AD=BE=1,△ABC≌△DEF,∵四边形ABFD的周长为10,∴AD+BF+AB+DF=10,∵BF=BE+EF=1+EF,∴1+1+EF+AB+DF=10,即EF+AB+DF=8,又∵DF=AC,EF=BC,∴AB+AC+BC=8,∴三角形ABC的周长为:8.故选:A.7.如图,将△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,此点A在边B′C上,若BC=5,AC =3,则AB′的长为()A.5B.4C.3D.2【答案】D【解答】解:∵△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,点A在边B′C上,∴CB′=CB=5,∴AB′=CB′﹣CA=5﹣3=2.故选:D.8.已知点A(a,1)与点B(﹣4,b)关于原点对称,则a﹣b的值为()A.﹣5B.5C.3D.﹣3【答案】B【解答】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣1.∴a﹣b=4﹣(﹣1)=5.故选:B.9.如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O′,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)【答案】D【解答】解:如图,点A′的坐标为(1,3).故选D.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12【答案】C【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=CM+MD+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本题共6题,每小题2分,共12分)。
轴对称、平移、旋转、多边形组卷一.选择题(共15小题)1.如图所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①△ABD和△ACD面积相等②△BDF≌△CDE ③CE=BF ④BF∥CE,其中正确的有()A.1个 B.4个 C.3个 D.2个2.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长为()A.8 B.9 C.10 D.113.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.在三角形的三个外角中,锐角最多只有()个.A.0 B.1 C.2 D.35.下列命题中,其中是真命题的个数有()①形状相同的两个三角形是全等形;②全等三角形对应边上的高、中线及对应角平分线分别相等;③在两个三角形中,相等的角是对应角,相等的边是对应边;.A.3个 B.2个 C.1个 D.0个.6.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm7.等腰三角形的两边长是7cm,5cm,它的周长是()A.19cm B.17cm C.17cm或19cm D.无法确定8.已知三角形的两边长分别为3cm和7cm,则下列长度的四条线段中能作为第三边的是()A.2cm B.3cm C.4cm D.5cm9.下面有4个汽车标致图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④10.下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形11.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9 B.13 C.9或13 D.10或1212.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.1614.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或1015.下列标志中,是旋转对称图形但不是轴对称的有()A.2个 B.3个 C.4个 D.5个二.填空题(共13小题)16.一个两位数,十位数字是a,个位数字是b,把两位数的个位数字与十位数字交换位置,所得的数减去原数,差为72,则这个两位数是.17.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的钝角为130°,则∠B等于度.18.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=度.19.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.20.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.21.一个多边形的内角和等于2340°,它的边数是.22.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是.23.把命题:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:.24.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,则∠CDB=度.25.△ABC中,当∠A:∠B:∠C=1:2:3时,这个三角形是三角形.(填“锐角”“直角”“钝角”)26.下列四组多边形中,能铺满地面的是.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.27.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=度.28.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠AA′B′=20°,则∠B的度数为°.三.解答题(共12小题)29.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE;(2)若△DBE绕点B旋转到△ABC的外部其他条件不变,则(1)中结论是仍然成立?画出图形,证明你结论.30.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.31.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.32.如图所示,E是∠AOB的平分线上一点,EC⊥OA,垂足为C,D为OB上一点,且OD=OC,连结ED,连结CD交OE于点F,求证:(1)ED⊥OB;(2)OE平分线段CD.33.如图:107国道OA和320国道OB在某市交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、OB的距离相等,且PC=PD.请在∠AOB的内部画出货站的位置(不写画法,保留画图痕迹,写出结论)34.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.35.已知,如图,O是△ABC高AD与高BE的交点,∠C=50°,求∠AOB的度数.36.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A:∠ABC=3:4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.求证:∠MCP=90°﹣∠A;(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC 的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.37.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则点E到BC边的距离为多少?38.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;(2)在网格中画出△ABC关于直线m对称的△A2B2C2;(3)在直线m上画一点P,使得C1P+C2P的值最小.39.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N.(1)若CD的长为18厘米,求△PMN的周长;(2)若∠AOB=28°,求∠MPN.40.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC交BC于D,DE∥AB,交AC于E,EF是△ADE的高.求∠DEF的度数.轴对称、平移、旋转、多边形组卷参考答案与试题解析一.选择题(共15小题)1.如图所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①△ABD和△ACD面积相等②△BDF≌△CDE ③CE=BF ④BF∥CE,其中正确的有()A.1个 B.4个 C.3个 D.2个【分析】根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE,最后根据等底等高的三角形的面积相等判断出①正确.【解答】解:∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,∴△BDF≌△CDE(SAS),故②正确∴CE=BF,∠F=∠CED,故③正确,∴BF∥CE,故④正确,∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故①正确,综上所述,正确的是①②③④共4个.故选:B.【点评】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,平行线的判定,熟练掌握三角形全等的判定方法并准确识图是解题的关键.2.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长为()A.8 B.9 C.10 D.11【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为7的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=9.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.3.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.在三角形的三个外角中,锐角最多只有()个.A.0 B.1 C.2 D.3【分析】利用三角形的内角和外角之间的关系分析.【解答】解:根据三角形的内角和是180°可知,三角形内角最多只能有1个钝角,所以在三角形的三个外角中,锐角最多只有1个.故选:B.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.5.下列命题中,其中是真命题的个数有()①形状相同的两个三角形是全等形;②全等三角形对应边上的高、中线及对应角平分线分别相等;③在两个三角形中,相等的角是对应角,相等的边是对应边;.A.3个 B.2个 C.1个 D.0个.【分析】利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项.【解答】解:①形状相同的两个三角形是相似形,但不一定是全等形,故错误;②全等三角形对应边上的高、中线及对应角平分线分别相等,正确;③在在两个三角形中,相等的角是对应角,相等的边是对应边,对应边和对应角不一相等,故错误;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()A.14cm B.13cm C.8cm D.2cm【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边的取值范围,然后选择答案即可.【解答】解:∵5+7=12cm,7﹣5=2cm,∴2cm<第三边<12cm,∵14cm、13cm、8cm、2cm中只有8cm在此范围内,∴能作为第三边的是8cm.故选:C.【点评】本题考查了三角形的三边关系,熟记关系式求出第三边的取值范围是解题的关键.7.等腰三角形的两边长是7cm,5cm,它的周长是()A.19cm B.17cm C.17cm或19cm D.无法确定【分析】等腰三角形两边的长为5cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是5cm,底边是7cm时,能构成三角形,则其周长=5+5+7=17cm;②当底边是5cm,腰长是7cm时,能构成三角形,则其周长=5+7+7=19cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.应向学生特别强调.8.已知三角形的两边长分别为3cm和7cm,则下列长度的四条线段中能作为第三边的是()A.2cm B.3cm C.4cm D.5cm【分析】△ABC的两边a、b之和是10,a、b之差是4.根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长c的范围,然后由c 的范围来作出选择.【解答】解:设三角形的两边长分别为a、b,第三边是c.则:a+b=10cm、a﹣b=4cm,∴4cm<c<10cm.故选:D.【点评】本题考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.9.下面有4个汽车标致图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选:A.【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10.下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形【分析】正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺.正七边形,正八边形同理可知不能密铺.正六边形的每个内角是120°,能整除360°,能密铺.【解答】解:正六边形的每个内角是120°,能整除360°,能密铺;正五边形,正七边形,正八边形的一个内角不能整除360°,所以都不能单独进行密铺.故选:B.【点评】根据镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除:若能整除,则能进行平面镶嵌;若不能整除,则不能进行平面镶嵌.11.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9 B.13 C.9或13 D.10或12【分析】题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列方程求解,然后结合三角形三边关系验证答案.【解答】解:设等腰三角形的底边长为x,腰长为y,则根据题意,得或,解得或,经检验,这两组解均能构成三角形,所以底边长为9或13.故选:C.【点评】本题考查的是等腰三角形的性质,根据题意画出图形,列出关于x、y 的方程组是解答此题的关键.12.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D ﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.【点评】本题考查了多边形内角与外角,多边形的内角和公式是解题关键.14.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.15.下列标志中,是旋转对称图形但不是轴对称的有()A.2个 B.3个 C.4个 D.5个【分析】根据轴对称图形与中心对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转一定的角度后能够与自身重合,那么这个图形就叫做旋转对称图形,这个点叫做旋转中心.对各图形分析后即可得解.【解答】解:第1个图形,既是旋转对称图形,也是轴对称图形,第2个图形,是旋转对称图形,不是轴对称图形,第3个图形,不是旋转对称图形,是轴对称图形,第4个图形,既是旋转对称图形,也是轴对称图形,第5个图形,是旋转对称图形,不是轴对称图形.所以,是旋转对称图形但不是轴对称图形的有:第2个,第5个共2个.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念,理解概念是解答此题的关键.二.填空题(共13小题)16.一个两位数,十位数字是a,个位数字是b,把两位数的个位数字与十位数字交换位置,所得的数减去原数,差为72,则这个两位数是19.【分析】首先要分别用a,b表示两个两位数,它们分别是10a+b,10b+a,然后根据所得的数减去原数,差为72就可以列出等式,然后根据等式和数字的特点就可以求出a,b.【解答】解:依题意得原数是10a+b,新数是10b+a,∴10b+a﹣(10a+b)=72,∴b﹣a=8,而a、b可能取的值只有0至9的整数,它们的最大差只有9,并且a≠0,∴a=1,b=9,∴所求两位数是19.【点评】此题考查了组成数的数字的特点,也考查了用数字如何表示几位数.17.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的钝角为130°,则∠B等于70或20度.【分析】首先根据题意作图,然后由AB的垂直平分线与AC所在直线相交所得的锐角为52°,即可得∠ADE=52°,∠AED=90°,然后直角三角形的两锐角互余,①当三角形是锐角三角形时,即可求得∠A的度数,②当三角形是钝角三角形时,可得∠A的邻补角的度数;又由AB=AC,根据等边对等角与三角形内角和的定理,即可求得底角B的大小.【解答】解:∵AB的垂直平分线与AC所在直线相交所得的钝角为130°即∠EDC=130°,∠ADE=50°,∠AED=90°,①如图1,当△ABC是锐角三角形时,∠A=40°,∵AB=AC,∴∠B=∠C==70°,②如图2,当△ABC是钝角三角形时,∠BAC=∠ADE+∠AED=50°+90°=140°,∵AB=AC,∴∠B=∠C==20°.综上所述,底角B的度数是70°或20°.故答案为:70或20.【点评】此题考查了等腰三角形与线段垂直平分线的性质.此题难度不大,解题的关键是注意数形结合思想的应用,要注意分情况讨论.18.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=108度.【分析】根据等腰三角形的性质,依题意首先求出∠B=∠C=∠1.然后由已知∠4是△ABD的外角,可知道∠2=∠4=2∠C.最后可得出∠1+∠2=∠C+2∠C.【解答】解:如图:∵△ABC中,AB=AC,∴∠B=∠C,∵AD=BD,∴∠B=∠C=∠1,∵∠4是△ABD的外角,∴∠4=∠1+∠B=2∠C,∵AC=CD,∴∠2=∠4=2∠C,在△ADC中∠4+∠2+∠C=180°,即5∠C=180°∠C=36°,∴∠1+∠2=∠C+2∠C=3×36°=108°,即∠BAC=108°.故填108.【点评】本题考查的是等腰三角形的性质及三角形内角与外角的关系;题目中相等的量较多,有效的进行等量代换是正确解答本题的关键.19.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于7cm.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.【点评】本题考查了翻折变换的知识,利用了折叠的性质.20.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.21.一个多边形的内角和等于2340°,它的边数是15.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设多边形边数为n.则2340°=(n﹣2)•180°,解得n=15.故答案为:15.【点评】本题考查了多边形内角与外角,根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.22.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是到角的两边距离相等的点在角平分线上.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23.把命题:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:如果一个四边形的四条边相等,那么这个四边形是正方形.【分析】把原命题的题设与结论交换即可.【解答】解:“正方形的四条边相等”的逆命题改写成“如果…,那么…”的形式为:如果一个四边形的四条边相等,那么这个四边形是正方形.故答案为:如果一个四边形的四条边相等,那么这个四边形是正方形.【点评】本题考查了命题与定理,也考查了逆命题.如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.24.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,则∠CDB=60度.【分析】根据角平分线的定义和直角三角形的两个锐角互余计算.【解答】解:∠CBD=∠ABC=30°,∠BDC=90°﹣∠CBD=60°.【点评】此题运用了角平分线的定义以及直角三角形的两个锐角互余的性质.25.△ABC中,当∠A:∠B:∠C=1:2:3时,这个三角形是直角三角形.(填“锐角”“直角”“钝角”)【分析】根据三角形内角和定理和题目中三个内角的比值可以求得各个内角的度数,从而可以解答本题.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,设∠A=x,则x+2x+3x=180°,解得,x=30°,∴∠A=30°,∠B=60°,∠C=90°,∴这个三角形是直角三角形,故答案为:直角.【点评】本题考查三角形内角和定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形内角和解答.26.下列四组多边形中,能铺满地面的是①②③④.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.【分析】能够密铺地面的关键是看一看拼在同一顶点处的几个角能否构成周角.【解答】解:①正三角形内角为60°,正六边形内角120°,可由2个正三角形2个正六边形密铺;②正十二边形一个内角150°,两个正十二边形与一个正三角形可平密铺;③正八边形内角为135°,正方形内角为90°,2个正八边形和1个正方形可以密铺.④正三角形内角为60°,正方形内角为90°,可以由3个正三角形和2个正方形可以密铺;综上可得①②③④正确.故答案为:①②③④.【点评】本题考查了平面密铺的知识,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.27.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【解答】解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.【点评】本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.28.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠AA′B′=20°,则∠B的度数为65°.【分析】由将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,可得△ACA′是等腰直角三角形,∠CAA′的度数,然后由三角形的外角的性质求得答案.【解答】解:∵将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,∴AC=A′C,∠ACA′=90°,∠B=∠AB′C,∴∠CAA′=45°,∵∠AA′B′=20°,∴∠AB′C=∠CAA′+∠AA′B=65°,∴∠B=65°.答案为:65°.【点评】此题考查了旋转的性质以及等腰直角三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.三.解答题(共12小题)29.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE;(2)若△DBE绕点B旋转到△ABC的外部其他条件不变,则(1)中结论是仍然成立?画出图形,证明你结论.【分析】(1)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得AD与CE的关系,根据余角的性质,可得∠CGF与∠GCF的关系,根据直角三角形的判定,可得答案;(2)根据等式的性质,可得∠ABD与∠CBE的关系,根据全等三角形的判定与性质,可得AD与CE的关系,根据余角的性质,可得∠CGF与∠GCF的关系,根据直角三角形的判定,可得答案.【解答】(1)证明:如图1,∵∠ABC=∠DBE=90°,∴∠ABC﹣∠CBD=∠DBE﹣∠DBC,即∠ABD=∠CBE.在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∵AD=CE,∠BAD=∠BCE.∵∠AGB与∠CGF是对顶角,∴∠AGB=∠CGF.∵∠BAD+∠AGB=90°,∴∠GCF+∠CGF=90°,∴∠CFG=90°,∴AD⊥CE;(2)AD=CE,AD⊥CE,理由如下如图2:,∵∠ABC=∠DBE=90°,∴∠ABC+∠CBD=∠DBE+∠DBC,即∠ABD=∠CBE.在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∴AD=CE,∠BAD=∠BCE.∵∠AGB与∠CGF是对顶角,∴∠AGB=∠CGF.∵∠BAD+∠AGB=90°,∴∠GCF+∠CGF=90°,∴∠CFG=90°,∴AD⊥CE.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.30.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.。
图形的平移翻折对称(30题)一、单选题1(2023·四川南充·统考中考真题)如图,将△ABC 沿BC 向右平移得到△DEF ,若BC =5,BE =2,则CF 的长是()A.2B.2.5C.3D.5【答案】A【分析】利用平移的性质得到BE =CF ,即可得到CF 的长.【详解】解:∵△ABC 沿BC 方向平移至△DEF 处.∴BE =CF =2,故选:A .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.2(2023·山东·统考中考真题)如图,四边形ABCD 是一张矩形纸片.将其按如图所示的方式折叠:使DA 边落在DC 边上,点A 落在点H 处,折痕为DE ;使CB 边落在CD 边上,点B 落在点G 处,折痕为CF .若矩形HEFG 与原矩形ABCD 相似,AD =1,则CD 的长为()A.2-1B.5-1C.2+1D.5+1【答案】C【分析】先根据折叠的性质与矩形性质,求得DH =CG =1,设CD 的长为x ,则HG =x -2,再根据相似多边形性质得出EH CD =HG AD,即1x =x -21,求解即可.【详解】解:,由折叠可得:DH =AD ,CG =BC ,∵矩形ABCD ,∴AD =BC =1,∴DH =CG =1,设CD 的长为x ,则HG =x -2,∵矩形HEFG ,∴EH =1,∵矩形HEFG 与原矩形ABCD 相似,∴EH CD =HG AD,即1x =x -21,解得:x =2+1(负值不符合题意,舍去)∴CD =2+1,故选:C .【点睛】本题考查矩形的折叠问题,相似多边形的性质,熟练掌握矩形的性质和相似多边形的性质是解题的关键.3(2023·内蒙古赤峰·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6.点F 是AB 中点,连接CF ,把线段CF 沿射线BC 方向平移到DE ,点D 在AC 上.则线段CF 在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是()A.16,6B.18,18C.16.12D.12,16【答案】C【分析】先论证四边形CFDE 是平行四边形,再分别求出CF 、CD 、DF ,继而用平行四边形的周长公式和面积公式求解即可.【详解】由平移的性质可知:DF ∥CE ,DF =CE ,∴四边形CFDE 是平行四边形,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8在Rt △ABC 中,∠ACB =90°,AB =10,点F 是AB 中点∴CF =12AB =5∵DF ∥CE ,点F 是AB 中点∴AD AC =AF AB=12,∠CDF =180°-∠ABC =90°,∴点D 是AC 的中点,∴CD =12AC =4∵D 是AC 的中点,点F 是AB 中点,∴DF 是Rt △ABC 的中位线,∴DF =12BC =3∴四边形CFDE 的周长为:2DF +CF =2×5+3 =16,四边形CFDE 的面积为:DF ×CD =3×4=12.故选:C .【点睛】本题考查平移的性质,平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半,平行线分线段成比例,三角形中位线定理等知识,推导四边形CFDE 是平行四边形和DF 是Rt △ABC 的中位线是解题的关键.4(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形ABCD 的边AD =5,OA :OD =1:4,将矩形ABCD 沿直线OE 折叠到如图所示的位置,线段OD 1恰好经过点B ,点C 落在y 轴的点C 1位置,点E 的坐标是()A.1,2B.-1,2C.5-1,2D.1-5,2【答案】D【分析】首先证明△AOB ∼△D 1C 1O ,求出AB =CD =2,连结OC ,设BC 与OC 1交于点F ,然后求出OC =OC 1=25,可得C 1F =25-2,再用含EF 的式子表示出EC 1,最后在Rt △EFC 1中,利用勾股定理构建方程求出EF 即可解决问题.【详解】解:∵矩形ABCD 的边AD =5,OA :OD =1:4,∴OA =1,OD =4,BC =5,由题意知AB ∥OC 1,∴∠ABO =∠D 1OC 1,又∵∠BAO =∠OD 1C 1=90°,∴△AOB ∼△D 1C 1O ,∴OA AB=D 1C 1OD 1,由折叠知OD 1=OD =4,D 1C 1=DC =AB ,∴1AB=AB 4,∴AB =2,即CD =2,连接OC ,设BC 与OC 1交于点F ,∴OC =OD 2+CD 2=42+22=25,∵∠FOA =∠OAB =∠ABF =90°,∴四边形OABF 是矩形,∴AB =OF =2,∠BFO =90°=∠EFC 1,OA =BF =1,∴CF =5-1=4,由折叠知OC 1=OC =25,EC 1=EC =CF -EF =4-EF ,∴C 1F =OC 1-OF =25-2,∵在Rt △EFC 1中,EF 2+C 1F 2=EC 12,∴EF 2+25-2 2=4-EF 2,解得:EF =5-1,∴点E 的坐标是1-5,2 ,故选:D .【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,折叠的性质以及勾股定理的应用等知识,通过证明三角形相似,利用相似三角形的性质求出AB 的长是解题的关键.5(2023·浙江嘉兴·统考中考真题)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为()A.32B.85C.53D.95【答案】D 【分析】根据折叠的性质得出EB =EH =EC ,CH ⊥BD ,等面积法求得CH ,根据tan ∠BDC =BC CD =CH HD,即可求解.【详解】解:如图所示,连接CH ,∵折叠,∴EB =EH =EC∴B ,C ,H 在以E 为圆心,BC 为直径的圆上,∴∠BHC =90°,∴CH ⊥BD∵矩形ABCD ,其中AB =3,BC =4,∴BC =4,CD =3∴BD =BC 2+CD 2=5,∴CH =BC ×CD BD =125,∵tan ∠BDC =BC CD =CH HD ∴HD =95,故选:D .【点睛】本题考查了矩形与折叠问题,直径所对的圆周角是直角,勾股定理,正切的定义,熟练掌握以上知识是解题的关键.6(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若AB =2,BC =4,则四边形EFGH 的面积为()A.2B.4C.5D.6【答案】B【分析】由题意可得四边形EFGH 是菱形,FH =AB =2,GE =BC =4,由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF ⊥GH ,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵FH =AB =2,GE =BC =4,∴菱形EFGH 的面积为12FH ⋅GE =12×2×4=4.故选:B .【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.7(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB 于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ=AM=4.∵MB=AB-AM=5-4=1,∴BQ=MQ-MB=4-1=3.故②正确;∵CD∥AB,∴△CDP∽△BQP.∴CP BP =CDBQ=53.∵CP+BP=BC=5,∴BP=38BC=158.故③正确;∵CD∥AB,∴△CDF∽△BEF.∴DF EF =CDBE=CDBQ+QE=53+5=58.∴EF DE =8 13.∵QEBE=58,∴EF DE ≠QEBE.∴△EFQ与△EDB不相似.∴∠EQF≠∠EBD.∴BD与FQ不平行.故④错误;故选A.【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.二、填空题8(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B ,折痕为AF,则∠AFB 的大小为度.【答案】45【分析】根据题意求得正五边形的每一个内角为155-2×180°=108°,根据折叠的性质求得∠BAM,∠FAB ,在△AFB 中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为155-2×180°=108°,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,则∠BAM=12∠BAE=12×108°=54°,∵将纸片折叠,使边AB落在线段AM上,点B的对应点为点B ,折痕为AF,∴∠FAB =12∠BAM=12×54°=27°,∠AB F=∠B=108°,在△AFB 中,∠AFB =180°-∠B-∠FAB =180°-108°-27°=45°,故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.9(2023·全国·统考中考真题)如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点B .若点B 刚好落在边AC上,∠CB E= 30°,CE=3,则BC的长为.【答案】9【分析】根据折叠的性质以及含30度角的直角三角形的性质得出B E=BE=2CE=6,即可求解.【详解】解:∵将△BDE沿DE折叠,点B的对应点为点B .点B 刚好落在边AC上,在Rt△ABC中,∠C =90°,BC<AC,∠CB E=30°,CE=3,∴B E=BE=2CE=6,∴BC=CE+BE=3+6=9,故答案为:9.【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.10(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点A落在长边CD上的点A处,并得到折痕DE,小宇测得长边CD=8,则四边形A EBC的周长为.【答案】16【分析】可证∠ADE=∠AED,从而可得AD=AE,再证四边形A EBC是平行四边形,可得C▱A EBC=2A C+A E,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AED=∠A DE,由折叠得:∠ADE=∠A DE,AD=A D,AE=A E,∴∠ADE=∠AED,∴AD=AE,∴AD=AE=A D=A E,∴AB-BE=CD-A D,∴A C=BE,∴四边形A EBC是平行四边形,∴C▱A EBC =2A C+A E=2A C+A D=2CD=16.故答案:16.【点睛】本题考查了平行四边形判定及性质,折叠的性质,掌握相关的判定方法及性质是解题的关键.11(2023·辽宁·统考中考真题)如图,在三角形纸片ABC中,AB=AC,∠B=20°,点D是边BC上的动点,将三角形纸片沿AD对折,使点B落在点B 处,当B D⊥BC时,∠BAD的度数为.【答案】25°或115°【分析】分两种情况考虑,利用对称的性质及三角形内角和等知识即可完成求解.【详解】解:由折叠的性质得:∠ADB =∠ADB;∵B D⊥BC,∴∠BDB =90°;①当B 在BC下方时,如图,∵∠ADB+∠ADB +∠BDB =360°,∴∠ADB=12×(360°-90°)=135°,∴∠BAD=180°-∠B-∠ADB=25°;②当B 在BC上方时,如图,∵∠ADB+∠ADB =90°,∴∠ADB=12×90°=45°,∴∠BAD=180°-∠B-∠ADB=115°;综上,∠BAD 的度数为25°或115°;故答案为:25°或115°.【点睛】本题考查了折叠的性质,三角形内角和,注意分类讨论.12(2023·江苏徐州·统考中考真题)如图,在Rt △ABC 中,∠C =90°,CA =CB =3,点D 在边BC 上.将△ACD 沿AD 折叠,使点C 落在点C 处,连接BC ,则BC 的最小值为.【答案】32-3【分析】由折叠性质可知AC =AC =3,然后根据三角不等关系可进行求解.【详解】解:∵∠C =90°,CA =CB =3,∴AB =AC 2+BC 2=32,由折叠的性质可知AC =AC =3,∵BC ≥AB -AC ,∴当A 、C 、B 三点在同一条直线时,BC 取最小值,最小值即为BC =AB -AC =32-3;故答案为32-3.【点睛】本题主要考查勾股定理、折叠的性质及三角不等关系,熟练掌握勾股定理、折叠的性质及三角不等关系是解题的关键.13(2023·黑龙江齐齐哈尔·统考中考真题)矩形纸片ABCD 中,AB =3,BC =5,点M 在AD 边所在的直线上,且DM =1,将矩形纸片ABCD 折叠,使点B 与点M 重合,折痕与AD ,BC 分别交于点E ,F ,则线段EF 的长度为.【答案】154或325【分析】分点M 在D 点右边与左边两种情况分别画出图形,根据勾股定理即可求解.【详解】解:∵折叠,∴OM =OB ,EF ⊥BM ,∵四边形ABCD 是矩形,∴AD ∥BC∴∠M =∠OBF ,∠MEO =∠BFO ,又OM =OB∴△OEM ≌△OFB∴OF =OB ,当M 点在D 点的右侧时,如图所示,设BM ,EF 交于点O ,∵AB =3,BC =5,DM =1,∴Rt △ABM 中,BM =AM 2+AB 2=32+62=35,则OM =12BM =325,∵tan M =EO OM =AB AM =36=12,∴EO =12OM ∴EF =2OE =OM =325,当M 点在D 点的左侧时,如图所示,设BM ,EF 交于点O ,∵AB =3,BC =5,DM =1,∴Rt △ABM 中,BM =AM 2+AB 2=32+42=5则OM =12BM =52,∵tan ∠EMO =EO OM =AB AM =34,∴EO =34OM ∴EF =2OE =32OM =154,综上所述,EF 的长为:154或325,故答案为:154或325.【点睛】本题考查了矩形与折叠问题,勾股定理,分类讨论是解题的关键.14(2023·四川凉山·统考中考真题)如图,在Rt △ABC 纸片中,∠ACB =90°,CD 是AB 边上的中线,将△ACD 沿CD 折叠,当点A 落在点A 处时,恰好CA ⊥AB ,若BC =2,则CA =.【答案】23【分析】由Rt△ABC,∠ACB=90°,CD是AB边上的中线,可知CD=AD,则∠ACD=∠A,由翻折的性质可知,∠ACD=∠A CD,A C=AC,则∠ACD=∠A CD=∠A,如图,记A C与AB的交点为E,∠CEA=90°,由∠CEA+∠ACD+∠A CD+∠A=180°,可得∠A=30°,根据A C=AC=BCtan∠A,计算求解即可.【详解】解:∵Rt△ABC,∠ACB=90°,CD是AB边上的中线,∴CD=AD,∴∠ACD=∠A,由翻折的性质可知,∠ACD=∠A CD,A C=AC,∴∠ACD=∠A CD=∠A,如图,记A C与AB的交点为E,∵CA ⊥AB,∴∠CEA=90°,∵∠CEA+∠ACD+∠A CD+∠A=180°,∴∠A=30°,∴A C=AC=BC=23,tan∠A故答案为:23.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,翻折的性质,等边对等角,三角形内角和定理,正切.解题的关键在于对知识的熟练掌握与灵活运用.15(2023·新疆·统考中考真题)如图,在▱ABCD中,AB=6,BC=8,∠ABC=120°,点E是AD上一动点,将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,DE的长为.【答案】37-3【分析】过点C作CH⊥AD交AD的延长线于点H,根据平行四边形的性质以及已知条件得出∠ADC=∠ABC =120°,∠HDC =60°,进而求得DH ,HC ,根据折叠的性质得出CB =CE ,进而在Rt △ECH 中,勾股定理即可求解.【详解】解:如图所示,过点C 作CH ⊥AD 交AD 的延长线于点H ,∵在▱ABCD 中,AB =6,BC =8,∠ABC =120°,∴∠ADC =∠ABC =120°,∠HDC =60°,CD =AB =6,AD =CB =8,∴DH =DC ×cos ∠HDC =12DC =3,在Rt △ECH 中,HC =CD 2-DH 2=62-32=33∵将△ABE 沿BE 折叠得到△A BE ,当点A 恰好落在EC 上时,∴∠AEB =∠CEB又AD ∥BC∴∠EBC =∠AEB ∴∠EBC =∠CEB∴CE =BC =8设ED =x ,∴EH =x +3在Rt △ECH 中,EC 2=EH 2+HC 2∴82=x +3 2+33 2解得:x =37-3(负整数)故答案为:37-3.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键.16(2023·江苏扬州·统考中考真题)如图,已知正方形ABCD 的边长为1,点E 、F 分别在边AD 、BC 上,将正方形沿着EF 翻折,点B 恰好落在CD 边上的点B 处,如果四边形ABFE 与四边形EFCD 的面积比为3∶5,那么线段FC 的长为.【答案】38【分析】连接BB ,过点F 作FH ⊥AD 于点H ,设CF =x ,则DH =x ,则BF =1-x ,根据已知条件,分别表示出AE ,EH ,HD ,证明△EHF ≌△B CB ASA ,得出EH =B C =54-2x ,在Rt △B FC 中,B F 2=B C 2+CF 2,勾股定理建立方程,解方程即可求解.【详解】解:如图所示,连接BB ,过点F 作FH ⊥AD 于点H ,∵正方形ABCD 的边长为1,四边形ABFE 与四边形EFCD 的面积比为3∶5,∴S 四边形ABFE =38×1=38,设CF =x ,则DH =x ,则BF =1-x∴S 四边形ABFE =12AE +BF ×AB =38即12AE +1-x ×1=38∴AE =x -14∴DE =1-AE =54-x ,∴EH =ED -HD =54-x -x =54-2x ,∵折叠,∴BB ⊥EF ,∴∠1+∠2=∠BGF =90°,∵∠2+∠3=90°,∴∠1=∠3,又FH =BC =1,∠EHF =∠C∴△EHF ≌△B CB ASA ,∴EH =B C =54-2x 在Rt △B FC 中,B F 2=B C 2+CF 2即1-x 2=x 2+54-2x 2解得:x =38,故答案为:38.【点睛】本题考查了正方形的性质,折叠的性质,勾股定理,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.17(2023·湖北随州·统考中考真题)如图,在矩形ABCD 中,AB =5,AD =4,M 是边AB 上一动点(不含端点),将△ADM 沿直线DM 对折,得到△NDM .当射线CN 交线段AB 于点P 时,连接DP ,则△CDP 的面积为;DP 的最大值为.【答案】10;25【分析】(1)根据等底等高的三角形和矩形面积关系分析求解;(2)结合勾股定理分析可得,当AP最大时,DP即最大,通过分析点N的运动轨迹,结合勾股定理确定AP的最值,从而求得DP的最大值.【详解】解:由题意可得△CDP的面积等于矩形ABCD的一半,∴△CDP的面积为12AB⋅AD=12×4×5=10,在Rt△APD中,PD=AD2+AP2,∴当AP最大时,DP即最大,由题意可得点N是在以D为圆心4为半径的圆上运动,当射线CN与圆相切时,AP最大,此时C、N、M 三点共线,如图:由题意可得:AD=ND,∠MND=∠BAD=∠B=90°,∴∠NDC+∠DCN=90°,∠DCN+∠MCB=90°,∴∠NDC=∠MCB∵AD=BC,∴DN=BC,∴△NDC≌△BCM,∴CN=BM=CD2-DN2=3,∴AP=AB-BP=2,在Rt△APD中,PD=AD2+AP2=42+22=25,故答案为:10,25.【点睛】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,分析点的运动轨迹,证明三角形全等是解决问题的关键.18(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B →C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P 的运动过程中,线段CB 的最小值为.【答案】11-2/-2+11【分析】根据折叠的性质得出B 在A为圆心,2为半径的弧上运动,进而分类讨论当点P在BC上时,当点P在DC上时,当P在AD上时,即可求解.【详解】解:∵在矩形ABCD中,AB=2,AD=7,∴BC=AD=7,AC=BC2+AB2=7+4=11,如图所示,当点P在BC上时,∵AB =AB=2∴B 在A为圆心,2为半径的弧上运动,当A,B ,C三点共线时,CB 最短,此时CB =AC-AB =11-2,当点P在DC上时,如图所示,此时CB >11-2当P在AD上时,如图所示,此时CB >11-2综上所述,CB 的最小值为11-2,故答案为:11-2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19(2023·湖北武汉·统考中考真题)如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.20(2023·广东深圳·统考中考真题)如图,在△ABC 中,AB =AC ,tan B =34,点D 为BC 上一动点,连接AD ,将△ABD 沿AD 翻折得到△ADE ,DE 交AC 于点G ,GE <DG ,且AG :CG =3:1,则S 三角形AGE S 三角形ADG =.【答案】4975【分析】AM ⊥BD 于点M ,AN ⊥DE 于点N ,则AM =AN ,过点G 作GP ⊥BC 于点P ,设AM =12a ,根据tan B =AM BM =34得出BM =16a ,继而求得AB =AM 2+BM 2=20a ,CG =5a ,AG =15a ,再利用tan C =tan B =GP CP=34,求得GP =3a ,CP =4a ,利用勾股定理求得GN =AG 2-AN 2=9a ,EN =AE 2-AN 2=16a ,故EG =EN -GN =7a ,【详解】由折叠的性质可知,DA 是∠BDE 的角平分线,AB =AE ,用HL 证明△ADM ≌△ADN ,从而得到DM =DN ,设DM =DN =x ,则DG =x +9a ,DP =12a -x ,利用勾股定理得到DP 2+GP 2=DG 2即12a -x 2+3a 2=x +9a 2,化简得x =127a ,从而得出DG =757a ,利用三角形的面积公式得到:S 三角形AGE S 三角形ADG =12EG ⋅AN 12DG ⋅AN =EG DG =7a 757a =4975.作AM ⊥BD 于点M ,AN ⊥DE 于点N ,则AM =AN ,过点G 作GP ⊥BC 于点P ,∵AM ⊥BD 于点M ,∴tan B =AM BM=34,设AM =12a ,则BM =16a ,AB =AM 2+BM 2=20a ,又∵AB =AC ,AM ⊥BD ,∴CM =AM =12a ,AB =AC =20a ,∠B =∠C ,∵AG :CG =3:1,即CG =14AC ,∴CG =5a ,AG =15a ,在Rt △PCG 中,CG =5a ,tan C =tan B =GP CP=34,设GP =3m ,则CP =4m ,CG =GP 2+CP 2=5m∴m =a∴GP =3a ,CP =4a ,∵AG =15a ,AM =AN =12a ,AN ⊥DE ,∴GN =AG 2-AN 2=9a ,∵AB =AE =20a ,AN =12a ,AN ⊥DE∴EN =AE 2-AN 2=16a ,∴EG =EN -GN =7a ,∵AD =AD ,AM =AN ,AM ⊥BD ,AN ⊥DE ,∴△ADM ≌△ADN HL ,∴DM =DN ,设DM =DN =x ,则DG =DN +GN =x +9a ,DP =CM -CP -DM =16a -4a -x =12a -x ,在Rt △PDG 中,DP 2+GP 2=DG 2,即12a -x 2+3a 2=x +9a 2,化简得:x =127a ,∴DG =x +9a =757a ,∴S 三角形AGE S 三角形ADG =12EG ⋅AN 12DG ⋅AN =EG DG =7a 757a =4975故答案是:4975.【点睛】本题考查解直角三角形,折叠的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等知识,正确作出辅助线并利用勾股定理列出方程是解题的关键.21(2023·黑龙江·统考中考真题)矩形ABCD 中,AB =3,AD =9,将矩形ABCD 沿过点A 的直线折叠,使点B 落在点E 处,若△ADE 是直角三角形,则点E 到直线BC 的距离是.【答案】6或3+22或3-22【分析】由折叠的性质可得点E 在以点A 为圆心,AB 长为半径的圆上运动,延长BA 交⊙A 的另一侧于点E ,则此时△ADE 是直角三角形,易得点E 到直线BC 的距离;当过点D 的直线与圆相切于点E 时,△ADE 是直角三角形,分两种情况讨论即可求解.【详解】解:由题意矩形ABCD 沿过点A 的直线折叠,使点B 落在点E 处,可知点E 在以点A 为圆心,AB 长为半径的圆上运动,如图,延长BA 交⊙A 的另一侧于点E ,则此时△ADE 是直角三角形,点E 到直线BC 的距离为BE 的长度,即BE =2AB =6,当过点D 的直线与圆相切与点E 时,△ADE 是直角三角形,分两种情况,①如图,过点E 作EH ⊥BC 交BC 于点H ,交AD 于点G ,∵四边形ABCD 是矩形,∴EG ⊥AD ,∴四边形ABHG 是矩形,GH =AB =3∵AE =AB =3,AE ⊥DE ,AD =9,由勾股定理可得DE =92-32=62,∵S △AED =12AE ⋅DE =12AD ⋅EG ,∴EG =22,∴E 到直线BC 的距离EH =EG +GH =3+22,②如图,过点E 作EN ⊥BC 交BC 于点N ,交AD 于点M ,∵四边形ABCD 是矩形,∴NM ⊥AD ,∴四边形ABNM 是矩形,MN =AB =3∵AE =AB =3,AE ⊥DE ,AD =9,由勾股定理可得DE =92-32=62,∵S △AED =12AE ⋅DE =12AD ⋅EM ,∴EM =22,∴E 到直线BC 的距离EN =MN -GN =3-22,综上,6或3+22或3-22,故答案为:6或3+22或3-22.【点睛】本题考查了矩形的折叠问题切线的应用,以及勾股定理,找到点E 的运动轨迹是解题的关键.22(2023·四川成都·统考中考真题)如图,在Rt △ABC 中,∠ABC =90°,CD 平分∠ACB 交AB 于点D ,过D 作DE ∥BC 交AC 于点E ,将△DEC 沿DE 折叠得到△DEF ,DF 交AC 于点G .若AG GE =73,则tan A =.【答案】377【分析】过点G 作GM ⊥DE 于M ,证明△DGE ∽△CGD ,得出DG 2=GE ×GC ,根据AD ∥GM ,得AG GE=73=DM ME ,设GE =3,AG =7,EM =3n ,则DM =7n ,则EC =DE =10n ,在Rt △DGM 中,GM 2=DG 2-DM 2,在Rt △GME 中,GM 2=GE 2-EM 2,则DG 2-DM 2=GE 2-EM 2,解方程求得n =34,则EM=94,GE =3,勾股定理求得GM ,根据正切的定义,即可求解.【详解】解:如图所示,过点G 作GM ⊥DE 于M ,∵CD 平分∠ACB 交AB 于点D ,DE ∥BC∴∠1=∠2,∠2=∠3∴∠1=∠3∴ED =EC∵折叠,∴∠3=∠4,∴∠1=∠4,又∵∠DGE =∠CGD∴△DGE ∽△CGD∴DG CG =GE DG∴DG 2=GE ×GC ∵∠ABC =90°,DE ∥BC ,则AD ⊥DE ,∴AD ∥GM∴AG GE =DM ME ,∠MGE =∠A ,∵AG GE=73=DM ME 设GE =3,AG =7,EM =3n ,则DM =7n ,则EC =DE =10n ,∵DG 2=GE ×GC∴DG 2=3×3+10n =9+30n在Rt △DGM 中,GM 2=DG 2-DM 2在Rt △GME 中,GM 2=GE 2-EM 2∴DG 2-DM 2=GE 2-EM 2即9+30n -7n 2=32-3n 2解得:n =34∴EM =94,GE =3则GM =GE 2-ME 2=32-94 2=374∴tan A =tan ∠EGM =ME MG =94374=377故答案为:377.【点睛】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.23(2023·四川南充·统考中考真题)如图,在等边△ABC 中,过点C 作射线CD ⊥BC ,点M ,N 分别在边AB ,BC 上,将△ABC 沿MN 折叠,使点B 落在射线CD 上的点B ′处,连接AB ′,已知AB =2.给出下列四个结论:①CN +NB ′为定值;②当BN =2NC 时,四边形BMB ′N 为菱形;③当点N 与C 重合时,∠AB ′M =18°;④当AB ′最短时,MN =72120.其中正确的结论是(填写序号)【答案】①②④【分析】根据等边三角形的性质可得BC =2,根据折叠的性质可得NB ′=NB ,由此即可判断①正确;先解直角三角形可得∠CB N =30°,从而可得∠B NC =60°=∠B ,然后根据平行线的判定可得BM ∥B N ,MB ∥BN ,根据菱形的判定即可得②正确;先根据折叠的性质可得B C =BC ,∠MB C =∠B =60°,从而可得AC =B C ,再根据等腰三角形的性质可得∠AB C =∠CAB =75°,然后根据∠AB ′M =∠AB C -∠MB C 即可判断③错误;当AB ′最短时,则AB ′⊥CD ,过点M 作ME ⊥BC 于点E ,连接BB ,交MN 于点O ,先利用勾股定理求出BN =74,BB =7,根据折叠的性质可得OB =72,设BE =y y >0 ,则EN =74-y ,BM =2y ,再利用勾股定理可得EM =3y ,MN =4916-72y +4y 2,然后根据S △BMN =12BN ⋅EM =12OB ⋅MN 建立方程,解一元二次方程可得y 的值,由此即可判断④正确.【详解】解:∵△ABC 是等边三角形,且AB =2,∴BC =AC =AB =2,∠B =∠ACB =60°,由折叠的性质得:NB ′=NB ,∴CN +NB ′=CN +NB =BC =2,是定值,则结论①正确;当BN =2NC 时,则NB ′=2NC ,在Rt △CB N 中,sin ∠CB N =NC NB ′=12,∴∠CB N =30°,∴∠B NC =60°=∠B ,∴BM ∥B N ,由折叠的性质得:∠MB N =∠B =60°,∴∠MB N =∠B NC =60°,∴MB ∥BN ,∴四边形BMB ′N 为平行四边形,又∵NB ′=NB ,∴四边形BMB ′N 为菱形,则结论②正确;如图,当点N 与C 重合时,∵CD ⊥BC ,∴∠BCD =90°,由折叠的性质得:B C =BC ,∠MB C =∠B =60°,∴AC =B C ,∠ACB =∠BCD -∠ACB =30°,∴∠AB C =∠CAB =12×180°-30° =75°,∴∠AB ′M =∠AB C -∠MB C =15°,则结论③错误;当AB ′最短时,则AB ′⊥CD ,如图,过点M 作ME ⊥BC 于点E ,连接BB ,交MN 于点O ,∵AC =2,∠ACB =30°,∴B C =AC ⋅cos30°=3,∴BB =BC 2+B C 2=7,由折叠的性质得:BB ⊥MN ,OB =12BB =72,设BN =B N =x ,则CN =BC -BN =2-x ,在Rt △B CN 中,CN 2+B C 2=B N 2,即2-x 2+3 2=x 2,解得x =74,∴BN =74, 设BE =y y >0 ,则EN =74-y ,BM =2y ,∴EM =BM 2-BE 2=3y ,∴MN =EN 2+EM 2=4916-72y +4y 2,∵S △BMN =12BN ⋅EM =12OB ⋅MN ,∴74×3y =72×4916-72y +4y 2,解得y =710或y =-72<0(不符合题意,舍去),∴MN =4916-72×710+4×710 2=72120,则结论④正确;综上,正确的结论是①②④,故答案为:①②④.【点睛】本题考查了等边三角形的性质、折叠的性质、解直角三角形、菱形的判定、一元二次方程的应用等知识点,熟练掌握折叠的性质是解题关键.24(2023·浙江杭州·统考中考真题)如图,在△ABC 中,AB =AC ,∠A <90°,点D ,E ,F 分别在边AB ,BC ,CA 上,连接DE ,EF ,FD ,已知点B 和点F 关于直线DE 对称.设BC AB =k ,若AD =DF ,则CF FA=(结果用含k 的代数式表示).【答案】k 22-k 2【分析】先根据轴对称的性质和已知条件证明DE ∥AC ,再证△BDE ∽△BAC ,推出EC =12k ⋅AB ,通过证明△ABC ∽△ECF ,推出CF =12k 2⋅AB ,即可求出CF FA的值.【详解】解:∵点B 和点F 关于直线DE 对称,∴DB =DF ,∵AD =DF ,∴AD =DB .∵AD =DF ,∴∠A =∠DFA ,∵点B 和点F 关于直线DE 对称,∴∠BDE =∠FDE ,又∵∠BDE +∠FDE =∠BDF =∠A +∠DFA ,∴∠FDE =∠DFA ,∴DE ∥AC ,∴∠C =∠DEB ,∠DEF =∠EFC ,∵点B 和点F 关于直线DE 对称,∴∠DEB =∠DEF ,∴∠C =∠EFC ,∵AB =AC ,∴∠C =∠B ,在△ABC 和△ECF 中,∠B =∠C ∠ACB =∠EFC ,∴△ABC ∽△ECF .∵在△ABC 中,DE ∥AC ,∴∠BDE =∠A ,∠BED =∠C ,∴△BDE ∽△BAC ,∴BE BC =BD BA =12,∴EC =12BC ,∵BC AB=k ,∴BC =k ⋅AB ,EC =12k ⋅AB ,∵△ABC ∽△ECF .∴AB EC =BC CF ,∴AB 12k ⋅AB =k ⋅AB CF ,解得CF =12k 2⋅AB ,∴CF FA =CF AC -CF =CF AB -CF =12k 2⋅AB AB -12k 2⋅AB =k 22-k 2.故答案为:k 22-k 2.【点睛】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明△ABC ∽△ECF .三、解答题25(2023·安徽·统考中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中,点A ,B ,C ,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.【答案】见解析【分析】(1)根据轴对称的性质找到A,B关于直线CD的对称点,A1,B1,连接A1,B1,则线段A1B1即为所求;(2)根据平移的性质得到线段A2B2即为所求;(3)勾股定理求得AM=BM=12+32=10,MN=12+32=10,则AM=MN证明△NPM≌△MQA 得出∠NMP+∠AMQ=90°,则AM⊥MN,则点M,N即为所求.【详解】(1)解:如图所示,线段A1B1即为所求;(2)解:如图所示,线段A2B2即为所求;(3)解:如图所示,点M,N即为所求如图所示,∵AM=BM=12+32=10,MN=12+32=10,∴AM=MN,又NP=MQ=1,MP=AQ=3,∴△NPM≌△MQA,∴∠NMP=∠MAQ,又∠MAQ+∠AMQ=90°,∴∠NMP+∠AMQ=90°∴AM⊥MN,∴MN垂直平分AB.【点睛】本题考查了轴对称作图,平移作图,勾股定理与网格问题,熟练掌握以上知识是解题的关键.26(2023·四川广安·统考中考真题)将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).【答案】见解析(答案不唯一,符合题意即可)【分析】根据轴对称图形和中心对称图形的性质进行作图即可.【详解】解:①要求是轴对称图形但不是中心对称图形,则可作等腰梯形,如图四边形ABCD即为所求;②要求是中心对称图形但不是轴对称图形,则可作一般平行四边形,如图四边形ABCD即为所求;③要求既是轴对称图形又是中心对称图形,则可作菱形、矩形等,如图四边形ABCD即为所求;④要求既不是轴对称图形又不是中心对称图形,则考虑作任意四边形,如图四边形ABCD即为所求.【点睛】本题考查轴对称图形和中心对称图形的概念及作图,轴对称图形:把一个图形沿着某条直线折叠,能够与另一个图形重合;中心对称图形:把一个图形绕着某个点旋转180°能够和原图形重合.27(2023·内蒙古通辽·统考中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM、BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=度;(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ的数量关系,并说明理由.【答案】(1)30(2)∠MBQ=∠CBQ,理由见解析【分析】(1)由正方形的性质结合折叠的性质可得出BM=AB=2BE,∠BEF=90°,进而可求出sin∠EMB=12,即得出∠EMB=30°;(2)由正方形的性质结合折叠的性质可证Rt△BCQ≅Rt△BMQ HL,即得出∠MBQ=∠CBQ.【详解】(1)解:∵对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,∴AB=BC=CD=AD=2BE,∠BEF=90°.∵在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,∴BM=AB=2BE.在Rt△BEM中,sin∠EMB=BEBM=BE2BE=12,∴∠EMB=30°.故答案为:30.(2)解:结论:∠MBQ=∠CBQ,理由如下:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠C=90°.由折叠可得:AB=BM,∠BAD=∠BMP=90°,∴BM=BC,∠BMQ=∠C=90°.又∵BQ=BQ,∴Rt△BCQ≌Rt△BMQ HL,∴∠MBQ=∠CBQ.【点睛】本题主要考查正方形的性质、折叠的性质、解直角三角形、三角形全等的判定和性质、勾股定理等知识点.熟练掌握上述知识并利用数形结合的思想是解题关键.28(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD 交于点E,F,连接BM.。
专题16 图形变换(平移、旋转、对称(翻折))一、单选题1.(2021·四川广元市·中考真题)下列图形均表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2021·江西中考真题)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为()A.2B.3C.4D.5OP .若点P关于3.(2021·河北中考真题)如图,直线l,m相交于点O.P为这两直线外一点,且 2.8直线l,m的对称点分别是点1P,2P,则1P,2P之间的距离可能..是()A.0 B.5 C.6 D.74.(2021·湖北宜昌市·中考真题)下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是()A.B.C.D.5.(2021·湖北武汉市·中考真题)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .6.(2021·四川广安市·中考真题)如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A .65︒B .70︒C .75︒D .80︒7.(2021·四川广安市·中考真题)下列几何体的主视图既是轴对称图形又是中心对称图形的是( ) A . B . C . D .8.(2021·天津中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .9.(2021·四川成都市·中考真题)在平面直角坐标系xOy 中,点()4,2M -关于x 轴对称的点的坐标是( )A .()4,2-B .4,2C .()4,2--D .()4,2-10.(2021·浙江丽水市·中考真题)四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是 (−1,b ),(1,b ),(2,b ),(3.5,b ),平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位11.(2021·四川自贡市·中考真题)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.12.(2021·湖南中考真题)下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(2021·湖北黄冈市·中考真题)下列图形中,是轴对称图形但不是中心对称图形的是( )A.等边三角形B.正六边形C.正方形D.圆14.(2021·浙江绍兴市·中考真题)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到15个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形15.(2020·青海中考真题)剪纸是我国传统的民间艺术.如图①,②将一张纸片进行两次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.16.(2020·山东济南市·中考真题)如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC'''',那么点B的对应点B'的坐标为()先沿y轴翻折,再向上平移3个单位长度,得到A B CA.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)17.(2020·四川中考真题)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到A BC''△.此时恰好点C在A C''上,A B'交AC于点E,则△ABE与△ABC的面积之比为()A.13B.12C.23D.3418.(2020·内蒙古赤峰市·中考真题)如图,Rt△ABC中,∠ACB = 90°,AB = 5,AC= 3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C' ,则四边形ABC'A'的面积是()A.15B.18C.20D.2219.(2020·四川绵阳市·中考真题)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条20.(2020·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O 顺时针旋转i个45°,得到正六边形i i i i iOA B C D E,则正六边形(2020)i i i i iOA B C D E i=的顶点iC的坐标是()A.(1,B.C.(1,2)-D.(2,1)21.(2020·江苏宿迁市·中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q 绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A B C D 22.(2020·江苏南通市·中考真题)以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限23.(2020·海南中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .24.(2020·湖北黄石市·中考真题)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--25.(2020·上海中考真题)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( ) A .平行四边形 B .等腰梯形 C .正六边形 D .圆26.(2020·湖北孝感市·中考真题)将抛物线21:23C y x x =-+向左平移1个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于x 轴对称,则抛物线3C 的解析式为( )A .22y x =--B .22y x =-+C .22y x =-D .22y x =+72.(2020·黑龙江牡丹江市·中考真题)如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,,将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为( )A .(2--,或2)-B .(2,C .(2,-D .(2--,或(2,28.(2020·河北中考真题)如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且AB CD =,C .应补充:且//AB CD D .应补充:且OA OC =,29.(2020·天津中考真题)如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A .AC DE =B .BC EF = C .AEFD ∠=∠ D .AB DF ⊥30.(2020·四川绵阳市·中考真题)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =,AD =2,将△ABC 绕点C 顺时针方向旋转后得△A B C '',当A B ''恰好经过点D 时,△B 'CD 为等腰三角形,若B B '=2,则A A '=( )A B.C D31.(2019·台湾中考真题)图1的摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟.若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟後,9号车厢才会运行到最高点?()A.10B.20C.152D.45232.(2019·台湾中考真题)如图,ABC∆中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,求EAF∠的度数为何?()A.113︒B.124︒C.129︒D.134︒33.(2019·山东济南市·中考真题)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线34.(2019·台湾中考真题)如图,有一三角形ABC的顶点B、C皆在直线L上,且其内心为I.今固定C 点,将此三角形依顺时针方向旋转,使得新三角形A B C''的顶点A'落在L上,且其内心为I'.若A B C∠<∠<∠,则下列叙述何者正确?()A.IC和I A''平行,II'和L平行B.IC和I A''平行,II'和L不平行C .IC 和I A ''不平行,II '和L 平行D .IC 和I A ''不平行,II '和L 不平行35.(2019·河北中考真题)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .2二、填空题目 1.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB 剪开,再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒,则OBA ∠的度数为______.2.(2021·山东临沂市·中考真题)在平面直角坐标系中,ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(1,1)-、(2,1),将ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点1C 的坐标是___.3.(2021·青海中考真题)如图所示的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合,若每个叶片的面积为4cm 2,∠AOB =120°,则图中阴影部分的面积为__________.4.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.5.(2021·湖北随州市·中考真题)如图,在Rt ABC 中,90C ∠=︒,30ABC ∠=︒,BC =,将ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)6.(2021·重庆中考真题)如图,三角形纸片ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,BF =4,CF=6,将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为__________.7.(2020·江苏镇江市·中考真题)点O 是正五边形ABCDE 的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O 至少旋转_____°后能与原来的图案互相重合.8.(2020·江苏镇江市·中考真题)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于_____.9.(2020·辽宁铁岭市·中考真题)一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为____________cm .10.(2020·四川凉山彝族自治州·中考真题)如图,矩形ABCD 中,AD=12,AB=8,E 是AB 上一点,且EB=3,F 是BC 上一动点,若将EBF ∆沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距为 .11.(2020·江苏宿迁市·中考真题)如图,在矩形ABCD 中,AB=1,,P 为AD 上一个动点,连接BP ,线段BA 与线段BQ 关于BP 所在的直线对称,连接PQ ,当点P 从点A 运动到点D 时,线段PQ 在平面内扫过的面积为_____.12.(2020·四川绵阳市·中考真题)平面直角坐标系中,将点A (﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A 1的坐标为_____.13.(2020·辽宁阜新市·中考真题)如图,把ABC 沿AB 边平移到111A B C △的位置,图中所示的三角形的面积1S 与四边形的面积2S 之比为4∶5,若4AB =,则此三角形移动的距离1AA 是____________. 14.(2020·广西河池市·中考真题)如图,在Rt △ABC 中,∠B =90°,∠A =30°,AC =8,点D 在AB 上,且BD 点E 在BC 上运动.将△BDE 沿DE 折叠,点B 落在点B′处,则点B′到AC 的最短距离是_____. 15.(2020·山东烟台市·中考真题)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为_____.16.(2020·山东淄博市·中考真题)如图,将△ABC 沿BC 方向平移至△DEF 处.若EC =2BE =2,则CF 的长为_____.17.(2020·广西玉林市·中考真题)如图,在边长为3的正六边形ABCDEF 中,将四边形ADEF 绕点A 顺时针旋转到四边形AD E F '''处,此时边AD '与对角线AC 重叠,则图中阴影部分的面积是___________.18.(2020·广东广州市·中考真题)如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.19.(2020·广东广州市·中考真题)如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为_______.20.(2020·四川宜宾市·中考真题)如图,四边形ABCD 中,,,3,5,2,DA AB CB AB AD AB BC P ⊥⊥===是AB 上一动点,则PC PD +的最小值是________________21.(2020·甘肃天水市·中考真题)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.22.(2020·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,ABC 的顶点坐标分别为:()2,0A -,()1,2B ,()1,2C -.已知()1,0N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,…,依此类推,则点2020N 的坐标为______.23.(2020·上海中考真题)如图,在△ABC 中,AB =4,BC =7,∠B =60°,点D 在边BC 上,CD =3,联结AD .如果将△ACD 沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为____.24.(2020·天津中考真题)如图,在每个小正方形的边长为1的网格中,ABC 的顶点,A C 均落在格点上,点B 在网格线上,且53AB =.(Ⅰ)线段AC 的长等于___________;(Ⅱ)以BC 为直径的半圆与边AC 相交于点D ,若,P Q 分别为边,AC BC 上的动点,当BP PQ +取得最小值时,请用无刻度...的直尺,在如图所示的网格中,画出点,P Q ,并简要说明点,P Q 的位置是如何找到的(不要求证明).25.(2020·甘肃金昌市·中考真题)如图,在平面直角坐标系中,OAB ∆的顶点A ,B 的坐标分别为,(4,0),把OAB ∆沿x 轴向右平移得到CDE ∆,如果点D 的坐标为,则点E 的坐标为__________. 26.(2020·湖南张家界市·中考真题)如图,正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到CEFG 位置,使得点B 落在对角线CF 上,则阴影部分的面积是______.27.(2020·湖南湘西土家族苗族自治州·中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为CODE 向右平移的距离为___________.28.(2019·江苏镇江市·中考真题)将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD =_________.(结果保留根号) 29.(2019·新疆中考真题)如图,在△ABC 中,AB=AC=4,将△ABC 绕点A 顺时针旋转30°,得到△ACD ,延长AD 交BC 的延长线于点E ,则DE 的长为__________80.(2019·辽宁营口市·中考真题)如图,ABC 是等边三角形,点D 为BC 边上一点,122BD DC ==,以点D 为顶点作正方形DEFG ,且DE BC =,连接AE ,AG .若将正方形DEFG 绕点D 旋转一周,当AE 取最小值时,AG 的长为________.31.(2019·辽宁丹东市·中考真题)如图,在平面直角坐标系中,点A ,C 分别在x 轴、y 轴上,四边形ABCO是边长为4的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP ,AP ,当点P 满足DP+AP 的值最小时,直线AP 的解析式为_____.三、解答题1.(2021·浙江温州市·中考真题)如图44⨯与66⨯的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P 为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(23中.2.(2021·安徽中考真题)如图,在每个小正方形的边长为1个单位的网格中,ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △,画出111A B C △;(2)将(1)中的111A B C △绕点C 1逆时针旋转90 得到221A B C △,画出221A B C △.3.(2020·广西贵港市·中考真题)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(1,4),B(4,1),C(4,3).(1)画出将△ABC 向左平移5个单位得到的△A 1B 1C 1;(2)画出将△ABC 绕原点O 顺时针旋转90°得到的△A 2B 2C 2.4.(2020·广西中考真题)如图,在平面直角坐标系中,ABC 的三个顶点分别是A (1,3),B (4,4),C (2,1).(1)把ABC 向左平移4个单位后得到对应的A 1B 1C 1,请画出平移后的A 1B 1C 1; (2)把ABC 绕原点O 旋转180°后得到对应的A 2B 2C 2,请画出旋转后的A 2B 2C 2;(3)观察图形可知,A 1B 1C 1与A 2B 2C 2关于点( , )中心对称.5.(2020·辽宁阜新市·中考真题)如图,ABC 在平面直角坐标系中,顶点的坐标分别为()4,4A ,()1,1B ,()4,1C .(1)画出与ABC 关于y 轴对称的111A B C △;(2)将ABC 绕点1O 顺时针旋转90°得到222A B C △,2AA 弧是点A 所经过的路径,则旋转中心1O 的坐标为___________.(3)求图中阴影部分的面积(结果保留π).6.(2020·吉林中考真题)如图①、图②、图③都是33⨯的正方形网格,每个小正方形的顶点称为格点.A ,B ,C 均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB 重合的线段MN ,使MN 与AB 关于某条直线对称,且M ,N 为格点.(2)在图②中,画一条不与AC 重合的线段PQ ,使PQ 与AC 关于某条直线对称,且P ,Q 为格点. (3)在图③中,画一个DEF ∆,使DEF ∆与ABC ∆关于某条直线对称,且D ,E ,F 为格点.7.(2020·辽宁丹东市·中考真题)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A ,B ,C 的坐标分别为(1,2)A ,(3,1)B ,(2,3)C ,先以原点O 为位似中心在第三象限内画一个111A B C ∆,使它与ABC ∆位似,且相似比为2:1,然后再把ABC ∆绕原点O 逆时针旋转90°得到222A B C ∆.(1)画出111A B C ∆,并直接写出点1A 的坐标;(2)画出222A B C ∆,直接写出在旋转过程中,点A 到点2A 所经过的路径长.8.(2020·湖北武汉市·中考真题)在58⨯的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ;(2)在线段AB 上画点E ,使45BCE ︒∠=(保留画图过程的痕迹);(3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.祝你考试成功!祝你考试成功!。
一、选择题2.(2020·泰州)下列图形中的轴对称图形是( )A. B. C. D. 第2题图【答案】B【分析】B 选项是轴对称图形,有3条对称轴,D 选项是中心对称图形,A,C 选项既不是轴对称图形,也不是中心对称图形,故选B. 7.(2020·绍兴)在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是 ( )A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【答案】B【分析】y =(x +5)(x ﹣3)=(x +1)2﹣16,顶点坐标是(﹣1,﹣16).y =(x +3)(x ﹣5)=(x ﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y =(x +5)(x ﹣3)向右平移2个单位长度得到抛物线y =(x +3)(x ﹣5),故选B .2. (2020·烟台)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】C【分析】选项A 是中心对称图形不是轴对称图形,选项B 是轴对称图形不是中心对称图形,选项C 既是中心对称图形又是轴对称图形,选项D 是轴对称图形不是中心对称图形.2.(2020·盐城)下列图形中,既是轴对称又是中心对称图形的是( )【答案】B【分析】图形是轴对称图形,有6条对称轴;绕对称轴交点旋转180度后能和自身重合,也是中心对称图形.故选B . 2.(2020·青岛)下列四个图形中,既是轴对称图形,又是中心对称圄彤的是A .B .C .D .【答案】D【分析】中心对称图形是指绕图形内某点旋转180°后能与自身完全重合的图形.能确定出对称中心的图形为中心对称图形.A 、C 只是轴对称图形,B 只是中心对称图形,D 既是轴对称图形,又是中心对称图形,故选D . 6.(2020·青岛)如图,将线段AB 先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A ′B ′,则点B 的对应点B ′的坐标是( )A .(-4,1)B .(-1,2)C .(4,-1)D .(1,-2)【答案】D【分析】本题考查图形变换,根据题意画出图形,可知点B 的对应点B ′的坐标是(1,-2),故选D . 4.(2020·衡阳)下列图形既是轴对称图形,又是中心对称图形的是( )【答案】D .【分析】判断是否是中心对称图形,关键要确定对称中心;判断是否是轴对称图形,关键要确定对称轴.解:根据中心对称图形的定义, D 图形是中心对称图形,根据轴对称图形的定义, 得图形A, B,C,D 都是轴对称图形,所以既是轴对称图形 是中心对称图形的是D,故选D . 4.(2020·武汉)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善【答案】D【分析】四个方块字中可以看作轴对称图形的是“善”,故选D .1. (2020·怀化) 怀化市是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是( )A B C D 【答案】C.【分析】A.是轴对称图形,不是中心对称图形,故选项错误;B.是轴对称图形,不是中心对称图形,故选项错误;C.是轴对称图形,是中心对称图形,故选项正确;D.是轴对称图形,不是中心对称图形,故选项错误.故选C.2. (2020·无锡)下列图案中,是中心对称图形但不是轴对称图形的是()【答案】C【分析】本题考查了中心对称图形与轴对称图形的概念, A.是轴对称图形,也是中心对称图形.故错误;B.是轴对称图形,也是中心对称图形.故错误;C.不是轴对称图形,是中心对称图形.故正确;D.不是轴对称图形,是旋转对称图形.故错误.故选C.3. (2020·济宁)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形与中心对称图形的定义可知A正确.4. (2020·泰安)下列图形:其中,是轴对称图形且有两条对称轴的是A.①②B.②③C.②④D.③④【答案】A【分析】四个图形中,轴对称图形有:①②③,其中图①有2条对称轴,图②有2条对称轴,图③有4条对称轴,故选A.5.(2020·枣庄)下列图形,可以看做中心对称图形的是( )【答案】B【分析】中心对称图形是该图形绕某点旋转180°后,可以和原图形重合,则该图形称为中心对称图形,A,C选项旋转120°或240°可重合,但是旋转180°不能重合,故错误;D选项旋转72°的整数倍均可与圆图形重合,但是旋转180°不能重合,故错误;B选项正确.故选B.6. (2020·枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABE的位置,若四边形AECF的面积为20,DE=2,则AE的长为( )A.4B.C.6D.【答案】D【分析】由旋转可得,S正方形ABCD=S四边形AECF=20,即AD2=20,∴AD=,∵DE=2,∴在Rt△ADE中,AE=故选D.7. (2020·达州),剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()【答案】D【分析】A,B,C都不是轴对称图形,只有D是轴对称图形.8.(2020·乐山)下列四个图形中,可以由如图通过平移得到的是()A.B.C.D.【答案】D【分析】本题考查了平移的定义,已知原图到A、B、C三个选项的图形都是旋转只有原图到D选项的图形是平移,故选D.9. (2020·自贡)下列图案中,既是轴对称图形又是中心对称图形的是()【答案】D.【分析】对于A,是轴对称图形,不是中心对称图形,不符合题意;对于B,是中心对称图形,不是轴对称图形,不符合题意;对于C,是中心对称图形,不是轴对称图形,不符合题意;对于D,既是轴对称图形,也是中心对称图形,符合题意.故选D.10. (2020·天津)在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作轴对称图形的是( )A. 美B. 丽C.校D. 园【答案】A【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.选项A 可以,选项B,C,D 都有不能够重合的部分,故选A.11. (2020·天津)如图,将△ABC 绕点C 顺时针旋转得到△DEC,使点A 的对应点D 恰好落在边AB 上,点B的对应点为E,连接BE ,下列结论一定正确的是( ) A. AC=AD B. AB ⊥EB C. BC=DE D.∠A=∠EBC 【答案】D【分析】由旋转的性质可知,AC=CD ,但∠A 不一定是60°,所以不能证明AC=AD ,所以选项A 错误;由于旋转角度不定,所以选项B 不能确定;因为不确定AB 和BC 的数量关系,所以BC 和DE 的关系不能确定;由旋转的的性质可知∠ACD=∠BCE ,AC=DC,BC=EC,所以2∠A=180°-∠ACD ,2∠EBC=180°-∠BCE,从而可证选项D 是正确的.二、填空题 15.(2020·烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO 的顶点坐标分别为(2,1)A --,(2,3)B --,(0,0)O ,111A B O 的顶点坐标为1(1,1)A -,1(1,5)B -,1(5,1)O ,△ABO 与111A B O 是以点P 为位似中心的位似图形,则P 点的坐标为 .17.(2020·烟台)小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .【答案】22.5︒【分析】在解本题的过程中,可以找一张正方形的纸片进行如题操作,通过测量,来得到答案,也可以利用图形的轴对称的性质,直接得到AOB ∠的度数是22.5︒. 15.(2020·山西)如图,在△ABC 中,∠BAC =90°,AB =AC =10cm,点D 为△ABC 内一点,∠BAD =15°,AD =6cm,连接BD,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E,连接DE,DE 交AC 于点F,则CF 的长为________cm.第15题图【答案】10-【解题过程】∵∠BAC =90°,∠BAD =15°,∴∠DAF =75°由旋转可知,∠ADF =45°,过点A 作AM ⊥DF 于点M,∴AM=2AD =32,∴AF =23AM =26,∵AC =AB =10,∴FC =AC -AF =10-26.第15题答图16.(2020·武汉)问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE , DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG =24.点O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是___________.【答案】229【分析】由题构造等边△MFN ,△MHO ,图中2个彩色三角形全等(△MFH ≌△MNO (SAS )) ∴OM +ON +OG =HO +HF +OG ,∴距离和最小值为FG =229(Rt △FQG 勾股定理)15.(2020·益阳)在如图所示的方格纸(1格长为1个单位长度)中,△ABC 的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A ′B ′C ′,使各顶点仍在格点上,则其旋转角的度数是.第14题图【答案】90°【分析】找到一组对应点A 、A ′,并将其与旋转中心连接起来,确定旋转角,进而得到旋转角的度数为90°. 1. (2020·淄博)如图,在正方形网格中,格点△ABC 绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A 与点A1,点B 与点B1,点C 与点C1是对应点,则α=度.44426图2QFHGNOM【答案】90°【分析】∵旋转图形的对称中心到对应点的距离相等,∴分别作边AC 和A 1C 1的垂直平分线,两直线相交于点D ,则点D 即为旋转中心,连接AD ,A 1D ,∴∠ADA 1=α=90°.三、解答题 23.(2020·淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,点A 、B 都在格点上(两条网格线的交点叫格点).(1)将线段AB 向上平移两个单位长度,点A 的对应点为点1A ,点B 的对应点为点1B ,请画出平移后的线段11B A ; (2)将线段11B A 绕点1A 按逆时针方向旋转90°,点1B 的对应点为点2B ,请画出旋转后的线段21B A ; (3)连接2AB 、2BB ,求△2ABB 的面积.第23题图【解题过程】(1)作图如下:(2)作图如下:(3)如图所示,△2ABB 的面积为:222142214)42(21⨯⨯-⨯⨯-⨯+⨯=6. 16.(2019安徽,16题号,8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以个点(网络线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD;(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【解题过程】解:(1)线段CD如图所示:………………4分(2)得到的菱形如图所示(答案不唯一).………………8分1. (2020·宁波)图1,图2都是有边长为1的小等边三角形构成的网格,每个网格图中由5个小等边三角形已图上阴影,请在余下的空白小等边三角形中,按下列要求选取一个图上阴影:(1)使得6个阴影小等边三角形中组成一个轴对称图形;(2)使得6个阴影小等边三角形中组成一个中心对称图形.(请将两个小题一次作答在图1,图2中,均只需画出符合条件的一种情形)【解题过程】(1)画出下列其中一种即可(2)画出下列其中一种即可22.(2020·山西)综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平,再沿过点C 的直线折叠,使点B,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N,且点E,点N,点F 三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3.第三步:在图3的基础上继续折叠,使点C 与点F 重合,得到图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.第22题图 问题解决:(1)在图5中,∠BEC 的度数是_____,AEBE的值是_____; (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出....一个菱形(正方形除外),并写出这个菱形:_______. 【思路分析】(1)通过折叠转化角相等,进而利用内角和求∠BEC 的度数,再利用45°三角函数解决线段的比值问题(2)根据第1问的提示,可以通过折叠求角的度数,进而得到四边形各内角的度数为90°,利用三个内角为90°的四边形是矩形进而可以判定四边形的形状是矩形(3)利用多次折叠可以得到很多相等的线段以及互相垂直的线段,可以利用四边相等的四边形是菱形或对角线互相垂直平分的四边形是菱形来得到符合条件的菱形. 【解题过程】(1)∵正方形ABCD,∴∠ACB =45°,由折叠知:∠1=∠2=22.5°,∠BEC =∠CEN,BE =EN,∴∠BEC =90°-∠1=67.5°,∴∠AEN =180°-∠BEC -∠CEN =45°,∴cos45°=22ENAE ,2AE EN,2AE AE BE EN;(2)四边形EMGF 是矩形.理由如下:∵四边形ABCD 是正方形,∴∠B =∠BCD =∠D =90°,由折叠可知:∠1=∠2=∠3=∠4,CM =CG,∠BEC =∠NEC =∠NFC =∠DFC,∴∠1=∠2=∠3=∠4=°904=22.5°,∴∠BEC =∠NEC =∠NFC =∠DFC =67.5°,由折叠知:MH,GH 分别垂直平分EC,FC,∴MC =ME,GC =GF.∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF =∠GFE =90°.∵∠MCG =90°,CM =CG,∴∠CMG =45°,又∵∠BME =∠1+∠5=45°,∴∠EMG =180°-∠CMG -∠BME =90°,∴四边形EMGF 是矩形; (3)答案不唯一,画出正确的图形(一个即可).菱形FGCH (或菱形EMCH )第22题答图一、选择题3.(2020·黄石)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断.A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【知识点】轴对称图形;中心对称图形1.(2020·齐齐哈尔)下面四个图形中,既是轴对称图形又是中心对称图形的是()【答案】D【分析】选项A,B都是中心对称,但不是轴对称图形,选项C是轴对称但不是中心对称图形,选项D既是轴对称又是中心对称图形,故选D【知识点】中心对称,轴对称4.(2020·兰州)剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称又是中心对称图形的是()【答案】C【分析】既是轴对称图形,又是中心对称图形的是C,故选C.【知识点】轴对称图形,中心对称图象4.(2020·黔三州)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D. 1个【答案】B.【分析】第一个是中心对称图形,不是是轴对称图形;第二个既是中心对称图形,又是轴对称图形;第三个既是中心对称图形,又是轴对称图形;第四个既是中心对称图形,又是轴对称图形.综上可得,共有3个符合题意,故选B.【知识点】轴对称图形;中心对称图形.3.(2020·福建)下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形【答案】D【分析】等边三角形是轴对称不是中心对称选,故A选项错误;直角三角形既不是轴对称也不是中心对称图形,故B选项错误;平行四边形是中心对称图形而不是轴对称图形,故C选项错误;正方形既是轴对称图形又是中心对称图形,D选项正确.故选D【知识点】轴对称图形;中心对称图形;1.(2020·扬州)下列图案中,是中心对称图形的是()【答案】D【分析】不是中心对称图形,故选项A错误;不是中心对称图形,故选项B错误;不是中心对称图形,故选项C错误;是中心对称图形,故选项D正确.故选:D.【知识点】中心对称图形5.(2020·广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】C【分析】本题考查中心对称图形与轴对称图形的概念【知识点】中心对称图形轴对称图形2.(2020·深圳)下列图形中是轴对称图形的是()【答案】A【分析】A中图形沿着过上下两边中点的直线进行折叠,直线两旁的部分能完全重合,是轴对称图形;其他图形不符合轴对称图形的定义,不是轴对称图形.故选A.【知识点】轴对称图形6.(2020·毕节)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【答案】B【分析】①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【知识点】轴对称图形;中心对称图形.3.(2020·绵阳)对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【答案】B【分析】如图所示:是中心对称图形.故选B.【知识点】轴对称图形;中心对称图形1.(2020·甘肃)下列四个图案中,是中心对称图形的是()【答案】A【分析】解:A.此图案是中心对称图形,符合题意;B.此图案不是中心对称图形,不合题意;C.此图案不是中心对称图形,不合题意;D.此图案不是中心对称图形,不合题意;故选A.【知识点】中心对称图形4.(2020·黔东南)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【答案】B【分析】①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【知识点】轴对称图形;中心对称图形2.(2020·菏泽)下列图形中,既是轴对称图形,又是中心对称图形的是()【答案】C【分析】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误,故选C.【知识点】轴对称图形;中心对称图形2.(2020·宜昌)如下字体的四个汉字中,是轴对称图形的是()【答案】D【分析】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【知识点】轴对称图形10.(2020·兰州)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)【答案】B【分析】∵A (-3,5),A 1(3,3),∴四边形ABCD 向右平移6个单位,向下平移2个单位,∵点B (-4,3),∴点B 1(2,1),故选B.【知识点】图形的平移7.(2020·黄石)如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上, AB 边的中点是坐标原点O ,将正方形绕点C 按逆时针方向旋转90°后,点B 的对应点'B 的坐标是( )A.(-1,2)B.(1,4)C.(3,2)D.(-1,0)【答案】C【分析】根据旋转可得:CB '=CB =2,∠BCB '=90°,可得B '的坐标,如图,由旋转得:CB '=CB =2,∠BCB '=90°,∵四边形ABCD 是正方形,且O 是AB 的中点,∴OB =1,∴B '(2+1,2),即B '(3,2),故选:C . 【知识点】坐标与图形变化﹣旋转;正方形的性质8.(2020·海南) 如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A 落在点A 1(-2,2)处,则点B 的对应点B 1的坐标为( )A.(-1,-1)B.(1,0)C.(-1,0)D.(3,0)第8题图【答案】C【分析】∵点A(2,1)平移后落在A 1(-2,2),∴是向左平移4个单位,向上平移1个单位,∴点B(3,-1)平移后的点B 1坐标为(3-4,-1+1),即B 1(-1,0),故选C.【知识点】点的平移15.(2020·宜昌)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,xOA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+√3)B.(−√3,3)C.(−√3,2+√3)D.(﹣3,√3)【答案】B【分析】如图,作B′H⊥y轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=12A′B′=1,B′H=√3,∴OH=3,∴B′(−√3,3),故选:B.【知识点】坐标与图形变化﹣旋转9.(2020·河北)如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂照n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2第8题图【答案】C【分析】如图所示,第8题答图∴n的最小值为3.【知识点】等边三角形的对称性6.(2020·南京)如图,△A'B'C'是由△ABC 经过平移得到的,△A'B'C 还可以看作是△ABC 经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④【答案】D【分析】解:先将△ABC 绕着B'C 的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC 沿着B'C 的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C', 故选D .【知识点】平移、旋转与对称9.(2020·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合,以下结论错误的是( )A .210AB =+B .CD BC = C .2BC CD EH = D .sin AHD ∠【答案】A【分析】在Rt AEB ∆中,AB == //AB DH ,//BH AD ,∴四边形ABHD 是平行四边形,AB AD =,∴四边形ABHD 是菱形,AD AB ∴==1CD AD AD ∴===,∴CD BC =,故选项B 正确,24BC =,(51)4CD EH ==,2BC CD EH ∴=,故选项C 正确,四边形ABHD 是菱形,AHD AHB ∴∠=∠,sin sin AE AHD AHB AH ∴∠=∠===,故选项D 正确, 故选:A . 【知识点】翻折变换(折叠问题);矩形的性质;正方形的性质;解直角三角形;相似三角形的判定与性质3. (2020·宜宾)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,1DE =,将ADE ∆绕着点A 顺时针旋转到与ABF ∆重合,则(EF = )A B C .D .【答案】D【分析】由旋转变换的性质可知,ADE ABF ∆≅∆,∴正方形ABCD 的面积=四边形AECF 的面积25=,5BC ∴=,1BF DE ==,6FC ∴=,4CE =,EF ∴===故选:D .【知识点】正方形的性质;旋转的性质10.(2020·荆门)如图,Rt △OCB 的斜边在y 轴上,OC =√3,含30°角的顶点与原点重合,直角顶点C 在第二象限,将Rt △OCB 绕原点顺时针旋转120°后得到△OC ′B ',则B 点的对应点B ′的坐标是( ) ( )A .(√3,﹣1)B .(1,−√3)C .(2,0)D .(√3,0) 【答案】A【分析】如图,在Rt △OCB 中,∵∠BOC =30°,∴BC =√33OC =√33×√3=1,∵Rt △OCB 绕原点顺时针旋转120°后得到△OC ′B ',∴OC ′=OC =√3,B ′C ′=BC =1,∠B ′C ′O =∠BCO =90°,∴点B ′的坐标为(√3,﹣1).故选:A .【知识点】坐标与图形变化﹣旋转二、填空题15.(2020·海南)如图,将Rt △ABC 的斜边AB 绕点A 顺时针旋转α(0°<α<90°)得到AE,直角边AC 绕点A 逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB =3,AC =2,且α+β=∠B,则EF =________.第15题图【分析】∵α+β=∠B,∴∠EAF =∠BAC+∠B =90°,∴△AEF 是直角三角形,且AE =AB =3,AF =AC =2,∴EF【知识点】旋转,勾股定理14. ( 2020·广州)一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为 .【答案】15°或45°【分析】解:分情况讨论:①当DE ⊥BC 时,∠BAD =75°,∴α=90°﹣∠BAD =15°;②当AD ⊥BC 时,∠BAD =45°,即α=45°.故答案为:15°或45【知识点】角的计算;垂直的定义;旋转的定义17. (2020·甘肃)如图,在矩形ABCD 中,10AB =,6AD =,E 为BC 上一点,把CDE ∆沿DE 折叠,使点C 落在AB 边上的F 处,则CE 的长为 .【答案】103【分析】解:设CE x =,则6BE x =-由折叠性质可知,EF CE x ==,10DF CD AB ===,在Rt DAF ∆中,6AD =,10DF =,8AF ∴=,1082BF AB AF ∴=-=-=,在Rt BEF ∆中,222BE BF EF +=,即222(6)2x x -+=,解得103x =,故答案为103. 【知识点】矩形的性质;翻折变换(折叠问题)18. (2020·绵阳)如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′= .【答案】√2+√6.【分析】如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【知识点】全等三角形的判定与性质;等腰直角三角形;旋转的性质15.(2020·资阳)如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.【答案】95【分析】如图,作CH⊥AB于H.由翻折可知:∠AE′C=∠AEC=90°,∠ACE=∠ACE′,∵CE ′∥AB ,∴∠ACE ′=∠CAD ,∴∠ACD =∠CAD ,∴DC =DA , ∵AD =DB ,∴DC =DA =DB ,∴∠ACB =90°,∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =2−CH 2=95, ∵CE ∥AB ,∴∠E ′CH +∠AHC =180°,∵∠AHC =90°,∴∠E ′CH =90°,∴四边形AHCE ′是矩形, ∴CE ′=AH =95,故答案为95.【知识点】平行线的性质;翻折变换(折叠问题) 14.(2020·随州)如图,在平面直角坐标系中,Rt △ABC 的直角顶点C 的坐标为(1,0),点A 在x 轴正半轴上,且AC =2.将△ABC 先绕点C 逆时针旋转90°,再向左平移3个单位,则变化后点A 的对应点的坐标为 .【答案】(-2,2)【分析】△ABC 先绕点C 逆时针旋转90°,后点A 的对应点的坐标为(1,2),再向左平移3个单位,A 的对应点的坐标为(-2,2) . 【知识点】旋转;平移17.(2020·黔东南)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第 个箭头方向相同(填序号).【答案】3【分析】 2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同, 故答案为:3【知识点】生活中的旋转现象三、解答题23.(2020·齐齐哈尔)折纸是同学们喜欢的手工活动之一,通过这只我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD 对折,使边AB 与CD 重合,展开后得到折痕EF ,如图①:点M 为CF 上一点,将正方形纸片ABCD 沿直线DM 折叠,使点C 落在EF 上的点N 处,展开后连接DN,MN,AN ,如图②(一)填一填,做一做: (1) 图②中,∠CMD= °;线段NF= ; (2) 图②中,试判断△AND 的形状,并给出证明.剪一剪、折一折:将图②中的△AND 剪下来,将其沿直线GH 折叠,使点A 落在点A ’处,分别得到图③,图④(二)填一填:(3)图③中阴影部分的周长为 ;(4)图③中,若∠A ’GN=80°,则∠A ’HD= °; (5)图③中的相似三角形(包括全等三角形)共有 对; (6)如图④点A ’落在边ND 上,若n m D A N A '',则AHAG= (用含m,n 的代数式表示)【思路分析】(一)(1)∵折叠∴DN=CD=4,DE=2,∴Rt △DEN 中,∠EDN=60°,∴∠NDC=30°,∵折叠,∴∠MDC=15°,∴Rt △CDM 中,∠CMD=75°;∵Rt △DEN 中,∠EDN=60°,DN=4,∴EN=32∴NF=4-32(2)由(1)知EN=32,∵AE=2,∴Rt △AEN 中,∠EAN=60°,∵∠EDN=60°∴△AND 是等边三角形; (二)(2) ∵折叠,∴A ’G=AG,A ’H=AH,∴阴影部分的周长为△AND 的周长(3) ∵折叠,∠A ’GN=80°,∴∠A ’GH=50°,∵折叠,∴∠A ’=∠A=60°,∴△GHA ’中,∠A ’HG=70°,∴∠A ’HG=40°(4) 如图,设A ’G ,ND 交于点P,A ’H,ND 交于点Q ,∵等边△AND ,∴∠N=∠A=60°, ∵∠A ’=60°,∴∠N=∠A ’,∵∠NPG==∠A ’PQ,∴△NPG ∽△A ’PQ,同理,△HDQ ∽△PA ’Q,∴△NPG ∽△DHQ,∵△AGH ≌△A ’GH ∴共有4对相似三角形(6)∵折叠∴∠GA ’H=∠A=60°,∴∠NA ’G+∠HA ’D=120°, ∵∠A ’HD+∠HA ’D=120° ∴∠NA ’G=∠A ’HD ∵∠D=∠N∴△NA ’G ∽△DHA ’∵n mD A N A ='' ∴AH AG =n m n m 22++【解题过程】(一)(1)75°,4-32; (2)△AND 是等边三角形; 证明:∵折叠 ∴DN=CD=AD∵DE=21AD, ∴DE=21DN,∵EF ⊥AD∴∠END=30°, ∴∠AND=60°,∴△AND 是等边三角形 (二)(3)12; (4)40° (5)4; (6)nm nm 22++【知识点】折叠问题,等边三角形的判定,锐角三角函数,三角形相似,三角形全等24.(2019•广安)在数学活动课上,王老师要求学生将图1所示的33⨯正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)【思路分析】根据轴对称图形和旋转对称图形的概念作图即可得.【解题过程】解:如图所示,【知识点】利用轴对称设计图案;利用旋转设计图案22.(2020·山西)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平,再沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,得到图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.第22题图问题解决:(1)在图5中,∠BEC的度数是_____,AEBE的值是_____;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出....一个菱形(正方形除外),并写出这个菱形:_______.【思路分析】(1)通过折叠转化角相等,进而利用内角和求∠BEC的度数,再利用45°三角函数解决线段的比值问题(2)根据第1问的提示,可以通过折叠求角的度数,进而得到四边形各内角的度数为90°,利用三个内角为90°的四边形是矩形进而可以判定四边形的形状是矩形(3)利用多次折叠可以得到很多相等的线段以及互相垂直的线段,可以利用四边相等的四边形是菱形或对角线互相垂直平分的四边形是菱形来得到符合条件的菱形.。
(2022•连云港中考)下列图案中,是轴对称图形的是()A. B. C. D.【解析】选A.A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C.不是轴对称图形,故此选项不符合题意;D.不是轴对称图形,故此选项不符合题意.(2022•遂宁中考)下面图形中既是轴对称图形又是中心对称图形的是()A.科克曲线 B.笛卡尔心形线 C.阿基米德螺旋线 D.赵爽弦图【解析】选A.A.科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B.笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C.阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.(2022•自贡中考)如图,将矩形纸片ABCD绕边CD所在直线旋转一周,得到的立体图形是() A.B.C.D.【解析】选A.根据“点动成线,线动成面,面动成体”,将矩形纸片ABCD绕边CD所在直线旋转一周,所得到的立体图形是圆柱.(2022•自贡中考)剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A. B. C. D.【解析】选D.选项A,B,C都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项D能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.A. B. C. D.【解析】选D.A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.(2022•重庆中考B卷)下列北京冬奥会运动标识图案是轴对称图形的是()A. B. C. D.【解析】选C.A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.(2022•怀化中考)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.4【解析】选C.点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3(2022•扬州中考)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC 边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③【解析】选D.∵将△ABC以点A为中心逆时针旋转得到△ADE,∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,∴∠B=∠ADB,∴∠ADE=∠ADB,∴DA平分∠BDE,∴②符合题意;∵∠AFE=∠DFC,∠E=∠C,∴△AFE∽△DFC,∴①符合题意;∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠F AE,∵△AFE∽△DFC,∴∠F AE=∠CDF,∴∠BAD=∠CDF,∴③符合题意(2022•泰安中考)下列图形:其中轴对称图形的个数是()(2022•达州中考)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是()A.B.C.D.【解析】选A.A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意(2022•德阳中考)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解析】选A.A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.是中心对称图形,不是轴对称图形,故此选项不合题意;(2022•南充中考)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°【解析】选B.∵∠B=30°,∠C=90°,∴∠CAB=180°﹣∠B﹣∠C=60°,∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,∴∠C′AB′=∠CAB=60°.∵点B′恰好落在CA的延长线上,∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°A .M 1B .M 2C .M 3D .M 4【解析】选B .∵点A (4,2),点P (0,2),∴P A ⊥y 轴,P A =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC =2√3,∴B (2,2+2√3),设直线PB 的解析式为:y =kx +b ,则{2k +b =2+2√3b =2,∴{k =√3b =2, ∴直线PB 的解析式为:y =√3x +2,当y =0时,√3x +2=0,x =−2√33,∴点M 1(−√33,0)不在直线PB 上, 当x =−√3时,y =﹣3+2=1,∴M 2(−√3,﹣1)在直线PB 上,当x =1时,y =√3+2,∴M 3(1,4)不在直线PB 上,当x =2时,y =2√3+2,∴M 4(2,112)不在直线PB 上 (2022•湖州中考)如图,将△ABC 沿BC 方向平移1cm 得到对应的△A 'B 'C '.若B 'C =2cm ,则BC ′的长是( )A .2cmB .3cmC .4cmD .5cm【解析】选C .∵将△ABC 沿BC 方向平移1cm 得到对应的△A 'B 'C ',∴BB ′=CC ′=1(cm ),∵B 'C =2(cm ),∴BC ′=BB ′+B ′C +CC ′=1+2+1=4(cm )(2022•山西中考)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.B. C.D.【解析】选B.A、C、D.均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,∴不是中心对称图形,B.能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,∴是中心对称图形. (2022•宜昌中考)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A. B. C. D.【解析】选D.中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,D选项符合题意. (2022•武汉中考)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【解析】选D.A、B、C.不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,∴不是轴对称图形,D.能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,∴是轴对称图形.(2022•娄底中考)下列与2022年冬奥会相关的图案中,是中心对称图形的是()A. B. C. D.【解析】选D.A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.是中心对称图形,故此选项符合题意(2022•嘉兴中考)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(√2−1)cm D.(2√2−1)cm(2022•常德中考)国际数学家大会每四年举行一届,下面四届国际数学家大会会标中是中心对称图形的是()A. B.C.D.【解析】选B.∵将图形绕着一点旋转180°后能和它本身重合的图形是中心对称图形,∴选项B符合上述特征.(2022•常德中考)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是()A.BE=BC B.BF∥DE,BF=DE C.∠DFC=90°D.DG=3GF【解析】选D.A、由旋转的性质可知,CB=CE,∠BCE=60°,∴△BCE为等边三角形,∴BE=BC,本选项结论正确,不符合题意;B、在Rt△ABC中,∠ABC=90°,∠ACB=30°,点F是边AC的中点,∴AB=12AC=CF=BF,由旋转的性质可知,CA=CD,∠ACD=60°,∴∠A=∠ACD,在△ABC和△CFD中,{AB=CF∠A=∠FCD CA=CD,∴△ABC≌△CFD(SAS),∴DF=BC=BE,∵DE=AB=BF,∴四边形EBFD为平行四边形,∴BF∥DE,BF=DE,本选项结论正确,不符合题意;C、∵△ABC≌△CFD,∴∠DFC=∠ABC=90°,本选项结论正确,不符合题意;D、在Rt△GFC中,∠GCF=30°,∴GF=√33CF,(2022•苏州中考)如图,点A 的坐标为(0,2),点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为(m ,3),则m 的值为( )A .4√33B .2√213C .5√33D .4√213【解析】选C .过C 作CD ⊥x 轴于D ,CE ⊥y 轴于E ,如图:∵CD ⊥x 轴,CE ⊥y 轴,∠DOE =90°,∴四边形EODC 是矩形,∵将线段AB 绕点A 按逆时针方向旋转60°得到线段AC ,∴AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴AB =AC =BC ,∵A (0,2),C (m ,3),∴CE =m =OD ,CD =3,OA =2,∴AE =OE ﹣OA =CD ﹣OA =1,∴AC =√AE 2+CE 2=√m 2+1=BC =AB ,在Rt △BCD 中,BD =√BC 2−CD 2=√m 2−8,在Rt △AOB 中,OB =√AB 2−OA 2=√m 2−3,∵OB +BD =OD =m ,3(2022•乐山中考)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【解析】选D.选项A、C、B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形(2022•天津中考)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解析】选D.选项A、C、B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形(2022•天津中考)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC【解析】选C.A、∵AB=AC,∴AB>AM,由旋转的性质可知,AN=AM,∴AB>AN,故本选项结论错误,不符合题意;B、当△ABC为等边三角形时,AB∥NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,∵AM=AN,AB=AC,(2022•衡阳中考)下列选项中的垃圾分类图标,既是中心对称图形,又是轴对称图形的是()A.可回收物 B.其他垃圾 C.有害垃圾 D.厨余垃圾【解析】选C.A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意(2022•桂林中考)下列图形中,是中心对称图形的是()A.等边三角形B.圆C.正五边形D.扇形【解析】选B.选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形;选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.(2022•福建中考)美术老师布置同学们设计窗花,下列作品为轴对称图形的是()A.B.C.D.【解析】选A.选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.0,则四边形ACC′A′的面积是()A.96B.96√3C.192D.160√3【解析】选B.在Rt△ABC中,∠CAB=60°,AB=8,则BC=AB•tan∠CAB=8√3,由平移的性质可知:AC=A′C′,AC∥A′C′,∴四边形ACC′A′为平行四边形,∵点A对应直尺的刻度为12,点A′对应直尺的刻度为0,∴AA′=12,∴S四边形ACC′A′=12×8√3=96√3.(2022•河南中考)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(√3,﹣1) B.(﹣1,−√3) C.(−√3,﹣1) D.(1,√3)【解析】选B.∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=√3,∴A(1,√3),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,−√3),∴第2022次旋转结束时,点A的坐标为(﹣1,−√3).A.①②③B.①②④C.①③④D.②③④【解析】选A.①是中心对称图形,故本选项符合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不符合题意;④是中心对称图形,故本选项符合题意;故是中心对称图形的有①②③.(2022•北部湾中考)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.【解析】选D.根据平移的性质可知:能由如图经过平移得到的是D.(2022•毕节中考)下列垃圾分类标识的图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解析】选A.A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意.(2022•哈尔滨中考)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.(2022•齐齐哈尔中考)下面四个交通标志中,是中心对称图形的是()A.B.C.D.【解析】选A.选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.(2022•鄂州中考)孙权于公元221年4月自公安“都鄂”,在西山东麓营建吴王城,并取“以武而昌”之意,改鄂县为武昌.下面四个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解析】选D.选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.(2022•鄂州中考)如图,定直线MN∥PQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AE∥BC∥DF,AE =4,DF=8,AD=24√3,当线段BC在平移过程中,AB+CD的最小值为()A.24√13B.24√15C.12√13D.12√15【解析】选C.如图,作DL⊥PQ于L,过点A作PQ的垂线,过点D作PQ的平行线,它们交于点R,延长DF至T,使DT=BC =12,连接AT,AT交MN于B′,作B′C′∥BC,交PQ于C′,则当BC在B′C′时,AB+CD最小,(2022•大庆中考)观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选D.A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.(2022•龙东中考)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.【解析】选C.A.既是中心对称图形,也是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形但不是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意.(2022•绥化中考)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选D.A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.(2022•包头中考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3√3B.2√3C.3D.2【解析】选C.连接AA′,如图,∵∠ACB=90°,∠BAC=30°,BC=2,∴AC=√3BC=2√3,∠B=60°,∵将△ABC绕点C顺时针旋转得到△A'B'C,∴CA=CA′,CB=CB′,∠ACA′=∠BCB′,∵CB=CB′,∠B=60°,∴△CBB′为等边三角形,∴∠BCB′=60°,∴∠ACA′=60°,∴△CAA′为等边三角形,过点A作AD⊥A'C于点D,∴CD=12AC=√3,∴AD=√3CD=√3×√3=3,∴点A到直线A'C的距离为3.(2022•赤峰中考)下列图案中,不是轴对称图形的是()A.B.C.D.【解析】选A.选项B、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项A不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.(2022·牡丹江中考)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.【解析】选B.A、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,不是轴对称图形,此选项错误.(2022·恩施州中考)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选B.选项A中的图形是轴对称图形,不是中心对称图形,故选项A不符合题意;选项B中的图形既是轴对称图形又是中心对称图形,故选项B符合题意;选项C中的图形是轴对称图形,不是中心对称图形,故选项C不符合题意;选项D中的图形是中心对称图形,不是轴对称图形,故选项D不符合题意.(2022•抚顺中考)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选D.A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.是中心对称图形,也是轴对称图形,故此选项符合题意.(2022•临沂中考)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选D.A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.不是轴对称图形,是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.(2022•内江中考)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】选C.0根据轴对称图形和中心对称图形的定义可知,C选项既是轴对称图形,又是中心对称图形.A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解析】选D.根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.(2022•金华中考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm.把△ABC沿AB方向平移1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为8+2√3cm.【解析】∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,∴AB=2BC=4,∴AC=√AB2−BC2=2√3,∵把△ABC沿AB方向平移1cm,得到△A'B'C',∴B′C′=BC=2,AA′=CC′=1,A′B′=AB=4,∴AB′=AA′+A′B′=5.∴四边形AB'C'C的周长为AB′+B′C′+CC′+AC=5+2+1+2√3=(8+2√3)cm.答案 :8+2√3.(2022•丽水中考)一副三角板按图1放置,O是边BC(DF)的中点,BC=12cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是(3√3−3)cm.【解析】如图,设EF与BC交于点H,∵O是边BC(DF)的中点,BC=12cm.如图2,∴OD=OF=OB=OC=6cm.∵将△ABC绕点O顺时针旋转60°,∴∠BOD=∠FOH=60°,OF=3cm,∵∠F=30°,∴∠FHO=90°,∴OH=12∴CH=OC﹣OH=3cm,FH=√3OH=3√3cm,∵∠C=45°,∴CH=GH=3cm,∴FG=FH﹣GH=(3√3−3)cm.答案:(3√3−3).(2022•台州中考)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A'B'C',且BB'⊥BC,则阴影部分的面积为8 cm2.【解析】由平移可知,阴影部分的面积等于四边形BB'CC'的面积为BC×BB'=4×2=8(cm2),答案:8(2022•永州中考)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O 顺时针旋转90°后,端点A的坐标变为(2,﹣2).【解析】线段OA绕原点O顺时针旋转90°如图所示,则A'(2,﹣2),则旋转后A点坐标变为:(2,﹣2),答案:(2,﹣2).(2022•贺州中考)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为(﹣4,8).【解析】过点B作BN⊥x轴,过点B′作B′M⊥y轴,∴∠B′MO=∠BNO=90°,∵OA=AB=5,点B到x轴的距离为4,∴AN=3,∴ON=8,∵将△OAB绕点O逆时针旋转90°,得到△OA′B′,∴∠BOB′=90°,OB=OB′,∴∠BOA′+∠B′OA′=∠BOA+∠BOA′,∴∠BOA=∠B′OA′,∴△AOB≌△A′OB′(AAS),∴OM=ON=8,B′M=BN=4,∴B′(﹣4,8),答案:(﹣4,8).(2022•吉林中考)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为72(答案不唯一).度.(写出一个即可)【解析】360°÷5=72°,则这个图案绕着它的中心旋转72°后能够与它本身重合.答案:72(答案不唯一)(2022·安徽中考)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格【解析】(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.(2022•温州中考)如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.【解析】(1)如图1中△ABC即为所求(答案不唯一);(2)如图2中△ABC即为所求(答案不唯一).(2022•武汉中考)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.【解析】(1)如图(1)中,点F,点G即为所求;(2)如图(2)中,线段AH,点Q即为所求.(2022•陕西中考)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是 4 ;(2)请在图中画出△A'B'C'.【解析】(1)∵A(﹣2,3),A'(2,3),∴点A、A'之间的距离是2﹣(﹣2)=4,答案:4;(2)如图所示,△A'B'C'即为所求.【解析】(1)如图1,(2)如图2,(3)图1是W,图2是X.【解析】(1)如图1中,在Rt △AOB 中,∠OAB =90°,OA =6,OB =10,∴AB =√OB 2−OA 2=√102−62=8,∴B (8,6);(2)如图1中,过点P 作PH ⊥OB 于点H .∵∠POH =45°,∴PH =OH ,设PH =OH =x ,∵∠B =∠B ,∠BHP =∠BAO =90°,∴△BHP ∽△BAO ,∴PHAO =BHBA =PBOB ,∴x 6=BH 8=PB 10, ∴PH =43x ,PB =53x ,∴x +43x =10,∴x =307,∴PB =53×307=507, ∴P A =AB =PB =8−507=67, ∴P (67,6); (3)如图2中,设P A ′交OB 于点T .∵∠OAB =90°,OE =EB ,∴EA =EO =EB =5,∴∠EAB =∠B ,由翻折的性质可知∠EAB =∠A ′,∴∠A ′=∠B ,∵A ′P ⊥OB ,∴∠ETA ′=∠BAO =90°,∴△A ′TE ∽△BAO ,∴A′EOB =ETAO,∴510=ET 6,∴ET =3,BT =5﹣3=2, ∵cos B =BT PB =AB OB ,∴2PB =810,∴PB =52, ∴AP =AB =PB =8−52=112, ∴P (112,6);(4)如图3中,以AF 为边向右作等边△AFK ,连接KG ,延长KG 交x 轴于点R ,过点K 作KJ ⊥AF 于点J .KQ ⊥OR 于点Q ,过点O 作OW ⊥KR 于W .∵∠AFK =∠PFG =60°,∴∠AFP =∠KFG ,∵F A =FK ,FP =FG ,∴△AFP ≌△KFG (SAS ),∴∠P AF =∠GKF =90°,∴点G 在直线KR 上运动,当点G 与W 重合时,OG 的值最小,∵KJ ⊥OA ,KQ ⊥OR ,∴∠KJO =∠JOQ =∠OQK =90°,∴四边形JOQK 是矩形,∴OJ =KQ ,JK =OQ ,∵KA =KF ,KJ ⊥AF ,∴AJ =JF =1,KJ =√3,∴KQ =OJ =5,∵∠KRQ =360°﹣90°﹣90°﹣120°=60°,∴QR =√33KQ =5√33,∴OQ =√3+5√33=8√33,∴OW =OR •sin60°=4,∴OG 的最小值为4,∵OF =OW =4,∠FOW =60°,∴△FOW 是等边三角形,∴FW =4,即FG =4,∴线段FP 扫过的面积=60⋅π×42360=8π3. (2022•龙东中考)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,【解析】(1)如图,△A1B1C1即为所求,点A1的坐标(﹣5,,3);(2)如图,△A2B2C1即为所求,点A2的坐标(2,4);(3)∵A1C1=√32+42=5,∴点A1旋转到点A2的过程中所经过的路径长=90π×5180=5π2.(2022·牡丹江中考)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.【解析】(1)如图所示,点O为所求.(2)如图所示,△A1B1C1为所求.(3)如图所示,点M为所求.(1)在图①中,找一格点D,使以点A,B,C,D为顶点的四边形是轴对称图形;(2)在图②中,找一格点E,使以点A,B,C,E为顶点的四边形是中心对称图形.【解析】(1)作点B关于直线AC的对称点D,连接ABCD,四边形ABCD为筝形,符合题意.(2)将点A向右平移1个单位,再向上平移1个单位可得点D,连接ABCD,AD∥BC且AD=BC,∴四边形ABCD为矩形,符合题意.。
专题15 图形变换(平移、旋转、对称)一.选择题1.(2022·山东威海)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A.A点B.B点C.C点D.D点【答案】B【分析】根据光反射定律可知,反射光线、入射光线分居法线两侧,反射角等于入射角并且关于法线对称,由此推断出结果.【详解】连接EF,延长入射光线交EF于一点N,过点N作EF的垂线NM,如图所示:∠为入射角由图可得MN是法线,PNM因为入射角等于反射角,且关于MN对称∠由此可得反射角为MNB所以光线自点P射入,经镜面EF反射后经过的点是B故选:B.【点睛】本题考查了轴对称中光线反射的问题,根据反射角等于入射角,在图中找出反射角是解题的关键.2.(2022·湖南永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )① ② ③ ④A .①②③B .①②④C .①③④D .②③④【答案】A【分析】根据中心对称图形的定义判断即可;【详解】解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;∴是中心对称图形的是:①②③;故选:A .【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键.3.(2022·江苏无锡)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )A .扇形B .平行四边形C .等边三角形D .矩形【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、扇形是轴对称图形,不是中心对称图形,故此选项不合题意;B 、平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;C 、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;D 、矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B .【点睛】此题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心是解题关键.4.(2022·贵州遵义)在平面直角坐标系中,点(),1A a 与点()2,B b -关于原点成中心对称,则a b +的值为( )A .3-B .1-C .1D .3【答案】C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,a b 的值即可求解.【详解】解:∵点(),1A a 与点()2,B b -关于原点成中心对称,∴2,1a b ==-211a b ∴+=-=,故选C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,代数式求值,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.5.(2022·内蒙古赤峰)下列图案中,不是轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【详解】A 不是轴对称图形;B 、C 、D 都是轴对称图形;故选:A .【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''' ,则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--【答案】C【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.【详解】解:先画出△ABC平移后的△DEF,再利用旋转得到△A'B'C',由图像可知A'(-1,-3),故选:C.【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.7.(2022·四川内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【答案】D【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.8.(2022·广西)如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为()A.(3,-3)B.(3,3)C.(-1,1)D.(-1,3)【答案】D【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);故选:D.【点睛】本题主要考查图形平移的点坐标求解,掌握图形平移的性质是解题的关键.9.(2022·湖南郴州)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A、该图形是轴对称图形,不是中心对称图形,故A选项错误;B、该图形既是轴对称图形,也是中心对称图形,故B选项正确;C、该图形不是轴对称图形,是中心对称图形,故C选项错误;D、该图形既不是轴对称图形,也不是中心对称图形,故D选项错误.故答案为B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,中心对称图形是要寻找对称中心旋转180度后与原图重合.10.(2022·广西贵港)若点(,1)A a -与点(2,)B b 关于y 轴对称,则-a b 的值是( )A .1-B .3-C .1D .2【答案】A【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【详解】∵点(,1)A a -与点(2,)B b 关于y 轴对称,∴a =-2,b =-1,∴a -b =-1,故选A .【点睛】本题考查了关于y 轴对称的点坐标的关系,代数式求值,解题的关键在于明确关于y 轴对称的点纵坐标相等,横坐标互为相反数.11.(2022·江苏常州)在平面直角坐标系xOy 中,点A 与点1A 关于x 轴对称,点A 与点2A 关于y 轴对称.已知点1(1,2)A ,则点2A 的坐标是( )A .(2,1)-B .(2,1)--C .(1,2)-D .(1,2)--【答案】D【分析】直接利用关于x ,y 轴对称点的性质分别得出A ,2A 点坐标,即可得出答案.【详解】解:∵点1A 的坐标为(1,2),点A 与点1A 关于x 轴对称,∴点A 的坐标为(1,-2),∵点A 与点2A 关于y 轴对称,∴点2A 的坐标是(-1,﹣2).故选:D .【点睛】此题主要考查了关于x ,y 轴对称点的坐标,正确掌握关于坐标轴对称点的性质是解题关键.12.(2022·北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .5【答案】D 【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,一共有5条对称轴.故选:D【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.13.(2022·山东临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题,以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形和中心对称图形的概念进行判断即可.【详解】A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.既是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.14.(2022·山东聊城)如图,在直角坐标系中,线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,则点C 的对应点1C 的坐标是( )A .(-2,3)B .(-3,2)C .(-2,4)D .(-3,3)【答案】A 【分析】根据旋转的性质解答即可.【详解】解:∵线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,∴A 的对应点为1A ,∴190APA ∠=︒,∴旋转角为90°,∴点C 绕点P 逆时针旋转90°得到的1C 点的坐标为(-2,3),故选:A .【点睛】本题主要考查了旋转的性质,练掌握对应点与旋转中心的连线是旋转角和旋转角相等是解答本题的关键.15.(2022·湖南)如图,点O 是等边三角形ABC 内一点,2OA =,1OB =,OC =AOB ∆与BOC ∆的面积之和为( )AB C D 【答案】C【分析】将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,得到BOD 是等边三角形,再利用勾股定理的逆定理可得90COD ∠=︒,从而求解.【详解】解:将AOB ∆绕点B 顺时针旋转60︒得BCD ∆,连接OD ,OB OD ∴=,60BOD ∠=︒,2CD OA ==,BOD ∴∆是等边三角形,1OD OB ∴==,∵222214OD OC +=+=,2224CD ==,222OD OC CD ∴+=,90DOC ∴∠=︒,AOB ∴∆与BOC ∆的面积之和为21112BOC BCD BOD COD S S S S +=+=+⨯= C .【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将AOB ∆与BOC ∆的面积之和转化为BOC BCD S S + ,是解题的关键.16.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α【答案】C【分析】根据旋转的性质可得,BC =DC ,∠ACE =α,∠A =∠E ,则∠B =∠BDC ,利用三角形内角和可求得∠B ,进而可求得∠E ,则可求得答案.【详解】解:∵将ABC 绕点C 顺时针旋转得到EDC △,且BCD α∠=∴BC =DC ,∠ACE =α,∠A =∠E ,∴∠B =∠BDC ,∴1809022B BDC αα︒-∠=∠==︒-,∴90909022A E B αα∠=∠=︒-∠=︒-︒+=,∴2A E α∠=∠=,318018018022EFC ACE E ααα∴∠=︒-∠-∠=︒--=︒-,故选:C .【点睛】本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.17.(2022·内蒙古赤峰)如图,点()2,1A ,将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段''O A ,则点A 的对应点'A 的坐标是( )A .()3,2-B .()0,4C .()1,3-D .()3,1-【答案】C 【分析】根据点向上平移a 个单位,点向左平移b 个单位,坐标P (x ,y )⇒P (x ,y +a )⇒P (x +a ,y +b ),进行计算即可.【详解】解:∵点A 坐标为(2,1),∴线段OA 向h 平移2个单位长度,再向左平移3个单位长度,点A 的对应点A ′的坐标为(2-3,1+2),即(-1,3),故选C .【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.18.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-【答案】A 【分析】如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',证明()A OB BOA AAS '∠ ≌,根据A 点坐标为()2,5,写出5AB =,2OB =,则5OB '=,2A B '=,即可写出点A 的坐标.【详解】解:如图,逆时针旋转90°作出OA ',过A 作AB x ⊥轴,垂足为B ,过A '作A B x ''⊥轴,垂足为B ',∴90A BO ABO ∠'=∠=︒,OA OA '=,∵18090A OB AOB A OA '∠+∠=︒-∠'=︒,90AOB A ∠+∠=︒,∴A OB A ∠'=∠,∴()A OB BOA AAS '∠ ≌,∴OB AB '=,A B OB '=,∵A 点坐标为()2,5,∴5AB =,2OB =,∴5OB '=,2A B '=,∴()5,2A '-,故选:A .【点睛】本题考查旋转的性质,证明A OB BOA '∠ ≌是解答本题的关键.19.(2022·海南)如图,点(0,3)(1,0)A B 、,将线段AB 平移得到线段DC ,若90,2ABC BC AB ∠=︒=,则点的坐标是( )A .(7,2)B .(7,5)C .(5,6)D .(6,5)【答案】D 【分析】先过点C 做出x 轴垂线段CE ,根据相似三角形找出点C 的坐标,再根据平移的性质计算出对应D 点的坐标.【详解】如图过点C 作x 轴垂线,垂足为点E ,∵90ABC ∠=︒∴90ABO CBE ∠+∠=︒∵90CBE BCE +=︒∠∴ABO BCE Ð=Ð在ABO ∆和BCE ∆中,90ABO BCE AOB BEC =⎧⎨==︒⎩∠∠∠∠ ,∴ABO BCE ∆∆∽,∴12AB AO OB BC BE EC === ,则26BE AO == ,22EC OB ==∵点C 是由点B 向右平移6个单位,向上平移2个单位得到,∴点D 同样是由点A 向右平移6个单位,向上平移2个单位得到,∵点A 坐标为(0,3),∴点D 坐标为(6,5),选项D 符合题意,故答案选D【点睛】本题考查了图像的平移、相似三角形的判定与性质,利用相似三角形的判定与性质找出图像左右、上下平移的距离是解题的关键.20.(2022·广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )A .B .C .D .【答案】D【分析】根据平移的特点分析判断即可.【详解】根据题意,得不能由平移得到,故A 不符合题意;不能由平移得到,故B 不符合题意;不能由平移得到,故C 不符合题意;能由平移得到,故D 符合题意;故选D .【点睛】本题考查了平移的特点,熟练掌握平移的特点是解题的关键.21.(2022·广西)如图,在ABC 中,4,CA CB BAC α==∠=,将ABC 绕点A 逆时针旋转2α,得到AB C '' ,连接B C '并延长交AB 于点D ,当B D AB '⊥时, 'BB的长是( )A B C D 【答案】B【分析】先证'60B AD ∠=︒,再求出AB 的长,最后根据弧长公式求得 'BB.【详解】解:,'CA CB B D AB =⊥ ,12AD DB AB ∴==,AB C '' 是ABC 绕点A 逆时针旋转2α得到,'AB AB ∴=,1'2AD AB =,在'Rt AB D ∆中,1cos ''2AD B AD AB ∠==,'60B AD ∴∠=︒,,'2CAB B AB αα∠=∠= ,11'603022CAB B AB ∴∠=∠=⨯︒=︒,4AC BC == ,cos304AD AC ∴=︒==2AB AD ∴==BB ∴'的长=60180AB π=,故选:B .【点睛】本题考查了图形的旋转变换,等腰三角形的性质,三角函数定义,弧长公式,正确运算三角函数定义求线段的长度是解本题的关键.22.(2022·内蒙古包头)如图,在Rt ABC 中,90,30,2ACB A BC ∠=︒∠=︒=,将ABC 绕点C 顺时针旋转得到A B C '' ,其中点A '与点A 是对应点,点B '与点B 是对应点.若点B '恰好落在AB 边上,则点A 到直线A C '的距离等于( )A .B .C .3D .2【答案】C【分析】如图,过A 作AQ A C '⊥于,Q 求解4,AB AC == 结合旋转:证明60,,90,B A B C BC B C A CB '''''∠=∠=︒=∠=︒ 可得BB C '△为等边三角形,求解60,A CA '∠=︒ 再应用锐角三角函数可得答案.【详解】解:如图,过A 作AQ A C '⊥于,Q由90,30,2ACB A BC ∠=︒∠=︒=,4,AB AC ∴===结合旋转:60,,90,B A B C BC B C A CB '''''∴∠=∠=︒=∠=︒BB C '∴ 为等边三角形,60,30,BCB ACB ''∴∠=︒∠=︒60,A CA '∴∠=︒sin 60 3.AQ AC ∴=︒== ∴A 到A C '的距离为3.故选C【点睛】本题考查的是旋转的性质,含30︒的直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.23.(2022·内蒙古通辽)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为( )A .B .C .D .【答案】A【分析】根据轴对称图形的定义,即可求解.【详解】解:A 、是轴对称图形,故本选项符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.24.(2022·四川内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故A 错误;B.不是轴对称图形,也不是中心对称图形,故B 错误;C.既是轴对称图形,也是中心对称图形,故C 正确;D.不是轴对称图形,也不是中心对称图形,故D 错误.故选:C .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.25.(2022·广西河池)如图,在Rt △ABC 中,90ACB ∠︒=,6AC =,8BC =,将Rt ABC 绕点B 顺时针旋转90°得到Rt A B C ''' .在此旋转过程中Rt ABC 所扫过的面积为( )A .25π+24B .5π+24C .25πD .5π【答案】A 【分析】根据勾股定理定理求出AB ,然后根据扇形的面积和三角形的面积公式求解.【详解】解:∵90ACB ∠︒=,6AC =,8BC =,∴10AB ==,∴Rt ABC 所扫过的面积为2901016825243602ππ⋅⋅+⨯⨯=+.故选:A .【点睛】本题主要考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答的关键.26.(2022·上海)有一个正n 边形旋转90 后与自身重合,则n 为( )A .6B .9C .12D .15【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90 一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90 是30 的3倍,则可以旋转得到.A. B. C. D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C .【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.27.(2022·贵州毕节)矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将ABE △沿AE 折叠得到AFE △,连接CF .若4AB =,6BC =,则CF 的长是( )A .3B .175C .72D .185【答案】D 【分析】连接BF 交AE 于点G ,根据对称的性质,可得AE 垂直平分BF ,BE =FE ,BG =FG =12BF ,根据E 为BC 中点,可证BE =CE =EF ,通过等边对等角可证明∠BFC =90°,利用勾股定理求出AE ,再利用三角函数(或相似)求出BF ,则根据FC =【详解】连接BF ,与AE 相交于点G ,如图,∵将ABE △沿AE 折叠得到AFE △∴ABE △与AFE △关于AE 对称∴AE 垂直平分BF ,BE =FE ,BG =FG =12BF∵点E 是BC 中点∴BE =CE =DF =132BC =∴5AE ===∵sin BE BG BAE AE AB ∠==∴341255BE AB BG AE ⋅⨯===∴12242225BF BG ==⨯=∵BE =CE =DF ∴∠EBF =∠EFB ,∠EFC =∠ECF∴∠BFC =∠EFB +∠EFC =180902︒=︒∴185FC ==故选 D 【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.二.填空题28.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''' ,若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.【答案】()1,3-【分析】根据点A 坐标及其对应点A '的坐标的变化规律可得平移后对应点的横坐标减小1,纵坐标减小2,即可得到答案.【详解】 平移ABC 得到A B C ''' ,点()0,2A 的对应点A '的坐标为()1,0-,∴ABC 向左平移了1个单位长度,向下平移了2个单位长度,即平移后对应点的横坐标减小1,纵坐标减小2,∴()2,1B -的对应点B '的坐标是()1,3-,故答案为:()1,3-.【点睛】本题考查了平移坐标的变化规律,即左减右加,上加下减,熟练掌握知识点是解题的关键.29.(2022·广西贵港)如图,将ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到ADE ,点B 的对应点D 恰好落在BC 边上,若,25DE AC CAD ⊥∠=︒,则旋转角α的度数是______.【答案】50︒【分析】先求出65ADE ∠=︒,由旋转的性质,得到65∠=∠=︒B ADE ,AB AD =,则65ADB ∠=︒,即可求出旋转角α的度数.【详解】解:根据题意,∵,25DE AC CAD ⊥∠=︒,∴902565ADE ∠=︒-︒=︒,由旋转的性质,则65∠=∠=︒B ADE ,AB AD =,∴65ADB B ∠=∠=︒,∴180665550BAD ︒-∠=︒=︒-︒;∴旋转角α的度数是50°;故答案为:50°.【点睛】本题考查了旋转的性质,三角形的内角和定理,解题的关键是熟练掌握旋转的性质进行计算.30.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.【答案】(4,8)-【分析】过B 作BC OA ⊥于C ,过B '作BD x ⊥轴于D ,构建OB D OBC '∆≅∆,即可得出答案.【详解】过B 作BC OA ⊥于C ,过B '作BD x ⊥轴于D ,∴90B DO BCO '∠=∠=︒,∴2390∠+∠= ,由旋转可知90BOB '∠=︒,OB OB '=,∴1290∠+∠=︒,∴13∠=∠,∵OB OB '=,13∠=∠,B DO BCO '∠=∠,∴OB D OBC '∆≅∆,∴B D OC '=,4OD BC ==,∵5AB AO ==,∴3AC ===,∴8OC =,∴8B D '=,∴(4,8)B '-.故答案为:(4,8)-.【点睛】本题考查了旋转的性质以及如何构造全等三角形求得线段的长度,准确构造全等三角形求得线段长度是解题的关键.31.(2022·四川泸州)点()2,3-关于原点的对称点的坐标为________.【答案】()2,3-【分析】根据两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】点()2,3-关于原点对称的点的坐标是()2,3-故答案为:()2,3-【点睛】本题主要考查了关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(-x ,-y ).32.(2022·吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为__________度.(写出一个即可)【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒,0360α︒<<︒ ,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).【点睛】本题考查了正多边形的中心角、图形的旋转,熟练掌握正多边形的性质是解题关键.33.(2022·贵州铜仁)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】8 5【分析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≤MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE∵12CE×DO=12CD×DE,∴DO∴EO∵MF⊥CD,∠EDC=90°,∴DE ∥MF ,∴∠EDO =∠GMO ,∵CE 为线段DM 的垂直平分线,∴DO =OM ,∠DOE =∠MOG =90°,∴△DOE ≌△MOG ,∴DE =GM ,∴四边形DEMG 为平行四边形,∵∠MOG =90°,∴四边形DEMG 为菱形,∴EG =2OE GM = DE =1,∴CG ,∵DE ∥MF ,即DE ∥GF ,∴△CFG ∽△CDE ,∴FG CG DE CE =,即1FG , ∴FG =35,∴MF =1+35=85,∴MN +NP 的最小值为85.故答案为:85.【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.34.(2022·山东潍坊)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为___________.1【分析】判定△AB ′D ′是等腰直角三角形,即可得出AB AD ,再根据AB ′= AB ,再计算即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴∠D =∠B =∠DAB =90°,由操作一可知:∠DAB ′=∠D ′AB ′=45°,∠AD ′B ′=∠D =90°,AD =AD ′,∴△AB ′D ′是等腰直角三角形,∴AD =AD ′= B ′D ′,由勾股定理得AB ,又由操作二可知:AB ′=AB ,=AB ,∴AB AD ,∴A 4纸的长AB 与宽AD 1:1.【点睛】本题主要考查了矩形的性质以及折叠变换的运用,解题的关键是理解题意,灵活运用所学知识解决问题.35.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.【答案】(1)+【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '⊥y 轴∵ABCO是正方形,OA=2∴∠COB=45°,OB=∵绕原点O逆时针旋转75︒∴∠BOB'=75°∴∠COB'=30°∵OB'=OB=∴MB'MO∴B'(∵沿y轴方向向上平移1个单位长度∴B''(1)故答案为:(1)【点睛】本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.36.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为______.【答案】()2,2-【分析】根据题意作出旋转后的图形,然后读出坐标系中点的坐标即可.【详解】解:线段OA 绕原点O 顺时针旋转90°后的位置如图所示,∴旋转后的点A 的坐标为(2,-2),故答案为:(2,-2).【点睛】题目主要考查图形的旋转,点的坐标,理解题意,作出旋转后的图形读出点的坐标是解题关键.三.解答题37.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母);(2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.【答案】(1)见解析(2)见解析(3)52π【分析】(1)利用平移变换的性质分别作出A ,O ,B 的对应点1A ,1O ,1B 即可;(2)利用旋转变换的性质分别作出A ,O ,B 的对应点2A ,2O ,2B 即可;(3)利用弧长公式求解即可.(1)解:如图,111A O B ∆即为所求;(2)解:如图,222A O B ∆(即△A 2OB 2)即为所求;(3)解:在Rt AOB ∆中,5OB ==,905253602l ππ∴=⨯⨯=.【点睛】本题考查作图-旋转变换,平移变换,勾股定理、弧长公式等知识,解题的关键是掌握平移变换,旋转变换的性质.38.(2022·湖北荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【答案】(1)见解析(2)见解析【分析】对于(1),以AC为公共边的有2个,以AB为公共边的有2个,以BC为公共边的有1个,一共有5个,作出图形即可;对于(2),△ABC是等腰直角三角形,以BC为对角线的菱形只有1个,作出图形即可.(1)如图所示.。
专题 图形的轴对称、平移与旋转目录一、考情分析二、知识建构考点图形的轴对称、平移与旋转题型01 图形的识别题型02 与图形变化有关的作图问题题型03 几何图形的平移变化题型04 与函数图象有关的平移变化题型05 几何图形的折叠问题题型06 与函数图象有关的轴对称变化题型07 几何图形的旋转变化题型08 与函数图象有关的旋转变化题型09 利用平移、轴对称、旋转的性质解决多结论问题题型10 与图形变化有关的最值问题【核心提炼·查漏补缺】【好题必刷·强化落实】考点图形的轴对称、平移与旋转题型01 图形的识别平移的概念:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.轴对称图形定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.中心对称图形定义:如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形.在判断一个图形是否为轴对称图形、中心对称图形时,要明确以下两点:1)如果能找到一条直线(对称轴)把一个图形分成两部分,且直线两旁的部分完全重合,那么这个图形就是轴对称图形;2)把一个平面图形绕某一点旋转 180°,如果旋转后的图形能和原图形重合,那么这个图形就是中心对称图形.1.(2023·湖南郴州·中考真题)下列图形中,能由图形a通过平移得到的是( )A.B.C.D.2.(2023·黑龙江大庆·中考真题)搭载神舟十六号载人飞船的长征二号F遥十六运载火箭于2023年5月30日成功发射升空,景海鹏、朱杨柱、桂海潮3名航天员开启“太空出差”之旅,展现了中国航天科技的新高度.下列图标中,其文字上方的图案是中心对称图形的是()A.B.C.D.3.(2023·湖北荆州·中考真题)观察如图所示的几何体,下列关于其三视图的说法正确的是( )A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形4.(2022·宁夏·中考真题)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换()A.平移B.轴对称C.旋转D.位似题型02与图形变化有关的作图问题解决图形变化有关的作图问题方法:1)平移与旋转作图都应抓住两个要点:一是平移、旋转的方向;二是平移的距离及旋转的角度.2)基本的作图方法是先选取已知图形的几个关键点,再根据平移或旋转的性质作它们的对应点,然后以“局部带动整体”的思想方法作变换后的图形.3)无论是平移、轴对称与旋转,都不改变图形的大小和形状.1.(2023·黑龙江·中考真题)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,−1),B (1,−2),C(3,−3).(1)将△ABC向上平移4个单位,再向右平移1个单位,得到△A1B1C1,请画出△A1B1C1.(2)请画出△ABC关于y轴对称的△A2B2C2.(3)将△A2B2C2着原点O顺时针旋转90°,得到△A3B3C3,求线段A2C2在旋转过程中扫过的面积(结果保留π).2.(2023·四川达州·中考真题)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.3.(2022·广西河池·中考真题)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B (2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.题型03 几何图形的平移变化平移变换问题:分几何图形平移变换和函数图像平移变换. 平移是将一个图形沿某一方向移动一段距离,不会改变图形的大小和形状,只改变图形的位置.在图形的变化过程中,解决此类问题的方法很多,而关键在于解决问题的着眼点,从恰当的着眼点出发,再根据具体图形变换的特点确定其变化.1.(2023·山东潍坊·中考真题)如图,在直角坐标系中,菱形OABC的顶点A的坐标为(−2,0),∠AOC=60°.将菱形OABC沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形OA′B′C′,其中点B′的坐标为()A.(−2,3−1)B.(−2,1)C.(−3,1)D.(−3,3−1)2.(2023·河南·中考真题)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点M(4,0)的直线l∥y轴,作△ABC关于y轴对称的图形△A1B1 C1,再分别作△A1B1C1关于x轴和直线l对称的图形△A2B2C2和△A3B3C3,则△A2B2C2可以看作是△ABC 绕点O顺时针旋转得到的,旋转角的度数为______;△A3B3C3可以看作是△ABC向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,▱ABCD中,∠BAD=α(0°<α<90°),P为直线AB下方一点,作点P关于直线AB的对称点P1,再分别作点P1关于直线AD和直线CD的对称点P2和P3,连接AP,AP2,请仅就图2的情形解决以下问题:①若∠PAP2=β,请判断β与α的数量关系,并说明理由;②若AD=m,求P,P3两点间的距离.(3)拓展应用:在(2)的条件下,若α=60°,AD=23,∠PAB=15°,连接P2P3.当P2P3与▱ABCD的边平行时,请直接写出AP的长.3.(2023·吉林·中考真题)【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形其中判定的依据是__________.【探究提升】取两张短边长度相等的平行四边形纸条ABCD和EFGH(AB<BC,FG≤BC),其中AB=EF,∠B=∠FEH,将它们按图②放置,EF落在边BC上,FG,EH与边AD分别交于点M,N.求证:▱EFMN是菱形.【结论应用】保持图②中的平行四边形纸条ABCD不动,将平行四边形纸条EFGH沿BC或CB平移,且EF始终在边BC 上.当MD =MG 时,延长CD ,HG 交于点P ,得到图③.若四边形ECPH 的周长为40,sin ∠EFG =45(∠EFG 为锐角),则四边形ECPH 的面积为_________.4.(2023·天津·中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点A(3,0),B(0,1),D(23,1),矩形EFGH 的顶点E 0,−3,0,(1)填空:如图①,点C 的坐标为________,点G 的坐标为________;(2)将矩形EFGH 沿水平方向向右平移,得到矩形E ′F ′G ′H ′,点E ,F ,G ,H 的对应点分别为E ′,F ′,G ′,H ′.设EE ′=t ,矩形E ′F ′G ′H ′与菱形ABCD 重叠部分的面积为S .①如图②,当边E ′F ′与AB 相交于点M 、边G ′H ′与BC 相交于点N ,且矩形E ′F ′G ′H ′与菱形ABCD 重叠部分为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当233≤t ≤1134时,求S 的取值范围(直接写出结果即可).题型04 与函数图象有关的平移变化1.(2023·湖南益阳·中考真题)我们在学习一次函数、二次函数图象的平移时知道:将一次函数y =2x 的图象向上平移1个单位得到y =2x +1的图象;将二次函数y =x 2+1的图象向左平移2个单位得到y =(x +2)2+1的图象.若将反比例函数y =6x 的图象向下平移3个单位,如图所示,则得到的图象对应的函数表达式是 .2.(2023·山东青岛·中考真题)许多数学问题源于生活.雨伞是生活中的常用物品,我们用数学的眼光观察撑开后的雨伞(如图①)、可以发现数学研究的对象——抛物线.在如图②所示的直角坐标系中,伞柄在y 轴上,坐标原点O为伞骨OA,OB的交点.点C为抛物线的顶点,点A,B在抛物线上,OA,OB关于y轴对称.OC=1分米,点A到x轴的距离是0.6分米,A,B两点之间的距离是4分米.(1)求抛物线的表达式;(2)分别延长AO,BO交抛物线于点F,E,求E,F两点之间的距离;(3)以抛物线与坐标轴的三个交点为顶点的三角形面积为S1,将抛物线向右平移m(m>0)个单位,得到一条新S1,求m的值.抛物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为S2.若S2=35x2+bx−4的图像与x轴相交于点A(−2,0)、B,其顶点是3.(2023·江苏·中考真题)如图,二次函数y=12C.(1)b=_______;(2)D是第三象限抛物线上的一点,连接OD,tan∠AOD=5;将原抛物线向左平移,使得平移后的抛物线经过2点D,过点(k,0)作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知△PCQ是直角三角形,求点P的坐标.4.(2023·黑龙江绥化·中考真题)如图,抛物线y1=ax2+bx+c的图象经过A(−6,0),B(−2,0),C(0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式.(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC下方.已知点P的横坐标为m.过点P作PD有最大值,最大值是多少?PD⊥NC于点D.求m为何值时,CD+12题型05 几何图形的折叠问题【问题情境】如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B′,折痕与边AD,BC分别交于点E,F.【活动猜想】(1)如图2,当点B′与点D重合时,四边形BEDF是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当AB=4,AD=8,BF=3时,求证:点A′,B′,C在同一条直线上.【深入探究】(3)如图4,当AB与BC满足什么关系时,始终有A′B′与对角线AC平行?请说明理由.(4)在(3)的情形下,设AC与BD,EF分别交于点O,P,试探究三条线段AP,B′D,EF之间满足的等量关系,并说明理由.2.(2023·辽宁沈阳·中考真题)如图1,在▱ABCD纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将▱ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C′、D′,射线C′E与射线AD交于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为______ ;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM交C′D′于点N,连接AN、EN,求△ANE的面积.3.(2023·辽宁大连·中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.4.(2022·河南·中考真题)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.题型06 与函数图象有关的轴对称变化1.(2022·四川巴中·中考真题)函数y=|ax2+bx+c|(a>0,b2−4ac>0)的图象是由函数y=ax2+bx+c (a>0,b2−4ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是()①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.A.①②B.①③C.②③④D.①③④2.(2023·四川德阳·中考真题)已知:在平面直角坐标系中,抛物线与x轴交于点A(−4,0),B(2,0),与y轴交于点C(0,−4).(1)求抛物线的解析式;(2)如图1,如果把抛物线x轴下方的部分沿x轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线y=kx+6与新图象有三个公共点时,求k的值;(3)如图2,如果把直线AB沿y轴向上平移至经过点D,与抛物线的交点分别是E,F,直线BC交EF于点H,过=25.求点F的坐标.点F作FG⊥CH于点G,若DFHG3.(2023·山东日照·中考真题)在平面直角坐标系xOy内,抛物线y=−ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当a=1时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上3一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点+1,F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为5时,求a的值.24.(2022·辽宁沈阳·中考真题)如图,平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx−3经过点B(6,0)和点D(4,−3)与x轴另一个交点A.抛物线与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式②并直接写出直线AD的函数表达式.(2)点E是直线AD下方抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF 的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方部分沿x轴向上翻折,与抛物线剩下部分组成新的曲线为C1,点C的对应点C′,点G的对应点G′,将曲线C1,沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点作点P和点Q,若四边形C′G′QP是平行四边形,直接写出P的坐标.题型07几何图形的旋转变化旋转变换问题:分为几何图形旋转变换和与函数图象有关的旋转变化.在实际解题中,若我们能恰当地运用图形的旋转变换,往往能起到集中条件、开阔思路、化难为易的效果,图形的旋转变换,既要借助于推理,但更要借助于直觉和观察,变换的意识与变换的视角,会使这种直觉更敏锐,使这种观察更具眼力. 1.(2023·内蒙古赤峰·中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM,CN 始终与正方形的边AD,AB所在直线分别相交于点M,N,连接MN,可得△CMN.【探究一】如图②,把△CDM绕点C逆时针旋转90°得到△CBH,同时得到点H在直线AB上.求证:∠CNM=∠CNH;【探究二】在图②中,连接BD,分别交CM,CN于点E,F.求证:△CEF∽△CNM;【探究三】把三角尺旋转到如图③所示位置,直线BD与三角尺45°角两边CM,CN分别交于点E,F.连接AC 的值.交BD于点O,求EFNM2.(2023·湖南·中考真题)如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平行线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60°,得到△ACQ,连接EQ、PQ,PQ交AC于F.(1)证明:在点P的运动过程中,总有∠PEQ=120°.(2)当AP为何值时,△AQF是直角三角形?DP3.(2022·山东济南·中考真题)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD 绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD 与CE 的数量关系并给出证明;(2)延长ED 交直线BC 于点F .①如图2,当点F 与点B 重合时,直接用等式表示线段AE ,BE 和CE 的数量关系为_______;②如图3,当点F 为线段BC 中点,且ED =EC 时,猜想∠BAD 的度数,并说明理由.题型08 与函数图象有关的旋转变化1.(2021·青海西宁·中考真题)如图,正比例函数y =12x 与反比例函数y =k x (x >0)的图象交于点A ,AB ⊥x 轴于点B ,延长AB 至点C ,连接OC .若cos ∠BOC =23,OC =3.(1)求OB 的长和反比例函数的解析式;(2)将△AOB 绕点О旋转90°,请直接写出旋转后点A 的对应点A '的坐标.2.(2022·四川资阳·中考真题)已知二次函数图象的顶点坐标为A(1,4),且与x 轴交于点B(−1,0).(1)求二次函数的表达式;(2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.x2+bx+c的图象经过点A(0,2),3.(2023·辽宁沈阳·中考真题)如图,在平面直角坐标系中,二次函数y=13与x轴的交点为点B(3,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=3OE.以线段OD,OE为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,FG,将△GFH绕点F 按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′4.(2023·江苏徐州·中考真题)如图,在平而直角坐标系中,二次函数y=−3x2+23x的图象与x轴分别交于点O,A,顶点为B.连接OB,AB,将线段AB绕点A按顺时针方向旋转60°得到线段AC,连接BC.点D,E分别在线段OB,BC上,连接AD,DE,EA,DE与AB交于点F,∠DEA=60°.(1)求点A,B的坐标;(2)随着点E在线段BC上运动.①∠EDA的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,△BDE 的面积为 .题型09 利用平移、轴对称、旋转的性质解决多结论问题1.(2023·内蒙古赤峰·中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB 于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是( )A .①②③B .②④C .①③④D .①②③④2.(2022·四川宜宾·中考真题)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD =CE ;②∠DAC =∠CED ;③若BD =2CD ,则CF AF =45;④在△ABC 内存在唯一一点P ,使得PA +PB +PC 的值最小,若点D 在AP 的延长线上,且AP 的长为2,则CE =2+3.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④3.(2022·四川眉山·中考真题)如图,四边形ABCD 为正方形,将△EDC 绕点C 逆时针旋转90°至△HBC ,点D ,B ,H 在同一直线上,HE 与AB 交于点G ,延长HE 与CD 的延长线交于点F ,HB =2,HG =3.以下结论:①∠EDC =135°;②EC 2=CD ⋅CF ;③HG =EF ;④sin ∠CED =23.其中正确结论的个数为( )A.1个B.2个C.3个D.4个4.(2023·山东日照·中考真题)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:①EM=EN;;④BM+MN+ND的最小值是20.其中所②四边形MBND的面积不变;③当AM:MD=1:2时,S△MPE=9625有正确结论的序号是.题型10 与图形变化有关的最值问题1.(2023·辽宁盘锦·中考真题)如图,四边形ABCD是矩形,AB=10,AD=42,点P是边AD上一点(不与点A,D重合),连接PB,PC.点M,N分别是PB,PC的中点,连接MN,AM,DN,点E在边AD上,ME ∥DN,则AM+ME的最小值是()A.23B.3C.32D.422.(2023·湖北十堰·中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC(∠A=90°)硬纸片剪切成如图所示的四块(其中D,E,F分别为AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为,最大值为.3.(2023·黑龙江绥化·中考真题)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是.4.(2023·四川自贡·中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB 的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.5.(2023·湖北随州·中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕,点C顺时针旋转60°得到△A′P′C,连接PP′,由PC =P ′C ,∠PCP ′=60°,可知△PCP ′为 ① 三角形,故PP ′=PC ,又P ′A ′=PA ,故PA +PB +PC =PA ′+PB +PP ′≥A ′B ,由 ② 可知,当B ,P ,P ′,A 在同一条直线上时,PA +PB +PC 取最小值,如图2,最小值为A ′B ,此时的P 点为该三角形的“费马点”,且有∠APC =∠BPC =∠APB = ③ ;已知当△ABC 有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC ≥120°,则该三角形的“费马点”为 ④ 点.(2)如图4,在△ABC 中,三个内角均小于120°,且AC =3,BC =4,∠ACB =30°,已知点P 为△ABC 的“费马点”,求PA +PB +PC 的值;(3)如图5,设村庄A ,B ,C 的连线构成一个三角形,且已知AC =4km ,BC =23km ,∠ACB =60°.现欲建一中转站P 沿直线向A ,B ,C 三个村庄铺设电缆,已知由中转站P 到村庄A ,B ,C 的铺设成本分别为a 元/km ,a 元/km ,2a 元/km ,选取合适的P 的位置,可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)轴对称与轴对称图形定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形.这条直线就是它的对称轴.区别1)轴对称是指两个图形折叠重合.2)轴对称对称点在两个图形上.3)轴对称只有一条对称轴.1)轴对称图形是指本身折叠重合.2)轴对称图形对称点在一个图形上.3)轴对称图形至少有一条对称轴.联系1) 定义中都有一条直线,都要沿着这条直线折叠重合.2) 如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;反过来, 如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称.性质1)关于某条直线对称的两个图形是全等形.2)两个图形关于某直线对称那么对称轴是对应点连线的垂直平分线.判定1)两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.2)两个图形关于某条直线成轴对称,那么对称轴是对折重合的折痕线.常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形等.这个点叫做它的对称中心.区别中心对称是指两个图形的关系中心对称图形是指具有某种特性的一个图形联系两者可以相互转化,如果把中心对称的两个图形看成一个整体(一个图形),那么这“一个图形”就是中心对称图形;反过来,如果把一个中心对称图形相互对称的两部分看成两个图形,那么这“两个图形”中心对称.中心对称的性质:1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;2)中心对称的两个图形是全等图形.找对称中心的方法和步骤:方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.平移的三大要素:1)平移的起点,2)平移的方向,3)平移的距离.平移的性质:1)平移不改变图形的大小、形状,只改变图形的位置,因此平移前后的两个图形全等.2)平移前后对应线段平行且相等、对应角相等.3)任意两组对应点的连线平行(或在同一条直线上)且相等,对应点之间的距离就是平移的距离.旋转的三大要素:旋转中心、旋转方向和旋转角度.旋转的性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.1. 图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2. 旋转中心可以是图形外的一点,也可以是图形上的一点,还可以是图形内的一点.3. 对应点之间的运动轨迹是一段圆弧,对应点到旋转中心的线段就是这段圆弧所在圆的半径.4. 旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.一、单选题1.(2023·山西吕梁·模拟预测)在我国“福禄寿喜”一般是指对人的祝福,代表健康长命幸福快活和吉祥如。
人教版初中数学图形的平移,对称与旋转的难题汇编附答案解析一、选择题1.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重本题考查了轴对称图形的概念合.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.4.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A2B3C.22D3【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=22AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=2AEAE=2.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.5.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60︒得到线段AQ,连接BQ.若6PA=,8PB=,10PC=,则四边形APBQ的面积为()A.2493+B.483+C.243+D.48183+【答案】A【解析】【分析】连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.【详解】解:如图,连结PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ ∴△APC≌△AQB,∴PC=QB=10,在△BPQ中, PB2=82=64,PQ2=62=36,BQ2=102=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∴∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12×6×8+34×62=24+93故答案为A..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.6.如图,周长为16的菱形ABCD中,点E,F分别在边AB,AD上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )A.3 B.4 C.5 D.6【答案】B【解析】试题分析:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG 的长就是EP+FP的最小值,据此即可求解.解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.7.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.【详解】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B .【点睛】此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握8.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.9.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°【答案】D【解析】【分析】 连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形,∴AB AD =,∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒,∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒,在DEC V 中,()18075DEC CDE C ∠=︒-∠+∠=︒.故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.10.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )A .俯视图B .主视图C .俯视图和左视图D .主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.11.下列几何图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故本选项错误;B 、是中心对称图形,不是轴对称图形,故本选项错误;C 、是中心对称图形,也是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误;故选:C .【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.13.如图,若将线段AB 平移至A 1B 1,则a+b 的值为( )A .﹣3B .3C .﹣2D .0【答案】A【解析】【分析】 根据点的平移规律即点A 平移到A 1得到平移的规律,再按此规律平移B 点得到B 1,从而得到B 1点的坐标,于是可求出a 、b 的值,然后计算a+b 即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.14.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )A .()5,2B .()2,5C .()2,5-D .()5,2-【答案】A【解析】【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.【详解】作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,△OAD≌△A′OD′(SSS),∵A(-2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A.【点睛】此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.15.如图,圆柱形玻璃杯高为8cm,底面周长为48cm,在杯内壁离杯底3cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm且与蜂蜜相对的A处,则蚂蚁从外壁A处走到内壁B处,至少爬多少厘米才能吃到蜂蜜()A.24 B.25 C.3713D.382【答案】B【解析】【分析】将圆柱形玻璃杯的侧面展开图为矩形MNPQ,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁A处走到内壁B处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ,则E、F分别是MQ,NP的中点,AM=2cm,BF=3cm,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁A处走到内壁B处的最短距离.过点B作BC⊥MN于点C,则BC=ME=24cm,A′C=8+2-3=7cm,∴在Rt∆A′BC中,2222+=+=′cm.A C BC72425故选B.【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.16.如图,将△ABC 绕点A 顺时针旋转60°得到△ADE ,点C 的对应点E 恰好落在BA 的延长线上,DE 与BC 交于点F ,连接BD .下列结论不一定正确的是( )A .AD=BDB .AC ∥BD C .DF=EF D .∠CBD=∠E【答案】C【解析】【分析】 由旋转的性质知∠BAD=∠CAE=60°、AB=AD ,△ABC ≌△ADE ,据此得出△ABD 是等边三角形、∠C=∠E ,证AC ∥BD 得∠CBD=∠C ,从而得出∠CBD=∠E .【详解】由旋转知∠BAD=∠CAE=60°、AB=AD ,△ABC ≌△ADE ,∴∠C=∠E ,△ABD 是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD ,∴AC ∥BD ,∴∠CBD=∠C ,∴∠CBD=∠E ,则A 、B 、D 均正确,故选C .【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.17.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【答案】C【解析】【分析】 先利用平移的性质求出AD 、CF ,进而完成解答.【详解】解:将△ABC 沿BC 方向平移1个单位得到△DEF ,∴AD=CF=1,AC=DF ,又∵△ABC 的周长等于9,∴四边形ABFD 的周长等于9+1+1=11.故答案为C .【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.18.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )A .1B .2C .3D .22【答案】C【解析】【分析】 根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.19.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A.102+B.26C.5 D.26【答案】B【解析】【分析】过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,根据勾股定理求出A B'的长即可.【详解】如图,过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,∵等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,∴AE=BE=1,∵P(0,3) ,∴A A´=4,∴A´E=5,∴A B'=故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A关于直线PD的对称点,找出PA+PB的值最小时三角形ABC的位置.20.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1 B.﹣7 C.1 D.7【答案】A【解析】【分析】【详解】∵点A(m﹣1,3)与点B(2,n+1)关于x轴对称,∴m-1=2,n+1+3=0,∴m=3,n=-4,∴m+n=3+(﹣4)=﹣1.故选A.【点睛】本题考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,纵坐标互为相反数,横坐标相等.。
轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。
2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。
根据平移规则即可得出平移后的抛物线的解析式。
即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
最新中考数学总复习试题专题汇编:轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。
2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。
根据平移规则即可得出平移后的抛物线的解析式。
即可求解。
2010中考数学试题分类汇编-平移旋转轴对称中心对称2010年中考数学试题分类汇编——平移、旋转及轴对称、中心对称(2010哈尔滨)1.下列图形中,是中心对称图形的是().D(2010哈尔滨)2.点A(-l,4)和点B(-5,1)在平面直角坐标系中的位置如图所示.(1)将点A、B分别向右平移5个单位,得到点A1、B1,请画出四边形AA1B1B;(2)画一条直线,将四边形AA1B1B分成两个全等的图形,并且每个图形都是轴对称图形.(2010珠海)3.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是() DA.(-2,6)B.(-2,0)C.(-5,3)D.(1,3) (2010珠海)4.现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()B图2图1A. B C D(2010年镇江市)21.动手操作(本小题满分6分)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应;(2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;(3)填空:在(2)中,设原△ABC的外心为M,△A2B2C2的外心为M,则M与M2之间的距离为 .(1)见图21;(2分)(2)见图21;(4分)17(6分)(3).(2010遵义市)下列图形中既是中心对称图形,又是轴对称图形的是答案:B(2010台州市)23.如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察: ①如图2、图3,当∠CDF =0° 或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30° 时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论.(3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.图1图2EKF M EKCF MEK C F LM C (F ,K )解:23.(12分)(1)① = …………………………………………………………………2分② > …………………………………………………………………………………2分 (2)>………………………………………………………………………………………2分 证明:作点C 关于FD 的对称点G ,连接GK ,GM ,GD ,则CD =GD ,GK = CK ,∠GDK =∠CDK , ∵D 是AB 的中点,∴AD =CD =GD . ∵=∠A 30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°, ∠ADM +∠CDK =60°.∴∠ADM =∠GDM ,………………………………………………………………………3分 ∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM .∵GM +GK >MK ,∴AM +CK >MK .……………………………………………………1分 (3)∠CDF =15°,23=AMMK.…………………………………………………………2分(玉溪市2010)6. 如图3是把一张长方形的纸沿长边中点的连线对折两次后得到的图形.再沿虚线裁剪,外面部分展开后的图形是 (D)BACD图3AB(玉溪市2010)10. 如图5是汽车牌照在水中的倒影,则该车牌照上的数字是21678 .一项是符合题目要求的.)(2010年兰州)1观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有A.1个B.2个 C.3个D.4个答案 B(2010年无锡)4.下列图形中,是中心对称图形但不是轴对称图形的是(▲)答案 B(2010年连云港)5.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()A.①② B.②③ C.②④ D.①④答案 C(2010年连云港)24.(本题满分10分)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C旋转过程事所经过的路径长;A.B.C.图5B . A .C .D .A 第24题 BCDO'C'B'()A(')D(3)设点B 旋转后的对应点为B ’,求tan ∠DAB ’的值. 答案(2)易知点C 的旋转路径是以为O 圆心,OC 为半径的半圆因为OC=22125+=,所以半圆的周长为5π .............................................6分 (3)'22'22112,3332B D AB =+==+=,224225AD =+= 所以2'2'2AD B D AB =+所以ADB '∆是直角三角形,且90AB D '∠=..............................................................8分所以tan 21332DB DAB AB ''∠===' .............................................................................10分(2010宁波市)3.下列各图是选择自历届世博会会徽中的图案,其中是中心对称图形的是 C2.(2010年怀化市)下列图形中,是中心对称图形但不是轴对称图形的是( )答案:B13. (2010年济宁市)如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 . 答案:(a -,b -);19. (2010年郴州市)ABC 在平面直角坐标系中的位置如图所示,将ABC 沿y 轴翻折得到111A B C ,再将111A B C 绕点O 旋转180得到222A B C . 请依次画出111A B C 和222A B C . 答案:19.答案如图 每个图形3分毕节13.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( D )A .(22)-,B .(41),C .(31), D .(40),2.(10湖南怀化)下列图形中,是中心对称图形但不是轴对称图形的是( )ByxCBA O第19题C 2A 2C 1B 1B 2A 1y xC BA O (第13题)1、(2010年泉州南安市)请写出一个既是轴对称,又是中心对称的几何图形名称:答案:如:矩形(答案不惟一)(2010年天津市)(2)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(B)(A)(B)(C)(D)(2010年天津市)(14)如图,已知正方形ABCD的边长为3,E为CD边上一点,1DE=.以点A为中心,把△ADE顺时针旋转90︒,得△ABE',连接EE',则EE'的长等于25.(2010年天津市)(18)有一张矩形纸片ABCD,按下面步骤进行折叠:第一步:如图①,将矩形纸片ABCD折叠,使点B、D重合,点C落在点C'处,得折痕EF;第二步:如图②,将五边形AEFC D'折叠,使AE、C F'重合,得折痕DG,再打开;第三步:如图③,进一步折叠,使AE、C F'均落在DG上,点A、C'落在点A'处,点E、F落在点E'处,得折痕MN、QP.这样,就可以折出一个五边形DMNPQ.第(14)题AE(Ⅰ)请写出图①中一组相等的线段 AD C D '=(答案不惟一,也可以是AE C F '=等)(写出一组即可);(Ⅱ)若这样折出的五边形DMNPQ (如图③)恰好是一个正五边形,当AB a =,AD b =,DM m =时,有下列结论:①222tan18a b ab -=︒; ②tan18m =︒; ③tan18b m a =+︒; ④3tan182b m m =+︒.其中,正确结论的序号是 ①②③ (把你认为正确结论的序号都.填上).(2010年天津市)(25)(本小题10分)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.E 的坐标;第(18)题ADC ' C B EFGADC 'CBEF 图①图② 图③C 'D F CANP BE 'A ' M QG(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.解:(Ⅰ)如图,作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,连接DE .若在边OA 上任取点E '(与点E 不重合),连接CE '、DE '、D E ''. 由DE CE D E CE CD D E CE DE CE '''''''+=+>=+=+, 可知△CDE 的周长最小.∵ 在矩形OACB 中,3OA =,4OB =,D 为OB∴ 3BC =,2D O DO '==,6D B '=. ∵ OE ∥BC ,∴ Rt △D OE '∽Rt △D BC ',有OE D OBC D B'='. ∴ 2316D O BC OE D B '⋅⨯==='. ∴ 点E 的坐标为(1,0). ................................6分第(25)题(Ⅱ)如图,作点D 关于x 轴的对称点D ',在CB 边上截取2CG =,连接D G '与x 轴交于点E ,在EA 上截取2EF =.∵ GC ∥EF ,GC EF =,∴ 四边形GEFC 为平行四边形,有GE CF =. 又 DC 、EF 的长为定值,∴ 此时得到的点E 、F 使四边形CDEF 的周长最小. ∵ OE ∥BC ,∴ Rt △D OE '∽Rt △D BG ', 有 OE D OBG D B'='. ∴ ()21163D O BG D O BC CG OE D B D B ''⋅⋅-⨯====''. ∴ 17233OF OE EF =+=+=.∴ 点E 的坐标为(13,0),点F 的坐标为(73,0). ...............10分(2010年天津市)(26)(本小题10分)在平面直角坐标系中,已知抛物线2y x bx c =-++与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴的正半轴交于点C ,顶点为E .(Ⅰ)若2b =,3c =,求此时抛物线顶点E 的坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE = 2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式. 解:解:(Ⅰ)当2b =,3c =时,抛物线的解析式为223y x x =-++,即2(1)4y x =--+.∴ 抛物线顶点E 的坐标为(1,4). .................2分(Ⅱ)将(Ⅰ)中的抛物线向下平移,则顶点E 在对称轴1x =上,有2b =,∴ 抛物线的解析式为22y x x c =-++(0c >).∴ 此时,抛物线与y 轴的交点为0( )C c ,,顶点为1( 1)E c +,. ∵ 方程220x x c -++=的两个根为11x =-,21x =+,∴ 此时,抛物线与x轴的交点为10()A,10()B +. 如图,过点E 作EF ∥CB 与x 轴交于点F ,连接CF ,则S △BCE = S △BCF .∵ S △BCE = S △ABC ,∴ S △BCF = S △ABC .∴BF AB ==设对称轴1x =与x 轴交于点D则12DF AB BF =+= 由EF ∥CB ,得EFD CBO ∠=∠. ∴ Rt △EDF ∽Rt △COB .有ED CODF OB=. ∴.结合题意,解得 54c =.∴ 点54(0 )C ,,52( 0)B ,.x设直线BC 的解析式为y mx n =+,则5,450.2n m n ⎧=⎪⎪⎨⎪=+⎪⎩ 解得 1,25.4m n ⎧=-⎪⎪⎨⎪=⎪⎩ ∴ 直线BC 的解析式为1524y x =-+. .........................6分(Ⅲ)根据题意,设抛物线的顶点为( )E h k ,,(0h >,0k >)则抛物线的解析式为2()y x h k =--+,此时,抛物线与y 轴的交点为2(0 )C h k -+,, 与x轴的交点为0()A h,0()B h +.0h >) 过点E 作EF ∥CB 与x 轴交于点F ,连接CF , 则S △BCE = S △BCF . 由S △BCE = 2S △AOC ,∴ S △BCF = 2S △AOC .得2)BF AO h ==. 设该抛物线的对称轴与x 轴交于点D . 则122DF AB BF h =+=. 于是,由Rt △EDF ∽Rt △COB ,有ED CODF OB=. ∴2=,即2220h k -+=.结合题意,解得h =① ∵ 点( )E h k ,在直线43y x =-+上,有43k h =-+. ② ∴1=. 有1k =,12h =.D A ∴ 抛物线的解析式为234y x x =-++. .........................10分(2010山西20.(本题6分)山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的部分,虚线给出了作图提示,请用圆规和直尺画图.(1)根据图2将图3补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.(1) 将图3补充完整得3分(画出虚线不扣分) (2) 图略,答案不唯一,只要符合题目要求均得3分1.(2010宁德)下列四张扑克牌图案,属于中心对称的是( ).B1.(2010山东济南)如图所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是 度.A. B. C.答案: 701.(2010山东德州)下面的图形中,既是轴对称图形又是中心对称图形的是(A)(B)(C)(D)答案:B(2010年常州)24.如图在△ABC和△CDE中,AB=AC=CE,BC=DC=DE,AB>BC,∠BAC=∠DCE=∠α,点B、C、D在直线l上,按下列要求画图(保留画图痕迹);(1)画出点E关于直线l的对称点E’,连接CE’、DE’;(2)以点C为旋转中心,将(1)中所得△CDE’按逆时针方向旋转,使得CE’与CA重合,得到△CD’E’’(A).画出△CD’E’’(A).解决下面问题:①线段AB和线段CD’的位置关系是 .理由是:②求∠α的度数.(2010年安徽)18.在小正方形组成的15×15的网络中,四边形ABCD 和四边形D C B A ''''的位置如图所示。