测试锂离子扩散系数的
- 格式:doc
- 大小:16.50 KB
- 文档页数:1
第32卷第1期吉首大学学报(自然科学版)Vol.32No .12011年1月Journ al of Ji shou Universit y (Nat ural Science Edit ion)J an.2011文章编号:1007-2985(2011)01-0085-03锂离子在LiVOPO 4中的扩散系数的测定*熊利芝1,梁凯2,何则强1,2(1.吉首大学生态旅游应用技术湖南省重点实验室,湖南吉首416000;2.吉首大学化学化工学院,湖南吉首416000)摘要:采用简单的恒电流法测定了锂离子在LiVOP O 4中的扩散系数.结果表明,充、放电过程中锂离子在LiVOP O 4电极中的扩散系数分别为4.7810-11和3.2710-11cm 2/s.关键词:扩散系数;LiVOP O 4;恒电流放电中图分类号:O614.111;T M912.9文献标志码:A锂离子电池是20世纪90年代新发展起来的绿色能源,也是我国能源领域重点支持的高新技术产业.锂离子电池以其高可逆容量、高电压、优异循环性能和高能量密度等性能备受人们的重视,被称为21世纪逆脱嵌的绿色电源[1].锂离子电池正、负极材料都采用锂离子能可逆脱嵌的嵌入客体化合物.由于锂离子电池在充、放电过程中的主要步骤是锂离子分别从正、负极材料嵌入和脱出,因此,锂离子在这些材料中的扩散系数成为一个被广泛关注的电极动力学参数.尤其对高功率型电池,动力学参数就显得更加重要.对于锂离子电池,常用的电化学测试方法有电流脉冲驰法(CPR)、恒电流间歇滴定法(GIT T)、电化学阻抗法(EIS)、电位间歇滴定技术(PIT T)和循环伏安法(CV)等[2-5].笔者在用流变相法制备新型锂离子电池正极材料LiV OPO 4[6-7]的基础上,用一种简单的方法测定了锂在LiVOPO 4中的扩散系数.1实验部分1.1LiVOPO 4的制备参照文献[6]制备LiV OPO 4前躯体:称取等物质的量的分析纯LiOHH 2O 、NH 4VO 3、H 3PO 4和柠檬酸,分别将LiOHH 2O,NH 4VO 3和柠檬酸溶于温水得到水溶液,然后将各水溶液与H 3PO 4混合.混合溶液置于恒温加热磁力搅拌器上于80左右形成蓝色凝胶.凝胶105真空干燥10h 得到蓝色干凝胶(LiVOPO 4前躯体).将此前躯体在强烈搅拌下加入到一定浓度的蔗糖水溶液中,于80维持搅拌至近干后置于管式炉中400和惰性气氛下预烧2h,然后再升温至650保温10h.随炉冷却,得到LiVO -PO 4/C 复合材料.1.2LiVOPO 4的表征采用X 射线衍射(XRD)对LiVOPO 4样品进行物相和结构分析;采用扫描电镜(SEM)研究LiVOPO 4*收稿日期:2010-12-15基金项目:国家自然科学基金资助项目(20873054);国家高技术研究发展计划(863计划)重点项目子课题(2010AA065205);湖南省教育厅科学研究项目(10A098);生态旅游应用技术湖南省重点实验室开放基金项目(z 6)作者简介熊利芝(),女,湖南益阳人,吉首大学生态旅游应用技术湖南省重点实验室讲师,博士生,主要从事功能材料研究10stlv d0:1974-.样品的微观形貌.1.3锂离子扩散系数的测定将80%的样品、10%的乙炔黑和10%的聚偏二氟乙烯(PVDF)溶解在溶剂N-甲基吡咯烷酮(NMP)中形成浆料.将浆料均匀涂在铝箔上,涂层的厚度约为100m.将涂好的电极片裁剪成面积为1cm 2的工作电极,在120下真空干燥12h 备用.测试电池采用常规的扣式电池,以金属锂箔为对电极,1.0molL-1LiPF 6的EC -DMC(体积比为11)溶液为电解液,在充满氩气的手套箱中装配而成.在扩散系数测定前对电池进行10次充放电循环以活化电池得到电化学性质稳定的电极.经活化后的电池在3.8~4.3V(相对Li/Li +)之间进行恒电流实验,实验设备为Land CT 2001A 电池测试仪,温度为25.根据文献[7],按照D/a 2(Q 0-i )=i/15(1)测定锂离子在LiVOPO 4中的扩散系数.其中:Q 0是无界面扩散时的初始比容量(Ah/g);是间歇时间(s).根据(1)式,D/a 2的值可以通过测定直线i -i 的斜率而得到.此方法无需知道锂的浓度,也无需知道LiVOPO 4的表面积,简单方便.2结果与讨论图10.1C 时LiVOP O 4的放电曲线(1C=159MA/g)为了得到锂在放电过程的扩散系数,经活化的电极在较低的电流密度(0.1C~0.3C)下连续放电.间歇时间是指电极从4.3V 放电到3.5V(相对Li/Li +)所需的时间.0.1C 恒电流放电曲线如图1所示;i-i 曲线如图2所示.从图2可见,i 与i 具有很好的线性关系,直线的斜率di/d(i )的值为-0.196.根据(1)式计算得到D/a 2的值为1.30710-2s -1.图3为LiVOPO 4样品的扫描电镜图,球形LiVOPO 4颗粒的半径(a)为0.5m.因此,放电过程中锂在LiVOPO 4电极中的扩散系数为3.2710-11cm 2/s.采用同样的方法,可以计算得到D 为4.7810-11cm 2/s,大于放电过程的扩散系数.图2i-i关系曲线图3LiV OPO 4样品的扫描电镜对比本研究得到的锂离子扩散系数和相关文献报道的结果发现,本研究得到的扩散系数有一定的差别,但都在一个数量级上.文献[7]采用电位阶跃法得到的扩散系数为5.5210-11,文献[9]采用循环伏安法得到的扩散系数为-11这种差别可能是由于采用不同方法制备的样品的微观结构、热力学以及动力学性质不完全一样有关同时,不同的测试方法基于不同的理论背景,在得到扩散系数D 的计算公式时做了一定程度的简化86吉首大学学报(自然科学版)第32卷2.7910:..3结论采用简单的恒电流法测定了锂离子在LiV OPO 4电极中的扩散系数.此方法不需要知道锂的浓度,也不需要知道LiVOPO 4颗粒的表面积,简单方便.计算结果表明,充、放电过程中锂离子在LiVOPO 4电极中的扩散系数分别为4.7810-11和3.2710-11cm 2/s.参考文献:[1]TARASCON J M,ARM AND M.Issues and Cha llenges F acing Rechargeable Lithium Batter ies [J].Natur e,2001,414:359-367.[2]R ONCI F ,STALLWORT H P E,ALAMGIR F,et al.Lithium -7Nuclea r Magnetic Resonance and Ti K -Edge X -Ra y Absorption Spect roscopic Investigation of Electrochemical Lithium Inser tion in Li 4/3+xTi 5/3O 4[J].J.P ower Sources,2003(119/121):631-636.[3]ZAGH IB K,SI MONEAU M,ARM AND M,et al.Electrochemical Study of Li 4T i 5O 12as Negative Electr ode for L-i Ion Polymer Rechargeable Batter ies [J].J.Power Sources,1999(81/82):300-305.[4]ARIYOSH I K,YAMATO R,OH ZUKU T.Zer o -Str ain Insertion Mechanism of Li[Li 1/3T i 5/3]O 4for Advanced Lithium -Ion (Shuttlecock)Batter ies [J].Electrochim.Acta,2005,51(6):1125-112.[5]ANDRIIKO A A,RUDENOK P V,NYRKOVA L I.Diffusion Coefficient of Li +in Solid -State R echargeable Batter y Mater ials [J].J.Power Sour ces,1998,72(2):146-149.[6]何则强,熊利芝,吴显明,等新型锂离子电池正极材料LiVOPO 4的制备与表征[J].无机化学学报,2008,24(2):303-306.[7]XIONG L-i zhi,H E Ze -qiang.A New Rheological Phase Route to Synthesize Nano -LiVOPO 4Cathode Materia l for Lith-i um Ion Batter ies [J].Acta P hys.Chim.Sin.,2010,26(3):573-577.[8]姚经文,吴锋,官亦标.尖晶石Li 4Ti 5O 12中锂离子的化学扩散系数的研究[J].无机化学学报,2007,23(8):1439-1442.[9]R EN M M,ZHOU Z,SU L W,et al.LiVOPO 4:A Cathode M aterial for 4V Llithium Ion Batteries [J].Journal of Pow -er Sources,2009,189(1):786-789.Determination of Chemical Diffusion Coefficient of Lithium -Ion in LiVOPO 4XIONG L-i zhi 1,LIAN G Kai 2,H E Ze -qiang 1,2(1.Key Labor ator y of Ecot ourism s Application Technology,Hunan P rovince,Jishou 416000,H unan China;2.College of Chemistr y and Chemical Engineer ing,Jishou University,Jishou 416000,H unan China)Abstr act:A relatively simple galvanostatic method was used for the evaluation on the aver age chemical diffusion coefficient of lithium -ion in spinel LiVOPO 4pr epared by rheological phase method.The diffu -sion coefficient of lithium -ion was estimated to be 4.7810-11cm 2s -1and 3.2710-11cm 2/s forcharge and dischar ge,respectively.Key words:diffusion coefficient;LiVOPO 4;galvanostatic method(责任编辑易必武)87第1期熊利芝,等:锂离子在LiVOPO 4中的扩散系数的测定。
锂离子扩散系数的测定及影响因素分析锂离子扩散系数是衡量锂离子在材料中传导的能力的一个重要参数。
它的大小可以反映出材料的电导率和锂离子的迁移能力。
锂离子扩散系数的测定方法有很多种,其中常用的有电化学恒流扩散法(DCDF)、热化学扩散法(HCD)和电化学动力学(EIS)等。
电化学恒流扩散法是利用电化学反应产生的电流来测定锂离子扩散系数的方法。
在这种方法中,将测试样品与电极接触,然后通过调节电流大小来控制电化学反应的速率。
随着电流的增大,锂离子的迁移速率也会增大,从而使得锂离子扩散系数也会增大。
热化学扩散法是利用材料在加热过程中锂离子的迁移来测定锂离子扩散系数的方法。
在这种方法中,将测试样品加热到一定温度,然后通过测量样品的温度和锂离子浓度的变化来计算锂离子扩散系数。
电化学动力学是利用材料在电化学反应过程中电流的变化来测定锂离子扩散系数的方法。
在这种方法中,将测试样品与电极接触,然后通过扫描电位的方式来进行电化学反应,并测量电流的变化。
由于锂离子扩散系数与电流有关,因此可以通过分析电流的变化来推算出锂离子扩散系数。
锂离子扩散系数受到许多因素的影响,其中包括材料的结构、温度、pH值、电解质浓度和电位等。
材料的结构对锂离子扩散系数有很大影响。
例如,当材料的结构越来越纳米化时,锂离子扩散系数就会越来越大。
这是因为纳米材料的晶界面积比较大,锂离子可以更容易地在晶界间扩散。
温度对锂离子扩散系数也有很大影响。
随着温度的升高,锂离子的运动能力会增强,因此锂离子扩散系数也会增大。
pH值也会对锂离子扩散系数产生影响。
当pH值变化时,材料中的锂离子会发生电荷转移,这会导致锂离子扩散系数的变化。
电解质浓度也会影响锂离子扩散系数。
当电解质浓度增加时,电解质分子会增多,这会使得锂离子的迁移能力变差,导致锂离子扩散系数变小。
电位也是影响锂离子扩散系数的因素之一。
当电位变化时,材料中的锂离子会发生电荷转移,这会导致锂离子扩散系数的变化。
锂离子扩散系数原理1.引言1.1 介绍锂离子扩散系数的基本概念和重要性锂离子扩散系数是指可描述锂离子在固体材料中扩散的速度的物理量。
在锂离子电池中,锂离子的扩散速度直接影响着电池的充放电性能和循环寿命。
研究和了解锂离子扩散系数的基本概念和重要性对于改善锂离子电池性能具有重要意义。
锂离子扩散系数的大小直接决定了锂离子在电极材料中的扩散速度,从而影响着电池的充放电速率以及对外部电路的输出功率。
锂离子扩散系数还与电池的循环寿命和安全性息息相关,因为较小的扩散系数会导致电池内部产生极化现象,造成电池容量的衰减和热失控的风险增加。
深入了解和研究锂离子扩散系数的原理和影响因素,以及寻求提高锂离子扩散系数的方法,对于改善锂离子电池的性能具有积极的意义。
本文将会在后续正文部分探讨锂离子扩散系数的定义和原理、影响因素、测定方法以及在锂离子电池中的意义,以期为读者提供更加深入的了解和认识。
1.2 强调锂离子扩散对锂离子电池性能的影响锂离子扩散系数是决定锂离子在电池中传输速度的重要参数,直接影响着电池的充放电性能和循环稳定性。
在锂离子电池中,锂离子的扩散速率决定了电池的充放电速度和功率性能。
较高的锂离子扩散系数可以提高电池的充放电速率,从而改善电池的功率性能。
锂离子的扩散速率还直接影响电池的循环寿命和稳定性。
当电池经过多次充放电循环后,如果锂离子扩散速率下降,将导致电池容量衰减和循环寿命减少。
锂离子扩散系数对锂离子电池的性能具有重要影响。
在电池设计和材料选择中,必须考虑和优化锂离子的扩散系数,以实现更好的充放电性能和循环稳定性。
研究和提高锂离子扩散系数也是目前锂离子电池领域的热点和挑战之一。
通过深入理解锂离子扩散的原理和影响因素,并寻找提高扩散系数的方法,可以为锂离子电池的性能提升和技术突破提供重要的理论和实验基础。
1.3 提出文章的目的和结构文章的目的是深入探讨锂离子扩散系数的基本概念和重要性,以及其对锂离子电池性能的影响。
CV、EIS以及如何计算锂离子电池扩散系数■ 仁循环伏安法2.交流阻抗法. 3.扩散系数循环伏安法在一定扫描速率下,从起始电位正向扫描到转折电位期间,电极中活性物质被氧化,产生氧化电流;当负向扫描从转折电位变到原起始电位期间,电极中活性物质被氧化,产生还原电流。
循环伏安法所以判断循环伏安图上的峰是氧化峰还是还原峰.并不是看峰电流是正还是负,而是看扫描电位的变化。
电位从低到高是氧化过程,亦称为正向扫描(positive);从高到低是还原过程,亦称为负向扫描(negative) »循坏伏安法Cyclic Voltammetry Parameters讽EM ........... |2 -------- ---------- 初始电位,设定的起始电压HighEM .......... [0 -------- ---------- >高电位,电压窗口的最高电压LowE (V) ........ [0 ---------- 低电位,电压窗口的最低电压FinalEM ......... |o ---------- 截止电位,设定的终止电压ImtoalScanPoiarty........ jNegative --- >扫描方向,第一步是正向还是负向Scan Rate (V/$) . [ol ---------- 扫描速度,一般0.0001 V/sSweep Segments .. 2 ■•扫描段数,两段是〜圈Sam^JeInterval (V) -------------------- R而>响应间隔,隔多少V出一个点Qu^Hrnehec) ..... [2 ---------- 静置时间,测量前体系静置多长时间STy(AM .......... [2006耳 ------------ 灵敏度,可以理解为纵坐标的量程厂Auto Sens i Scm Rate <- 0 01 VA----- 自动关敏度厂Enable Final E厂Aimkary Signal Recording循坏伏安法对于可逆性好的体系,设定的时候初始设定为开路电压,为了得到闭合环,所以截止电压和初始电压一样。
锂离子扩散系数是指锂离子在电池材料中的运动速度,是电池性能的重要参数。
常用的锂离子扩散系数测定方法有:
1.传统的电化学扩散系数测量方法,主要是通过电化学阻抗谱(EIS)
和循环伏安法(CV)来测量扩散系数。
2.恒电流伏安法(GITT),通过在不同恒定电流下测量电池电动势差
来确定扩散系数。
3.恒电动势伏安法(GSE),通过在不同恒定电动势下测量电流来确
定扩散系数。
4.电化学探针显微镜技术,通过对电池材料表面的锂离子运动进行
实时监测来确定扩散系数。
5.数值模拟,通过对电池材料的数学模型进行模拟计算来确定扩散
系数。
这些方法各有其优缺点,选择哪种方法取决于实验条件,研究目的和对精度的要求。
锂扩散系数计算中锂离子浓度确定方法全文共四篇示例,供读者参考第一篇示例:锂离子电池作为目前广泛应用的储能设备,其性能优劣直接取决于锂离子在电极材料中的扩散速度。
而锂离子的扩散速度则可以通过计算锂扩散系数来进行评估。
在锂扩散系数的计算中,确定锂离子浓度是一个非常关键的步骤,本文将探讨一些常用的锂离子浓度确定方法。
一、循环伏安法循环伏安法是一种常用的电化学方法,可以用来测量电极材料中的锂离子浓度变化。
通过在一定电压范围内对电极进行循环扫描,可以观察到电极材料在不同电位下的电化学反应情况,从而确定锂离子的浓度变化。
通过对得到的循环伏安曲线进行分析处理,可以得到锂离子在电极材料中的浓度分布情况,进而计算出锂扩散系数。
二、电化学阻抗谱法三、扫描电子显微镜能谱法扫描电子显微镜能谱法是一种高分辨率的表征方法,可以用来观察电极材料中的锂离子分布情况。
通过将样品放入扫描电子显微镜中,利用能谱仪观察元素的能谱信号,可以定量地分析样品中各元素的浓度分布,包括锂离子的浓度分布。
通过对样品的能谱数据进行分析处理,可以了解锂离子在电极材料中的扩散规律,进而计算出锂扩散系数。
四、同步辐射X射线衍射法同步辐射X射线衍射法是一种非常精密的表征方法,可以用来研究材料中的结构和离子扩散过程。
通过在同步辐射X射线源下对样品进行辐射,观察X射线衍射图谱,可以得到材料的结构信息和原子间距离,从而可以了解离子在材料中的扩散过程。
通过对X射线衍射数据进行分析处理,可以确定锂离子的浓度分布情况,进而计算出锂扩散系数。
确定锂离子浓度是计算锂扩散系数的关键步骤,采用不同的方法可以得到不同层面的锂离子浓度信息。
科研人员需要根据自己的研究目的和实验条件选择适合的方法来确定锂离子浓度,以获得准确可靠的锂扩散系数数据,进而提高锂离子电池的性能和稳定性。
【全文结束】PS: 以上是关于锂扩散系数计算中锂离子浓度确定方法的文章,希望对您有所帮助。
如果有其他问题,欢迎随时向我提问。
测试锂离子扩散系数的
,测试锂离子扩散系数的,(锂离子电池方面哦)主要的方法就是EIS+容量滴定,和PITT方法。
GITT以为测试在理论上存在不准确的问题.
循环伏安可以测试扩散系数,但主要是控制步骤的扩散。
电势阶跃也可以测试扩散系数,如果阶跃电势是极限扩散区,这个扩散系数只是溶液中的扩散。
EIS测试扩散系数,是通过测试扩散控制区对应的warburg阻抗,然后通过warburg阻抗系数西格玛,结合dE/dx值得到离子扩散系数
求D过程:由Z’’与1/(√w)的关系式:
Z’’= σ/(√w)+2σ*σCd,当w趋向于无穷时,Z’’与1/(√w)一定是通过原点的直线,即此直线的截距为零。
然后由图读出任意一条直线的斜率,即为Warburg系数σ。
再根据Warburg系数的关系式:σ=RT/(√2*n*n*F*FC√D)其中C为锂离子在材料中体相浓度,n为转移电子数,F为法拉第常数,而D即为扩散系数。
以磷酸铁锂为例,求解它的浓度,一个磷酸铁锂晶胞中有4个锂原子,而它的晶胞尺寸是
8.64×10-22cm3则C=4/(6.02*1023)/(8.64*10-22)=7.69*103mol/m3,ps:乘方打不出来将就下吧。
恒电流间歇滴定法测试锂离子扩散系数的方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!恒电流间歇滴定法测试锂离子扩散系数的方法锂离子电池作为现代电子产品中不可或缺的能量来源,其性能的优劣直接影响了设备的续航能力和使用寿命。
阻抗计算锂离子扩散系数
锂离子的扩散系数可以通过阻抗计算得到。
阻抗是指材料对电流的阻碍程度,通常通过测量材料对交流电的电阻和电抗来计算。
要计算锂离子的扩散系数,可以使用等效电路模型,该模型包括一个电化学阻抗和一个扩散阻抗。
电化学阻抗可以用来描述电极/电解质界面的化学反应和电荷传输过程,而扩散阻抗用来描述材料中锂离子的扩散过程。
通过测量材料的阻抗谱可以得到电化学阻抗和扩散阻抗的频谱特性。
根据Nyquist图和Bode 图的分析,可以提取出不同频率下的电化学阻抗和扩散阻抗的幅度和相位差,从而计算出锂离子的扩散系数。
具体的计算方法会根据不同材料和实验条件而有所不同,因此需要根据具体情况进行调整。
用eis计算锂离子电池碳负极扩散系数锂离子电池的发展,对于现代科技的进步具有十分重要的意义,因此对其性能参数的掌握,不仅对于电池的制作具有很大的帮助,也对于整个产业链的发展有着重要的意义。
其中,碳负极扩散系数是一个十分重要的参数,本文将探讨如何运用eis计算锂离子电池碳负极扩散系数。
步骤一:概述锂离子电池碳负极扩散系数的重要性锂离子电池研究已经有很多年了,但是锂离子电池的电极材料,特别是负极材料,目前还没有达到理想的水平。
而锂离子电池的循环寿命又正好和负极材料有直接关系。
因此,探究碳负极扩散系数的大小,对于解决锂离子电池负极材料的问题具有十分重要的意义。
同时,该参数的大小也会从理论上指导电池制备中的材料筛选、成分优化等工作。
步骤二:简介eis技术交流阻抗谱(EIS)是一种用于电化学性质分析的电化学测量技术,它经常用于评估两种材料之间的接触、分析电极/电解质接口的结构、定量分析电解质中氧化还原反应的电路等等。
该技术精度高、无需取样,能完整地反映电化学系统的整体性质,因此是计算锂离子电池碳负极扩散系数的理想手段。
步骤三:运用eis技术计算锂离子电池碳负极扩散系数运用eis技术计算锂离子电池碳负极扩散系数时,首先需要将锂离子电池装入eis测量器中进行测量。
将实验数据导入到计算机,经过一定算法处理后,即可得到电池的电学参数,包括碳负极扩散系数。
在使用eis技术时,需要注意一些问题。
首先,要保证测量器的稳定性,实验环境的恒定性,同时需要采用合适的算法进行数据处理。
另外,要依据不同的电池类型,进行不同的参数计算。
例如对于铅酸电池算法和锂离子电池算法是不同的。
步骤四:总结通过运用eis技术计算锂离子电池碳负极扩散系数,我们就可以对锂离子电池的性能参数进行更加准确的掌握。
同时,提高了电池的制备效率,促进了评估其实际使用性能方面的研究。
因此,该技术在锂离子电池中的应用将在未来得到更广泛的发展。
GITT方法测量锂离子电池活性物质Li扩散系数Li+在活性物质内的扩散是一个重要的反应过程,也是锂离子电池内部化学反应的限制环节,因此Li+扩散系数是锂离子电池活性物质重要的一个参数,扩散系数对锂离子电池倍率性能有着重要的意义,恒电流间歇滴定法(GITT)是一种重要的扩散系数测定方法。
GITT方法假设扩散过程主要发生在固相材料的表层,GITT方法主要有两个部分组成,其中第一部分为小电流恒流脉冲放电,为了满足扩散过程仅发生在表层的假设,恒流脉冲放电的时间t要比较短,需要满足t< 2/D ,其中L为材料的特征长度 ,D 为材料的扩散系数;第二部分为长时间的静置,以让Li +在活性物质内部充分扩散达到平衡状态。
下图为一个典型的GITT测量扩散系数的过程,采用的电池为1.2mAh的扣式电池,正极材料为NCM,测试前首先将电池充电到100%SoC,然后按照0.1C放电15min,然后静置30min,每次放电大约相当于2.5%的SoC,因此总计能够进行40次循环,由于金属Li负极对于电池电压变化的影响非常小,因此测试过程中的电压变化主要来自于NCM材料,也就是说采用该方法得到的扩散系数主要反应正极材料NCM的扩散系数。
完成了测试后我们就需要利用上面得到的数据对NCM材料的扩散系数进行计算,这其中我们主要关心4个电压数据,一个是脉冲放电之前的电压 V0;一个是恒流放电瞬间电压V1,V0与V1之间的差值主要反应的是电池内部的欧姆阻抗和电荷转移阻抗等对电压变化的影响;一个是恒流放电结束时的电压V2,主要是由于Li+扩散进入到NCM材料内部引起的电压变化;一个是在静置后期的电压V3,这主要是Li+在活性物质内部进行再扩散,最终达到稳态导致的活性物质的电压变化。
根据上面得到的数据,以及费克第二定律我们可以采用下面所示的公式进行计算Li+在锂离子电池内的扩散系数。
上式中nM为摩尔数量,VM为摩尔体积,S为界面面积,t为放电脉冲持续时间,如果我们假设NCM颗粒为刚性小球,半径为Rs则上式可以转化为下式2。
收稿日期Received date :1998-10-21 收修改稿日期:1999-07-10 作者简介:王先友(1962年生),男(汉族),湖南省人,教授,博士后。
Biography :WANG Xian-you (born in 1962),m ale,profes sor,postdoctor .·综述·锂离子扩散系数的测定方法王先友1, 朱启安1, 张允什2, 袁华堂2, 阎 杰2, 宋德瑛2(1.湘潭大学化学化工学院,湖南湘潭411105; 2.南开大学新能源材料化学研究所,天津300071)摘要:锂离子电池在充/放电过程中,主要的电极反应是锂离子在正极或负极材料中的嵌入与脱嵌。
因此锂离子在正、负极材料中的扩散系数是一个重要的指标。
本文介绍了用电化学方法测定锂离子电池正负极材料中锂离子扩散系数的方法,重点讨论了电流脉冲驰豫技术(CPR )、交流阻抗技术(A C)、电位阶跃技术(PSCA )和恒电流间歇滴定技术(GI T T )等,并对这些技术的应用范围和特性进行了比较和讨论。
通过分析和讨论认为,当扩散是该电极过程的控制步骤时,CP R 技术、CIT T 技术和PSCA 技术是非常适用的;A C 技术可通过频率容易地区分电极过程的控制步骤,但用AC 技术求扩散系数只适用于阻抗平面图上有W ar bur g 阻抗的情况。
关键词:锂离子电池;扩散系数;电化学方法中图分类号:T M 912.9 文献标识码:A 文章编号:1002-087X (1999)06-0335-04Measurement of ch emical diffusion coefficient of lithiu m -ionin cathode an d anode materials of Li -ion batteriesWANG Xian-yo u 1,ZHU Qi-an 1,ZHANG Yun-shi 2,YUAN Hua-tang 2,YAN Jie 2,SONG De-ying2(1.College of Chemistry and Chemic al Eng ineer ing ,X iangtan Univ er sity ,X iang tan H unan 411105,China ;2.Institute of N ew Ene rgy M ater ial Chemistry ,Nankai Univ er sity ,Tianj in 300071,China )Abstract :The principal electr ode r eaction during charg e/dischar ge process for Li-ion batteries is intercala-tion and de -intercalation of lithium ion in /fro m cathode or ano de m aterials .T hus ,the chemical diffusion coefficient of Li -ion at catho de or ano de materials is an important parameter .Electro chem ical m ethods form easur ing the chemical diffusion coefficient o f lithium (D Li ),e .g .,the curr ent pulse r elax ation m ethod (CPR),the electrochemical im pedance spectroscopy method (AC),the po tential step chronoamper omtry m ethod (PSCA )and the galvanostatic interm ittent titr ation technique (GIT T )w ere rev iew ed .Evaluatio n ,compariso n and discussion of the electrochemical methods in term s o f the experim ental results and pr omo -ting R &D o f Li-ion batteries w er e put emphasis o n.According to the analysis and discussio n abo ve,theCPR ,GITT and PSCA methods can be used to determine the diffusion coefficient efficiently w hen diffusion w or ks as contro lling rate step of the electrode reaction .T ho ug h AC m ethod can easily distiguish the con-trolling rate step o f electrode reaction,it can only be used to determine the diffusion coefficient when im pedance plot has Warburg im pedance.Key words :Li -io n batteries ;diffusion coefficient ;electro chem ical method 锂离子蓄电池具有高的电压、高的能量密度和长的循环寿命,克服了锂一次电池存在安全性差、寿命短的不足,成为一种市场潜力很大的新型电池而引起人们的关注。
容量滴定法测定扩散系数哥本哈根气候会议召开以来,低碳环保已成为趋势。
锂离子是新型的绿色能源。
其正负极材料都采用锂离子能可逆脱嵌的嵌入客体化合物。
由于锂离子电池在充、放电过程中的主要步骤是锂离子分别从正负极材料的嵌入和脱出,因此,锂离子在这些材料中的扩散系数成为一个广泛关注的电极动力学参数。
本实验采用容量间歇滴定技术(CITT)对不同电压条件下锂离子在不同正极材料中的扩散系数进行研究。
1 实验1.1.1 L5C钴酸锂电池找一块已做过化成的电池,电池编号为J0716A-5,正极材料为钴酸锂产品,产品编号为L5C-20100714。
负极材料为J0703CCMCP-M16.电池的额定容量为800mAh.1.1.2 测试过程1.1.2.1 以1C充电电流测试A.电池为已做过化成的半饱和电池,其电压为3.865V,先恒流I=800mA放电至2.9v,用万用表测放电后电压为3.012,静止1h。
B.先恒流充电(I=800mA)至 3.2V,然后在 3.2V时进行恒压充电,直至电流等于0.02CA=16 mA。
C.以3.2V为起始电压恒流(I=800mA)充电至3.3V,然后在3.3V下进行恒压充电,直至电流等于0.02CA=16mA,与此类似,恒压充电的电压间隔为0.1V,直到电压达到4.2V,然后,以I=800mA放电至3.0V。
1.1.2.2 以0.2C充电电流测试A.先恒流充电(I=800mA)至 3.2V,然后在 3.2V时进行恒压充电,直至电流等于0.02CA=16 mA。
B.以3.2V为起始电压恒流(I=800mA)充电至3.3V,然后在3.3V下进行恒压充电,直至电流等于0.02CA=16mA,与此类似,恒压充电的电压间隔为0.1V,直到电压达到4.2V,然后,以I=800mA放电至3.0V。
1.1.3 正极材料的表征查得钴酸锂产品L5C-20100714的平均颗粒半径为10.44um。
1.2.1 S600镍钴锰酸锂电池找一块已做过化成的电池,电池编号为J0610A-10,正极材料为S600镍钴锰酸锂,产品编号为S600-20100608。
实战案例 | CITT 法测量锂电池Li 扩散系数1、CITT 测试方法(1)锂电池先以0.2 C 5A(C5是表示5小时率放电容量)电流充电/放电一次,电压范围为:放电截止电压2.75V 、充电截止电压4.2V ,然静止1h 后测量开路电压U OCV ;(2)CITT 容量法测试以静止后的开路电压为起始测试电压,先恒流CC 充电至3.5V ,然后在3.5V 恒压充电至电流趋向于0(0.01 C 5A ),电池内部电化学环境趋于稳态;(3)重复步骤(2),逐步充电到4.2V 。
其中CC-CV 充电的电压间隔大小可根据情况调整,每一次CITT 容量测试完毕后,在0.2 C 5A 放电至2.75V ,然后再进行下一循环的CITT 测试。
21 h 的C/LiNiMnCoO2电池在0.2 C 5A 恒流充电电流下测得的一次CITT 曲线2、锂离子扩散理论模型本实验根据球形扩散模型,恒压-恒流充电容量比值q 可以表示为:q =ξ15−2ξ3∑1a j 2∞j=1EXP(−a j 2ξ) ……[ 公式1 ]ξ=R 2(D ∗t G)⁄ ……[ 公式2 ] ξ无量纲;R 为颗粒半径,cm ;t G 为恒流充电时间,s ;D 为固相扩散系数,cm2/s ;3、数据分析将[公式1]、[公式2]在不同q值范围内通过最小二乘法对ξ进行线性拟合,最后得到的D=f(q)的系列方程,只要测试出颗粒半径R、CC-CV充电容量比值q以及恒即可得到扩散系数D。
流充电时间tG注:天然石墨材料半径取11-12um,人造石墨16um,磷酸铁锂材料取5-6um,锰酸锂8um,NCM材料半径5-6um(具体要根据当时材料实际的数据)。
,测试锂离子扩散系数的,(锂离子电池方面哦)主要的方法就是EIS+容量滴定,和PITT方法。
GITT以为测试在理论上存在不准确的问题.
循环伏安可以测试扩散系数,但主要是控制步骤的扩散。
电势阶跃也可以测试扩散系数,如果阶跃电势是极限扩散区,这个扩散系数只是溶液中的扩散。
EIS测试扩散系数,是通过测试扩散控制区对应的warburg阻抗,然后通过warburg阻抗系数西格玛,结合dE/dx值得到离子扩散系数
求D过程:由Z’’与1/(√w)的关系式:
Z’’= σ/(√w)+2σ*σCd,当w趋向于无穷时,Z’’与1/(√w)一定是通过原点的直线,即此直线的截距为零。
然后由图读出任意一条直线的斜率,即为Warburg系数σ。
再根据Warburg系数的关系式:σ=RT/(√2*n*n*F*FC√D)其中C为锂离子在材料中体相浓度,n为转移电子数,F为法拉第常数,而D即为扩散系数。
以磷酸铁锂为例,求解它的浓度,一个磷酸铁锂晶胞中有4个锂原子,而它的晶胞尺寸是×10-22cm3则C=4/(*1023)/(*10-22)=*103mol/m3,ps:乘方打不出来将就下吧。