中考练习数学试卷三不等式
- 格式:doc
- 大小:171.00 KB
- 文档页数:10
上海2024年中考模拟练习试卷3数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=+D .211y x =+3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC=B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数11y x =-的定义域为.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB =.(用a 和b表示)16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是三、解答题(共78分)19.(本题612282-.20.(本题8分)解不等式组:2832x x x <⎧⎨->⎩.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x轴向左平移()0m m>个单位得到新抛物线,且新抛物线仍经过点C,求m的值.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.2024年中考预测模拟考试一(上海卷)数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=【答案】C 【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.4442a a a +=,故该选项不正确,不符合题意;B.448a a a ⋅=,故该选项不正确,不符合题意;C.()1446a a =,故该选项正确,符合题意;D.844a a a ÷=,故该选项不正确,不符合题意;故选:C .【点评】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项的运算法则是解题的关键.2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=D .211y x =【答案】C【分析】设211x y x +=+,则原方程化为2760y y -+=,从而可得答案.【详解】解:()22611711x x x x +++=++,设211x y x +=+,3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定【答案】B【分析】根据平均数的求法求出平均数,再求出两组数据的方差,再比较即可解答.5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等【答案】C【分析】根据已知条件判断出平行四边形,再根据有一个角是直角判断矩形,最后根据矩形的性质判断正确选项即可.【详解】解:∵2AB CD ==,3BC AD ==,∴四边形ABCD 是平行四边形,∵有一个内角是直角,∴四边形ABCD 是矩形,∴对角线互相平分,对角相等,对角线相等,故A ,B ,D 正确,不合题意;对角线不一定互相垂直,故C 错误,符合题意;故选C .【点评】本题考查了矩形的判定和性质,解题的关键是根据已知条件判断出该四边形是矩形.6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC =B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=【答案】B【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形;②对角线相等的梯形是等腰梯形;③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【详解】解:A 、∵四边形ABCD 为梯形,且AD //BC ,AB DC =,∴四边形ABCD 是等腰梯形,故本选项不符合题意;B 、∠DAB =∠ABC ,不能推出四边形ABCD 是等腰梯形,故本选项符合题意;C 、∵四边形ABCD 为梯形,且AD //BC ,∠ABC =∠DCB ,∴四边形ABCD 是等腰梯形,故本选项不符合题意;D 、∵四边形ABCD 为梯形,且AD //BC ,AC DB =,∴四边形ABCD 是等腰梯形,故本选项不符合题意.故选:B .【点评】本题考查了等腰梯形的判定定理,等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.【答案】(9)(9)m m +-【分析】利用平方差公式22()()a b a b a b -=+-进行因式分解即可.【详解】解:281(9)(9)m m m -=+-,故答案为:(9)(9)m m +-.【点评】本题主要考查因式分解,掌握平方差公式是解题的关键.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数1y x =-的定义域为.【答案】1x ≠【分析】求函数的定义域就是找使函数有意义的自变量的取值范围.【详解】解:函数要有意义,则10x -≠,解得:1x ≠,故答案为:1x ≠.【点评】本题考查的知识点是函数的定义域,关键要知道函数有意义的自变量的取值范围.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.【答案】±2【分析】一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac =0,建立关于k 的等式,求出k 的值.【详解】由题意知方程有两相等的实根,∴△=b 2-4ac =k 2-4=0,解得k =±2,故答案为:±2.【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.【答案】21y x =-(答案不唯一)【分析】根据二次函数的性质,抛物线开口向下a >0,与y 轴负半轴由交点c <0,然后写出即可.【详解】解:开口向上,并且与y 轴交点在y 轴负半轴,∴抛物线的表达式可以是:y =x 2﹣1.故答案为y =x 2﹣1(答案不唯一).【点评】本题考查了二次函数的性质,开放型题目,主要利用了抛物线的开口方向与y 轴的交点得到解析式.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB = .(用a 和b 表示)【答案】b a-【分析】根据题意,作出图形,由向量减法运算的三角形法则即可得到答案.【详解】解:如图所示:根据向量减法运算的三角形法则可得DB AB AD b a =-=- ,故答案为:b a - .【点评】本题考查向量的加法运算,熟练掌握向量运算法则是解决问题的关键.16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.【答案】280【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.【点评】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.【答案】30︒/30度18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是【答案】15r ≤≤【分析】求得B 在O 内部且有唯一公共点时B 的半径和⊙O 在B 内部且有唯一公共点时B 的半径,根据图形即可求得.【详解】解:如图,当B 在O 内部且有唯一公共点时,B 的半径为:321-=,当O 在B 内部且有唯一公共点时,B 的半径为325+=,∴如果B 与O 有公共点,那么B 的半径r 的取值范围是15r ≤≤,故答案为:15r ≤≤.【点评】本题考查了圆与圆的位置关系,注意掌握数形结合和分类讨论思想的应用.三、解答题(共78分)19.(本题612-.【答案】2【分析】根据二次根式的加减计算法则和负整数指数幂计算法则求解即可.20.(本题8分)解不等式组:2832x x x<⎧⎨->⎩.【答案】14x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由28x <得:4x <,由32x x ->得:1x >,则不等式组的解集为:14x <<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?【答案】(1)()6200y x x =-+>(2)6千米【分析】(1)根据高出的温度=地面温度-上升后降低的温度,列式即可得到答案;(2)把16y =-代入函数关系式进行计算即可得到答案.【详解】(1)解: 海拔高度每上升1千米,温度下降6℃,上海地面温度为20℃,()6200y x x ∴=-+>,∴y 与x 之间的函数关系式为:()6200y x x =-+>;(2)解:根据题意可得:当16y =-时,62016x -+=-,解得:6x =,∴此刻飞机离地面的高度为6千米.【点评】本题考查了一次函数的应用,读懂题目信息,根据高出的温度=地面温度-上升后降低的温度,得出函数关系式,是解题的关键.23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定等知识,相似三角形的判定与性质的运用是解题的关键.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x 轴向左平移()0m m >个单位得到新抛物线,且新抛物线仍经过点C ,求m 的值.【答案】(1)265y x x =-+,点C 的坐标是()0,5(2)6【分析】(1)用待定系数法求出二次函数的解析式,进而求出点C 的坐标;(2)把二次函数配方得到顶点式,根据题目进行平移解题即可.【详解】(1)解:把()1,0A 和()5,0B 代入2y x bx c =++010255b c b c=++⎧⎨=++⎩,解得65b c =-⎧⎨=⎩∴抛物线的表达式为265y x x =-+∴当0x =时,5y =∴点C 的坐标是()0,5(2)()226534y x x x =-+=--设平移后的抛物线表达式为()234y x m =-+-把()0,5C 代入得()25034m =-+-解得126,0m m ==∵0m >,∴6m =【点评】本题考查二次函数的解析式和抛物线的平移,掌握二次函数的图象和性质是解题的关键.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.方法二:连接OD=OB OD∴∠=∠OBD ODBDE AC⊥∴∠+∠=︒EDC C90AB AC=∴∠=∠ABC C∴∠=∠ODB C∴∠+∠=︒90 EDC ODBODE∴∠=︒.90∴⊥OD DE的半径 是OOD的切线∴是ODE方法三:连接OD=OB OD∴∠=∠OBD ODBAB AC=∴∠=∠ABC ACB∴∠=∠ODB ACB∴∥OD AC⊥DE AC方法二:、连接AM MB的直径 是OAB∴∠=︒AMB90MN AB⊥。
中考专题复习知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。
知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
知识点3、不等式的解集在数轴上的表示: (1)x >a :数轴上表示a 的点画成空心圆圈,表示a 的点的右边部分来表示;(2)x <a :数轴上表示a 的点画成空心圆圈,表示a 的点的左边部分来表示;(3)x ≥a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的右边部分来表示;(4)x ≤a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的左边部分来表示。
在数轴上表示大于3的数的点应该是数3所对应点的右边。
画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈)。
如图所示:同样,如果某个不等式的解集为x ≤-2, 那么它表示x 取-2左边的点 画实心圆点。
如图所示:总结:在数轴上表示不等式解集的要点: 小于向左画,大于向右画;无等号画空心圆圈,有等号画圆点。
知识点4、不等式的性质:(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
知识点5、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式。
知识点6、解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1。
通过这些步骤可以把一元一次不等式转化为x >a (x ≥a )或x <a (x ≤a )的形式。
知识点7、一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
知识点8、知识点9、解不等式组:求不等式组解集的过程叫做解不等式组。
知识点10、解一元一次不等式组的一般步骤:先分别解不等式组中的各个不等式,然后再求出这几个不等式解集的公共部分。
初中数学中考专项练习《不等式与不等式组》50道填空题包含答案与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、填空题(共50题)1、关于的不等式的解集如图所示,则的值是________.2、用不等式表示“x 与 5 的差不大于1”:________.3、不等式组的解集是________。
4、关于x的分式方程的解为正数,则m的取值范围是________.5、已知不等式≥3,那么这个不等式的解集是________6、若关于x的不等式的解集在数轴上表示如图,请写出此解集为________.7、不等式组的正整数解的乘积为________.8、若关于x的一元二次方程没有实数解,则关于x的不等式的的解集为________.(用含的式子表示)9、不等式组的解集是________.10、已知关于x的不等式>x-1,当m=1时,该不等式的解集为________;若该不等式的解集中的每一个x都能使关于x的不等式x>a成立,则此时m的取值范围为________,a的取值范围是________.11、不等式的解集是________.12、不等式组的解集是________ .13、不等式组的解集是________.14、“a的2倍减去b不小于2”用不等式表示是________.15、不等式组的解集是________.16、点 P(1,a﹣3)在第四象限,则a的取值范围是________.17、将不等式“ ”化为“ ”的形式为:________.18、若x>y,且(m-5)x <(m-5)y ,则m的取值范围是________.19、不等式组的解集是________.20、已知关于x的一元一次不等式与2﹣x<0的解集相同,则m=________.21、抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是________.22、若式子在实数范围内有意义,则x的取值范围是________.23、关于、的二元一次方程组的解满足,则的取值范围是________.24、不等式3x-6≤9的解是________.25、某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是________km.26、不等式组的解集是________.27、关于的不等式的解集是写出一组满足条件的的值________.28、苹果的进价为每千克3.8元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每千克________元.29、x与y的平方和一定是非负数,用不等式表示为________30、若m<n,则不等式组的解集是________.31、一元二次方程x2+2x+a=0有实根,则a的取值范围是________.32、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣 5 分.小明得分要超过90分,他至少要答对________道题.33、已知不等式x﹣1≥0,此不等式的解集在数轴上表示为________34、若不等式组的解集是,则m的取值范围是________.35、我们定义,例如,若均为整数,且满足,则的值是________.36、不等式组的解集是________.37、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是________.38、若关于x的一元二次方程有实数根,则n的取值范围是________.39、若关于x的不等式组无解,则a的取值范围为________.40、关于x的不等式组只有4个整数解,则a的取值范围是________.41、要使式子在实数范围内有意义,则实数a的取值范围是________.42、已知关于x的不等式组无解,则实数a的取值范围是________43、如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a的取值范围为________44、用不等号连接下列各组数:(1)π________ 3.14;(2)(x﹣1)2________ 0;(3)﹣________ ﹣45、若不等式(m-2)x>2的解集是,则m的取值范围是________.46、不等式-3x+2≥5的解集是________。
备战中考数学专题练习(2019全国通用版)-不等式的性质(含解析)一、单选题1.已知a-b<0||,则下列不等式一定成立的是()A.a-1<b-1B.–a<-bC.a>bD.3a-b>2.下列结论:①4a>3a;①4+a>3+a;①4-a>3-a中||,正确的是()A.①①B.①①C.①①D.①①①3.已知a>b||,则下列不等式成立的是()A.a-c >b-cB.a+c<b+cC.ac>bcD.>4.若实数a||,b||,c在数轴上对应位置如图所示||,则下列不等式成立的是()A.ab>cbB.ac>bcC.a+c>b+cD.a+b>c+b5.已知a>b||,则下列不等式中||,错误的是()A.a-b>0B.-5a<-5bC.a+b<b-8D.6.根据不等式的性质||,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2D.由2x+1>x得x>17.下列给出四个式子||,①x>2;①a≠0;①5<3;①a≥b||,其中是不等式的是()A.①①B.①①①C.①①①D.①①①①8.若x<y||,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3yC.<D.﹣2x<﹣2y9.已知a>b||,c为任意实数||,则下列不等式中总是成立的是()A.a+c<b+cB.a-c>b-cC.ac<bcD.ac>bc二、填空题10.一种药品的说明书上写着:“每日用量120~180mg||,分3~4次服完.”一次服用这种药的剂量在________说明范围.11.有下列等式:①由a=b||,得5﹣2a=5﹣2b;①由a=b||,得ac=bc;①由a=b||,得;①由||,得3a=2b;①由a2=b2||,得a=b.其中正确的是________12.根据不等式的基本性质||,将“mx<3”变形为“x >”||,则m的取值范围是________.13.已知ab=﹣8||,若﹣2≤b||,则a的取值范围是________.14.已知a>5||,不等式(5﹣a)x>a﹣5解集为________.15.若a>b||,用“>”或“<”填空:(1)________;(2)2a﹣4________2b﹣4.16.写出一个解为x≥1的一元一次不等式:________17.如果a<b.那么3﹣2a________3﹣2b.(用不等号连接)18.已知﹣2<x+y<3且1<x﹣y<4||,则z=2x﹣3y的取值范围________三、解答题19.根据不等式性质||,把下列不等式化为x>a或x<a的形式(1)x>x﹣6(2)﹣0.3x<﹣1.5.20.若2a+b=12||,其中a≥0||,b≥0||,又P=3a+2b.试确定P的最小值和最大值.21.某种饮料重约300g||,罐上注有“蛋白质含量≥0.5%”||,其中蛋白质的含量为多少克?四、综合题22.我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?请完成下列填空(填“>”或“<”)||,探索归纳得到一般的关系式:(1)已知可得5+2________3+1||,已知可得﹣5﹣2________﹣3﹣1;已知可得﹣2+1________3+4||,…||,一般地||,如果||,那么a+c________b+d.(2)应用不等式的性质证明上述关系式.23.用等号或不等号填空:(1)比较4m与m2+4的大小当m=3时||,4m________m2+4当m=2时||,4m________m2+4当m=﹣3时||,4m________m2+4(2)无论取什么值||,4m与m2+4总有这样的大小关系吗?试说明理由.(3)比较x2+2与2x2+4x+6的大小关系||,并说明理由.(4)比较2x+3与﹣3x﹣7的大小关系.答案解析部分一、单选题1.【答案】A【考点】不等式的性质【解析】【分析】由于a-b<0||,即a<b||,则可对C进行判断;根据不等式两边同加上(或减去)一个数||,不等号方向不变可对A进行判断;根据不等式两边同乘以(或除以)一个负数||,不等号方向改变可对B进行判断;根据不等式两边同乘以(或除以)一个正数||,不等号方向不变可对D进行判断.【解答】A、a-b<0||,即a<b||,则a-1<b-1||,所以A选项的不等式成立;B、a-b<0||,即a<b||,则-a>-b||,所以B选项的不等式不成立;C、a-b<0||,即a<b||,所以A选项的不等式不成立;D、a-b<0||,即a<b||,则3a<3b||,所以A选项的不等式不成立.故选A.【点评】本题考查了不等式的性质:不等式两边同加上(或减去)一个数||,不等号方向不变;不等式两边同乘以(或除以)一个正数||,不等号方向不变;不等式两边同乘以(或除以)一个负数||,不等号方向改变2.【答案】C【考点】不等式的性质【解析】【解答】①当a=0时||,4a=3a||,故①错误;①由4>3||,利用不等式的性质左右两边都加上a||,得到4+a>3+a||,故①正确;①由4>3||,利用不等式的性质左右两边都减去a||,得到4-a>3-a||,故①正确||,则正确的是①①.故选C.【分析】①举一个反例||,例如a=0时||,4a=3a||,故4a不一定大于3a||,故①错误;①由4大于3||,利用不等式的性质在不等式两边都加上a||,得到4+a>3+a||,故①正确;①由4大于3||,利用不等式的性质在不等式减去都加上a||,得到4-a>3-a||,故①正确.此题考查了不等式的性质||,熟练掌握不等式的基本性质是解本题的关键.3.【答案】A【考点】不等式的性质【解析】【分析】分别根据不等式的基本性质对各选项进行逐一分析即可.【解答】A、①a>b||,①a-c>b-c||,故此选项正确;B、①a>b||,①a+c>b+c||,故此选项错误;C、①a>b||,当c>0时||,ac>bc||,当c<0时||,ac<bc||,故此选项错误;D、①a>b||,当c>0时||,>||,当c<0时||,<||,故此选项错误.故选:A.4.【答案】A【考点】不等式的性质【解析】【解答】解:由数轴可知:a<b<0<c且|a|>|b|>|c|||,A、ab>bc||,正确;B、ac<bc||,故错误;C、a+c<b+c||,故错误;D、a+b<c+b||,故错误.故选A.【分析】首先根据有理数a、b||,c在数轴上对应点位置确定其符号和大小||,然后确定三者之间的关系即可.5.【答案】C【考点】不等式的性质【解析】【分析】正确运用不等式的性质进行判断.【解答】A、当a>b时||,不等式两边都减b||,不等号的方向不变得a-b>0||,故A错误;B、当a>b时||,不等式两边都乘以-5||,不等号的方向改变得-5a<-5b||,故B正确;C、不等式两边的变化必须一致||,故C错误;D、当a>b时||,不等式两边都除以4||,不等号的方向不变||,得||,故D正确.故选:C.6.【答案】B【考点】不等式的性质【解析】【解答】A、a>b||,c=0时||,ac2=bc2||,故A不符合题意;B、不等式的两边都乘以或除以同一个正数||,不等号的方向不变||,故B符合题意;C、不等式的两边都乘以或除以同一个负数||,不等号的方向改变||,右边没诚乘以﹣2||,故C不符合题意;D、不等式的两边都加或都减同一个整式||,不等号的方向不变||,故D不符合题意;故答案为:B.【分析】根据不等式的性质||,进行分析可得答案.7.【答案】D【考点】不等式的性质【解析】【解答】解:①x>2;①a≠0;①5<3||,①a≥b||,是不等式||,故选:D.【分析】根据不等式的概念:用“>”或“<”号表示大小关系的式子||,叫做不等式||,用“≠”号表示不等关系的式子也是不等式可得答案.8.【答案】D【考点】不等式及其性质【解析】【解答】A、若x<y||,则x﹣1<y﹣1||,选项A成立;B、若x<y||,则3x<3y||,选项B成立;C、若x<y||,则<||,选项C成立;D、若x<y||,则﹣2x>﹣2y||,选项D不成立||,故答案为:D.【分析】根据不等式性质:不等式左右两边同时乘或除以同一个正数||,不等号的方向不变||,不等式左右两边同时乘或除以同一个负数||,不等号的方向改变;不等式的两边都加或减去一个数||,不等号的方向不变.9.【答案】B【考点】不等式的性质【解析】【分析】A:a>b||,c为任意实数||,则a+c>b+c||。
中考数学一轮复习不等式(组)练习题命题人:康老师 考试时间:120分钟 满分:120分第Ⅰ卷 选择题 (共24分)一、选择题(本大题共l2个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、已知a >b ,若c 是任意实数,则下列不等式中总是成立的是( )A .a+c <b+cB .a ﹣c >b ﹣cC .ac <bcD .ac >bc2、已知不等式:①,1>x ②,4>x ③,2<x ④,12->-x 从这四个不等式中取两个,构成正整数解是2的不等式组是( )A.①与②B.②与③C.③与④D.①与④3、某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A. 40%B. 33.4%C. 33.3%D. 30%4、有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( )A. 1x =,3y =B. 3x =,2y =C. 4x =,1y =D. 2x =,3y =5、已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .6、一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A .B .C .D .的取值范围是则的解满足条件、已知方程组m y x y x m y x ,022127<+⎩⎨⎧=+-=+ A.1>m B. 2>m C. 3<m D. 3>m8、不等式211841x x x x -≥+⎧⎨+≤-⎩的解集是( ) A .3x ≥ B .2x ≥ C .23x ≤≤ D .空集9、有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、大砝码皆为1克,且图(三)是将糖果与砝码放在等臂天平上的两种情形。
2023年中考数学----不等式与不等式组之解与解集知识回顾与专项练习题(含答案解析)知识回顾1. 不等式的解:使不等式左右两边不等关系成立的未知数的值叫做不等式的解。
不等式的解有无数个。
2. 不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集。
3. 不等式组的解集:不等式组中所有不等式的解集的公共部分构成不等式组的解集。
4. 在数轴上表示解集:步骤:①确定边界是实心圆还是空心圈。
若有等于(即≥或≤)则是实心圆,若无等于(即>或<)则是空心圈。
②确定解集的方向:大于向右,小于向左。
5. 不等式组解集公共部分的确定:若b a >①同大取大。
当⎩⎨⎧≥b x a x >时,则解集为a x ≥。
②同小取小。
当⎩⎨⎧≤bx a x <时,则解集为b x <。
③大小小大去中间。
当⎩⎨⎧≥a x b x <时,则解集为a x b <≤。
④大大小小无解答。
当⎩⎨⎧≥bx a x <时,则无解。
专项练习题(含答案解析)1.(2022•梧州)不等式组⎩⎨⎧−21<>x x 的解集在数轴上表示为( ) A .B .C .D .【分析】求出两个不等式的公共解,并将解集在数轴上表示出来即可.【解答】解:所以不等式组的解集为﹣1<x <2,在数轴上表示为:,故选:C .2.(2022•十堰)关于x 的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为 .【分析】读懂数轴上的信息,然后用不等号连接起来.界点处是实点,应该用大于等于或小于等于.【解答】解:该不等式组的解集为:0≤x <1.故答案为:0≤x <1.。
不等式与不等式组1.“a 与3的差是非负数”用不等式表示为 A .30a -> B .30a -< C .30a -≥D .30a -≤2.下列各式中,属于一元一次不等式的是 A .320x ->B .25>-C .321x y ->+D .135y y+<3.如果a b >,那么下列各式中正确的是 A .33a b -<- B .33a b < C .a b ->-D .33a b -<-4.明明准备用自己节省的零花钱充值共享单车“摩拜”,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是 A .3045300x -≥ B .3045300x +≥ C .3045300x -≤D .3045300x +≤5.不等式215x -≤的解集在数轴上表示为ABCD一、不等式的概念、性质及解集表示 1.不等式一般地,用符号“<”(或“≤”)、“>”(或“≥”)连接的式子叫做不等式.能使不课前检测知识梳理等式成立的未知数的值,叫做不等式的解.2.不等式的基本性质温馨提示:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变.3.不等式的解集及表示法(1)不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解集.(2)不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.二、一元一次不等式及其解法1.一元一次不等式不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式.2.解一元一次不等式的一般步骤解一元一次不等式的一般步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否改变).三、一元一次不等式组及其解法1.一元一次不等式组一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一元一次不等式组.2.一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组.3.一元一次不等式组的解法先分别求出每个不等式的解集,再利用数轴求出这些一元一次不等式的的解集的公共部分即可,如果没有公共部分,则该不等式组无解. 4.几种常见的不等式组的解集设a b <,a ,b 是常数,关于x 的不等式组的解集的四种情况如下表所示(等号取不到时在数轴上用空心圆点表示):不等式组 (其中a b <)数轴表示解集口诀x ax b ≥⎧⎨≥⎩ x b ≥ 同大取大x ax b ≤⎧⎨≤⎩ x a ≤ 同小取小x ax b ≥⎧⎨≤⎩ a x b ≤≤ 大小、小大中间找x ax b ≤⎧⎨≥⎩无解 大大、小小取不了考情总结:一元一次不等式(组)的解法及其解集表示的考查形式如下: (1)一元一次不等式(组)的解法及其解集在数轴上的表示; (2)利用一次函数图象解一元一次不等式; (3)求一元一次不等式组的最小整数解; (4)求一元一次不等式组的所有整数解的和. 四、列不等式(组)解决实际问题列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案. 考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.考向一 不等式的定义及性质考点突破(1)含有不等号的式子叫做不等式.(2)不等式两边同乘以或除以一个相同的负数,不等号要改变方向,在运用中,往往会因为忘记改变不等号方向而导致错误.典例1 数学表达式:①57-<;②360y ->;③6a =;④2x x -;⑤2a ≠;⑥7652y y ->+中,是不等式的有 A .2个 B .3个 C .4个D .5个典例2 四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,则他们的体重大小关系是A .P >R >S >QB .Q >S >P >RC .S >P >Q >RD .S >P >R >Q1.“数x 不小于2”是指 A .2x ≤ B .2x ≥ C .2x <D .2x >2.利用不等式的基本性质求下列不等式的解集,并说出变形的依据:(1)若20122013x +>,则x __________;(2)若123x >-,则x __________;(3)若123x ->-,则x __________;(4)若17x->-,则x __________.考向二 一元一次不等式的解集及数轴表示(1)一元一次不等式的求解步骤:去分母→去括号→移项→合并同类项→系数化为1.(2)进行“去分母”和“系数化为1”时,要根据不等号两边同乘以(或除以)的数的正负,决定是否改变不等号的方向,若不能确定该数的正负,则要分正、负两种情况讨论.典例3 不等式2723x x--≤的解集为________________.典例4 某不等式的解集在数轴上表示如下图所示,则该不等式的解集是A .2x ≥B .2x >-C .2x ≥-D .2x ≤-3.不等式215x ->-的解集为 A .2x > B .1x > C .2x >-D .2x <4.不等式3223x x +<+的解集在数轴上表示正确的是 A . B .C .D .考向三 一元一次不等式组的解集及数轴表示不等式解集的确定有两种方法:(1)数轴法:在数轴上把各个不等式解集表示出来,寻找公共部分并用不等式表示出来; (2)口诀法:“大大取大小小取小,大小小大中间找,大大小小取不了.”典例5 不等式组10251x x -≤⎧⎨-<⎩的解集为A .2x <-B .1x ≤-C .1x ≤D .3x <典例6 一元一次不等式组201103x x -≤⎧⎪⎨+>⎪⎩的解集在数轴上表示出来,正确的是A .B .C .D .【名师点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.不等式组31x x ><⎧⎨⎩的解集是A .3x >B .1x <C .13x <<D .无解6.将不等式组1010x x +≥->⎧⎨⎩的解集在数轴上表示,下列表示中正确的是A .B .C .D .考向四 一元一次不等式(组)的整数解问题此类问题的实质是解不等式(组),通过不等式(组)的解集,然后写出符合题意的整数解即可.典例7 若实数3是不等式220x a --<的一个解,则a 可取的最小正整数为 A .2 B .3 C .4D .5【名师点睛】本题主要考查不等式的整数解,熟练掌握不等式解的定义及解不等式的能力是解题的关键.典例8 不等式组101102x x -≥⎧⎪⎨-<⎪⎩的最小整数解是A .1B .2C .3D .47.不等式3(2)4x x -≤+的非负整数解有_______________个.8.不等式组301 32x x --≥⎧⎪⎨>-⎪⎩的所有整数解之和为_______________.考向五 求参数的值或取值范围求解此类题目的难点是根据不等式(组)的解的情况得到关于参数的等式或不等式,然后求解即可.典例9 若关于x 的不等式组2x a x >⎧⎨<⎩的解集是212a x -<<,则a =A .1B .2C .12D .2-典例10 已知不等式组3(2)1213x x a x x --<⎧⎪+⎨>-⎪⎩仅有2个整数解,那么a 的取值范围是A .2a ≥B .4a <C .24a ≤<D .24a <≤【名师点睛】本题考查了一元一次不等式组的整数解.已知解集(整数解)求字母的取值或取值范围的一般思路:先把题目中除了未知数以外的字母当做常数看待,解不等式组,然后再根据题目中对结果的限制条件得到有关字母的式子,求解即可.学科@网9.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为A .23m >-B .23m ≤C .23m >D .23m ≤-10.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有2个,则m 的取值范围为______________.考向六 一元一次不等式(组)的应用求解此类题目的难点是建立“不等式(组)模型”,通过求解不等式(组)的解集并与实际相结合即可.典例11 某市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数为 A .至少20户 B .至多20户 C .至少21户D .至多21户典例12 某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则剩余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.11.某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2 h,乙机器人工作4 h,一共可以分拣700件包裹;若甲机器人工作3 h,乙机器人工作2 h,一共可以分拣650件包裹.(1)求甲、乙两机器人每小时各分拣多少件包裹;(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?12.在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有的购买方案,并指出哪种方案所需资金最少?最少资金是多少万元?1.(3分)不等式组的解集为( )A .﹣2<x <4B .x <4或x≥﹣2C .﹣2≤x <4D .﹣2<x≤42.(3分)若不等式组有解,则实数a 的取值范围是( )A .a <﹣36B .a≤﹣36C .a >﹣36D .a≥﹣36 3.3分)不等式组的整数解的个数为( )A .1B .2C .3D .44.(3分)当x 满足时,方程x 2﹣2x ﹣5=0的根是( ) A .1±B .﹣1 C .1﹣D .1+5.3分)当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A .m >1B .m <1C .m >4D .m <46.不等式组29611x x x k +>+⎧⎨-<⎩,的解集为2x <.则k 的取值范围为( )A .1k >B .1k < C.1k ≥ D .1k ≤7.某经销商销售一批电子手表,第一个月以600元/块的价格售出60块,从第二个月起降价,以550元/块的价格将这批电子手表全部售出,销售总额超过了58.万元,这批手表至少有 A .100块 B .101块 C .103块D .105块8.若不等式1ax x a +>+的解集是1x <,则a 必须满足的条件是A .1a <B .1a <-达标测评C .1a >-D .1a >9.已知不等式组3010x x ->⎧⎨+≥⎩,其解集在数轴上表示正确的是A .B .C .D .10.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高 A .40%B .33.4%C .33.3%D .30%11.已知关于x 的不等式组023x b x -≤⎧⎨-≥⎩的整数解有4个,则b 的取值范围是A .78b ≤<B .78b ≤≤C .89b ≤<D .89b ≤≤12.如图表示下列四个不等式组中其中一个的解集,这个不等式组是A .23x x ≥⎧⎨>-⎩B .23x x ≤<-⎧⎨⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤>-⎧⎨⎩13.适合不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩的全部整数解的和是A .1-B .0C .1D .21.(2017•株洲)已知实数a ,b 满足11a b +>+,则下列选项错误的为 A .a b >B .22a b +>+C .a b -<-D .23a b >2.(2017•眉山)不等式122x ->的解集是 A .14x <-B .1x <-C .14x >-D .1x >-3.(2017•六盘水)不等式963≥+x 的解集在数轴上表示正确的是ABCD4.(2017•遵义)不等式6438x x -≥-的非负整数解有 A .2个 B .3个 C .4个D .5个5.(2017•西宁)不等式组2131x x -+<⎧⎨≤⎩的解集在数轴上表示正确的是A .B .C .D .6.(2017•绥化)不等式组1313x x -≤⎧⎨+>⎩的解集是实战演练A .4x ≤B .24x <≤C .24x ≤≤D .2x >7.(2017•广西四市)一元一次不等式组⎩⎨⎧≤+>+31022x x 的解集在数轴上表示为A .B .C .D .8.(2017•德州)不等式组2931213x x x +≥⎧⎪+⎨>-⎪⎩的解集为A .3x ≥B .34x -≤<C .32x -≤<D .4x >9.(2017•自贡)不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是10.(2017•百色)关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是 A .3 B .2 C .1D .23。
目录第一套:第一套:方程与不等式复习巩固第二套:中考数学方程与不等式复习测试第三套:中考方程(组)与不等式(组)综合精讲30道第四套:方程思想在解决实际问题中的作用第五套:中考数学不等式(组)与方程(组)的应用第六套:方程(组)与不等式(组)综合检测试题第一套:方程与不等式复习巩固一.教学内容:方程与不等式 二. 教学目标:通过对方程与不等式基础知识的复习,解决中考中常见的问题。
三. 教学重点、难点:熟练地解决方程与不等式相关的问题 四、课堂教学: 中考导航一中考大纲要求一中考导航二中考大纲要求二⎪⎪⎩⎪⎪⎨⎧一元一次方程的应用一元一次方程的解法程的解一元一次方程定义、方等式及其性质一元一次方程⎪⎪⎩⎪⎪⎨⎧用题列二元一次方程组解应的解法简单的三元一次方程组解二元一次方程组义及其解二元一次方程(组)定二元一次方程组中考导航三中考大纲要求三中考导航四中考大纲要求四⎪⎪⎪⎩⎪⎪⎪⎨⎧的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念一元一次不等式(组)不等式的性质一次不等式组一元一次不等式和一元⎪⎪⎩⎪⎪⎨⎧程的应用一元二次方程及分式方分式方程可化为一元二次方程的一元二次方程的解法一元二次方程的定义一元二次方程【典型例题】例1. 若关于x 的一元一次方程的解是,则k 的值是( )A.B. 1C.D. 0答案:B例2. 一元二次方程的两个根分别为( ) A. , B. , C. , D. , 答案:C例3. 如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. B. C. D.答案:B 例4. 把不等式组的解集表示在数轴上,正确的是( )12k3x 3k x 2=---1x -=721113-03x 2x 2=--1x 1=3x 2=1x 1=3x 2-=1x 1-=3x 2=1x 1-=3x 2-=0b a >-0ab <0b a <+0)c a (b >- B A O C⎩⎨⎧>-≥-3x 604x 2答案:A例5. 某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告。
2020 年中考数学考点提分专题三不等式(组)(分析版)必考点 1不等式的基天性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若 a> b,那么 a±m> b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若 a> b,且 m> 0,那么 am> bm 或 am> bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若 a> b,且 m< 0,那么 am< bm 或 am< bm;【典例 1】m>n,以下不等式不必定成立的是()( 2019·四川中考真题)若A .m 3>n 3B.C.mn D.22﹣3m<﹣3n33m > n【贯通融会】1.( 2019 ·广西中考真题)假如 a b , c0 ,那么以下不等式成立的是()A .a c b B.a c b cC.ac 1 bc 1D.a c 1 b c 1必考点 2 一元一次不等式的解【典例 2】( 2019·四川中考真题)对于x 的不等式2x a 1 只有2个正整数解,则 a 的取值范围为()A .5 a3B.5 a3C.5 a3D.5 a3【贯通融会】2x5x 的每一个值,都能使对于x 的不等式11 2x 的解集中.( 2019 ·内蒙古中考真题)若不等式33( x﹣1) 5>5x 2(m x) 成立,则 m 的取值范围是()31C.m 3D.m1A .m B.m5555必考点 3一元一次不等式的应用(1)由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.(2)列不等式解应用题需要以“起码”、“最多”、“不超出”、“不低于”等词来表现问题中的不等关系.所以,成立不等式要擅长从“重点词”中发掘其内涵.(3)列一元一次不等式解决实质问题的方法和步骤:①弄清题中数目关系,用字母表示未知数.②依据题中的不等关系列出不等式.③解不等式,求出解集.④写出切合题意的解【典例 3】20 题,答对一题得10 分,答错或不答扣 5 分,小华( 2019·重庆中考真题)某次知识比赛共有得分要超出120 分,他起码要答对的题的个数为()A.13B. 14C. 15D. 16必考点 4一元一次不等式组的解x 30【典例 4】(2019·江西中考模拟)已知不等式组{其解集在数轴上表示正确的选项是()x 10A .B.C.D.【贯通融会】1.(2019 ·云南中考真题)若对于2x12的解集为 x> a,则 a 的取值范围是 () x 的不等式组x0aA . a<2B. a≤2C. a> 2D. a≥22x6<02. ( 2019 ·湖南中考真题)若对于mx 的不等式组>有解,则在其解集中,整数的个数不行能是4x m0()A . 1B. 2C. 3D. 4x 1 x ( 2019·山东中考真题)若不等式组31无解,则 m 的取值范围为(2)x4mA .m 2B.m 2C.m 2D.m 2必考点 5 不等式组的应用【典例 5】( 2019·贵州中考真题)某校计划组织240 名师生到红色教育基地展开革命传统教育活动.旅行公司有 A ,B 两种客车可供租用, A 型客车每辆载客量45 人, B 型客车每辆载客量30 人.若租用 4 辆 A 型客车和 3 辆 B 型客车共需花费10700 元;若租用 3 辆 A 型客车和 4 辆 B 型客车共需花费10300 元.( 1)求租用A, B 两型客车,每辆花费分别是多少元;( 2)为使 240 名师生有车坐,且租车总花费不超出 1 万元,你有哪几种租车方案?哪一种方案最省钱?1.已知xy ,则以下不等式不行立的是()A .x 6 y 6B.3x 3yC.2 x2y D.3x 63 y 6x 2a2. ( 2019 ·江苏中考真题)以下各数轴上表示的x 的取值范围能够是不等式组的解集的2a 1 x 6 0是()A .B.C.D.3.某次知识比赛共有20 道题,每一题答对得10 分,答错或不答都扣 5 分 .小明得分要超出90 分,他起码要答对多少道题?若设小明答对了x 道题,则由题意可列出的不等式为()A . 10x+5(20 ﹣ x)> 90B. 10x+5(20 ﹣ x)< 90C. 10x﹣ 5(20﹣ x)> 90D. 10x ﹣ 5(20﹣x)< 904.( 2019 ·江苏中考真题)不等式x 1 2 的非负整数解有()A.1 个B.2个C.3 个D.4 个5.( 2019 ·湖北中考真题)不等式组2x x4的解集在数轴上用暗影表示正确的选项是()3x3x9A .B.C.D.6.( 2019 ·四川中考真题)若对于x的代等式组x x123恰有三个整数解,则 a 的取值范3x5a44( x1)3a围是()A .1, a3B.1 a,33D.a, 1或a3C.1 a2222x 237. ( 2019 ·浙江中考真题)不等式组x142的解为 _____________________ .8. ( 2019 ·黑龙江中考真题)若对于x m0x 的一元一次不等式组1的解集为 x 1 ,则m的取值范围是2x3_____.9. ( 2019 ·甘肃中考真题)不等式组2 x⋯0的最小整数解是 _____.2x x 1x 2 x110. ( 2019 ·四川中考真题)若对于x 的不等式组43有且只有两个整数解,则m 的取值范围是2x m, 2x_____.3x5x611. ( 2019 ·四川中考真题)解不等式组:x 1x 1 ,把它的解集在数轴上表示出来,并写出其整数解.6212. ( 2019 ·四川中考真题)为了参加西部展览会,资阳市计划印制一批宣传册.该宣传册每本共10 页,由A、 B 两种彩页组成.已知 A 种彩页制版费300 元 / 张, B 种彩页制版费 200 元 /张,合计2400 元.(注:彩页制版费与印数没关)(1)每本宣传册 A 、 B 两种彩页各有多少张?(2)据认识, A 种彩页印刷费 2.5 元 /张, B 种彩页印刷费 1.5 元 /张,这批宣传册的制版费与印刷费的和不超出 30900 元.假如按到资阳展台处的观光者人手一册发放宣传册,估计最多能发给多少位观光者?2020 年中考数学考点提分专题三不等式(组)(分析版)必考点 1不等式的基天性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若 a> b,那么 a±m> b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若 a> b,且 m> 0,那么 am> bm 或 am> bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若 a> b,且 m< 0,那么 am< bm 或 am< bm;【典例 1】m>n,以下不等式不必定成立的是()( 2019·四川中考真题)若A .m 3>n 3B.C.mn D.22﹣3m<﹣3n33m > n【答案】 D【分析】解: A 、不等式的两边都加3,不等号的方向不变,故 A 错误;B、不等式的两边都乘以﹣3,不等号的方向改变,故 B 错误;C、不等式的两边都除以3,不等号的方向不变,故 C 错误;D、如m=2,n=﹣3,m>n,m2<n2;故 D 正确;应选:D.【点睛】主要考察了不等式的基天性质,“0”很特别的一个数,所以,解答不等式的问题时,应亲密关注是“0存”在与否,以防掉进“0”的圈套.【贯通融会】1.( 2019 ·广西中考真题)假如 a b , c0 ,那么以下不等式成立的是()A .a c b B.a c b cC.ac1bc1D.a c1 b c1【答案】D【分析】解:∵ c0 ,∴ c 1 1,∵ a b ,∴ a c 1 b c 1 ,应选: D .【点睛】本题考察不等式的性质,解题的重点是娴熟运用不等式的性质,本题属于中等题型.必考点 2一元一次不等式的解【典例 2】( 2019·四川中考真题)对于 x 的不等式 2x a 1 只有 2 个正整数解,则 a 的取值范围为()A . 5 a3B . 5 a3C . 5 a3D . 5 a3【答案】 C【分析】解不等式 2x+a ≤1得: , 1 a,x2不等式有两个正整数解,必定是 1和2,依据题意得: 2,1a 32解得: -5< a ≤-3.应选: C .【点睛】本题考察了不等式的整数解,正确解不等式,求出解集是解答本题的重点.解不等式应依据不等式的基本性质.【贯通融会】1.( 2019 ·内蒙古中考真题)若不等式2x 5 1 2 x 的解集中 x 的每一个值,都能使对于 x 的不等式33( x ﹣1) 5>5x2(m x) 成立,则 m 的取值范围是()3 1 C . m3 1A . mB . m5D . m555【答案】 C【分析】解:解不等式 2x 5 1 2 x 得: x 4 , Q 不等式2x5 351 2 x 的解集中 x 的每一个值,都能使对于x 的不等式 (3x ﹣1) 5>5x (2 m x )成3立,1 m,x <21 m > 4 ,2 53解得: m <,5应选: C .【点睛】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能依据已知获得对于m 的不等式是解本题的重点.必考点 3一元一次不等式的应用( 1)由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.(2)列不等式解应用题需要以“起码 ”、 “最多 ”、“不超出 ”、“不低于 ”等词来表现问题中的不等关系.所以,成立不等式要擅长从 “重点词 ”中发掘其内涵.( 3)列一元一次不等式解决实质问题的方法和步骤:①弄清题中数目关系,用字母表示未知数.②依据题中的不等关系列出不等式.③解不等式,求出解集.④写出切合题意的解【典例 3】20 题,答对一题得 10 分,答错或不答扣5 分,小华( 2019·重庆中考真题)某次知识比赛共有 得分要超出 120 分,他起码要答对的题的个数为( )A .13B . 14C . 15D . 16【答案】 C【分析】解:设要答对 x 道.10 x ( 5) (20 x) 120 ,10 x 100 5 x 120,15 x 220 ,解得: x 44,3依据 x 一定为整数,故 x 取最小整数 15,即小华参加本次比赛得分要超出120 分,他起码要答对15 道题.应选: C .【点睛】本题主要考察了一元一次不等式的应用,获得得分的关系式是解决本题的重点.必考点 4一元一次不等式组的解x 3 0 【典例 4】( 2019·江西中考模拟)已知不等式组{其解集在数轴上表示正确的选项是( )x 1 0A .B .C .D .【答案】 D【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).所以,x 3 0 x3 {1 0{x 3 .xx1不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥ ≤向右画;<, 向左画),数轴上的点把数轴分红若干段,假如数轴的某一段上边表示解集的线的条数与不等式的个数同样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“< ”, “> ”要用空心圆点表示.应选 D .【贯通融会】1.( 2019 ·云南中考真题)若对于 2 x 1 2x 的不等式组x的解集为 x > a ,则 a 的取值范围是 ()a 0a<2 aa> 2 a≥2A .B . ≤2C .D . 【答案】 D【分析】2 x 12①,a x0②由①得 x 2 ,由②得 x a ,又不等式组的解集是x> a,依据同大取大的求解集的原则,∴a 2 ,当 a2时,也知足不等式的解集为x 2 ,∴ a2,应选 D.【点睛】本题考察认识一元一次不等式组,不等式组的解集,娴熟掌握不等式组解集确实定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的重点 .2x6<02. ( 2019 ·湖南中考真题)若对于mx 的不等式组>有解,则在其解集中,整数的个数不行能是4x m0()A . 1B. 2C. 3D. 4【答案】 C【分析】解不等式2x﹣ 6+ m< 0,得: x<6m ,2解不等式4x﹣ m>0,得: x>m,4∵不等式组有解,∴m <6 m,42解得m<4,假如m=2,则不等式组的解集为1 <m<2,整数解为x= 1,有 1 个;2假如m=0,则不等式组的解集为0<m<3,整数解为x= 1,2,有 2 个;假如m=﹣ 1,则不等式组的解集为1 <m< 7 ,整数解为x= 0, 1,2, 3,有 4 个;42应选: C.【点睛】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.x1x1( 2019·山东中考真题)若不等式组32无解,则 m 的取值范围为()x4mA .m 2B.m 2C.m 2D.m 2【答案】 A【分析】解不等式x 1x1 ,得:x>8,32∵不等式组无解,∴4m≤8,解得 m≤2,应选 A.【点睛】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.必考点 5 不等式组的应用【典例 5】( 2019·贵州中考真题)某校计划组织240 名师生到红色教育基地展开革命传统教育活动.旅行公司有 A ,B 两种客车可供租用, A 型客车每辆载客量45 人, B 型客车每辆载客量30 人.若租用 4 辆 A 型客车和 3 辆 B 型客车共需花费10700 元;若租用 3 辆 A 型客车和 4 辆 B 型客车共需花费10300 元.( 1)求租用A, B 两型客车,每辆花费分别是多少元;( 2)为使 240 名师生有车坐,且租车总花费不超出 1 万元,你有哪几种租车方案?哪一种方案最省钱?【答案】( 1)租用 A, B 两型客车,每辆花费分别是1700 元、 1300 元;( 2)共有三种租车方案,方案一:租用 A 型客车 2 辆, B 型客车 5 辆,花费为9900 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆,花费为9400 元,方案三:租用 A 型客车 5 辆, B 型客车 1 辆,花费为9800 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆最省钱.【分析】(1)设租用 A ,B 两型客车,每辆花费分别是x 元、 y 元,4x 3y10700,3x 4y10300x 1700解得,,y 1300答:租用 A , B 两型客车,每辆花费分别是1700 元、 1300 元;(2)设租用 A 型客车 a 辆,租用 B 型客车 b 辆,45a 30b 240,1700a 1300b10000a 2 a 4 a 5 解得,b 5 , b2,,b1∴共有三种租车方案,方案一:租用 A 型客车 2 辆, B 型客车 5 辆,花费为 9900 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆,花费为 9400 元,方案三:租用 A 型客车 5 辆, B 型客车 1 辆,花费为 9800 元,由上可得,方案二:租用A 型客车 4 辆,B 型客车 2 辆最省钱.【点睛】本题考察二元一次方程组的应用、一元一次不等式的应用,解答本题的重点是明确题意,利用不等式的性质和方程的知识解答.1.已知 xy ,则以下不等式不行立的是( ) A . x 6y 6B .C .2 x 2yD . 【答案】 D【分析】3x 3y3x 63 y 6Q x y,-3x<-3 y ,∴ - 3x+6<-3 y+6,故D 错误;应选 D.点睛:不等式的性质 3:不等式两边同时乘以或除以同一个负数,不等号的方向改变 .x 2a2. ( 2019 ·江苏中考真题)以下各数轴上表示的x 的取值范围能够是不等式组的解集的2a 1 x 6 0是()A .B.C.D.【答案】 B【分析】由 x+2 > a 得 x> a-2,A .由数轴知x>-3,则 a=-1 ,∴ -3x-6 < 0,解得 x> -2,与数轴不符;B.由数轴知x> 0,则 a=2,∴ 3x-6 < 0,解得 x<2,与数轴相切合;C.由数轴知x> 2,则 a=4,∴ 7x-6 < 0,解得 x<6,与数轴不符;7D.由数轴知x>-2,则 a=0,∴ -x-6 < 0,解得 x> -6,与数轴不符;应选 B.【点睛】本题主要考察解一元一次不等式组,解题的重点是掌握不等式组的解集在数轴上的表示及解一元一次不等式的能力.3.某次知识比赛共有20 道题,每一题答对得10 分,答错或不答都扣 5 分 .小明得分要超出90 分,他起码要答对多少道题?若设小明答对了x 道题,则由题意可列出的不等式为()A . 10x+5(20 ﹣ x)> 90B. 10x+5(20 ﹣ x)< 90C. 10x﹣ 5(20﹣ x)> 90D. 10x ﹣ 5(20﹣x)< 90【答案】C【分析】解:由题意可列出的不等式为10x﹣ 5(20 ﹣x) >90,应选:C.【点睛】本题考察了由实质问题抽象出一元一次不等式,掌握:答错或不答都扣 5 分,起码即大于或等于是解题的重点 .4.( 2019 ·江苏中考真题)不等式 x 1 2 的非负整数解有()A .1 个B .2个C .3 个D .4 个【答案】 D【分析】解: x 1 2 ,解得: x3 ,则不等式 x 1 2 的非负整数解有: 0, 1, 2, 3 共 4 个.应选: D .【点睛】本题主要考察了一元一次不等式的整数解,正确掌握非负整数的定义是解题重点.2x x 4 的解集在数轴上用暗影表示正确的选项是()5.( 2019 ·湖北中考真题)不等式组x3x3 9A .B .C .D .【答案】 C【分析】解:不等式组整理得:x 4x ,3∴不等式组的解集为x3 ,应选: C .【点睛】本题考察认识一元一次方程组,娴熟掌握运算法例是解本题的重点.x x 1 0 6.( 2019 ·四川中考真题) 若对于 x的代等式组2 3恰有三个整数解, 则 a 的取值范3x5a 4 4( x 1) 3a围是( )A . 1, a3B . 1 a,3C . 1 a3 D . a, 1 或 a32222【答案】 B【分析】解不等式xx 10 ,得: x2,235解不等式 2x5a 4 4 x 13a ,得: x2a ,∵不等式组恰有三个整数解,∴这三个整数解为0、 1、 2,∴2 2a 3 ,解得 1 a 3 ,2应选: B.【点睛】本题考察一元一次不等式组的整数解,解题重点在于掌握运算法例x 237. ( 2019 ·浙江中考真题)不等式组x142【答案】 1 x, 9【分析】的解为 _____________________ .x23①解:x1,24②由①得, x> 1,由②得, x≤9.故不等式组的解集为:1x, 9 .【点睛】本题考察的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.8. ( 2019 ·黑龙江中考真题)若对于x m01 ,则m的取值范围是x 的一元一次不等式组1的解集为 x2x3_____.【答案】 m £1【分析】解不等式 xm 0 ,得: x m ,解不等式 2x1 3 ,得: x 1,Q 不等式组的解集为 x 1 ,m £1,故答案为: m £1. 【点睛】本题考察解一元一次不等式组,掌握运算法例是解题重点2 x ⋯0 9. ( 2019 ·甘肃中考真题)不等式组的最小整数解是 _____.2x x 1【答案】 0【分析】x, 2 解:不等式组整理得:,x1∴不等式组的解集为﹣1< x ≤2,则最小的整数解为0,故答案为: 0【点睛】本题考察了一元一次不等式组的整数解,娴熟掌握运算法例是解本题的重点.x2 x110. ( 2019 ·四川中考真题)若对于 x 的不等式组43 有且只有两个整数解,则 m 的取值范围是2x , 2xm _____.【答案】 2 m 1 .【分析】x2 x1 ①解:4 32x m 2 x ②解不等式①得:x2 ,解不等式②得:xm2,3∴不等式组的解集为 2 x 2 ,3∵不等式组只有两个整数解,m21 ,∴ 03解得: 2m1,故答案为2m 1 .【点睛】本题考察认识一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解本题的重点是求出对于 m 的不等式组,难度适中.3x 5x611. ( 2019 ·四川中考真题)解不等式组:x 1 x 1 ,把它的解集在数轴上表示出来,并写出其整数解.62【答案】 3 x 2 ,x的整数解为﹣2,﹣1,0,1,2.【分析】3x5x ①6解:x1 x 1 ②62解不等式①,解不等式②,x 3 ,x 2 ,∴ 3 x 2 ,解集在数轴上表示以下:∴x的整数解为﹣ 2,﹣ 1, 0,1, 2.【点睛】本题考察不等式组和数轴,解题的重点是娴熟掌握不等式组的求解和有理数在数轴上的表示.12. ( 2019 ·四川中考真题)为了参加西部展览会,资阳市计划印制一批宣传册.该宣传册每本共10 页,由A、 B 两种彩页组成.已知 A 种彩页制版费300 元 / 张, B 种彩页制版费200 元 /张,合计2400 元.(注:彩页制版费与印数没关)( 1)每本宣传册 A 、 B 两种彩页各有多少张?( 2)据认识, A 种彩页印刷费 2.5 元 /张, B 种彩页印刷费 1.5 元 /张,这批宣传册的制版费与印刷费的和不超出 30900 元.假如按到资阳展台处的观光者人手一册发放宣传册,估计最多能发给多少位观光者?【答案】( 1)每本宣传册 A 、B 两种彩页各有 4 和 6 张;(2)最多能发给 1500 位观光者.【分析】解:( 1)设每本宣传册 A 、B 两种彩页各有x , y 张,x y 10 ,300x 200y2400解得:x 4y,6答:每本宣传册 A 、 B 两种彩页各有 4 和 6 张;(2)设最多能发给 a 位观光者,可得:2.5 4a 1.5 6a 2400 30900 ,解得: a1500,答:最多能发给 1500 位观光者.【点睛】本题考察一元一次不等式的应用,重点是依据题意列出方程组和不等式解答.。
中考数学专题训练之不等式与不等式组(01)一.选择题(共10小题)1.如果a 、b 为有理数,且a 、b 两数的和小于a 与b 的差,则( )A .a 、b 同号B .a 、b 异号C .a 、b 为负数D .b 为负数2.某商店的老板销售一种商品,他要以不低于进价130%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价( ),可以买到这件商品.A .80元B .100元C .120元D .160元3.下列四个不等式:(1)ac >bc ;(2)2a >2b ;(3)ac 2>bc 2;(4)a b >1,一定能推出a>b 的有( )A .1个B .2个C .3个D .4个4.某种药品说明书上,贴有如图所示的标签,则一次服用这种药品的剂量范围是x ~ymg ,则x ,y 的值分别为( )用法用量:口服,每天30〜60mg ,分2〜3次服用.规格:□□□□□□贮藏:□□□□□□A .x =15,y =30B .x =10,y =20C .x =15,y =20D .x =10,y =305.网课期间,琪琪同学花整数元购买了一个手机支架,让同学们猜价格.甲说:“至少20元”,乙说“至多18元”,丙说:“至多15元”.琪琪说:“你们都猜错了.”则这个支架的价格为( )A .15元B .18元C .19元D .20元6.若关于x 的方程4(2﹣x )+x =ax 的解为正整数,且关于x 的不等式组{x−16+2>2x a −x ≤0有解,则满足条件的所有整数a 的值之和是( )A .3B .0C .﹣2D .﹣37.已知集合A ={x |x <a },B ={x |1≤x ≤2},且A ∪B =A ,则实数a 的取值范围是( )A .a ≤2B .a <2C .a ≥2D .a >28.若数m 使关于x 的不等式组{5(x −m)≤0x+23−x 2>1的解集为x <﹣2,且使关y 的方程32m −6=4y +m 2的解为负整数,则符合条件的所有整数m 的和为( ) A .1 B .2 C .5 D .09.不等式﹣3(x +1)>﹣6的解集表示在数轴上正确的是( )A .B .C .D .10.如图,学校要在领奖台上铺红地毯,地毯每平米40元,至少花多少钱才能铺满整个领奖台( )A .1200元B .1320元C .1440元D .1560元二.填空题(共10小题)11.一个数位大于等于4的多位数,如果其末三位数与末三位数以前的数之差(大数减小数)能被13整除,则这个多位数一定能被13整除;则672906 (能或不能)被13整除.若一个五位数S ,其前两位数为A =46+n ,后三位数为B =320+10m +n (0≤m ≤7,0≤n ≤9且为整数).现将五位数S 的后两位数放在最左边得到一个新的五位数S 1,再交换S 1百位上的数字与十位上的数字后得到S 2,S 2能被13整除,则满足条件的最大五位数与最小五位数的差为 .12.设[x ]表示不超过x 的最大整数{例如:[3]=3,[﹣5]=﹣5,[2.5]=2,[﹣2.7]=﹣3}请你认真理解[x ]的意义,当0<a <1,若[a +180]+[a +280]+…+[a +7880]+[a +7980]=32,则[10a ]的值为 .13.点A 在数轴上的位置如图所示,机器人从点A 的位置开始移动.第1次,机器人向左移动2个单位长度,描述这一变化的算式为:1﹣2,则此时机器人在数轴上的位置表示的数是 ;第2次,机器人向右移动3个单位长度,第3次,机器人向左移动4个单位长度,第4次,机器人向右移动5个单位长度,…,以此类推,至少移动 次后,机器人在数轴上的位置表示的数的绝对值比6大.14.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为 .15.若关于x 的不等式组{4−2x >03(x −m)≥5+x只有3个整数解,则m 的取值范围是 .16.若关于x 的一元一次不等式组{4k +1>4(x +14)5x−34≤x +1的解集是x <k ,且关于y 的方程2(y ﹣3)=k ﹣4y +5有正整数解,则符合条件的所有整数k 的和为 .17.关于x 的分式方程ax−9x−2+1=32−x 的解为正数,且关于y 的不等式组{12y −1≤13y −238y +7>a −y 恰好有三个整数解,则所有满足条件的整数a 的值之和为 .18.若关于x 的一元一次不等式组{x −2a >03−2x >x −6无解,则a 的取值范围是 .19.若关于x 的一元一次方程ax−12=7有正整数解,且使关于x 的不等式组{2x −a ≥0x−22<x+13至少有4个整数解,求出满足条件的整数a 的所有值的积为 .20.已知不等式(2a ﹣4)x <4﹣2a 的解集为x <﹣1,则a 的取值范围是 .三.解答题(共5小题)21.某汽车有油和电两种驱动方式,两种驱动方式不能同时使用,该汽车从A 地行驶至B 地,全程用油驱动需96元油费,全程用电驱动需16元电费,已知每行驶1千米,用油比用电的费用多0.8元.(1)求该汽车用电驱动方式行驶1千米的电费;(2)从A 地行驶至B 地,若用油和用电的总费用不超过39元,则至少需用电行驶多少千米?22.若A 、B 两点在数轴上分别表示数a 、b ,则A 、B 两点间的距离等于|a ﹣b |.(1)|x﹣2|=1可理解为数轴上表示x的点到表示2的点的距离等于1,则x=;(2)同理|x﹣2|+|x﹣5|可理解为数轴上表示x的点到表示2、5的点的距离之和;借助数轴(如图1)不难发现,当表示x的点在A的左侧时,|x﹣2|+|x﹣5|大于3,当表示x的点在A、B之间时,|x﹣2|+|x﹣5|等于3,当表示x的点在B的右侧时,|x﹣2|+|x﹣5|大于3;综上,当x满足时,|x﹣2|+|x﹣5|有(填“最大”或“最小”)值3;(3)如图2所示,某公共汽车运营线路上依次有A1,A2,A3三个汽车站,现要在路旁修建一个加油站M,使得三个汽车站到加油站M的路程总和最小,加油站M建在何处最好;(4)如果公共汽车运营线路上依次有A1,A2,A3,…,A n共n个汽车站,为使得n个汽车站到加油站M的路程总和最小,加油站M建在何处最好.23.对于任意实数a,b,定义一种新运算:a⊕b=a﹣3b+7,等式右边是通常的加减运算,例如:3⊕5=3﹣3×5+7=﹣5.(1)7⊕4=;√2⊕(√2−1)=.(2)若2x⊕y=12,x⊕3=2y,求xy的平方根;(3)若3m<2⊕x<7,且解集中恰有3个整数解,求m的取值范围.24.某商家销售A,B两种果苗,进货单价分别为70元,50元,下表是近两天的销售情况.销售量/棵销售收入/元A果苗B果苗第一天43625第二天55875(1)求A,B两种果苗的销售单价;(2)若该商家购进这两种果苗总计50棵,购进费用不超过2900元,则最多购进A种果苗多少棵?(3)某天商家销售A,B两种果苗,要使获得的总利润是900元,求这一天共有几种销售方案.25.为加强校园阳光体育活动,某中学计划购进一批篮球和排球,经过调查得知每个篮球的价格比每个排球的价格贵40元,买5个篮球和10个排球共用1100元.(1)求每个篮球和排球的价格分别是多少?(2)某学校需购进篮球和排球共120个,总费用不超过9000元,但不低于8900元,问有几种购买方案?最低费用是多少?。
初中数学七年级下册第九章不等式与不等式组定向训练(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分) 1、下列不等式组,无解的是( )A .1030x x ->⎧⎨->⎩B .1030x x -<⎧⎨-<⎩C .1030x x ->⎧⎨-<⎩D .1030x x -<⎧⎨->⎩2、若a +b +c =0,且|a |>|b |>|c |,则下列结论一定正确的是( ) A .abc >0B .abc <0C .ac >abD .ac <ab3、把不等式组123x x >-⎧⎨+≤⎩的解集在数轴上表示,正确的是( )A .B .C .D .4、,a b 都是实数,且a <b , 则下列不等式的变形正确的是( ) A .a +x >b +xB .-a <-bC .3a <3bD .22a b >5、整数a 使得关于x 的不等式组6202()3x x a x ->⎧⎨+≥+⎩至少有4个整数解,且关于y 的方程1﹣3(y ﹣2)=a有非负整数解,则满足条件的整数a 的个数是( ) A .6个B .5个C .3个D .2个6、能说明“若x>y,则ax>ay”是假命题的a的值是()A.3 B.2 C.1 D.1-7、若a>b,则()A.a﹣1≥b B.b+1≥a C.2a+1>2b+1 D.a﹣1>b+18、已知不等式组2<x﹣1<4的解都是关于x的一次不等式3x≤2a﹣1的解,则a的取值范围是()A.a≤5B.a<5 C.a≥8D.a>89、在数轴上表示不等式﹣1<x≤2,其中正确的是()A.B.C.D.10、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.二、填空题(5小题,每小题4分,共计20分)1、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg.2、小明同学所在班级举行了生态文明知识小竞赛,试卷一共有25道题.评分办法是答对一题记4分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了____道题.3、已知a >b ,且c ≠0,用“>”或“<”填空. (1)2a ________a +b (2)2a c _______2b c (3)c -a _______c -b (4)-a |c |_______-b |c |4、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.5、根据“3x 与5的和是负数”可列出不等式 _________. 三、解答题(5小题,每小题10分,共计50分)1、我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜4个,共需资金1500元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共30个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,请设计所有可行的购买方案供学校选择.2、公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)请你为用户设计一个方案,使用户能合理地选择付费方式.3、某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案.4、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?5、对于平面直角坐标系中任一点(a,b),规定三种变换如下:①A(a,b)=(﹣a,b).如:A(7,3)=(﹣7,3);②B(a,b)=(b,a).如:B(7,3)=(3,7);③C(a,b)=(﹣a,﹣b).如:C(7,3)=(﹣7,﹣3);例如:A(B(2,﹣3))=A(﹣3,2)=(3,2)规定坐标的部分规则与运算如下:①若a=b,且c=d,则(a,c)=(b,d);反之若(a,c)=(b,d),则a=b,且c=d.②(a,c)+(b,d)=(a+b,c+d);(a,c)﹣(b,d)=(a﹣b,c﹣d).例如:A(B(2,﹣3))+C(B(2,﹣3))=A(﹣3,2)+C(﹣3,2)=(3,2)+(3,﹣2)=(6,0).请回答下列问题:(1)化简:A(C(5,﹣3))=(填写坐标);(2)化简:C(A(﹣3,﹣2))﹣B(C(﹣1,﹣2))=(填写坐标);(3)若A(B(2x,﹣kx))﹣C(A(1+y,﹣2))=C(B(ky﹣1,﹣1))+A(C(y,x)),且k为整数,点P(x,y)在第四象限,求满足条件的k的所有可能取值.---------参考答案-----------一、单选题1、D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键. 2、C 【分析】由c 的绝对值最小,分析0c 不符合题意,再由0,a b c ++= 分析可得,,a b c 中至少有一个负数,至多两个负数,再分情况讨论即可得到答案. 【详解】解: a +b +c =0,且|a |>|b |>|c |,当0c 时,则0,a b += 则,ab 不符合题意;0,c从而:,,a b c 中至少有一个负数,至多两个负数, 当0,0,0,a b c 且|a |>|b |>|c |,0,abc 0,b c,ab ac 此时B ,C 成立,A ,D 不成立,当0,0,0,b c a 且|a |>|b |>|c |,0,0,abc b c,ab ac 此时A ,C 成立,B ,D 不成立,综上:结论一定正确的是C , 故选C 【点睛】本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.3、D【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.【详解】解:123xx>-⎧⎨+≤⎩①②,解不等式②,得:1x≤,所以不等式组的解集为11x-<≤把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.4、C【分析】根据不等式的性质逐一判断选项,即可.【详解】解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.【点睛】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变. 5、A 【分析】解不等式组中两个不等式得出323a x -≤<,结合其整数解的情况可得2a ≥,再解方程得73a y -=,由其解为非负数得出7a ≤,最后根据方程的解必须为非负整数可得a 的取值情况. 【详解】解:解不等式620x ->,得:3x <, 解不等式2()3x a x +≥+,得:32x a ≥-, 不等式组至少有4个整数解,321a ∴-≤-,解得2a ≥,解关于y 的方程13(2)y a --=得73a y -=,方程有非负整数解,∴703a-≥, 则7a ≤, 所以27a ≤≤, 其中能使73a-为非负整数的有2,3,4,5,6,7,共6个, 故选:A . 【点睛】本题主要考查一元一次不等式组的整数解,解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6、D【分析】根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.【详解】解:“若x>y,则ax>ay”是假命题,则0a<,故选:D.【点睛】本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.7、C【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C.【详解】解:A、若a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、若a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴2a+1>2b+1,符合题意;D、若a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.8、C【分析】先求出不等式组2<x﹣1<4的解集,再求出一次不等式3x≤2a﹣1的解集,根据一次不等式解集的分界点在5以及其右边,列不等式求解即可.【详解】解:∵2<x﹣1<4,∴3<x<5,∵一次不等式3x≤2a﹣1,解得213ax-≤,∵满足3<x<5都在213ax-≤范围内,∴2153a-≥,解得8a≥.故选择C.【点睛】本题考查不等式组的解集与一次不等式的解集关系,利用213ax-≤解集的分界点在5以及5的右边部分得出不等式2153a-≥是解题关键.9、A【分析】不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.故在数轴上表示不等式﹣1<x⩽2如下:故选A.【点睛】本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、A【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,12mm⎧⎨⎩><,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.二、填空题【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.2、18【分析】设小明答对了x道题,则答错了(25﹣3﹣x)道题,根据总分=4×答对题目数﹣2×答错题目数,结合成绩超过60分,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中最小正整数即可得出结论.【详解】设小明答对了x道题,则答错了(25﹣3﹣x)道题,依题意,得:4x﹣2(25﹣3﹣x)>60,解得:x>1713,∵x为正整数,∴x的最小值为18,故答案为18.本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.3、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c>; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >,∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、5或6【分析】设共有x 间宿舍,则共有(313)x +个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有x 间宿舍,则共有(313)x +个学生,依题意得:3136(1)3136x x x x+>-⎧⎨+<⎩, 解得:131933x <<. 又x 为正整数,5x ∴=或6.故答案为:5或6.【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.5、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.三、解答题1、(1)甲、乙两种书柜每个的价格分别为180元,240元;(2)第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【解析】【分析】(1)设甲、乙两种书柜每个的价格分别为x 元,y 元,再根据甲种书柜3个、乙种书柜4个,共需资金1500元;甲种书柜4个,乙种书柜3个,共需资金1440元,列方程组,再解方程组即可得到答案;(2)设计划购进甲种书柜m 个,则购进乙种书柜()30m -个,根据乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,列不等式组,再解不等式组结合m 为正整数,从而可得答案.【详解】解:(1)设甲、乙两种书柜每个的价格分别为x 元,y 元,则341500431440x y x y 解得:180240x y答:甲、乙两种书柜每个的价格分别为180元,240元.(2)设计划购进甲种书柜m 个,则购进乙种书柜()30m -个,则30180240306420m m m m ①②由①得:15,m ≤由②得:13m ≥,所以:1315,m ≤≤又因为m 为正整数,13m ∴=或14m 或15,m所以所有可行的购买方案为:第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式组的应用,设出合适的未知数,确定相等关系列方程组,确定不等关系列不等式组是解本题的关键.2、(1)甲种方式付话费15元,乙种方式付话费28元;(2)当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算【解析】【分析】(1)直接用0.15乘以100和用18加0.10乘以100,即可求解;(2)设一个月通话x 分钟,则甲种方式应付话费0.15x 元,乙种方式应付话费()180.10x + 元,然后根据题意可得当18+0.10x =0.15x 时,两种付费方式相同;当18+0.10x >0.15x 时,甲种付费方式合算;当18+0.10x <0.15x 时,乙种付费方式合算, 即可求解.【详解】解:(1)甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元.(2)设一个月通话x 分钟,则甲种方式应付话费0.15x 元,乙种方式应付话费()180.10x + 元, 当18+0.10x =0.15x 时,两种付费方式相同,此时解得:x =360,当18+0.10x >0.15x 时,甲种付费方式合算,此时解得:x <360,当18+0.10x <0.15x 时,乙种付费方式合算,此时解得:x >360,∴当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算.【点睛】本题主要考查了列代数式以及一元一次方程和一元一次不等式的实际应用,明确题意,准确得到数量关系是解题的关键 .3、(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【解析】【分析】(1)设购进甲种钢笔每支需x 元,购进乙种钢笔每支需y 元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于x ,y 的二元一次方程组,解之即可得出甲、乙两种钢笔的单价;(2)利用总价=单价⨯数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用;(3)设购进甲种钢笔m 支,则购进乙种钢笔1(100)2m -支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m ,1(100)2m -均为正整数,即可得出进货方案的数量. 【详解】解:(1)设购进甲种钢笔每支需x 元,购进乙种钢笔每支需y 元,依题意得:1005010005030550x y x y +=⎧⎨+=⎩, 解得:510x y =⎧⎨=⎩. 答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元.(2)5801060⨯+⨯400600=+1000=(元).答:需要1000元.(3)设购进甲种钢笔m 支,则购进乙种钢笔100051(100)102m m -=-支, 依题意得:16(100)218(100)2m m m m ⎧-⎪⎪⎨⎪-⎪⎩, 解得:150160m .又m ,1(100)2m -均为正整数, m ∴可以为150,152,154,156,158,160,∴该文具店共有6种购进方案.【点睛】本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于m 的一元一次不等式组.4、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【解析】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m 件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.【详解】(1)设甲种商品每件进价为x 元,乙种商品每件进价y 元,根据题意的329002500x y x y +=⎧⎨+=⎩ 解得100300x y =⎧⎨=⎩ 故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m 件,根据题意得:(150-100)m +(400-300)(80-m )≥6500解得m ≤30∵m 为整数∴m 的最大整数值为30.即该超市最多购进甲种商品30件.【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.5、(1)(5,3);(2)(﹣5,1);(3)k =﹣2,﹣1,0,1【解析】(1)根据坐标的变换规则,求解即可;(2)根据坐标的变换规则和运算规则,求解即可;(3)根据坐标的变换规则和运算规则,对式子进行化简,得到等式,根据点的坐标性质,列不等式求解即可.【详解】解:(1)A(C(5,﹣3))=A(﹣5,3)=(5,3);故答案为:(5,3);(2)C(A(﹣3,﹣2))﹣B(C(﹣1,﹣2))=C(3,﹣2)﹣B(1,2)=(﹣3,2)﹣(2,1)=(﹣5,1);故答案为:(﹣5,1);(3)∵A(B(2x,﹣kx))﹣C(A(1+y,﹣2))=C(B(ky﹣1,﹣1))+A(C(y,x)),∴A(﹣kx,2x)﹣C(﹣1﹣y,﹣2)=C(﹣1,ky﹣1)+A(﹣y,﹣x),∴(kx,2x)﹣(1+y,2)=(1,﹣ky+1)+(y,﹣x),∴(kx﹣1﹣y,2x﹣2)=(1+y,﹣ky+1﹣x),∵(a,c)=(b,d)时,a=b且c=d,∴kx﹣1﹣y=1+y,2x﹣2=﹣ky+1﹣x,∴(k2+6)x=2k+6,(k2+6)y=3k﹣6,∵坐标P(x,y)在第四象限,∴x>0,y<0,∴2k+6>0,3k﹣6<0,∴﹣3<k<2,∵k是整数,∴k=﹣2,﹣1,0,1.【点睛】此题考查了坐标的新定义运算,涉及了直角坐标系的性质,一元一次不等式的求解,解题的关键是理解题意,掌握坐标变换和运算规则,正确求解.。
中考数学专题练习-不等式的解及解集(含解析)一、单选题1.某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是()A. t>26B. t≥12C. 12<t<26D. 12≤t≤262.下列说法正确的是( )A. x=1是不等式-2x<1的解集B. x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D. 不等式-x<1的解集是x<-13.不等式组的解集是x>a,则a的取值范围是()A. a<﹣2B. a=﹣2C. a>﹣2D. a≥﹣24.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A. x>﹣1B. x>2C. x<﹣1D. x<25.若关于x的一元一次不等式组无解,则a的取值范围是()A. a≥1B. a>1C. a≤﹣1D. a<﹣16.下列式子中,是不等式的有()①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A. 5个B. 4个C. 3个D. 1个7.若不等式组有解,则a的取值范围是()A. a≤3B. a<3C. a<2D. a≤28.某种品牌奶粉合上标明“蛋白质≥20%”,它所表达的意思是()A. 蛋白质的含量是20%B. 蛋白质的含量不能是20%C. 蛋白质的含量高于20%D. 蛋白质的含量不低于20%9.对于不等式x﹣3<0,下列说法中不正确的是()A.x=2是它的一个解B.x=2不是它的解C.有无数个解D.x<3是它的解集10.若不等式组无解,则a的取值范围是( )A. a≥﹣3B. a>﹣3C. a≤﹣3D. a<﹣311.某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是()A. t>33B. t≤24C. 24<t<33D. 24≤t≤3312.已知不等式组的解集是x>2,则a的取值范围是()A. a≤2B. a<2C. a=2D. a>213.若a<0,则不等式组的解集是()A.x>﹣B.x>﹣C.x>D.x>二、填空题14.若不等式的解集为x>3,则a的取值范围是________.15.写出一个解为x≤1的不等式________16.已知不等式2x+★>2的解集是x>﹣4,则“★”表示的数是________17.某药品说明书上标明药品保存的温度是(10±4)℃,设该药品合适的保存温度为t,则温度t的范围是________18.若不等式组的解集是﹣3<x<2,则a+b=________19.已知不等式组有解,则实数m的取值范围是________20.若关于x的不等式组的解集是x>m,则m的取值范围是________三、解答题21.在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?22.在数轴上画出下列解集:x≥1且x≠2.23.已知方程组的解满足不等式4x﹣5y<9.求a的取值范围.四、综合题24.已知关于x的不等式(2a﹣b)x+a﹣5b>0的解集为x<,(1)求的值(2)求关于x的不等式ax>b的解集.25.关于x的两个不等式① <1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.答案解析部分一、单选题1.某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是()A. t>26B. t≥12C. 12<t<26D. 12≤t≤26【答案】D【考点】不等式的解集【解析】【解答】解:当天气温t(℃)的变化范围是12≤t≤26,故选D.【分析】最高气温与最低气温之间的气温即为当天气温t(℃)的变化范围.2.下列说法正确的是( )A. x=1是不等式-2x<1的解集B. x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D. 不等式-x<1的解集是x<-1【答案】A【考点】不等式的解集【解析】【分析】根据不等式的解集的定义及不等式的基本性质依次分析各项即可。
九年级数学下册2023年中考专题培优训练:不等式与不等式组一、单选题1.下列说法不正确的是( )A .不等式的解集是B .不等式的整数解有无数个32x ->5x >3x <C .不等式的整数解是0D .是不等式的一个解33x +<0x =23x <2.已知,则下列结论成立的是( )x y <A .B .C .D .77x y ->-55x y ->-2121x y +>+22x y >3.一元一次不等式x+1>2的解在数轴上表示为( )A .B .C .D .4.关于 的不等式 的非负整数解共有( )个x 1230x ->A .3B .4C .5D .65.若关于x 的不等式2x+a≤0只有两个正整数解,则a 的取值范围是( )A .﹣6≤a≤﹣4B .﹣6<a≤﹣4C .﹣6≤a <﹣4D .﹣6<a <﹣46.若a <b ,则下列各式正确的是( )A .3a >3bB .﹣3a >﹣3bC .a﹣3>b﹣3D .33a b >7.如图表示的是关于 的不等式 ≤ 的解集,则 的取值是( )x 2x a --1a A . ≤-1B . ≤-2C . =-1D . =-2a a a a 8.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.不等式组 的解集在数轴上表示为( )21112x x -≤⎧⎨+>-⎩A .B .C.D.10.若 是关于x 的不等式 的一个解,则a 的取值范围是( )3x =2()x x a >-A .B .C .D .32a <32a >32a ≤32a ≥11.关于x 的一元一次不等式3x>6的解都能满足下列哪一个不等式的解( )A .4x-9<xB .-3x+2<0C .2x+4<0D .122x <12.老张从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条 元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )2a b+A .a >b B .a <bC .a =bD .与a 和b 的大小无关二、填空题13.不等式组 的解集为 .23x x >-⎧⎨≤⎩14.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是 .15.a >b ,且c 为实数,则ac 2 bc 2.(用数学符号填空)16.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为 .17.对于任意实数m 、n ,定义一种运运算m ※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 三、解答题18.解不等式组 ,并求它的整数解.64325213x x x x +≥-⎧⎪+⎨->-⎪⎩19.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。
中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。
中考数学复习之方程、不等式综合类应用题方法分享:1.理解题意:分层次,找结构,辨析类型借助表格、关系式等梳理条件2.建立数学模型:方程模型、不等式模型、函数模型寻找关键词,挖掘隐藏信息3.对数学模型进行处理计算过程中需要充分考虑未知数的实际意义4.结合实际意义验证结果例1:现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆.(2)如果安排9辆货车前往甲地,其余货车前往乙地.设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a之间的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费【思路分析】1.理解题意,梳理信息.2.建立数学模型(1)结合题中信息“用大、小两种货车共18辆,恰好能一次性运完这批物资”,考虑方程模型;(2)结合题中信息“自变量的取值范围”,考虑建立不等式模型,寻找题目中的不等关系(显性和隐性);(3)结合题中信息“运费最少的货车调配方案”,考虑建立函数模型.3.求解验证,回归实际.【过程书写】解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意,得16x+10(18-x)=228解得x=8∴大货车用8辆,小货车用10辆.(2)由题意得∵0809010(9)0a a a a a ⎧⎪-⎪⎪-⎨⎪--⎪⎪⎩≥≥≥≥为整数∴,且a 为整数∴(3)由题意得解得∵,且a 为整数∴,且a 为整数 在中∵∴w 随a 的增大而增大 ∴当a =5时,∴最优方案为精讲精练1. 为支持四川抗震救灾,重庆市A 、B 、C 三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D 、E 两县.根据灾区的情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨.要求C 地运往D 县的赈灾物资为60吨,A 地运往D 县的赈灾物资为x 吨(x 为整数),B 地运往D 县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的2倍.其余的赈灾物资全部运往E 县,且B 地运往E 县的赈灾物资数量不超过23吨.已知A 、B 、C 三地的赈灾物资运往D 、E 两县的费用如右表: (1)求这批赈灾物资运往D 、E 两县的数量各是多少?(2)A 、B 两地的赈灾物资运往D 、E 两县的方案有几种?请你写出具体的运送方案; (3)为及时将这批赈灾物资运往D 、E 两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的方案中,该公司承担运送这批赈灾物资的总费用最多是多少?720800(8)500(9)650[10(9)]7011550w a a a a a =+-+-+--=+08a ≤≤701155008w a a a =+≤≤(,且为整数)1610(9)120a a +-≥5a ≥08a ≤≤58a ≤≤7011550w a =+700>min 11900w =(元)2. 为了保护环境,某生物化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金46万元,且每台乙型设备的价格是每台甲型设备价格的80%.实际运行中发现,每台甲型设备每月能处理污水180吨,每台乙型设备每月能处理污水150吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,于是该厂决定购买甲、乙两型设备共8台用于处理二期工程产生的污水,预算本次购买资金不超过74万元,预计二期工程每月将产生不超过1 250吨污水. (1)求每台甲型设备和每台乙型设备的价格各是多少元? (2)请求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)3. 某制造厂开发了一款新式机器,计划一年生产安装240台.由于抽调不出足够的熟练工来完成新式机器的安装,工厂决定招聘一些新工人,他们经过培训后上岗能独立进行机器的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8台机器;2名熟练工和3名新工人每月可安装14台机器.(1)熟练工和新工人每人每月分别可以安装多少台新式机器?(2)如果工厂招聘(010)n n <<名新工人,使得招聘的新工人和抽调的熟练工刚好..能完成一年的安装任务,那么工厂有哪几种...新工人的招聘方案? (3)在(2)的条件下,工厂给安装新式机器的每名熟练工每月发2 000元的工资,给每名新工人每月发1 200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W (元)尽可能地少?4. 在“五∙一”期间,某学校组织318名学生和8名教师到云台山旅游,为了学生安全,每辆车上至少安排一名教师.现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助学校设计租车方案;(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,学校按哪种方案租车最省钱?此时租金是多少?(3)旅行前,一名教师由于有特殊情况,只有7名教师能随车出游,为保证所租的每辆车上只有一名教师,租车方案调整为:同时租65座、45座和30座的三种客车,出发时,所租的三种客车的座位恰好坐满,请问学校的租车方案如何安排?5.某校八年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大巴车两种车型可供选择.每辆大巴车比中巴车多15个座位,学校根据中巴车和大巴车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大巴车,不仅少用一辆,而且师生坐完后还多30个座位.(1)求中巴车和大巴车各有多少个座位?(2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大巴车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大巴车比中巴车多租一辆,所需租车费比单独租用任一种车型都要便宜,按这种方案需要中巴车和大巴车各多少辆?6.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1 000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.为了增加收入,今年电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3 500元,乙种电脑每台进价为3 000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台.根据以上信息解答下列问题:(1)今年三月份甲种电脑每台售价多少元?(2)请你为该电脑公司设计进货方案;(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?7.整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.降价前,甲、乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.根据以上信息解答下列问题:(1)降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)若近期(降价后)该医院准备从经销商处购进甲、乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?8.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.9.某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设280米所用的天数比乙工程队铺设250米所用的天数少1天.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.10.为了保护环境,某生物化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金46万元,且每台乙型设备的价格是每台甲型设备价格的80%.实际运行中发现,每台甲型设备每月能处理污水180吨,每台乙型设备每月能处理污水150吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过74万元,预计二期工程完成后每月将产生1 250吨的污水.(1)每台甲型设备和每台乙型设备的价格各是多少元?(2)请求出用于二期工程的污水处理设备的所有购买方案.(3)若两种设备的使用年限都为10年,则在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)11. 为实现区域教育均衡发展,我市计划对某县A ,B 两类薄弱学校全部进行改造.根据预算,共需资金1 560万元.已知改造1所A 类学校和2所B 类学校共需资金230万元;改造2所A 类学校和1所B 类学校共需资金205万元.(1)改造1所A 类学校和1所B 类学校所需的资金分别是多少万元? (2)若该县的A 类学校不超过9所,则B 类学校至少有多 少所?(3)我市计划今年对该县A ,B 两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元,地方财政投入的改造资金不少于75万元,且地方财政投入到A ,B 两类学校的改造资金分别为每所10万元和每所15万元.请你通过计算求出所有的改造方案.12. 某制造厂开发了一款新式机器,计划一年生产安装240台.由于抽调不出足够的熟练工来完成新式机器的安装,工厂决定招聘一些新工人,他们经过培训后能独立进行机器的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8台新式机器;2名熟练工和3名新工人每月可安装14台新式机器.(1)求每名熟练工和每名新工人每月分别可以安装多少台新 式机器.(2)如果工厂招聘n (010n <<)名新工人,使得招聘的新工人和抽调的熟练工刚好..能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂每月给安装新式机器的每名熟练工发4 000元的工资,给每名新工人发2 400元的工资,那么工厂招聘多少名新工人,才能使新工人的数量多于熟练工,且工厂每月支出的工资总额W (元)尽可能的少?13. 某校八年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位.学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还空余30个座位. (1)求中巴车和大客车各有多少个座位.(2)客运公司为该校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元.学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用任何一种车型都要便宜.则按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?14.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价与去年同期相比,每台降价1 000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.为了增加收入,今年电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3 500元,乙种电脑每台进价为3 000元,公司计划用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台.根据以上信息解答下列问题:(1)今年三月份甲种电脑每台售价为多少元?(2)请你为该电脑公司设计出所有的进货方案;(3)若乙种电脑每台售价为3 800元,怎样安排进货该电脑公司才能获得最大利润?15.已知2辆A型车和1辆B型车载满货物时一次可运货10吨;1辆A型车和2辆B型车载满货物时一次可运货11吨.某物流公司现有货物31吨,计划同时租用A型车和B型车,要求一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物时一次可分别运货多少吨?(2)请你帮助该物流公司设计出所有的租车方案;(3)若每辆A型车的租金为100元/次,每辆B型车的租金为120元/次,请选出最省钱的租车方案,并求出最少的租车费.16.受金融危机的影响,某店经销的甲型号手机今年的售价与去年相比,每台降价500元,如果卖出相同数量的手机,去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,今年该店决定再经销乙型号手机,已知甲型号手机每台进价为1 000元,乙型号手机每台进价为800元,计划用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,则该店有哪几种进货方案?(3)若乙型号手机每台售价为1 400元,为了促销,打九折销售,而甲型号手机仍按今年的售价销售,则在(2)的各种进货方案中,哪种方案获利最大?最大利润是多少元?17. 小王家是新农村建设中涌现出的“养殖专业户”,他准备购置80只相同规格的网箱,养殖A ,B 两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资多于6.7万元,但不超过 6.91万元,其中购置网箱等基础建设需要1.2万元.设他用x 只网箱养殖A 种淡水鱼,目前平均每只网箱养殖A ,B 两种淡水鱼所需投入及产出情况如下表: (1)小王有哪几种养殖方式?(2)哪种养殖方案获得的利润最大?(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A 种鱼价格上涨40%,B 种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)【参考答案】1.(1)这批赈灾物资运往D 县的数量为180吨,运往E 县的数量为100吨. (2)这批赈灾物资的运送方案有三种.方案一:A 地的赈灾物资运往D 县41吨,运往E 县59吨;B 地的赈灾物资运往D 县79吨,运往E 县21吨.方案二:A 地的赈灾物资运往D 县42吨,运往E 县58吨;B 地的赈灾物资运往D 县78吨,运往E 县22吨.方案三:A 地的赈灾物资运往D 县43吨,运往E 县57吨;B 地的赈灾物资运往D 县77吨,运往E 县23吨.(3)当x =41时,总费用有最大值.该公司承担运送这批赈灾物资的总费用最多为60 390元. 2.解:(1)设甲型设备的价格为x 万元,则乙型设备的价格为0.8x 万元,依题意得: 3x 2×0.8x 46 解得x 10 ∵10×80%8∵甲型设备每台价格10万元,乙型设备每台价格8万元.(2)设购买甲型设备m 台,则乙型设备购买(8m )台,依题意得:108(8)74180150(8)1250m m m m +-⎧⎨+- ⎩≤≥ 解得:53≤m ≤5. 所以购买方案有4种:鱼苗投资(百元) 饲料支出(百元)收获成品鱼(千克) 成品鱼价格(百元/千克)A 种鱼 2.3 3 100 0.1B 种鱼45.5550.4∵ ∵ ∵ ∵ 甲型设备(台) 2 3 4 5 乙型设备(台)6543(3)设二期工程10年用于治理污水的总费用为W 万元, W 10a8(8a )1×10a 1.5×10(8a )化简得:W3a184∵ W 随a 的增大而减小, ∵ 当a =5时,W 最小.∵ 按方案∵甲型购买5台,乙型购买3台的总费用最少.3.(1)每名熟练工每月可以安装4台新式机器,每名新工人每月可以安装2台新式机器; (2)共有4种新工人的招聘方案:方案 ∵ ∵ ∵ ∵ 招新工人(人) 2 4 6 8 调用熟练工(人)4321(3)应招聘4名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额最少. 4.(1)共两种方案,即:方案 ∵ ∵ 甲种客车(辆) 6 7 乙种客车(辆)21(2)方案一最省钱,此时租金是6 000元;(3)租65座、45座和30座的客车分别为2辆,3辆,2辆. 5.设每辆中巴车有座位x 个,每辆大巴车有座位(x +15)个, 依题意得:270270301+15x x +-=整理得:x 245x 40500 解之得:x 145,x 290(不合题意,舍去) 经检验x 45是方程的解,故x 15451560个.答:每辆中巴车有座位45个,每辆大巴车有座位60个. (2)①单独租用中巴车,租车费用为270×350452 100(元);②单独租用大巴车,租车费用为(61)×400 2 000(元);③设租用中巴车y 辆,大客车(y 1)辆,则有:350400(1)<2000350400(1)<21004560(1)270y y y y y y ++ ⎧⎪++ ⎨⎪++⎩≥ 解得:322<15y <≤,又∵y是整数,∵y2,y13故租用中巴车2辆和大巴车3辆.6.(1)甲种电脑今年三月份每台售价4 000元.(2)共有5种进货方案:∵∵∵∵∵甲种电脑(台)678910乙种电脑(台)98765(3)当a300时,(2)中所有方案获利相同.购买甲种电脑6台,乙种电脑9台时对公司更有利.7. (1)降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元;(2)三种方案:∵∵∵甲种药品(箱)585960乙种药品(箱)4241408. (1)每辆A型车载满货物一次可运货3吨,每辆车B型车载满货物一次可运货4吨;(2)三种方案:∵∵∵A型车(辆)951B型车(辆)147(3)最省钱的租车方案是:A型车1辆,B型车7辆,最少租车费为940元.9. (1)甲工程队每天能铺设70米,乙工程队每天能铺设50米;(2)三种方案:∵∵∵甲工程队(米)500600700乙工程队(米)500400300万元.(2)共有4种购买方案.方案一,购买甲型设备2台,乙型设备6台;方案二,购买甲型设备3台,乙型设备5台;方案三,购买甲型设备4台,乙型设备4台;方案四,购买甲型设备5台,乙型设备3台.(3)方案四的总费用最少;即购买甲型设备5台,乙型设备3台.11.(1)改造1所A类学校所需的资金是60万元,改造1所B类学校所需的资金是85万元.(2)B类学校至少有12所.(3)共有3种改造方案.方案一,改造A类学校1所,B类学校5所;方案二,改造A类学校2所,B类学校4所;方案三,改造A类学校3所,B类学校3所.12.(1)每名熟练工每月可以安装4台新式机器,每名新工人每月可以安装2台.(2)工厂共有4种新工人的招聘方案.方案一,招聘2名新工人,抽调4名熟练工;方案二,招聘4名新工人,抽调3名熟练工;方案三,招聘6名新工人,抽调2名熟练工;方案四,招聘8名新工人,抽调1名熟练工.(3)工厂招聘4名新工人,才能使新工人的数量多于熟练工,且工厂每月支出的工资总额尽可能的少.13.(1)中巴车有45个座位,大客车有60个座位;(2)需要中巴车2辆,大客车3辆,租车费比单独租用中巴车少200元,比单独租用大客车少100元.14.(1)今年三月份甲种电脑每台售价为4 000元.(2)该电脑公司共有5种进货方案.方案一,购进甲种电脑6台,乙种电脑9台;方案二,购进甲种电脑7台,乙种电脑8台;方案三,购进甲种电脑8台,乙种电脑7台;方案四,购进甲种电脑9台,乙种电脑6台;方案五,购进甲种电脑10台,乙种电脑5台.(3)购进甲种电脑6台,乙种电脑9台,该电脑公司才能获得最大利润.15.(1)1辆A型车载满货物时一次可运货3吨,1辆B型车载满货物时一次可运货4吨.(2)该物流公司共有3种租车方案.方案一,租用A型车1辆,B型车7辆;方案二,租用A型车5辆,B型车4辆;方案三,租用A型车9辆,B型车1辆.(3)最省钱的租车方案为,租用A型车1辆,B型车7辆.最少的租车费为940元.16.(1)今年甲型号手机每台售价为1 500元.(2)该店共有5种进货方案.方案一,购进甲型号手机8台,乙型号手机12台;方案二,购进甲型号手机9台,乙型号手机11台;方案三,购进甲型号手机10台,乙型号手机10台;方案四,购进甲型号手机11台,乙型号手机9台;方案五,购进甲型号手机12台,乙型号手机8台.(3)购进甲型号手机12台,乙型号手机8台,所获利润最大,最大利润为9 680元.17.(1)小王共有5种养殖方案.方案一,养殖A种淡水鱼45箱,B种淡水鱼35箱;方案二,养殖A种淡水鱼46箱,B种淡水鱼34箱;方案三,养殖A种淡水鱼47箱,B种淡水鱼33箱;方案四,养殖A种淡水鱼48箱,B种淡水鱼32箱方案五,养殖A种淡水鱼49箱,B种淡水鱼31箱.(2)养殖A种淡水鱼45箱,B种淡水鱼35箱,所获利润最大.(3)价格变化后,养殖A种淡水鱼49箱,B种淡水鱼31箱,所获利润最大.。
中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8 ④方程37x =73,得x =1 错误的有( )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3 D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( )A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +39.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为 .10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 斤.11.解方程:x -x -12=x +23+1.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值.参考答案1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8④方程37x =73,得x =1 错误的有( B )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( D )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( C )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( D )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( A ) A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( C )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( B )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( B )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +3 9.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为8x -3=7x +4.10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 967斤. 11.解方程:x -x -12=x +23+1. 解:去分母,得6x -3(x -1)=2(x +2)+6去括号,得6x -3x +3=2x +4+6移项合并,得x =7.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?解:(1)设每个甲种驱蚊手环的售价是x 元,每个乙种驱蚊手环的售价是y 元根据题意,得 ⎩⎪⎨⎪⎧3x +y =128,x +2y =76, 解得⎩⎪⎨⎪⎧x =36,y =20,答:每个甲种驱蚊手环的售价是36元,每个乙种驱蚊手环的售价是20元;(2)设购买甲种驱蚊手环m 个,则购买乙种驱蚊手环(100-m)个根据题意,得36m +20(100-m)≤2 500解得m ≤1254又∵m 为正整数∴m 的最大值为31.答:最多可购买甲种驱蚊手环31个.13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270 小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值. 解:(1)设豆沙粽的单价为x 元,肉粽的单价为2x 元由题意,得10x +12×2x =136解得x =4∴2x =8(元)答:豆沙粽的单价为4元,肉粽的单价为8元;(2)①设豆沙粽优惠后的单价为a 元,肉粽优惠后的单价为b 元由题意,得⎩⎪⎨⎪⎧20a +30b =270,30a +20b =230, 解得⎩⎪⎨⎪⎧a =3,b =7,答:豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②由题意,得[3m +7(40-m)]·(80-4m)+[3(40-m)+7m]·(4m +8)=17 280解得m =19或m =10∵m ≤12(40-m) ∴m ≤403∴m =10.。
中考三轮冲刺复习:《不等式与不等式组实际应用》练习1.某学校在疫情期间利用网络组织了一次防“新冠病毒”知识竞赛,评出特等奖10人,优秀奖20人.学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.(1)(列方程组解应用题)若特等奖和优秀奖的奖品分别是口罩和温度计,口罩单价的2倍与温度计单价的3倍相等,购买这两种奖品一共花费700元,求口罩和温度计的单价各是多少元?(2)(利用不等式或不等式组解应用题)若两种奖品的单价都是整数,且要求特等奖单价比优秀奖单价多20元.在总费用不少于440而少于500元的前提下,购买这两种奖品时它们的单价有几种情况,请分别求出每种情况特等奖和优秀奖奖品的单价.2.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?3.A市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.4.最近,受气温变暖趋势及频繁的大风影响,全球正在进人新一轮的森林火灾高发期,3月30日西昌泸山森林突发火灾,火势迅速向四周蔓延.直接威胁马道街道办事处和西昌城区安全有关部门紧急部署,疏散附近居民.并且组织了一批救灾帐篷和食品以备居民使用.已知帐篷和食品共680件,且帐篷比食品多200件.(1)求帐篷和食品各多少件.(2)现计划租用A,B两种货车共16辆,一次性将物资送往灾区,已知A种货车可装帐篷40件和食品10件,B种货车可装帐篷20件和食品20件,请设计一下,共有几种租车方案?(3)在(2)的条件下,A种货车每辆需运费800元,B种货车每辆需运费720元,怎样租车才能使总运费最少?最少运费是多少元?5.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金2800元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金4600元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若销售一箱甲型口罩,利润率为40%,乙型口罩的售价为每箱1280元.为了促销,公司决定每售出一箱乙型口罩,返还顾客现金m元,而甲型口罩售价不变,要使(2)中所有方案获利相同,求m的值.6.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨逆行走向战场外,众多企业也伸出援助之手,某公司用甲,乙两种货车向武汉运送爱心物资.两次满载的运输情况如表:甲种货车辆数乙种货车辆数合计运物资吨数第一次 3 4 29第二次 2 6 31 (1)求甲、乙两种货车每次满载分别能运输多少吨物资;(2)目前有46.4吨物资要运输到武汉,该公司拟安排甲乙货车共10辆,全部物资一次运完,其中每辆甲车一次运送花费500元,每辆乙车一次运送花费300元,请问该公司应如何安排车辆最节省费用?7.复课返校后,为了拉大学生锻炼的间距,学校决定增购适合独立训练的两种体育器材:跳绳和毽子.如果购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元.(1)求跳绳和毽子的售价分别是多少元?(2)学校计划购买跳绳和毽子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.8.九二班计划购买A、B两种相册共42册作为毕业礼品,已知A种相册的单价比B种的多10元,买4册A种相册与买5册B种相册的费用相同.(1)求A、B两种相册的单价分别是多少元?(2)由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的,但又不少于B种相册数量的,如果设买A种相册x册.①有多少种不同的购买方案?②商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.9.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为255人,1辆甲种客车与2辆乙种客车的总载客量为150人.(1)请问1辆甲种客车与1辆乙种客车的载客量分別为多少人?(2)某学校组织460名师生集体外出活动,拟租用甲、乙两种客车共8辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为480元,每辆乙种客车的租金为400元,请给出最节省费用的租车方案,并求出最低费用.10.商场正在销售帐篷和棉被两种防寒商品,已知购买I顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.(1)求1顶帐篷和1床棉被的价格各是多少元?(2)某部门准备购买这两种防寒商品共80件,要求每种商品都要购买,且帐篷的数量多于40顶,但因为资金不足,购买总金额不能超过8500元,请问共有几种购买方案?(要求写出具体的购买方案).11.有大小两种货车,1辆大货车一次可以运货4吨,1辆小货车一次可以运货1.5吨.目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问安排车辆有哪几种方案?货运公司应如何安排车辆最节省费用?12.某中学在今年4月23日的“世界读书日”开展“人人喜爱阅读,争当阅读能手”活动,同学们积极响应,涌现出大批的阅读能手,为了激励同学们的阅读热情,养成每天阅读的好习惯,学校对阅读能手进行了奖励表彰,计划用2500元来购买甲、乙、丙三种书籍共100本作为奖品,已知甲乙丙三种书的价格比为2:2:3,甲种书每本20元.(1)若学校购买甲种书的数量是一种书的1.5倍,恰好用完计划资金,求甲种书买了多少本.(2)若又增加了300元的购书款,求丙种书最多可以买多少本.(3)七(1)班阅读氛围浓厚,同伴之间交换书籍,共享阅读已知甲种书籍共270页,小明同学阅读甲种书籍每天21页,阅读5天后,发现同伴比他看的快,为了和同伴及时交换书籍,接下来小明每天读多读了a页(20<a<40).结果再用了b天读完,求小明读完整本书共用了多少天?13.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出95万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.14.本学期第三周周末,七年级27班在人美心善的范老师的带领下开展了大型“绿水青山都是金山银山”的植树活动.全班一起种植许愿树和发财树.已知购买1棵许愿树和2棵发财树需要42元,购买2棵许愿树和1棵发财树需要48元.(1)你来算一算许愿树、发财树每棵各多少钱?(2)范老师传达最高指示:全班种植许原树和发财树共20棵,且许愿树的数量不少于发财树的数量,但由于班费资金紧张,范老师还要求两种树的总成本不得高于312元.聪明的同学们,你们知道共有哪几种种植方案吗?15.我市某蔬菜种植农户购买白菜苗和西红柿苗共1000株,其中白菜苗每株3元,西红柿苗每株5元.已知该农户打算用不少于3600元但不多于3800元的资金购买两种蔬菜.(1)求该农户可以购买白菜苗株数的最大值和最小值;(2)该农户按(1)中购买白菜苗株数的最小值的方案购买两种蔬菜苗,经过农户的精心培育,两种蔬菜苗全成活.根据以往的数据分析,平均一株白菜苗可长成2千克白菜,平均一株西红柿苗可结3千克西红柿.农户计划采用直接销售和生态采摘销售两种方式进行销售,其中直接销售白菜的售价为每千克4元,直接销售西红柿的售价为每千克5元;生态采摘销售时两种蔬菜的售价一样,都比直接销售白菜的售价高a%,但生态采摘过程中会有10%的损耗.当白菜和西红柿各直接销售一半后、剩下的全部采用生态采摘销售时,该农户可获得8080元的利润.求a的值.16.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?17.某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和5部乙型号手机,共需资金6000元;若购进3部甲型号手机和2部乙型号手机,共需资金4600元.(1)求甲、乙型号手机每部进价多少元?(2)为了提高利润,该店计划购进甲、乙型号手机销售,预计用不多于1.8万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?(3)若甲型号手机的售价为1500元,乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a元;而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.参考答案1.解:(1)设口罩的单价是y元,温度计的单价是z元,根据题意得,解得.答:口罩的单价是45元,温度计的单价是30元.(2)设优秀奖单价为x元,则特等奖的单价为(x+20)元.根据题意得440≤10(x+20)+20x<500,解得8≤x<10.因为两种奖品的单价都是整数,所以x=8或x=9.当x=8时,x+20=28;当x=9时,x+20=29.答:购买两种奖品时它们的单价有它们的单价有两种情况:第一种情况中:优秀奖单价为8元,特等奖的单价为28元;第二种情况中:优秀奖单价为9元,则特等奖的单价为29元.2.解:(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,依题意,得:,解得:,答:每辆车A型车的售价为18万元,每辆车B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得:,解得:3.5≥m≥2.∵m为整数,∴m=2或3,答:有2种购车方案:购进A型车2辆,购B型5辆;购进A型车3辆,购B型4辆.3.解:(1)设提示牌单价是x元,垃圾箱单价y元,由题意得:,解得:,答:提示牌单价是50元,垃圾箱单价150元;(2)设购买提示牌m个,则购买垃圾箱(100﹣m)个,由题意得:,解得:50≤m≤52,∵m为非负整数,∴m=50或51或52,答:购买方案有3种,①购买提示牌50个,则购买垃圾箱50个;②购买提示牌51个,则购买垃圾箱49个;③购买提示牌52个,则购买垃圾箱48个.4.解:(1)设帐篷有x件,食品有y件.则,解得.答:帐篷有440件,食品有240件(2)设租用A种货车a辆,则租用B种货车(16﹣a)辆,则,解得6≤a≤8.故有3种方案:A种车分别为6,7,8辆,B种车对应为10,9,8辆(3)设总费用为W元,则W=800a+720(16﹣a)=80a+11520,k=80>0,W随a的增大而增大,所以当a=6时,即租用A种货车6辆,B种货车10辆,总运费最少,最少运费是12000元.5.解:(1)设甲型口罩每箱的进价为x元,乙型口罩每箱的进价为y元,依题意,得:,解得:.答:甲型口罩每箱的进价为1000元,乙型口罩每箱的进价为800元.(2)设购进a箱甲型口罩,则购进(20﹣a)箱乙型口罩,依题意,得:,解得:7≤a≤10.∵a为正整数,∴a可取7、8、9、10.∴共有4种进货方案,方案1:购进7箱甲型口罩,13箱乙型口罩;方案2:购进8箱甲型口罩,12箱乙型口罩;方案3:购进9箱甲型口罩,11箱乙型口罩;方案4:购进10箱甲型口罩,10箱乙型口罩.(3)设销售完20箱口罩后获得的利润为w元,依题意,得:w=1000×40%a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m.∵(2)中所有方案获利相同,即w的值与a无关,∴m﹣80=0,∴m=80.6.解:(1)设甲、乙两种货车每次满载分别能运输x吨和y吨物资,根据题意得,,解得,,答:甲、乙两种货车每次满载分别能运输5吨和3.5吨物资;(2)设安排甲货车z辆,乙货车(10﹣z)辆,根据题意得,5z+3.5(10﹣z)≥46.4,解得,z≥7.6,∵x为整数,∴x=8或9或10,设总运费为w元,根据题意得,w=500z+300(10﹣z)=200z+3000,∵200>0,∴w随z的增大而增大,∴当z=8时,w的值最小为w=200×8+3000=4600,答:该公司应如何甲货车8辆,乙货车2辆最节省费用.7.解:(1)设跳绳的售价为x元,毽子的售价为y元,依题意,得:,解得:.答:跳绳的售价为20元,毽子的售价为16元.(2)设学校购进m根跳绳,则购进(400﹣m)个毽子,依题意,得:,解得:300≤m≤310.设学校购进跳绳和毽子一共花了w元,则w=20×0.8m+16×0.75(400﹣m)=4m+4800,∵4>0,∴w随m的增大而增大,∴当m=300时,w取最小值,此时400﹣m=100.∴学校花钱最少的购买方案为:购进跳绳300根,毽子100个.8.解:(1)设A种相册的单价为m元,B种相册的单价为n元,依题意,得:,解得:.答:A种相册的单价为50元,B种相册的单价为40元.(2)①依题意,得:,解得:12≤x<18.又∵x为正整数,∴x可取12、13、14、15、16、17,共6种不同的购买方案.②设购买总费用为w元,依题意,得:w=(50﹣a)x+(40﹣b)(42﹣x)=(10﹣a+b)x+42(40﹣b).∵购买所需的总费用与购买的方案无关,则w的值与x无关,∴10﹣a+b=0,∴b=a﹣10,∴w=42(40﹣b)=42[40﹣(a﹣10)]=﹣42a+2100.∵﹣42<0,∴w随a的增大而减小.又∵12≤a≤18,∴当a=18时,w取得最小值.答:当总费用最少时,a的值为18.9.解:(1)设1辆甲种客车的载客量为x人,1辆乙种客车的载客量为y人,依题意有,解得:.答:1辆甲种客车的载客量为60人,1辆乙种客车的载客量为45人;(2)设租用甲种客车a辆,依题意有:,解得:≤a<8,因为a取整数,所以a=7,∵7×480+1×400=3760(元).答:租用甲种客车7辆,乙种客车1辆,租车费用最低为3760元.10.解:(1)设1顶帐篷的价格是x元,1床棉被的价格是y元,依题意,得:,解得:.答:1顶帐篷的价格是120元,1床棉被的价格是90元.(2)设购买m顶帐篷,则购买(80﹣m)床棉被,依题意,得:,解得:40<m≤43.又∵m为正整数,∴m=41,42,43,∴共有三种购买方案,方案1:购买41顶帐篷,39床棉被;方案2:购买42顶帐篷,38床棉被;方案3:购买43顶帐篷,37床棉被.11.解:设安排x辆大货车,则安排(10﹣x)辆小货车,依题意,得:,解得:7≤x≤10,∵x为整数,∴x=8,9,10,∴共有3种安排方案,方案1:安排8辆大货车、2辆小货车;方案2:安排9辆大货车、1辆小货车;方案3:安排10辆大货车.方案1所需运费为130×8+100×2=1240(元);方案2所需运费为130×9+100=1270(元);方案3所需运费为130×10=1300(元).∵1240<1270<1300,∴货运公司安排8辆大货车、2辆小货车最节省费用.12.解:(1)∵甲乙丙三种书的价格比为2:2:3,甲种书每本20元,∴乙种图书每本20元,丙图书每本30元.设乙种图书购买x本,则甲图书购买1.5x本,丙图书购买(100﹣2.5x)本,根据题意得20x+20×1.5x+30(100﹣2.5x)=2500解得x=201.5x=30答:甲种图书买了30本;(2)设丙图书买n本,甲乙两种图书共买(100﹣n)本,根据题意得20(100﹣n)+30n≤2800n≤80,答:丙图书最多买80本;(3)∵21×5+(21+a)b≥270,∴b≥,∵20<a<40,∴,∴b=3、4,所以共用了8天、或9天.13.解:(1)设该企业购进A型设备x台,则购进B型设备(8﹣x)台,依题意,得:,解得:≤x≤.∵x为非负整数,∴x=3,4,5,6,7.∴该企业有5种购买方案.(2)设该企业购进A型设备x台,购买总费用为y元,依题意,得:y=12x+10(8﹣x)=2x+80,∵2>0,∴y随x的增大而增大,∴当x=3时,y取得最小值,最小值为86.∴该企业购进A型设备3台、B型设备5台时,购买总费用最低,最低值为86万元.14.解:(1)设许愿树每棵x元,发财树每棵y元,根据题意可得:,解得:,答:许愿树、发财树每棵各18元,12元;(2)设许愿树为a棵,则发财树为(20﹣a)棵,根据题意可得:,解得:10≤a≤12,∴a=10,11,12;所以有三种方案,方案一,10棵许愿树、10棵发财树;方案二,11棵许愿树、9棵发财树;方案三,12棵许愿树、8棵发财树.15.解:(1)设该农户购买白菜苗x株,则购买西红柿苗(1000﹣x)株,根据题意得:,解得:600≤x≤700.答:该农户最多可以购买白菜苗700株,最少可以购买白菜苗600株.(2)根据题意得:600××2×4+(1000﹣600)××3×5+600××2×(1﹣10%)×4(1+a%)+(1000﹣600)××3×(1﹣10%)×4(1+a%)﹣3800=8080,整理得:43.2a﹣2160=0,解得:a=50.答:a的值为50.16.解:(1)设A、B两种型号的扫地车每辆每周分别可以处理垃圾a吨、b吨,,解得,,答:A、B两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;(2)设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,,解得,20≤m≤22,∵m为整数,∴m=20,21,22,∴共有三种购买方案,方案一:购买A型扫地车20辆,B型扫地车20辆;方案二:购买A型扫地车21辆,B型扫地车19辆;方案三:购买A型扫地车22辆,B型扫地车18辆;∵y=25m+20(40﹣m)=5m+800,∴当m=20时,y取得最小值,此时y=900,答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.17.解:(1)设甲型号手机的每部进价为x元,乙型号手机的每部进价为y元,根据题意,得:,解得:,答:甲型号手机的每部进价为1000元,乙型号手机的每部进价为800元;(2)设购进甲型号手机a部,则购进乙型号手机(20﹣a)部,根据题意,得:,解得:8≤a≤10,∵a为整数,∴a=8或9或10,则进货方案有如下三种:方案一:购进甲型号手机8部,购进乙型号手机12部;方案二:购进甲型号手机9部,购进乙型号手机11部;方案三:购进甲型号手机10部,购进乙型号手机10部.(3)设总获利W元,购进甲型号手机m台,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.。
中考数学不等式与不等式祖专题训练含答案一、单选题1.一个不等式的解集在数轴上表示如图,则这个不等式可能是( )A .10x -≤B .10x ->C .10x -≥D .10x -<2.已知不等式组3010x x -<⎧⎨+≥⎩,则两个不等式的解集在同一数轴上表示正确的是( )A .B .C .D .3.若a b >,则下列不等式中正确的是( ) A .33a b >B .22a b ->-C .11+<+a bD .0a b -<4.已知点A (x +3,2﹣x )在第四象限,则x 的取值范围是( ) A .x >2 B .x >﹣3C .﹣3<x <2D .x <25.把不等式组的解集在数轴上表示,正确的是( )A .B .C .D .6.如果不等式组5x x a >⎧⎨>⎩的解集是5x >,则a 的取值范围是( )A .5a ≥B .5a ≤C .5a =D .5a <7.已知关于x 的一次函数y =mx+2m ﹣3在﹣1≤x≤1上的函数值总是正的,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .吉祥物礼品,借价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .()1008010900x x +->B .()1008010900x x +-<C .()1008010900x x +-≥D .()1008010900x x +-≤9.已知直线31y x 经过点2,3A m ⎛⎫⎪⎝⎭,则关于x 的不等式31x m 的解集为( )A .32x <B .23x <C .32x >-D .23x >-10.不等式组2{5x x >-≤的解集在数轴上可表示为( )A .B .C .D .11.若关于x 的不等式组214333x x x m x--⎧<⎪⎨⎪-≤-⎩恰有2个整数解,且关于x 、y 的方程组430mx y x y +=⎧⎨-=⎩也有整数解,则所有符合条件的整数m 的和为( ) A .-18B .-6C .-3D .012.平面直角坐标系中,过点32-(, )的直线l 经过第一、二、三象限,若点()0a ,,1b -(,),1c -(,)都在直线l 上,则下列判断正确的是() A .a b <B .2a <C .2b <D .3c -<13.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( ) A .10B .11C .12D .1314.不等式组38023x x -<⎧⎨-<⎩的非负整数解有( ).15.当x =﹣2时,下列不等式成立的是( ) A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x16.若a b >,则下列四个不等式中正确的是( ) A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-17.不等式组2≤3x-7<9的所有整数解为( ) A .3,4B .4,5C .3,4,5D .3,4,5,618.已知a<b ,则下列不等式中不正确的是( ) A .a 44b < B .a+4<b+4 C .-4a>-4b D .a 2<b 219.(2017届河南安阳滑县中考二模数学试卷)若不等式组2123x a x b -⎧⎨-⎩<>的解集为−1<x<1,则(a −3)(b+3)的值为 A .1B .−1C .2D .−220.如图,正比例函数y x =的图象与反比例函数()0ky k x=≠的图象交于A ,B 两点,90CAD ∠=︒,两边分别交x 轴,y 轴于点D ,C ,四边形OCAD 的面积为1,AE x ⊥轴于点E .有下列结论:①OA OB =;①三角形OAE 的面积为12;①线段AB 的;①不等式kx x>的解集是1x >或1x <-.其中正确结论的个数是( ).A .1B .2C .3D .4二、填空题 21.不等式1-2x≥-1的解集是____. 22﹣3<2x 的解集是 ___.23.“a 的3倍与12的差是一个非负数”用不等式表示为______24在实数范围内有意义,则实数x 的取值范围是______.25.不等式的解是______.26.已知关于x 的不等式20(0)kx k ->≠的解集是3x >,则直线2y kx =-+与x 轴的交点坐标是________.27.已知m 是整数,且一次函数y =(m +3)x +m +2的图象不过第二象限,则m =______. 28.已知关于x 的不等式(a-2)x >1的解集为x <12a -,则a 的取值范围____________. 29.如果ab <,要使ac bc >,则___0c ;30.如果m <n ,则关于x 的一元一次不等式组x mx n ≤⎧⎨<⎩的解集为______.31.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.32.先化简,再求值:211933x x x -⎛⎫-⋅ ⎪+⎝⎭,其中x 为偶数且满足不等式组23213x x -<⎧⎨-≤⎩. 33.不等式350x -≤的正整数解是_________.34.某班数学兴趣小组对不等式组2x x m >⎧⎨≤⎩的解集进行讨论,得到以下结论:①若 m = 4,则不等式组的解集为 2<x ≤ 4; ①若 m = 1,则不等式组无解;①若原不等式组无解,则 m 的取值范围为 m <2;①若 7 ≤ m <8,则原不等式组有 5 个整数解.其中,结论正确的有______. 35.不等式组583(1)131722{x x x x ++-≤-的最大整数解为________.36.不等式1132x x +-<的解集是_____. 37.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么a b +的值为 . 38.抛物线2222y x bx b b =++-+与x 轴没有交点,则b 的取值范围为 _____. 39.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.三、解答题 40.解不等式4312163x x++≤+,并写出它的非正整数解. 41.(1)计算:2﹣2﹣2cos60°+|(π﹣3.14)0(2)解不等式数()295131x xx x --⎧⎨->+⎩,并把它的解集在数轴上表示出来.42.把下列不等式的解集在数轴上表示出来. (1)x≥-3;(2)x >-1;(3)x≤3;(4)x<-32.43.先化简,再求值2222221211x x x x x x x x x ⎛⎫+--+⎪--++⎝⎭,且x 是不等式2192136x x -+-≤的最小整数解.44.解不等式3(3)24->-x x ,并将解集在数轴上表示出来.45.解不等式组1211123x x x -≤⎧⎪+-⎨+<⎪⎩,并把解集在数轴上表示出来.46.在疫情期间,学校购买甲、乙两种消毒液,已知购买3桶甲种消毒液和4桶乙种消毒液共需170元,购买2桶乙种消毒液比购买3桶甲种消毒液少用50元. (1)求购买甲、乙两种消毒液每桶各需多少元?(2)若要购买甲、乙两种消毒液共21桶,且总费用不超过540元,求至多可购进甲种消毒液多少桶?47.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元? (2)有几种购买文化衫和相册的方案?48.解不等式组4713112x x x -<⎧⎪⎨+≥-⎪⎩49.国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,求符合此规定的行李箱的高的最大值.参考答案:1.B【分析】分别得出每个选项的解集,继而得出答案.【详解】解:由数轴可得:1x >, A.10x -≤的解集是1x ≤,故不符合题意; B.10x ->的解集是1x >,故符合题意; C.10x -≥的解集是1x ≥,故不符合题意; D.10x -<的解集是1x <,故不符合题意; 故选:B .【点睛】本题主要考查解一元一 次不等式的基本能力, 严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 2.C【分析】分别解出不等式的解集,再根据找不等式组的解集的规律即可求解. 【详解】解:不等式30x -<,解得3x >, 不等式10x +≥,解得1x ≥-, ①原不等式组的解集为:3x >, 故选:C .【点睛】本题考查了解不等式组并把解集在数轴上表示出来,熟练掌握找不等式组的解集的规律是解题的关键. 3.A【分析】不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变.【详解】A. 不等式两边都乘以3,不等号的方向不变,故本选项正确; B. 不等式两边都乘以−2,不等号的方向改变,故本选项错误; C. 不等式两边都减1,不等号的方向不变,故本选项错误; D. 不等式两边同时减去b ,不等号的方向不变,故本选项错误; 故选A.【点睛】本题考查不等式的性质,解题的关键是掌握不等式的性质. 4.A【分析】根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.【详解】解:①点A(x+3,2﹣x)在第四象限,①30 20xx+>⎧⎨-<⎩,解得x>2.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【详解】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:解得,故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.6.B【分析】根据求解规律是:大大取大,小小取小,大小小大中间找,大大小小无解可得a≥5.【详解】①不等式组5xx a>⎧⎨>⎩的解集是x>5,①a≤5,故选:B.【点睛】此题主要考查了不等式的解集,关键是正确理解不等式组确定公共解集的方法.7.A【分析】由题意可知x取最小和最大值时函数的值总是正的,所以只要将x=﹣1和x=1代入函数式即可求m的取值范围,进而在数轴上表示即可.【详解】解:根据题意得:当x=﹣1时,y=﹣m+2m﹣3=m﹣3>0,①m >3;当x =1时,y =m+2m ﹣3=3m ﹣3>0, ①m >1,①m 的取值范围是m >3. ①m 的取值范围在数轴上表示为:故选:A .【点睛】本题考查了一次函数图象与系数的关系,在数轴上表示不等式的解集,一次函数的图象是直线,只要保证两个端点的函数值恒大于0,即可求得m 的取值范围. 8.D【分析】设购买冰墩墩礼品x 件,则购买雪容融()10x -件,再根据总共花费不超过900元,列出不等式即可.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融()10x -件, 由题意得()1008010900x x +-≤, 故选D .【点睛】本题主要考查了列不等式,正确理解题意找到不等关系是解题的关键. 9.B【分析】利用函数的解析式求得m =3,然后解不等式即可. 【详解】解:①直线y =3x +1经过点2,3A m ⎛⎫⎪⎝⎭,①m =3×23+1=3,①关于x 的不等式为3x +1<3, 解得:23x <, 故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,解一元一次不等式,根据函数的解析式求得m 的值是解题的关键. 10.D【分析】本题考查不等式组的解集在数轴上表示方法.【详解】不等式组的解集为-2<5x≤,在数轴上表示为.故选D.11.C【分析】先解不等式组求出m的取值范围,再解方程组,结合m的取值范围求出m满足不等式组恰有2个整数解,方程组也有整数解的值,然后再求出所有符合条件的整数m的和即可.【详解】解:不等式组214333x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>−2,解不等式①得:34mx+≤,①不等式组的解集为324mx+-<≤.①不等式组恰有2个整数解,①3014m+≤<,解得:31m-≤<,解方程组4 30 mx yx y+=⎧⎨-=⎩,得:43123xmym ⎧=⎪⎪+⎨⎪=⎪+⎩①关于x、y的方程组430mx yx y+=⎧⎨-=⎩也有整数解,①m+3为4的因数,即m+3=±1或±2或±4,①−3≤m<1,①m的值为:−2、−1,①所有符合条件的整数m的和为(−2)+(−1)=−3.故选:C.【点睛】本题考查了一元一次不等式组的解法、二元一次方程组的解法,理解相关知识是解答关键.12.D【分析】设出一次函数解析式为y mx n +=,根据图象经过的象限确定0m >,把32-(, )代入解析式,得到用m 表示的函数关系式,把三个点代入解析式,判断各个选项是否正确.【详解】解:设直线l 的解析式为y =mx +n ,由于直线l 经过第一、二、三象限,所以0m >.由于点32-(, )在直线l 上,所以23m n -+=,即32n m +=,所以一次函数解析式为:32y mx m ++=,当0x =时,32a m +=,∵0m >,∴322a m +=>,故选项B 不合题意;当1x -=时,22b m +=,∵0m >,∴222b m +=>,故选项C 不合题意,∴3222m m ++>,即a b >,故选项A 不合题意,当1y -=时,321cm m ++-=,即33c m +-()=, 因为0m >.所以30c +<,即3c -<,故选项D 符合题意,故选:D .【点睛】本题考查了一次函数图象和性质以及不等式的性质,利用不等式的性质是解决本题的关键.13.C【分析】设预定每组分配的人数为x 人,若按每组人数比预定人数多分配1人,总人数为()81x +,若按每组人数比预定人数少分配1人,总人数为()81x -,根据题意列出不等式组,即可得解集,再根据实际情况得出预定每组分配的人数.【详解】解:设预定每组分配的人数为x 人,根据题意得()()81100,8190,x x ⎧+>⎪⎨-<⎪⎩解得232<x <494, 而x 为整数,所以x =12,即预定每组分配的人数为12人.故选:C.【点睛】此题主要考查不等式组的应用.14.C【详解】分析:求不等式组的解,再判断其中非负整数解.详解:38023x x -<⎧⎨-<⎩,解得32-<x <83,非负整数解有0,1,2,故选C. 点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:①若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:①若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x 表示不等式的解集,此时一般表示为a<x<b ,或a≤x≤b .此乃“相交取中”,如图所示:①若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空” 如图所示:15.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A 、将x =﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B 、将x =﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C 、将x =﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D 、将x =﹣2代入得:﹣6<﹣4,故此选项错误,故选:B .【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.A【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确; B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.17.C【详解】试题解析:可以化为237{379x x ≤--①<②①解不等式①得:x ≥3,解不等式①得:x <163, ①不等式组的解集是3≤x <163, ①不等式组的整数解是3,4,5.故选C .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出不等式组的解集.18.D【分析】根据不等式的性质逐个判断即可.【详解】A 、①a <b , ①a 44b <,正确,故本选项不符合题意; B 、①a <b ,①a +4<b +4,正确,故本选项不符合题意;C 、①a <b ,①−4a >−4b ,正确,故本选项不符合题意;D 、由-3<2,得(-3)2>22,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 19.D【详解】解不等式2x −a <1,得:x <12a +,解不等式x −2b >3,得:x >2b+3,①不等式组的解集为−1<x <1,①112231a b +⎧=⎪⎨⎪+=-⎩,解得:a=1,b=−2,当a=1,b=−2时,(a −3)(b+3)=−2×1=−2,故选D .20.B【分析】根据正比例函数y x =的图象与反比例函数()0k y k x=≠的图象的性质,结合题意,可计算得OA OB =;根据90CAD ∠=︒和四边形OCAD 的面积为1,设点C 坐标为()0,m ,设点D 坐标为(),0n ,通过勾股定理和四边形面积解方程,即可得到k 的值,从而计算得AB 和三角形OAE 的面积,以及不等式k x x>的解集.【详解】①正比例函数y x =的图象与反比例函数()0k y k x=≠的图象交于A ,B 两点 ①0k > ①y x k y x =⎧⎪⎨=⎪⎩①x =结合题意,得A,(B①OAOB =①OA OB =,故①正确;设点C 坐标为()0,m ,设点D 坐标为(),0n ,结合题意,0m >且0n >①OC m =,OD n =①四边形OCAD 的面积为1①四边形OCAD的面积)11=122OAC OAD S S OC OD m n +=+=△△①m n +=结合题意,(22AC m =+,(22AD n =+ 又①90CAD ∠=︒,且90COD ∠=︒①22222AC AD OC OD CD +=+=①((2222+m n m n =+①m n =+①=①1k =①()1,1A ,()1,1B --,AB ==,故①错误;①AE x ⊥①()1,0E ,1AE =①1OE = ①1122OAE S OE AE =⨯=△,故①正确;当0x >时,k x x>即1x x > ①21x > ①1x >或1x <-(舍去)当0x <时,k x x >即1x x > ①21x <①10x -<<①不等式k x x >的解集是1x >或10x -<<,故①错误; 故选:B .【点睛】本题考查了正比例函数、反比例函数、勾股定理、分式、不等式的知识;解题的关键是熟练掌握正比例函数、反比例函数、勾股定理、分式、不等式的性质,从而完成求解.21.x ≤3【分析】由题意先去分母,再移项合并,进而化系数为1即可得出,注意化系数为1时改变符号方向. 【详解】解:1-2x ≥-1 去分母:12x -≥-,移项合并:3x -≥-,化系数为1:3x ≤. 所以不等式1-2x ≥-1的解集是3x ≤. 故答案为:3x ≤.【点睛】本题考查解一元一次不等式,熟练掌握解一元一次不等式运算法则是解答本题的关键.22.6x >-.【分析】先移项,然后系数化为1,即可求出不等式的解集.32x -<,23x -<,①2)3x <,①x >①2)x >-,①6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键. 23.3a ﹣12≥0.【详解】试题分析:理解:差是一个非负数,即是最后算的差应大于或等于0. 解:根据题意,得3a ﹣12≥0.故答案为3a ﹣12≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.24.13x ≥且3x ≠【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【详解】解:由题意得:310x -≥且30x -≠, 解得:13x ≥且3x ≠, 故答案为:13x ≥且3x ≠.【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.25. 【详解】试题分析:把x 的系数化为1即可;注意系数化为一(不等式性质—不等式左右两边同时乘或除以同一个正数,不等号的方向不变/不等式左右两边同时乘或除以同一个负数,不等号的方向改变).化x 的系数化为1得,.①原不等式的解为. 考点:解一元一次不等式.26.(3,0)【分析】解不等式,并结合不等式的解,即可求出k 的值,然后将k 的值代入直线解析式中,再将y=0代入直线解析式中,即可求出结论.【详解】解:()200kx k ->≠当k >0时,解得x >2k; 当k <0时,解得x <2k; ①关于x 的不等式20(0)kx k ->≠的解集是3x >,①k >0,且23k = 解得:23k =将23k =代入直线2y kx =-+中,得223y x =-+ 当y=0时,解得:x=3①直线2y kx =-+与x 轴的交点坐标是(3,0)故答案为(3,0).【点睛】此题考查的是解不等式和求直线与x 轴的交点坐标,掌握不等式的基本性质和坐标轴上点的坐标规律是解决此题的关键.27.﹣2.【分析】根据一次函数的图象不过第二象限可得到一个关于m 的不等式组,解不等式组确定出m 的取值范围,再根据m 是整数,即可确定m 的值.【详解】①一次函数y =(m +3)x +m +2的图象不过第二象限,①3020m m +>⎧⎨+⎩, 解得:﹣3<m ≤﹣2,而m 是整数,则m =﹣2.故答案为:﹣2.【点睛】本题主要考查一次函数的图象及不等式组的整数解,掌握一次函数的图象是解题的关键.28.a <2【分析】根据不等式的基本性质,由不等式(a-2)x >1的解集为x <12a -,可得:a-2<0,据此求出a 的取值范围即可.【详解】①不等式(a-2)x >1的解集为x <12a -, ①a-2<0,①a 的取值范围为:a <2.故答案为a <2. 【点睛】此题主要考查了不等式的解集,要熟练掌握,注意不等式的基本性质的应用. 29.<【分析】根据不等式的基本性质即可解答.【详解】如果a <b ,ac >bc,则c <0.【点睛】本题主要考查不等式的基本性质,熟记不等式的性质并应用是关键. 30.x ≤m【分析】根据同小取小,即可得到不等式的解集,从而可以解答本题.【详解】解:①不等式组x m x n≤⎧⎨<⎩,且m <n , ①x ≤m ,故答案为x ≤m .【点睛】此题考查不等式组的解集,根据不等式的解集求出即可,难度一般. 31.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.32.3x x-,12-. 【分析】先化简211933x x x -⎛⎫-⋅ ⎪+⎝⎭,再求出不等式组的解集,代值计算即可. 【详解】解:211933x x x -⎛⎫-⋅ ⎪+⎝⎭ ()()3(3)(3)=333x x x x x x x x ⎡⎤++--⋅⎢⎥++⎣⎦()3(3)(3)=33x x x x x x +-+-⋅+ =3x x-, 又23213x x -<⎧⎨-⎩①② 解不等式①得x >-1,解不等式①得x ≤2,①-1<x ≤2,①x 为偶数且x ≠0,①x =2, 原式231==22--. 【点睛】此题考查的是分式的化简和求不等式组解集的综合题,掌握找分式的最简公分母的方法和不等式的性质是解题的关键.33.1【分析】先求出不等式的解集,然后求出其正整数解即可.【详解】解:①350x -≤, ①53x ≤, ①正整数解是1,故答案为:1.【点睛】本题主要考查了解一元一次不等式和解不等式的正整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.34.①①①【分析】将m =4和m =1代入不等式组,再根据口诀可得出不等式解集情况,从而判断①①;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由7≤m <8,可得不等式组3、4、5、6、7共5个整数解,从而判断①.【详解】解:①若m =4,则不等式组为24x x >⎧⎨≤⎩,此不等式组的解集为2<x ≤4,此结论正确;①若m=1,则不等式组为21xx>⎧⎨≤⎩,此不等式组无解,此结论正确;①若不等式组无解,则m的取值范围为m≤2,此结论错误;①若7≤m<8,则原不等式组有3、4、5、6、7共5个整数解,此结论正确;故答案为:①①①.【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.4【详解】解①得,x>-2.5;解①得,x≤4;①-2.5<x≤4,①最大整数解为4.36.x>5【分析】先去分母,然后通过移项、化未知数系数为1来解不等式.【详解】解:在不等式的两边同时乘以6,得2x+2<3x﹣3,移项,得﹣x<﹣5,化系数为1,得x>5.故答案是:x>5.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.37.1【分析】先解不等式组,再根据条件得到a,b的值,然后可求出a+b的值.【详解】解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<, 因为01x ≤<,所以4202a a -==,,3112b b +==-,, 1a b +=.考点:不等式组.38.2b <【分析】根据抛物线2222y x bx b b =++-+与x 轴没有交点,可知当22220x bx b b ++-+=时,()()22241+20,b b b --⨯⨯<从而可以求得b 的取值范围. 【详解】解:①抛物线2222y x bx b b =++-+与x 轴没有交点,①22220x bx b b ++-+=无解,①()()22241+20,b b b --⨯⨯<解得:2,b <故答案为: 2.b <【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用一元二次方程根的判别式解答.39.01a <<或203a <<- 【分析】分当a<0时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当a<0时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值,此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键.40.4x ≥-,-4,-3,-2,-1,0.【分析】通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解. 【详解】解:4312163x x ++≤+, 去分母得:()432126x x +≤++,去括号,移项得:34264x x -≤+-,合并同类项得:4x -≤,解得:4x ≥-,①它的非正整数解为:-4,-3,-2,-1,0.【点睛】本题主要考查解一元一次不等式,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.41.(1)14+(2)x >2,见解析. 【分析】根据负整数指数幂的性质、特殊角的三角函数值、二次根式化简以及零指数幂的性质依次计算后,再根据实数的运算法则求得计算结果即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】(1)原式=14﹣2×12+1=14﹣ =14 (2)()295131x x x x --⎧⎪⎨->+⎪⎩①② 解不等式①得:x≥﹣3,解不等式①得:x >2,则不等式组的解集为x >2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.42.(1)(2)(3)(4)【详解】试题分析:将上述不等式的解集规范的表示在数轴上即可.试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点睛:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”.43.11x x +-,13【分析】先利用分式的加减乘除混合运算法则进行化简,然后把不等式2192136x x -+-≤的最小整数解代入求值即可.【详解】解:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭ =()()()()()22111111x x x x x x x x x ⎡⎤+-+-⋅⎢⎥+--⎢⎥⎣⎦=2111x x x x x x+⎛⎫-⋅ ⎪--⎝⎭ =11x x x x+⋅-=11x x +-, 由不等式219236x x -+-≤1,得4x -2-9x -2≤6, ①x ≥-2,①使分式有意义的x 值是1x ≠±,0x ≠,且x 是不等式219236x x -+-≤1的最小整数解, ①x =-2,当x =-2时,原式=211213-+=--. 【点睛】此题主要考查分式的化简求值和解一元一次不等式,熟练掌握分式的混合运算法则和解一元一次不等式的步骤是解题关键.44.7x >-.在数轴上表示见解析【分析】先去括号,再移项,合并同类项,系数化为1,最后在数轴上表示出解集即可.【详解】解:去括号得:9324->-x x ,移项得:4329->-x x ,解得:7x >-.在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,解题关键是掌握不等式的性质.45.﹣1≤x <1【详解】试题分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.试题解析:解:1211123x x x -≤⎧⎪⎨+-+⎪⎩①<② 解①得:x ≥﹣1,解①得:x <1.在数轴上表示如下:则不等式组的解集是:﹣1≤x <1.46.(1)购买甲种消毒液每桶需30元,乙种消毒液每桶需20元(2)12【分析】(1) 设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,列方程组求解即可.(2) 设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,列出不等式求解即可.(1)设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,得341703250x y x y +=⎧⎨-=⎩, 解得3020x y =⎧⎨=⎩, 故购买甲种消毒液每桶需30元,乙种消毒液每桶需20元.(2)设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,得30x +20(21-x )≤540,解得x ≤12,①x 是正整数,①至多可购进甲种消毒液12桶.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,熟练掌握方程组的求解,不等式整数解的求解是解题的关键.47.(1)每件文化衫和每本相册的价格分别为35元,26元(2)共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【分析】(1)设每件文化衫和每本相册的价格分别为x 元,y 元,然后根据每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册列出方程求解即可; (2)设购买文化衫m 件,购买相册(50)m -本,然后根据拿出不少于270元但不超过300元的资金为老师买纪念品列出不等式组求解即可.(1)解:设每件文化衫和每本相册的价格分别为x 元,y 元,由题意得:925200x y x y -=⎧⎨+=⎩, 解得3526x y =⎧⎨=⎩, 答:每件文化衫和每本相册的价格分别为35元,26元;(2)解:设购买文化衫m 件,购买相册(50)m -本,由题意得,180********(50)1800270m m -≤+-≤-, 解得25222599m ≤≤,且m 为整数, ①共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.答:共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,解题的关键在于正确理解题意.48.32x -≤<【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【详解】4713112x x x -<⎧⎪⎨+≥-⎪⎩①② 由①得2x <,。
2021年中考数学九年级复习课时训练:《方程与不等式》(三)1.某糕点厂中秋节前要制作一批盒装月饼,每盒装1个大月饼和7个小月饼.制作1个大月饼要用0.06kg面粉,1个小月饼要用0.015kg面粉.现共有面粉330kg,制作两种月饼各用多少kg面粉时,才能使生产的大小月饼刚好配套成盒?最多能生产多少盒月饼?2.定义:关于x的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为“田家炳式”.例如,式子3x+4与4x+3互为“田家炳式”.(1)判断式子﹣5x+2与﹣2x+5 (填“是”或“不是”)互为“田家炳式”;(2)已知式子ax+b的“田家炳式”是3x﹣4且数a、b在数轴上所对应的点为A、B.①化简|x+a|+|x+b|的值为7,则x的取值范围是;②数轴上有一点P到A、B两点的距离的和PA+PB=11,求点P在数轴上所对应的数.(3)在(2)的条件下,①若A点,B点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,且3秒后,2OA=OB,求点A的速度.②数轴上存在唯一的点M,使得点M到A、B两点的距离的差MA﹣MB=m,求m的取值范围.(直接写出结果)3.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左侧,|a|=20,a+b =100,ab<0(1)求出a,b的值;(2)现有一只蚂蚁P从点A出发,以每秒3个单位长度的速度向右运动,5秒钟之后另一只蚂蚁Q从点B出发,以每秒2个单位长度的速度向左运动.①设两只电子蚂蚁在数轴上的点C处相遇,求点C对应的数;②蚂蚁P出发多长时间后,两只蚂蚁在数轴上相距20个单位长度?4.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品装满6箱后还剩8个.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?5.如图,已知数轴上点A表示的数为6,点B是数轴上在A点左侧的一点,且A、B两点间的距离为10,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左运动.(1)数轴上点B表示的数是;(2)运动1秒时,点P表示的数是;(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?相遇时对应的有理数是多少?②当点P运动多少秒时,点P与点Q的距离为8个单位长度.6.在数轴上有M、N、Q三个动点,M,N,Q的速度分别为:2个单位/s,4个单位/s,8个单位/s.(1)如图1,如果M、N同时出发,相向而行,经过10s相遇,求出发前M、N之间的距离;(2)如图2,如果M、N同时从原点出发沿数轴正方向运动,同时点Q从定点A出发沿数轴负方向运动,若点Q与M、N的相遇时间间隔为5s,求点A对应的数是多少?(3)如图3,如果MN=18,NQ=24,M、N、Q同时出发,沿数轴负方向运动,在N还没有追上M的这段时间内,当其中一点与另外两点之间的距离相等时,它们行驶的时间是多少?7.把正奇数1、3、5、…、2017、2019排成如图所示的数阵,规定从上到下依次为第1行、第2行、第3行、…,从左到右依次为第1列、第2列、第3列、….(1)①数阵中共有个数,数2019在第行第列.②图表中第n行第8列的数可用n表示为.(2)按如图所示的方法用一个“L”形框框住相邻的三个数,设被框的三个数中最小的一个数为x,是否存在这样的x使得被框的三个数的和等于1519?若存在,求出x的值;若不存在,请说明理由.(3)若在(2)中“L”形框框住的三个数的和记为“S”,则S的最大值与最小值的差等于.8.下表是中国电信两种“4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用,主叫超时和上网超流量部分加收超时费和超流量费)月基本费/元主叫通话/分钟上网流量/MB接听主叫超时(元/分钟)超出流量(元/MB)套餐1 49 200 500 免费0.20 0.3 套餐2 69 250 600 免费0.15 0.2 (1)6月小王主叫通话时间220分钟,上网流量800MB.按套餐1计费需元,按套餐2计费需元;若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了MB流量;(2)若上网流量为540MB,是否存在某主叫通话时间t(分钟),按套餐1和套餐2的计费相等?若存在,请求出t的值;若不存在,请说明理由.9.已知多项式4x6y2﹣3x2y﹣x﹣7,次数是b,4a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)a=,b=;(2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.(写出解答过程)(3)若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图.(其中s表示时间单位秒,mm表示路程单位毫米)t(s)0<t≤2 2<t≤5 5<t≤16v(mm/s)10 16 8①当2<t≤5时,你知道小蚂蚁甲与乙之间的距离吗?(用含有t的代数式表示);②当t为时,小蚂蚁甲乙之间的距离是42mm.(请直接写出答案)10.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税.(1)王叔叔十月份税后的工资是多少元?(2)王叔叔将该月税后工资的一半存入银行,然后用余额购买一部定价为3000元的某品牌手机,恰好遇到手机店开展活动,该款手机打八折,则买完手机后还剩下多少元?(3)某家超市正在开展促销活动,促销方案如下:商品原价优惠方案不超过500元不打折超过500元但不超过800元的部分打八折超过800元的部分打七五折若王叔叔在此次促销活动中付款980元,问他购买的商品原价是多少元?11.数轴上A,B,C三个点对应的数分别为a,b,x,且A,B到﹣1所对应的点的距离都等于7,点B在点A的右侧,(1)请在数轴上表示点A,B位置,a=,b=;(2)请用含x的代数式表示CB=;(3)若点C在点B的左侧,且CB=8,点A以每秒2个单位长度的速度沿数轴向右运动,当AC=2AB且点A在B的左侧时,求点A移动的时间.12.如图,在数轴上,点O为原点,点A、点B是数轴上的两点,已知点A所对应的数是x,点B对应的数是y,且x、y满足|x+4|+(y﹣10)2=0.(1)点A所对应的数是,点B所对应的数是.(2)若动点P从点A出发以每秒6个单位长度向右运动,动点Q从点B出发以每秒2个单位长度向点A运动,到达A点即停止运动,P、Q同时出发,且Q停止运动时,P也随之停止运动,求经过多少秒时,P、Q第一次相距6个单位长度?(3)在(2)的条件下,整个运动过程中,设运动时间为t秒,若AP的中点为M,BQ的中点为N,当t为何值时,BM+AN=2PB?13.华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)20 30售价(元/件)25 40 (1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?14.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90 超过17吨但不超过30吨的部分b0.90 超过30吨的部分 6.00 0.90 (说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)15.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?16.已知数轴上点A与点B相距12个单位长度,点A在原点的右侧,到原点的距离为22个单位长度,点B在点A的左侧,点C表示的数与点B表示的数互为相反数,动点P从A 出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为,点C表示的数为.(2)用含t的代数式表示P与点A的距离:PA=(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,回到点A处停止运动.在点Q运动过程中,求出点Q运动几秒与点P相遇?17.一个校办厂购进了5立方米的木材,厂长决定构成方桌销售,已知一张方桌由一张桌面和4个桌腿做成,经试验发现1立方米的木材可以做50张桌面或300个桌腿,问工厂能做多少张方桌?18.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?19.如图,数轴上A、B两点所对应的数分别是a和b,且(a+5)2+|b﹣7|=0.(1)则a=,b=;A、B两点之间的距离=.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?请直接写出此时点P所对应的数,并分别写出是第几次运动.20.某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:数量范围(千克)不超过50的部分50以上但不超过150的部分150以上的部分价格(元)零售价的95% 零售价的85% 零售价的75%表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.参考答案1.解:设生产大小月饼各为x,y个则:解得:生产大月饼用面粉为:0.06×2000=120生产小月饼用面粉为:0.015×14000=210答:生产大月饼用面粉120kg,生产小月饼用面粉210kg最多能生产2000盒月饼.2.解:(1)∵﹣5x+2与﹣2x+5的其中一个式子的一次项系数不是另一个式子的常数项,∴它们不互为“田家炳式”,故答案为:不是;(2)①∵式子ax+b的“田家炳式”是3x﹣4,∴a=﹣4,b=3,∵|x+a|+|x+b|=7,∴|x﹣4|+|x+3|=7,当x<﹣3时,4﹣x﹣x﹣3=7,解得x=﹣3(舍去);当﹣3≤x≤4时,4﹣x+x+3=7,解得,x为﹣3≤x≤4中任意一个数;当x>4时,x﹣4+x+3=7,解得x=4(舍去).综上,﹣3≤x≤4.故答案为:﹣3≤x≤4.②∵PA+PB=11,∴当P点在A作左边时,有PA+PA+AB=11,即2PA+7=11,则PA=2,于是P为﹣4﹣2=﹣6;当P点在A、B之间时,有PA+PB=AB=7≠11,无解;当P点在B点右边时,有2PB+AB=11,则PB=2,于是P为3+2=5,综上,点P在数轴上所对应的数是﹣6或5;(3)①设A点运动的速度为x个单位/秒,∵A点的速度是B点速度的2倍,且3秒后,2OA=OB当点A在原点左边时,有2(4﹣3x)=3+3×x,解得,x=当点A在原点右边时,有2(3x﹣4)=3+3×x,解得,x=,∴点A的速度为个单位/秒或个单位/秒;②由题意可知,当M点在AB的中点与B之间(包括中点,不包括B点),则存在唯一一点M,使得MA﹣MB=m,此时0<MB≤3.5,∵m=MA﹣MB=AB﹣MB﹣MB=7﹣2MB,∴0≤m<7.故答案为:0≤m<7.3.解:(1)∵|a|=20∴a=20或﹣20∵ab<0,∴a,b异号,当a=20时,b=80,不合题意,舍去.当a=﹣20时,b=120,符合题意.答:a=﹣20,b=120.(2)①方法一:120﹣(﹣20)=140140﹣3×5=125125÷(3+2)=25120﹣25×2=70.∴点C对应的数是120﹣2t=70.方法二:设Q从B出发t秒在点C处与P相遇.根据题意,得15+3t+2t=140,解得t=25,∴点C对应的数是120﹣2t=70答:点C对应的数是70.②方法一:(1)相遇前相距120﹣(﹣20)=140140﹣3×5=125125﹣20=105105÷(3+2)=2121+5=26(2)相遇后相距120﹣(﹣20)=140140﹣3×5=125(125+20)÷(3+2)=2929+5=34∴蚂蚁P出发26秒或者34秒后,两只蚂蚁在数轴上相距20个单位长度.方法二:根据题意,得相遇前:15+3t+20+2t=140,解得t=21,∴21+5=26;相遇后:15+3t+2t﹣20=140,解得t=29,∴29+5=34.答:蚂蚁P出发26秒或者34秒后,两只蚂蚁在数轴上相距20个单位长度.4.解:设每箱装x个产品,根据题意得:+2=,解得:x=12.答:每箱装12个产品.5.解:(1)∵点A表示的数为6,AB=10,且点B在点A的左侧,∴点B表示的数为6﹣10=﹣4.故答案为:﹣4.(2)6﹣3×1=3.故答案为:3.(3)设运动的时间为t秒,则此时点P表示的数为6﹣3t,点Q表示的数为2t﹣4.①依题意,得:6﹣3t=2t﹣4,解得:t=2,∴2t﹣4=0.答:当点P运动2秒时,点P与点Q相遇,相遇时对应的有理数是0.②点P,Q相遇前,6﹣3t﹣(2t﹣4)=8,解得:t=;当P,Q相遇后,2t﹣4﹣(6﹣3t)=8,解得:t =.答:当点P 运动秒或秒时,点P 与点Q 的距离为8个单位长度. 6.解:(1)∵M 的速度v 1=2单位/s ,N 的速度为v 2=4单位/s又∵M 、N 相向而行,经过10s 相遇了∴M 、N 之间的路程s =[v 1+v 2]•10∴s =(2+4)•10=60∴出发前M 、N 之间的距离为60单位.(2)设A 点对应的数是x ,令M 的速度v 1=2单位/s ,N 的速度为v 2=4单位/s ,Q 的速度v 3=8单位/s . 设MQ 、NQ 分别相遇时,时间分别是t 1,t 2∴t 1=t 2=又∵点Q 与M 、N 的相遇时间间隔为5s ∴,解得x =300∴点A 对应的数是300.(3)令M 为0,则N 是18,Q 是42,动点表示为:M :﹣2t N :18﹣4t Q :42﹣8t ,MN =|18﹣2t |N 追上M 需要的时间当|18﹣2t |=0,即t =9秒.其中一点与另外两点之间的距离相等,这句话的含义可以理解为其中一个点是另外两个点的中点,即M ,N ,Q 分别为中点时,根据中点公式:=﹣2t ,解得t =7.5;=18﹣4t ,解得t =3;=42﹣8t ,解得t =6.6.当Q 追上M ,与M 重合或者Q 追上N ,与N 重合的时候也满足条件,即QM =|42﹣8t ﹣(﹣2t )|=|42﹣6t |=0,解得t =7QN=|42﹣8t﹣(18﹣4t)|=|24﹣4t|=0,解得t=6∴当其中一点与另外两点之间的距离相等时,它们行驶的时间是7.5s或3s或6s或7s 或6.6s.7.解:(1)①∵2×1010﹣1=2019,∴数阵中共有1010个数,∵1010÷8=126…2,∴数2019在第127行第2列,②过程数字的变化可知:第1行第8列的数是2×8﹣1=15;第2行第8列的数是4×8﹣1=31;第3行第8列的数是6×8﹣1=47;…所以图表中第n行第8列的数可用n表示为:2n×8﹣1=16n﹣1;故答案为:1010;126;2;16n﹣1;(2)不存在这样的x使得被框的三个数的和等于1519,理由如下:设被框的三个数中最小的一个数为x,则另外两个数分别为(x+16)、(x+18),∴被框的三个数的和为:x+(x+16)+(x+18)=3x+34,若3x+34=1519,则x=495,若16n﹣1=495,解得n=31,所以495这个数在第31行第8列,从而可知它的右下方没有数,所以不存在存在这样的x使得被框的三个数的和等于1519;(3)若在(2)中“L”形框框住的三个数的和记为S,则S=3x+34,由(1)可知,数阵共有126行8列,127行2列,即:第126行数为:2001 2003 2005 2007 2009 2011 2013 2015第127行数为:2017 2019∴x为第126行第1列的数2001时,S最大,x为第1行第1列的数1时,S最小,∴S的最大值与最小值的差为:3×2001+34﹣(3×1+34)=6037﹣37=6000.故答案为:6000.8.解:(1)套餐1:49+0.2×(220﹣200)+0.3×(800﹣500)=49+0.2×20+0.3×300=49+4+90=143.套餐2:69+0.2×(800﹣600)=69+0.2×200=69+40=109.设上网流量为xMB,则69+0.2(x﹣600)=129解得x=900.故答案为:143;109;900.(2)当0≤t<200时,49+0.3×(540﹣500)=61≠69∴此时不存在这样的t.当200≤t≤250时,49+0.2(t﹣200)+0.3×(540﹣500)=69解得t=240.当t>250时,49+0.2(t﹣200)+0.3×(540﹣500)=69+0.15(t﹣250)解得t=210(舍).故若上网流量为540MB,当主叫通话时间为240分钟时,按套餐1和套餐2的计费相等.9.解:(1)∵多项式4x6y2﹣3x2y﹣x﹣7,次数是b,∴b=8;∵4a与b互为相反数,∴4a+8=0,∴a=﹣2.故答案为:﹣2,8;(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8﹣4t;∵OA=OB,∴2+3t=8﹣4t,解得:t=;②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t﹣8;∵OA=OB,∴2+3t=4t﹣8,解得:t=10;∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为秒或10秒;(3)①∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:10×2+16×3+8×11=156(mm),∵原路返回,刚好在16s时一起重新回到原出发点A和B,∴小蚂蚁甲和乙返程的路程都等于78mm,∴甲乙之间的距离为:8﹣(﹣2)+10×2×2+16×(t﹣2)×2=32t﹣14;②设a秒时小蚂蚁甲和乙开始返程,由(3)①可知:10×2+16×3+8(a﹣5)=78,解得:a=;以下分情况讨论:当8﹣(﹣2)+10t×2=42,解得:t=1.6;当32t﹣14=42时,解得:t=;当t=时,小蚂蚁甲和乙还没有开始返程,故舍去t=;当t>时,8﹣(﹣2)+78×2﹣8(t﹣)×2=42,解得:t=14;综上所述,当t=1.6秒或14秒时,小蚂蚁甲乙之间的距离是42mm.故答案为:1.6秒或14秒.10.解:(1)5000+(8000﹣5000)×(1﹣3%)=7910答:王叔叔十月份税后的工资是7910元.(2)7910×=39553955﹣3000×80%=1555答:买完手机后还剩下1555元.(3)设他购买的商品原价是x元.根据题意,得500+300×80%+(x﹣800)×75%=980解得x=1120答:他购买的商品原价是1120元.11.解:(1)根据题意得:﹣1﹣a=7,b﹣(﹣1)=7,∴a=﹣8,b=6,将其表示在数轴上,如图所示.故答案为:﹣8;6.(2)根据题意得:CB=|x﹣6|.故答案为:|x﹣6|.(3)∵点C在点B的左侧,且CB=8,∴x﹣6=﹣8,∴x=﹣2.设点A移动的时间为t秒.当点A在点C的左侧时,﹣2﹣(2t﹣8)=2×[6﹣(2t﹣8)],解得:t=11,此时点A对应的数为14,在点C的右侧,不合题意,舍去;当点A在点C的右侧且在点B的左侧时,(2t﹣8)﹣(﹣2)=2×[6﹣(2t﹣8)],解得:t=.∴点A移动的时间为秒.12.解:(1)∵x、y满足|x+4|+(y﹣10)2=0,∴x+4=0,且y﹣10=0,∴x=﹣4,y=10,即点A所对应的数是﹣4,点B所对应的数是10;故答案为:﹣4,10;(2)AB=10﹣(﹣4)=14,设经过x秒时,P、Q第一次相距6个单位长度,则AP=6x,BQ=2x,PQ=AB=AP﹣BQ=14﹣6x﹣2x=6,解得:x=1,答:经过1秒时,P、Q第一次相距6个单位长度;(3)由题意得:t秒后,AP=6t,BQ=2t,∵AP的中点为M,BQ的中点为N,∴AM=AP=3t,BN=BQ=t,∴AN=AB﹣BN=14﹣t,①如图1,当点P、M都在点B的左侧时,BM=AB﹣AM=14﹣3t,PB=AB﹣AP=14﹣6t,∵BM+AN=2PB,∴14﹣3t+14﹣t=2(14﹣6t),解得:t=0;②如图2,当点M在点B的左侧,点P在点B的右侧时,BM=AB﹣AM=14﹣3t,PB=AP﹣AB=6t﹣14,∵BM+AN=2PB,∴14﹣3t+14﹣t=2(6t﹣14),解得:t=3.5;③如图3,当点P、M都在点B的右侧时,BM=AM﹣AB=3t﹣14,PB=AP﹣AB=6t﹣14,∵BM+AN=2PB,∴3t﹣14+14﹣t=2(6t﹣14),解得:t=2.8(舍去);综上所述,当t为0秒或3.5秒时,BM+AN=2PB.13.解:(1)设第一次购进乙种商品x件,则购进甲种商品2x件,根据题意得:20×2x+30x=7000,解得:x=100,∴2x=200件,答:该超市第一次购进甲种商品200件,乙种商品100件.(2)(25﹣20)×200+(40﹣30)×100=2000(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润2000元.(3)方法一:设第二次乙种商品是按原价打y折销售根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,解得:y=9答:第二次乙商品是按原价打9折销售.方法二:设第二次乙种商品每件售价为y元,根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,解得:y=36×100%=90%答:第二次乙商品是按原价打9折销售.方法三:2000+800﹣100×3=1800元∴=6,∴×100%=90%,答:第二次乙商品是按原价打9折销售.14.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.15.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.16.解:(1)由分析可知,点A表示的数为22,点C表示的数为﹣10;(2)PA=1×t=t;(3)(Ⅰ)在点Q向点C运动过程中,设点Q运动x秒与点P相遇,根据题意得3x=x+12,解得x=6.(Ⅱ)在点Q向点A运动过程中,设点Q运动x秒与点P相遇,根据题意得3x+x=22﹣(﹣10)+10﹣(﹣10),解得x=13.答:点Q运动6或13秒后与点P相遇;故答案为:22,﹣10;t.17.解:设用x立方米木材做桌面,则工厂能做50x张方桌.根据题意,得4×50x=300(5﹣x)解得x=3∴50x=150.答:工厂能做150张方桌.18.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.19.解:(1)∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12.故答案是:﹣5;7;12;(2)设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019,=﹣5+1009﹣2019,=﹣1015.答:点P所对应的数为﹣1015;(3)设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.20.解:(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150﹣50)×8×85%+(240﹣150)×8×75%=1600(元).∵1632>1600,在乙家批发更优惠.(2)当100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(x﹣50)×8×85%=6.8x+40.不可能相等;当x>150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(150﹣50)×8×85%+(x﹣150)×8×75%=6x+160.∵6.8x=6x+160,∴x=200.综上所得:当x=200时他选择任何一家批发所花费用一样多.。
中考练习数学试卷三不等式
培风中学中考练习数学试卷(三)
姓名_______ 得分_______
一、选择题
1、(浙江金华)不等式260x ->的解集在数轴上表示正确的是( )
2、(湖南岳阳)在下图中不等式-1<x ≤2在数轴上表示正确的是( )
D
C
B
A
2
2
-12
-12
-1
3、(山东枣庄)不等式2x -7<5-2x 的正整数解有
( )
(A)1个 (B)2个 (C)3个 (D)4个
4、(福建福州)解集在数轴上表示为如图1所示的不等式组是( ) A .
3
2
x x >-⎧⎨
⎩≥ B .
32
x x <-⎧⎨
⎩≤ C .
32
x x <-⎧⎨
⎩≥ D .
2
x ⎨
⎩≤ 3
- 0 3
A
3
- 0 3 B
3
- 0 3 C
3
- 0 3 D
3-
图
5、(湖北天门)关于x 的不等式2x -a ≤-1的解集如图2所示, 则a 的取值是( )。
A 、0 B 、-3 C 、-2 D 、-
1
6、(山东东营)不等式2x -7<5-2x 的正整数解有( )
(A )1个 (B )2
个
(C )3个 (D )4个 7、(浙江台州)不等式组
201
x x -<⎧⎨
⎩,
≥的解集为( )
A.12x <≤ B.1x ≥ C.2x < D.无解 8、(湖北黄冈)将不等式
841
13
822
x x x x +<-⎧⎪⎨≤-⎪⎩的解集在数轴
上表示出来,正确的是( )
9、(浙江宁波)把不等式组10
20
x x +≥⎧⎨
->⎩
的解集表示在数轴上,正确的是( )
10、(山东临沂)直线l 1:y =k 1x +b O x y y =k 1
x +y =
-1 -2
0 1 (图2)
与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。
A 、x >-1
B 、x <-1
C 、x <-2
D 、无法确定
二、填空题
1、(山东济南)不等式210x +>的解集是 . 2\(广东梅州)不等式组1
10210x x ⎧+>⎪⎨⎪->⎩,.
的解
为 . 3、(山东德州)不等式组2752312
x x
x x -<-⎧⎪⎨++>⎪⎩的整数解是
.
4、(湖北天门)已知关于x 的不等式组⎩⎨
⎧
--0
x 230a x >>的整数解共有6个,则a 的取值范围是 。
三、解答题
1、解不等式:1
12
x x >+ 2、
解不等式:573(1),1311.22
x x x x +>+⎧⎪⎨-≤-⎪⎩
3、(四川乐山)解不等式组3(1)54121
2
3x x x x +>+⎧⎪
⎨--⎪⎩ ①
≤ ②,并将
解集在数轴上表示出来.
4、(南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别
电视机
洗衣机
进价(元
1800 1500
/台)
售价(元
2000 1600
/台)
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)
5、(四川绵阳)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
6、(湖南怀化)年我市某县筹备20周年县庆,
园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
7、(河北省)一手机经销商计划购进某品牌的A 型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:
手机型号
A
型
B型C型
进价(单
位:元/部)
900 1200 1100
预售价(单位:元/部)120
1600 1300
(1)用含x,y的式子表示购进C型手机的部数;
(2)求出y与x之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批
手机过程中需另外支出各种费用共
1500元.
①求出预估利润P(元)与x(部)的
函数关系式;
(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.。