判定平行四边形的地五种方法
- 格式:doc
- 大小:452.50 KB
- 文档页数:14
平行四边形五个判定方法
1、通过角度判定:如果四个内角相等就是平行四边形;
2、通过边长判定:如果有两条对角线长度相等,其余边长也都相等,就是平行四边形;
3、通过平分线判定:如果可以在四边形内部划出两条平分线,使得两条平分线交于两个对角线的中点,那么这个四边形就是平行四边形;
4、通过三角形判定:将一个平行四边形分成两个三角形,如果这两个三角形的外角和内角都相等,则说明四边形是平行四边形;
5、通过中心矩判定:如果四边形的中心矩是正方形,则这个四边形就是平行四边形。
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD 中,E 、F 在对角线AC 上,且AE =CF ,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD .解:连接BD 交AC 于点O .因为四边形ABCD 是平行四边形,所以AO =CO ,BO =DO . 又AE =CF ,所以AO -AE =CO -CF ,即EO =FO .所以四边形DEBF 是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF =BC =1,AB =FC =1,所以四边形ABCF 是平行四边形.同样可知四边形FCDE 、四边形ACDF 都是平行四四边形.因为AE =DB =2,AB =DE =1,所以四边形ABDE 也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,DF =BE ,DF ∥BE ,试说明四边形ABCD 是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD 是平行四边形,但仔细观察可知,由已知条件可得△ADF ≌△CBE ,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF ∥BE ,所以∠AFD =∠CEB .因为AE =CF ,所以AE +EF =CF +EF ,即AF =CE .又DF =BE ,所以△ADF ≌△CBE ,所以AD =BC ,∠DAF =∠BCE ,所以AD ∥BC .所以四边形ABCD 是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判图1 图2 A B C D EF 图3别例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=21∠DAB ,∠2=21∠BCD , 所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF .所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
初中数学:平行四边形的判定方法平行四边形的判定方法主要有:(1)两组对边分别平行;(2)两组对边分别相等;(3)一组对边平行且相等;(4)对角线互相平分;(5)两组对角分别相等。
平行四边形的上述判定方法,分别从边、对角线、角三个角度,给出了确定一个四边形是平行四边形的根据。
如图,点E、F为平行四边形ABCD的对角线AC所在直线上的两点,且AE=CF。
求证:四边形EBFD是平行四边形。
证法1:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD。
∴∠BAC=∠DCA。
∴∠BAE=∠DCF(等角的补角相等)。
∴△BAE≌△DCF(SAS)。
∴∠BEA=∠DFC(全等三角形的对应角相等)。
∴BE∥DF(内错角相等,两直线平行)。
同理可得:DE∥BF。
∴四边形EBFD是平行四边形(判定方法(1))。
证法2:同上证法,可得△BAE≌△DCF。
∴BE=DF。
同理可得:△DAE≌△BCF(SAS)。
故DE=BF。
∴四边形EBFD是平行四边形(判定方法(2))。
证法3:同证法1可得△BAE≌△DCF。
∴BE=DF。
∠BEA=∠DFC。
∴BE∥DF。
∴四边形EBFD是平行四边形(判定方法(3))。
上面的三种方法都借助了△BAE≌△DCF,只是最后几步出现了差异。
证法4:如图2,连接BD交AC于点O。
∵四边形ABCD为平行四边形,∴AO=CO,BO=DO。
又∵AE=CF,∴AO+AE=CO+CF,即OE=OF。
∴四边形EBFD是平行四边形(判定方法(4))。
这种方法能够紧紧抓住条件的整体特征,构造出了四边形EBFD的对角线,从而证明了四边形是平行四边形。
证法5:可根据前面证法所得到的△BAE≌△DCF和△DAE≌△BCF,得到∠EBF=∠FDE,∠BED=∠DFB。
∴四边形EBFD是平行四边形(判定方法(5))。
这种方法从角的角度证明了所给的四边形是平行四边形。
上面这些证法中,证法3、证法4最简便。
平行四边形的判定方法
平行四边形是指具有两组对边分别平行的四边形,是一种常见的几何图形。
在
几何学中,判定一个四边形是否为平行四边形是非常重要的,下面将介绍几种判定平行四边形的方法。
1. 边对应角相等。
判定一个四边形是否为平行四边形的方法之一是通过边对应角相等来进行判断。
如果一个四边形的对边对应角相等,那么这个四边形就是平行四边形。
这是由平行线的性质决定的,平行线之间的对应角相等。
因此,如果一个四边形的对边对应角相等,则可以判定这个四边形是平行四边形。
2. 对角线互相平分。
另一个判定平行四边形的方法是通过对角线互相平分来进行判断。
如果一个
四边形的对角线互相平分,即将四边形的两条对角线相交于一点,且相交点同时平分两条对角线,那么这个四边形就是平行四边形。
这是由平行线的性质决定的,平行线之间的对角线互相平分。
因此,如果一个四边形的对角线互相平分,则可以判定这个四边形是平行四边形。
3. 对边相等。
此外,判定一个四边形是否为平行四边形的方法还包括对边相等。
如果一个
四边形的对边相等,那么这个四边形就是平行四边形。
这是由平行线的性质决定的,平行线之间的距离相等。
因此,如果一个四边形的对边相等,则可以判定这个四边形是平行四边形。
综上所述,判定一个四边形是否为平行四边形可以通过边对应角相等、对角线
互相平分、对边相等等方法来进行判断。
在几何学中,平行四边形是一个重要的概
念,通过合理的判定方法可以准确判断一个四边形是否为平行四边形,从而更好地理解和应用平行四边形的相关性质和定理。
判定平行四边形的基本方法判定一个四边形是平行四边形共有五种方法: 定义:两组对边分别平行的四边形是平行四边形 判定1:两组对边分别相等的四边形是平行四边形 判定2:两组对角分别相等的四边形是平行四边形 判定3:对角线互相平分的四边形是平行四边形 判定4:一组对边平行且相等的四边形是平行四边形一、运用定义“两组对边分别平行的四边形是平行四边形”判定,证两组对边分别平行。
1、如图,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,求证:四边形AECF 是平行四边形证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠DAB =∠BCD ,∴AF ∥EC . 又∵∠1=21∠DAB ,∠2=21∠BCD ,∴∠1=∠2. ∵AD ∥BC , ∴∠2=∠3, ∴∠1=∠3, ∴AE ∥CF .∴四边形AECF 是平行四边形.(两组对边分别平行的四边形是平行四边形)1.如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD =CE ,连结DE 并延长至点F ,使EF =AE ,连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由。
解:(1)选证△BDE ≌△FEC 证明:∵△ABC 是等边三角形, ∴BC =AC ,∠ACD =60°∵CD =CE ,∴BD =AE ,△EDC 是等边三角形∴DE =EC ,∠CDE =∠DEC =60° ∴∠BDE =∠FEC =120°又∵EF =AE ,∴BD =FE ,∴△BDE ≌△FECAFB D CE图1A B C D E 1 32 F(2)四边形ABDF是平行四边形理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形∵∠CDE=∠ABC=∠EF A=60°∴AB∥DF,BD∥AF∵四边形ABDF是平行四边形。
平行四边形及特殊平行四边形的判定方法总结1.平行四边形的判定方法:(1)边平行法:若四边形的对边都平行,即其中一对对边的斜率相等,则该四边形是平行四边形。
(2)同位角相等法:若四边形的两组对顶角相等,则该四边形是平行四边形。
(3)对角线平行法:若四边形的对角线互相平行,则该四边形是平行四边形。
(4)同位线相交法:若四边形的一对对边分别在第三对边的同位点上相交,则该四边形是平行四边形。
2.矩形的判定方法:(1)边相等法:若四边形的对边长度相等,则该四边形是矩形。
(2)同位角为直角法:若四边形的一对对顶角为直角,即为90度,则该四边形是矩形。
(3)对角线相等法:若四边形的对角线长度相等,则该四边形是矩形。
3.正方形的判定方法:正方形是矩形的一种特殊情况,所以可以使用矩形的判定方法来判定正方形。
此外,还有以下方法来判定正方形:(1)边相等且同位角为直角法:若四边形的对边长度相等且一对对顶角为直角,即为90度,则该四边形是正方形。
(2)对角线相等法:若四边形的对角线长度相等,则该四边形是正方形。
4.菱形的判定方法:(1)边相等法:若四边形的对边长度相等,则该四边形是菱形。
(2)对角线垂直相等法:若四边形的对角线相互垂直且长度相等,则该四边形是菱形。
(3)对角线角平分法:若四边形的一对对角线的夹角为90度,并且相互平分,则该四边形是菱形。
总结起来,判定平行四边形的方法包括边平行法、同位角相等法、对角线平行法和同位线相交法。
对于特殊平行四边形如矩形、正方形和菱形,可以通过判定边相等、同位角为直角、对角线相等等属性得出结论。
这些判定方法可以帮助我们快速准确地判断出平行四边形及其特殊情况。
平行四边形的判定定理平行四边形是一种特殊的四边形,具有以下特点:对边平行且对角线相等。
在数学中,判定一个四边形是否为平行四边形有多种方法。
方法一:利用对边平行的性质判定一个四边形ABCD是否为平行四边形时,可以先利用对边平行的性质进行判断。
步骤:1.检查边AB和边CD是否平行。
2.检查边BC和边AD是否平行。
如果边AB和边CD以及边BC和边AD都是平行的,则可以断定四边形ABCD是一个平行四边形。
方法二:利用对角线相等的性质判定一个四边形ABCD是否为平行四边形时,可以利用对角线相等的性质进行判断。
步骤:1.计算对角线AC的长度。
2.计算对角线BD的长度。
如果对角线AC的长度等于对角线BD的长度,则可以断定四边形ABCD是一个平行四边形。
方法三:利用对边比例相等的性质判定一个四边形ABCD是否为平行四边形时,还可以利用对边比例相等的性质进行判断。
步骤:1.计算边AB与边CD的长度比(AB/CD)。
2.计算边BC与边AD的长度比(BC/AD)。
如果边AB与边CD的长度比等于边BC与边AD的长度比,即AB/CD = BC/AD,那么四边形ABCD是一个平行四边形。
方法四:利用四个角的性质判定一个四边形ABCD是否为平行四边形时,也可以利用四个角的性质进行判断。
步骤:1.检查角A与角C是否相等。
2.检查角B与角D是否相等。
如果角A与角C相等,并且角B与角D相等,则可以断定四边形ABCD是一个平行四边形。
总结通过以上四种方法,我们可以判定一个四边形是否为平行四边形。
可以根据实际情况选择其中一种或多种方法来进行判定,以便快速准确地得出结论。
请注意,以上的判定定理仅适用于四边形,其他多边形无法用这些方法判定是否为平行四边形。
在实际应用中,合理选择合适的方法,结合几何定理,可以更好地解决相关问题。
希望本文能对你理解和应用平行四边形的判定定理有所帮助。
平行四边形的判定方法平行四边形是指有两组对边分别平行的四边形,是一种特殊的四边形。
在几何学中,判定一个四边形是否为平行四边形是一个常见的问题。
下面我们将介绍几种判定平行四边形的方法。
1. 对角线相等法则。
对角线相等是判定平行四边形的一个重要条件。
如果一个四边形的对角线相等,那么这个四边形就是平行四边形。
这是因为对角线相等的四边形具有一些特殊的性质,其中包括对角线互相平分,以及对角线所确定的两组三角形全等等。
因此,如果能够证明一个四边形的对角线相等,那么这个四边形就是平行四边形。
2. 对边平行法则。
平行四边形的定义就是有两组对边分别平行,因此判定一个四边形是否为平行四边形的一个直接方法就是判断其对边是否平行。
可以通过计算四条边的斜率来判断其是否平行,如果两组对边的斜率相等,则这个四边形就是平行四边形。
3. 对角线互相平分法则。
对角线互相平分是平行四边形的一个重要性质,因此可以通过判断一个四边形的对角线是否互相平分来判定其是否为平行四边形。
如果一个四边形的对角线互相平分,那么这个四边形就是平行四边形。
4. 内角和法则。
平行四边形的内角有一些特殊的性质,其中包括相对角相等等。
因此,可以通过计算一个四边形的内角来判断其是否为平行四边形。
如果一个四边形的内角满足平行四边形的内角性质,那么这个四边形就是平行四边形。
总结。
判定一个四边形是否为平行四边形是一个常见的几何问题,可以通过对角线相等、对边平行、对角线互相平分以及内角和等方法来进行判断。
这些方法都是基于平行四边形的特殊性质来进行的,可以根据具体情况选择合适的方法来进行判定。
以上就是关于平行四边形的判定方法的介绍,希望能对你有所帮助。
如果你对此有任何疑问或者想了解更多相关知识,可以继续阅读相关的文档或者咨询专业人士。
祝你学习进步!。
判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
下面以近几年的中考题为例说明如何证明四边形是平行四边形。
一、 两组对边分别平行如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由。
解:(1)选证△BDE≌△FEC证明:∵△ABC 是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC 是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC(2)四边形ABDF 是平行四边形理由:由(1)知,△ABC、△EDC、△AEF 都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF,BD∥AF∵四边形ABDF 是平行四边形。
点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。
二、 一组对边平行且相等例2 已知:如图2,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连结BG 并延长交DE于F(1)求证:△BCG≌△DCE;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形?并说明理由。
分析:(2)由于ABCD 是正方形,所以有AB∥DC,又通过旋转CE=AE′已知CE=CG ,所以E′A=CG,A FB DC E 图1这样就有BE′=GD,可证E′BGD是平行四边形。
平行四边形的判定方法平行四边形是指具有两对对边平行的四边形,它是几何学中的一个重要概念。
在我们的日常生活和学习中,经常会遇到平行四边形的相关问题。
因此,了解平行四边形的判定方法对于我们的学习和生活都是非常重要的。
本文将介绍平行四边形的判定方法,希望能够帮助大家更好地理解和运用这一概念。
1. 对边平行的判定方法。
要判定一个四边形是否为平行四边形,首先需要判断其对边是否平行。
对于一个四边形ABCD,如果AB∥CD且AD∥BC,那么这个四边形就是一个平行四边形。
这是平行四边形的最基本的判定方法,也是最常见的判定方法之一。
2. 对角相等的判定方法。
除了对边平行之外,平行四边形还有一个重要的性质,就是对角相等。
也就是说,如果一个四边形的对角相等,那么它就是一个平行四边形。
这是平行四边形的另一个重要的判定方法。
3. 边角相对应的判定方法。
对于一个四边形ABCD,如果AB∥CD且∠A=∠C,或者AD∥BC 且∠A=∠B,那么这个四边形就是一个平行四边形。
这是平行四边形的另一个判定方法,也是比较常见的一种方法。
4. 对边成比例的判定方法。
如果一个四边形的对边成比例,那么它就是一个平行四边形。
也就是说,如果AB/CD=AD/BC,那么四边形ABCD就是一个平行四边形。
这是平行四边形的另一种判定方法。
5. 综合判定方法。
除了以上几种基本的判定方法之外,还可以通过综合运用这些方法来判断一个四边形是否为平行四边形。
比如,可以先判断对边是否平行,然后再判断对角是否相等,或者判断对边是否成比例,从而得出结论。
总结。
平行四边形是几何学中的重要概念,了解平行四边形的判定方法对于我们的学习和生活都是非常重要的。
通过判断对边是否平行、对角是否相等、对边是否成比例等方法,我们可以准确地判断一个四边形是否为平行四边形。
希望本文介绍的内容能够帮助大家更好地理解和运用平行四边形的相关知识。
平行四边形的16种判定平行四边形在几何学中是一个常见的图形,其有许多判定条件,可以用于判断一个四边形是不是平行四边形。
这篇文章将介绍平行四边形的16种判定条件,并对其进行详细解析。
一、对边平行平行四边形的定义就是两对对边互相平行,因此首先一个四边形应满足对边平行的条件。
二、对边相等当四边形的两对对边相等时,也可以确定该四边形是平行四边形。
三、对角线互相平分一个四边形是平行四边形的条件之一是其对角线互相平分。
这表示,两条对角线的交点将各自被分为两半。
四、同侧内角互补平行四边形的内角和为360度,因此,同侧相邻内角互补是平行四边形的一个判定条件。
五、同底角相等当两个三角形具有相等的底和相等的高时,这两个三角形就是相等的,这个原理应用到平行四边形的相邻角度也成立。
六、同底中线相等平行四边形的两个对角线的中心点相等,因此它们的两个中线也相等。
七、倾向于四边形的中心线相等平行四边形的中心线即连接相邻中点的线段,两条中心线相等,则四边形是平行的。
八、同侧角相等相邻父角度是平行四边形的一个重要特征,因此它们应该相等。
九、同截矩相等一个平行四边形上面的截矩和下面的截矩应该相等,它们的长度是基于平行的底和高。
十、外角相等四边形的外角之和为360度,因此,平行四边形的外角应该相等。
十一、同侧内角和等于180度在一个平行四边形中,相邻的内角度和应该是一样的,而在任何一个矩形中,每个同侧内角和都是180度。
十二、对边平分相等平行四边形的中垂线与对边相交,并且将对边平分成两个相等的线段。
十三、一对角线平分另一对角线对角线的平分是平行四边形的一个重要特点,因此,一个对角线将另一对对角线平分的四边形也是平行四边形。
十四、对角线比值在一个平行四边形中,两个对角线的长度比相等,即两条对角线的长度比值为1:1。
十五、角度在平行四边形中,对角线交汇点的角度必须为180度。
十六、相邻角相补在一个平行四边形中,相邻角互补,因此,两个相邻角的度数之和应该为180度。
判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
下面以近几年的中考题为例说明如何证明四边形是平行四边形。
一、 两组对边分别平行如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由。
解:(1)选证△BDE≌△FEC证明:∵△ABC 是等边三角形,∴BC=AC ,∠ACD=60°∵CD=CE ,∴BD=AE ,△EDC 是等边三角形∴DE=EC ,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE ,∴BD=FE ,∴△BDE≌△FEC(2)四边形ABDF 是平行四边形理由:由(1)知,△ABC 、△EDC 、△AEF 都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF ,BD∥AF∵四边形ABDF 是平行四边形。
点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。
二、 一组对边平行且相等例2 已知:如图2,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连结BG 并延长交DE于F(1)求证:△BCG≌△DCE ;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形?并说明理由。
分析:(2)由于ABCD 是正方形,所以有AB∥DC ,又通过旋转CE=AE′已知CE=CG ,所以E′A=CG ,这样就有BE′=GD ,可证E′BGD 是平行四边形。
判定平行四边形的五种方法平行四边形的判定方法有:〔1〕证两组对边分别平行;〔2〕证两组对边分别相等;〔3〕证一组对边平行且相等;〔4〕证对角线互相平分;〔5〕证两组对角分别相等。
下面以近几年的中考题为例说明如何证明四边形是平行四边形。
一、 两组对边分别平行如图1,△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF 是怎样的四边形,并说明理由。
解:〔1〕选证△BDE≌△FEC证明:∵△ABC 是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC 是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC〔2〕四边形ABDF 是平行四边形理由:由〔1〕知,△ABC、△EDC、△AEF 都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF,BD∥AF∵四边形ABDF 是平行四边形。
点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。
二、 一组对边平行且相等例2 :如图2,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连结BG 并延长交DE 于F(1)求证:△BCG≌△DCE;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形?并说明理由。
分析:〔2〕由于ABCD 是正方形,所以有AB∥DC,又通过旋转CE=AE′CE=CG,所以E′A=CG,这样就有BE′=GD,可证E′BGD 是平行四边形。
解:〔1〕∵ABCD 是正方形, A FB DC E 图1∴∠BCD=∠DCE=90°又∵CG=CE,△BCG≌△DCE〔2〕∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′,∵CE=CG,∴CG=AE′,∵四边形ABCD是正方形∴BE′∥DG,AB=CD∴AB-AE′=CD-CG,即BE′=DG∴四边形DE′BG是平行四边形点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形三、两组对边分别相等例3 如图3所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE,等边△BCF。
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F 在对角线AC上,且AE=CF,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,图1AB C DEF并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判图3别平行四边形所需的“一组对边平行且相等”的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别例 4 如图4,在平行四边形ABCD中,∠DAB、∠BCD的平分线分别交BC、AD边于点E、F,则四边形AECF是平行四边形吗?为什么?分析:由平行四边形的性质易得AF∥EC,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF是平行四边形.AB CDEF图41 32理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB=∠BCD ,所以AF ∥EC.又因为∠1=21∠DAB ,∠2=21∠BCD ,所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3, 所以∠1=∠3,所以AE ∥CF.所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
平行四边形的判定方法• 1.两条对角线互相平分的四边形是平行四边形。
2.一组对边平行且相等的四边形是平行四边形。
3.两组对边分别相等的四边形是平行四边形。
4.两组对边分别平行的四边形是平行四边形。
• 5.两组对角分别相等的四边形是平行四边形。
6.两组对边分别平行且相等的四边形是平行四边形。
7.相邻两角分别互补的四边形是平行四边形。
•(1)定义:两组对边分别平行的四边形是平行四边形;(2)定理1:两组对角分别相等的四边形是平行四边形;(3)定理2:两组对边分别相等的四边形是平行四边形;(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形。
平行四边形的面积:S=底×高。
平行四边形的面积•平行四边形面积:平行四边形面积=底×高,用字母表示:S=a×h。
平行四边形的定义:两组对边分别平行的四边形称为平行四边形。
平行四边形一般用图形名称加依次四个顶点名称来表示,如图平行四边形记为平行四边形ABCD。
平行四边形的性质:1、两组对边平行且相等;2、两组对角大小相等;3、相邻的两个角互补;4、对角线互相平分;5、对于平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;6、四边边长的平方和等于两条对角线的平方和。
平行四边形的面积计算公式:1、(1)平行四边形的面积公式:底×高;如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah(2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*s inα2、平行四边形周长可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b) 底×1X高平行四边形的主要类别:1、平行四边形属于平面图形。
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F在对角线AC上,且AE=CF,试说明四边形DEBF是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别图1图2AB C DEF图3例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=∠DAB ,∠2=∠BCD ,2121所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF .所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F在对角线AC上,且AE=CF,试说明四边形DEBF是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE, 所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形. 图1图2AB C DEF图3四、运用“两组对边分别平行的四边形是平行四边形”判别 例4 如图4,在平行四边形ABCD 中,∠DAB 、∠BCD 的平分线分别交BC 、AD 边于点E 、F ,则四边形AECF 是平行四边形吗?为什么?分析:由平行四边形的性质易得AF ∥EC ,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF 是平行四边形.理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB =∠BCD ,所以AF ∥EC .又因为∠1=21∠DAB ,∠2=21∠BCD , 所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3,所以∠1=∠3,所以AE ∥CF . 所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。
下面以近几年的中考题为例说明如何证明四边形是平行四边形。
一、 两组对边分别平行如图1,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD =CE ,连结DE 并延长至点F ,使EF =AE ,连结AF 、BE 和CFAFABC DE F图4132(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由。
解:(1)选证△BDE≌△FEC证明:∵△ABC是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC(2)四边形ABDF是平行四边形理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形∵∠CDE=∠ABC=∠EF A=60°∴AB∥DF,BD∥AF∵四边形ABDF是平行四边形。
点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。
二、一组对边平行且相等例2已知:如图2,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于F(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形?并说明理由。
分析:(2)由于ABCD是正方形,所以有AB∥DC,又通过旋转CE=AE′已知CE=CG,所以E′A=CG,这样就有BE′=GD,可证E′BGD是平行四边形。
解:(1)∵ABCD是正方形,∴∠BCD=∠DCE=90°又∵CG=CE,△BCG≌△DCE(2)∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′,∵CE=CG,∴CG=AE′,∵四边形ABCD是正方形∴BE′∥DG,AB=CD∴AB-AE′=CD-CG,即BE′=DG∴四边形DE′BG是平行四边形点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形三、两组对边分别相等例3如图3所示,在△ABC中,分别以AB、AC、BC 为边在BC的同侧作等边△ABD,等边△ACE,等边△BCF。
求证:四边形DAEF是平行四边形;分析:利用证三角形全等可得四边形DAEF的两组对边分别相等,从而四边形DAEF是平行四边形。
解:∵△ABD和△FBC都是等边三角形∴∠DBF+∠FBA=∠ABC+∠FBA=60°∴∠DBF=∠ABC又∵BD=BA,BF=BC ∴△ABC≌△DBF∴AC=DF=AE 同理△ABC≌△EFC∴AB=EF=AD∴四边形ADFE是平行四边形点评:题设中存在较多线段相等关系时,可证四边形的两组对边分别相等,从而可证四边形是平行四边形。
四、对角线互相平分例4已知:如图4,平行四边形ABCD的对角线AC和BD相交于O,AE⊥BD于E,BF⊥AC于F,CG⊥BD于G,DH⊥AC于H,求证:四边形EFGH是平行四边形。
图4分析:因为题设条件是从四个顶点向对角线引垂线,这些条件与四边形EFGH的对角线有关,若能证出OE=OG,OF=OH,则问题可获得解决。
证明:∵AE⊥BD,CG⊥BD,∴∠AEO=∠CGO,∵∠AOE=∠COG,OA=OC∴△AOE≌△COG,∴OE=OG同理△BOF≌△DOH∴OF=OH∴四边形EFGH是平行四边形点评:当已知条件与四边形两对角线有关时,可证两对角线互相平分,从而证四边形是平行四边形。
五、两组对角相等例5 将两块全等的含30°角的三角尺如图1摆放在一起四边形ABCD是平行四边形吗?理由。
(1)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:。
分析:因为题设与四边形内角有关,故考虑四边形的两组内角相等解决问题。
解:(1)四边形ABCD是平行四边形,理由如下:∠ABC=∠ABD+∠DBC=30°+90°=120°,∠ADC=∠ADB+∠CDB=90°+30°=120°又∠A=60°,∠C=60°,∴∠ABC=∠ADC,∠A=∠C(2)四边形ABC1D1是平行四边形,理由如下:将Rt△BCD沿射线方向平移到Rt△B1C1D1的位置时,有Rt△C1BB1≌Rt△ADD1∴∠C1BB1=∠AD1D,∠BC1B1=∠DAD1∴有∠C1BA=∠ABD+∠C1BB1=∠C1D1B1+∠AD1B=∠ADC1,∠BC1D1=1∠BC1B1+∠B1C1D1=∠D1AD+∠DAB=∠D1AB所以四边形ABC 1D 1是平行四边形 点评:(2)也可这样证明:由(1)知ABCD 是平行四边形,∴AB ∥CD ,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置时,始终有AB ∥C 1D 1,故ABC 1D 1是平行四边形。
判断平行四边形的策略在学习了“平行四边形”这部分内容后,对于平行四边形的判定问题,可从以下几个方面去考虑:一、考虑“对边”关系思路1:证明两组对边分别相等例1 如图1所示,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,并且AF =CE .求证:四边形ACEF 是平行四边形. 证明:∵DE 是BC 的垂直平分线, ∴DF ⊥BC ,DB = DC . ∴∠FDB = ∠ACB = 90°.∴DF ∥AC .∴CE = AE =21AB . ∴∠1 = ∠2 .又∵EF ∥AC ,AF = CE = AE , ∴∠2 =∠1 =∠3 =∠F . ∴△ACE ≌△EF A . ∴AC = EF .∴四边形ACEF 是平行四边形. 思路2:证明两组对边分别平行==例 2 已知:如图2,在△ABC 中,AB =AC ,E 是AB 的中点,D 在BC 上,延长ED 到F ,使ED = DF = EB . 连结FC .求证:四边形AEFC 是平行四边形.证明:∵AB =AC ,∴∠B =∠ACB . ∵ED = EB ,∴∠B =∠EDB . ∴∠ACB =∠EDB . ∴EF ∥AC .∵E 是AB 的中点,∴BD = CD .∵∠EDB =∠FDC ,ED = DF ,∴△EDB ≌△FDC . ∴∠DEB =∠F .∴AB ∥CF .∴四边形AEFC 是平行四边形. 思路3:证明一组对边平行且相等例3 如图3,已知平行四边形ABCD 中,E 、F 分别是AB 、CD 上的点,AE = CF ,M 、N 分别是DE 、BF 的中点.求证:四边形ENFM 是平行四边形. 证明:∵四边形ABCD 是平行四边形, ∴AD = BC ,∠A =∠C .又∵AE = CF ,∴△ADE ≌△CBF .∴∠1 =∠2,DE = BF . ∵M 、N 分别是DE 、BF 的中点, ∴EM = FN .∵DC ∥AB ,∴∠3 =∠2. ∴∠1 =∠3. ∴EM ∥FN .∴四边形ENFM 是平行四边形.二、考虑“对角”关系思路:证明两组对角分别相等例4 如图4,在正方形ABCD 中,点E 、 F 分别是AD 、BC 的中点.求证:(1)△ABE ≌△CDF ;(2)四边形BFDE 是平行四边形. 证明:(1)在正方形ABCD 中,AB = CD ,AD = BC ,∠A =∠C =90°,∵AE =21AD ,CF =21BC , ∴AE = CF . ∴△ABE ≌△CDF .(2)由(1)△ABE ≌△CDF 知,∠1 =∠2,∠3 =∠4. ∴∠BED =∠DFB .∵在正方形ABCD 中,∠ABC =∠ADC , ∴∠EBF =∠EDF .∴四边形BFDE 是平行四边形. 三、考虑“对角线”的关系思路:证明两条对角线相互平分例5 如图5,在平行四边形ABCD 中, P 1、P 2是对角线BD 的三等分点.求证:四边形AP 1CP 2是平行四边形. 证明:连结AC 交BD 于O .∵四边形ABCD 是平行四边形, ∴OA = OC ,OB = OD . ∵BP 1 = DP 2 ,∴OP 1 = OP 2 .∴四边形AP 1CP 2是平行四边形.平行四边形的识别浅析平行四边形是初中数学中的基本图形,正确识别平行四边形,是进一步学习矩形、菱形和正方形的基础。