数学 二次函数的专项 培优易错试卷练习题含答案
- 格式:doc
- 大小:1.42 MB
- 文档页数:21
一、二次函数真题与模拟题分类汇编(难题易错题)
1.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.
(1)请用配方法求二次函数图象的最高点P的坐标;
(2)小球的落点是A,求点A的坐标;
(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;
(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.
【答案】(1)(2,4);(2)(,);(3);(4)(,).
【解析】
试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;
(2)联立两解析式,可求出交点A的坐标;
(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;
(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直
线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛
物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.
试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,
故二次函数图象的最高点P的坐标为(2,4);
(2)联立两解析式可得:,解得:,或.
故可得点A的坐标为(,);
(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.
S△POA=S△POQ+S△梯形PQBA﹣S△BOA
=×2×4+×(+4)×(﹣2)﹣××
=4+﹣
=;
(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.
设直线PM的解析式为y=x+b,
∵P的坐标为(2,4),
∴4=×2+b,解得b=3,
∴直线PM的解析式为y=x+3.
由,解得,,
∴点M的坐标为(,).
考点:二次函数的综合题
2.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),
如图,直线y=1
4
x与抛物线交于A、B两点,直线l为y=﹣1.
(1)求抛物线的解析式;
(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.
(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.
【答案】(1)抛物线的解析式为y=1
4
x2﹣x+1.(2)点P的坐标为(
28
13
,﹣1).(3)
定点F的坐标为(2,1).
【解析】
分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;
(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;
(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标
特征,即可得出(1-1
2
-
1
2
y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关
于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),
设抛物线的解析式为y=a(x-2)2.
∵该抛物线经过点(4,1),
∴1=4a,解得:a=1
4
,
∴抛物线的解析式为y=1
4(x-2)2=
1
4
x2-x+1.
(2)联立直线AB与抛物线解析式成方程组,得:
214
1
14y x y x x ⎧⎪⎪⎨⎪-+⎪⎩
==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨
⎩==, ∴点A 的坐标为(1,
1
4
),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).
∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).
设直线AB′的解析式为y=kx+b (k≠0), 将A (1,
1
4
)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨
⎪+-⎩==,解得:1312
43k b ⎧
-⎪⎪⎨⎪⎪⎩
==, ∴直线AB′的解析式为y=-1312x+43
, 当y=-1时,有-1312x+4
3
=-1, 解得:x=
28
13
, ∴点P 的坐标为(
28
13
,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,