电磁场与电磁波第3章
- 格式:ppt
- 大小:1.71 MB
- 文档页数:105
第3章习题3-1 半径为a 的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率ω旋转形成电流,求电流面密度。
解:圆盘以角频率ω旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为ϕωρρˆr v J s s s ==3-2 在铜中,每立方米体积中大约有28105.8⨯个自由电子。
如果铜线的横截面为210cm ,电流为A 1500。
计算1) 电子的平均漂移速度; 2) 电流密度; 解:2)电流密度 m A S I J /105.11010150064⨯=⨯==- 1) 电子的平均漂移速度v J ρ= , 3102819/1036.1105.8106.1m C eN ⨯=⨯⨯⨯==-ρs m Jv /101.11036.1105.14106-⨯=⨯⨯==ρ3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电流强度为A μ50,计算传输带上的电荷面密度。
解:电流面密度为 m A L I J S /7.1663.050μ=== 因为 v J S S ρ=2/33.8207.166m C v J S S μρ===3-4 如果ρ是运动电荷密度,U是运动电荷的平均运动速度,证明:0=∂∂+∇⋅+⋅∇tU U ρρρ解:如果ρ是运动电荷密度,U是运动电荷的平均运动速度,则电流密度为U Jρ=代入电荷守恒定律t J ∂∂-=⋅∇ρ得 0=∂∂+∇⋅+⋅∇t U U ρρρ 3-5 由m S /1012.17⨯=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。
求两端面之间的电阻。
解:用两种方法(1)⎰⎰===21222)(tan zz z dz S dl R ασπσ)11()(tan 1212z z -=ασπ01.0202.0tan ==α题3.5图m r z .1001.0/1.0tan /11===α,m r z 1201.0/12.0tan /21===αΩ⨯=-⨯⨯⨯=-=--647212107.4)121101(101012.11)11()(tan 1πασπz z R (2)设流过的电流为I ,电流密度为2r IS I J π==电场强度为 2r I J E πσσ== 电压为 dz z IEdz V z z z z ⎰⎰==21212)tan (σαπ ⎰==2122)(tan zz zdz I V R απσΩ⨯=-6107.4 3-6 在两种媒质分界面上,媒质1的参数为2,/10011==r m S εσ,电流密度的大小为2/50m A ,方向和界面法向的夹角为030;媒质2的参数为4,/1022==r m S εσ。
第3章习题3-1 半径为的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率旋转形成电流,求电流面密度。
解:圆盘以角频率旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为ϕωρρˆr v J s s s ==3-2 在铜中,每立方米体积中大约有28105.8⨯个自由电子。
如果铜线的横截面为210cm ,电流为A 1500。
计算 1) 电流密度;2) 电子的平均漂移速度; 解:1)电流密度m A S I J /105.11010150064⨯=⨯==- 2) 电子的平均漂移速度 v J ρ=,3102819/1036.1105.8106.1m C eN ⨯=⨯⨯⨯==-ρs m J v /101.11036.1105.14106-⨯=⨯⨯==ρ 3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电流强度为A μ50,计算传输带上的电荷面密度。
解:电流面密度为m A L I J S /7.1663.050μ===因为 v J S S ρ= 所以 2/33.8207.166m C v J S S μρ=== 3-4 如果ρ是运动电荷密度,U是运动电荷的平均运动速度,证明:0=∂∂+∇⋅+⋅∇tU U ρρρ证:如果ρ是运动电荷密度,U是运动电荷的平均运动速度,则电流密度为U J ρ=代入电荷守恒定律tJ ∂∂-=⋅∇ρ得0=∂∂+∇⋅+⋅∇t U U ρρρ3-5 由m S /1012.17⨯=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。
求两端面之间的电阻。
解:用两种方法(1)如题图3.5所示⎰⎰==2122)(tan zz lz dzS dl R ασπσ)11()(tan 1212z z -=ασπ 01.0202.0tan ==α题3.5图m r z .1001.0/1.0tan /11===α,m r z 1201.0/12.0tan /22===αΩ⨯=-⨯⨯⨯=-=--647212107.4)121101(101012.11)11()(tan 1πασπz z R (2)设流过的电流为I ,电流密度为2rI S I J π==电场强度为 2r IJ E πσσ== 电压为 dz z IEdz V z z z z ⎰⎰==21212)tan (σαπ ⎰==2122)(tan zz zdz I V R απσΩ⨯=-6107.4 3-6 在两种媒质分界面上,媒质1的参数为2,/10011==r m S εσ,电流密度的大小为2/50m A ,方向和界面法向的夹角为030;媒质2的参数为4,/1022==r m S εσ。
电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题问题一个磁感应强度为B的均匀磁场,在其中有一个长为l、电阻为R的长直导线。
导线与磁感应强度方向成夹角θ。
若导线被引出的两个端头A、B相距d,则导线两个端头的电势差是多大?解答根据电磁感应定律,导线两个端头的电势差可以通过导线所受的磁场力与电阻的乘积来计算。
设电流的方向与磁场方向成夹角α,则磁场力的大小为F = BIL sinα,其中I为电流的大小。
电流可以通过欧姆定律来计算,即I = U / R,其中U为电阻两端的电势差。
将电流的表达式代入磁场力的表达式中,得到F = B(U / R)l sinα。
根据电势差的定义,有U = Fd = B(U / R)l sinα * d. 移项整理得到U(1 - Bld sinα / R) = 0,解得U = 0 或者 1 - Bld sinα / R = 0。
如果U = 0,则代表导线两个端头的电势差为0,即没有电势差。
这种情况下,导线两个端头之间的电势相等。
如果1 - Bld sinα / R = 0,则导线两个端头的电势差为U = Bld sinα / R。
综上所述,导线两个端头的电势差为U = Bld sinα / R。
第二题问题一个半径为R的导线圈,通过其中的电流为I,产生的磁感应强度为B。
若导线圈的匝数为N,导线圈中心处的磁感应强度是多少?解答根据长直导线的磁场公式,通过导线圈中心点的磁感应强度的大小可以通过长直导线的磁场公式来计算。
长直导线的磁场公式为B = μ0I / (2πd),其中B为磁感应强度,μ0为真空中的磁导率,I为电流的大小,d为测量点到导线的距离。
对于导线圈来说,可以将导线分成无数个长直导线,然后将它们对应的磁场强度相加。
考虑到导线圈的几何形状,可以得到导线圈中心处的磁感应强度的大小为Bm = N * B,其中Bm为导线圈中心处的磁感应强度,N为导线圈的匝数,B为单根导线产生的磁感应强度。
第三章 稳恒电流一、 选择题1、 下面说法正确的是:()A 、沿电流线的方向电势必降低;B 、不含源支路中的电流必从高电势到低电势;C 、含源支路中的电流必从高电势到低电势;D 、支路两端电压为零时,支路电流必不为零。
答案:B 2、 下面说法正确的是:()A 、含源支路中的电流必从低电势到高电势;B 、支路两端电压为零时,支路电流必为零;C 、支路电流为零,支路两端电压必为零时;D 、支路电流为零,该支路吸收电功率必为零时; 答案:D 3、 如图所示,电路中,A 、B两点的电压是() A 、6VB 、0VC 、2VD 、 8V 答案:B4、 阻值均为120千欧的两个电阻1R 及2R ,串联后与100伏电源相连,当用某个电压表 测量a,b 间电压得40伏,再去量b,c 间电压,得到() A 、60V B 、40V C 、100V D 、0V答案:B5、 如图,一长为L 均匀的锥台形导体,底面半径分别为a 和b ,电阻率为ρA 、ρL/πab B 、 πρL/a C 、πab/ρL D 、ab/ρL 答案:A6、 铜的温度数为C 03/103.4-⨯,若在0℃时铜的电阻率为8106.1-⨯欧·米,则直径为5毫米,长为160公里铜制电话线在25℃的电阻()A 、100ΩB 、140ΩC 、144ΩD 、200Ω 答案:C 7、有100Ω、1000Ω、10千欧的三个电阻,它们的额定功率都是0. 25瓦,现将三个电阻串联起来,如图,则加在这三个电阻 上的电压U 最多不能超过多少?()A 、5伏B 、45伏C 、50伏D 、55.5伏 答案:D8、有100Ω、1000Ω、10千欧的三个电阻,它们的额定功率都是0. 25瓦,现将三个电阻串联起来,如图,如果1000Ω电阻实际消耗的电功率为0.1瓦,其余两个电阻消耗的功率各是多少?()A 、1瓦、10瓦B 、0.1瓦、1瓦C 、0.01瓦、5瓦D 、0.01瓦、1瓦 答案:D 9、 如图所示的电路中,当K 打开时,a ,b 间等效电阻为()A 、450ΩB 、500ΩC 、225ΩD 、125Ω 答案:C10、如图所示的电路中,K 闭合,则a,b 间等效电阻为() A 、208Ω B 、200Ω C 、204Ω D 、207Ω答案:A11、如图所示的电路中,如果0R 是已知的,为使电路的总电阻等于R 0,则R 1的值(B ) A 、2R B 、3R C 、02R D 、03R 答案:B12、把一个表头改成多量程的安培计,可如图所示,将电阻321,,R R R 与表头连成一个闭合回路,从不同的地方引出抽头,选择连接表头的两个抽夹上一为公共端,和另一个抽头配合得到一种量程的安培计,这种电路叫做闭路抽头式,已知表头量程为500微安,内阻为300Ω,则当I 1=1mA ;I 2=10mA ;I 3=100mA 时,321,,R R R 各为多少()A 、3Ω、27Ω、270ΩB 、5Ω、40Ω、280ΩC 、2Ω、30Ω、300ΩD 、3Ω、27Ω、400Ω13、如图所示表头G 与321,,R R R 组成多量程伏特计,已知表头量程为500μA ,内阻为300Ω,则当U 1=3V ,U 2=100V ,U 3=250V 时,321,,R R R 值为()A、5.7K Ω、190KΩ、300K Ω B 、5.7K Ω、194K Ω、300K ΩC 、6K Ω、200K Ω、300K ΩD 、5.7K Ω、194K Ω、200K Ω 答案:B14、一个电动势为ε,内阻为r 的电池给电阻为R 的灯泡供电,当R=r 时,灯泡最亮,则其最大功率为()A 、M P =2ε/4rR B 、M P =2ε/4r C 、M P =4R/2ε D 、M P =4rR/2ε 答案:B 15、如图所示,cb ac ab U U U ,,分别为() A 、0V 、8V 、-8V B 、0V 、-8V 、8VC 、8V 、0V 、-8VD 、8V 、-8V 、0V 答案:B 16、如图所示的电路中,如果流过8欧电阻的电流是0.5()A 、10VB 、14VC 、12VD 、8V 答案:C 17、如图所示的电路中,求A U ()A 、3εB 、2εC 、1ε-D 、4242R R R +ε 答案:D18、如图所示的电路中,A R 为100欧,0R 为200欧,R,为50 2 同时打开与同时闭合时,通过A R 电流相等,则B R 为()A 、200ΩB 、400ΩC 、100ΩD 、600Ω B 19、在如图所示的电路中,电源电动势、电阻、电容数值均已知,O 点接地,若三个电容器 起始时不带电,则三个电容器与A 、B 、O 相接的各极板上的电量为()A 、-224微库、256微库、-132微库B 、-124微库、256微库、C 、-256微库、-124微库、132微库D 、124微库、-256微库、 答案:B20、如图所示为用电位差计测电池内阻的电路图,实际电位差计在标准电阻AB R 上直接刻度的不是阻值,也不是长度,而是各长度所对应的电位差值,M R 为被测电池的负载电阻,阻值为100欧。
第三章 习题答案3.1设一点电荷与无限大接地导体平面的距离为d ,如图3.1所示。
求: q(1)空间的电位分布和电场强度; (2)导体平面上感应电荷密度; (3)点电荷所受的力。
q解:(1)(,,)1r x y z d =−u r2(,,)r x y z d =+u r1211(4qr r φπε=−04q πε=E φ=−∇u u r 3333330212121[()()(]4a a a x y z q x x y y z d z d r r r r r r πε+−=−−+−+−uu r uur ur u(2)在导体平面上有z=0 则 12==r r 3222202()E a z qdx y d πε=−++u u rur u032222.2()z a E s qd x y d ρεπ==−++uu r u u r(3)由库仑定律得22200()4(2)16q q q d d πεπε−==−u u r uu r ur z z u F a a或22320,0,002[()]4(2)16z x y z dq d q q d dπεπε=====−=−u u r uu r urvzu F E a a 3.6两无限大接地平行板电极,距离为,电位分别为0和U ,板间充满电荷密度为d 00xdρ的电荷,如题3.6图所示。
求极板间的电位分布和极板上的电荷密度。
解: 板间电位满足泊松方程 200ρφε∇=x−d由于平行电容器y 与z 方向都为无穷大,故待求函数仅为x 的函数泊松方程可以写为:2020x d dx dρφε=−边界条件为0U φφ(0)=0,(d)= 对方程进行两次积分得301206ρφε=−++x C x C d代入边界条件得 002100,6U dC d ρε==+C 所以板间电位分布为:300000()66x U d x d d ρρφεε=−++2000()2600E a x x U d d d ρρφεε=−∇=−−u u r uu r2000()2600D E a x x U d d d ρερε==−−u u r u u r uu rx =0的极板上的电荷密度000060x a Ds x U dd ερρ==⋅=−−uu r u u rx =d 的极板上的电荷密度00()30x a Dsd x dU ddερρ==−⋅=−uu r u u r3.9一个沿+y 方向无限长的导体槽,其底面保持电位为,其余两面的电位为零,如图3.9所示。
第三章习题解答3.1 真空中半径为a的一个球面,球的两极点处分别设置点电荷q和-q,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解由点电荷q和-q共同产生的电通密度为qR+R-D=[3-3]=4πRR+-q4π{err+ez(z-a)[r+(z-a)]2232-err+ez(z+a)[r+(z+a)]2232Φ=则球赤道平面上电通密度的通量⎰D dS=⎰D eSSzz=0dS=]2πrdr=q4πa题3.1 图⎰[02(-a)(r+a)qaa-a(r+a)2232(r+a)=0-1)q=-0.293q3.2 1911年卢瑟福在实验中使用的是半径为ra的球体原子模型,其球体内均匀分布有总电荷量为-Ze的电子云,在球心有一正电荷Ze(Z是原子序数,e是质子电荷量),通Ze⎛1r⎫过实验得到球体内的电通量密度表达式为D0=er 2-3⎪,试证明之。
4π⎝rra⎭Ze解位于球心的正电荷Ze球体内产生的电通量密度为 D1=er 24πrZe3Ze=-原子内电子云的电荷体密度为ρ=-334πra4πra电子云在原子内产生的电通量密度则为D2=erρ4πr4πr32=-erZer4πra3题3. 3图(a)故原子内总的电通量密度为 D=D1+D2=er 2-3⎪4π⎝rra⎭33.3 电荷均匀分布于两圆柱面间的区域中,体密度为ρ0Cm, 两圆柱面半径分别为a和b,轴线相距为c(c<b-a),如题3.3图(a)所示。
求空间各部分的电场。
解由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a的小圆柱面内看作同时具有体密度分别为±ρ0的两种电荷分布,这样在半径为b的整个圆柱体内具有体密度为ρ0的均匀电荷分布,而在半径为a的整个圆柱体内则具有体密度为-ρ0的均匀电荷分布,如题3.3图(b)所示。
空间任一点的电场是这两种电荷所产生的电场的叠加。
在r>b区域中,由高斯定律⎰E dS=Sqε022,可求得大、小圆柱中的正、负电荷在点P E1'=er'-πaρ02πε0r'2产生的电场分别为 E1=erπbρ02πε0r2=ρ0br2ε0r=-ρ0ar'22ε0r'2=+题3. 3图(b)点P处总的电场为 E=E1+E1'= ρ2ε0(brr-2r')在r<b且r'>a区域中,同理可求得大、小圆柱中的正、负电荷在点P产生的电场分别为E2=erπrρ2πε0r=ρr2ε0'=er' E2-πaρ2πε0r'=-ρar'2ε0r''=点P处总的电场为 E=E2+E2ρ02ε0(r-ar'r')在r'<a的空腔区域中,大、小圆柱中的正、负电荷在点P产生的电场分别为E3=erπrρ02πε0r=ρ0r2ε0'=er' E3-πr'ρ02πε0r'=-ρ0r'2ε0'=点P处总的电场为 E=E3+E3ρ0(r-r')=ρ02ε0c3.4 半径为a的球中充满密度ρ(r)的体电荷,已知电位移分布为⎧r3+Ar2⎪Dr=⎨a5+Aa4⎪2⎩r(r≤a)(r≥a)其中A为常数,试求电荷密度ρ(r)。