江苏省昆山市2011-2012学年八年级数学下学期期末考试试题 苏科版
- 格式:doc
- 大小:358.00 KB
- 文档页数:10
2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
2011-2012学年八年级下册数学期末考试模拟卷(二)北师版一、单选题(共9道,每道3分)1.下列调查,比较适合普查的是()A.了解我省八年级学生视力情况B.了解郑州市民对郑州地铁建造的欢迎程度C.环保部门调查4月份黄河某段水域的水质量情况D.了解某校八年级(2)班学生爱好音乐的情况答案:D试题难度:三颗星知识点:全面调查与抽样调查2.已知下列命题:①两条边及一个角对应相等的两个三角形全等②两条对角线互相垂直的四边形是菱形③两相似三角形的面积比等于周长比的平方④过直线外一点只能画一条直线与已知直线平行下列命题是真命题的个数是()A.1B.2C.3D.4答案:B试题难度:三颗星知识点:真命题、假命题3.下列计算错误的是()A.B.C.D.答案:D试题难度:三颗星知识点:分式的混合运算4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.答案:C试题难度:三颗星知识点:解一元一次不等式并用数轴表示5.将多项式分解因式时,应提取的公因式是()A.B.C.D.答案:A试题难度:三颗星知识点:因式分解--提取公因式6.如图,直线y=kx+b经过A(1,2),B(-2,-1)两点,则不等式x<kx+b<2的解集为().A.-1<x<1B.-1<x<2C.-2<x<1D.-2<x<2答案:C试题难度:三颗星知识点:一元一次不等式与一次函数7.甲乙丙丁四名参赛选手在预赛中所得的平均成绩及其方差如下图所示,如果选拔其中一人参加决赛,综合考虑,应该选择()A.甲B.乙C.丙D.丁答案:C试题难度:三颗星知识点:方差8.如图,已知AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠2+∠3-∠1=180°答案:D试题难度:三颗星知识点:余角、补角的性质9.△ABC与△A′B′C′中,有下列条件:①;②;③∠A=∠A;④∠C=∠C.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组B.2组C.3组D.4组答案:C试题难度:三颗星知识点:相似三角形的判定二、填空题(共9道,每道3分)1.若,则.答案:-5试题难度:三颗星知识点:比例的基本性质2.当x 时,分式有意义答案:≠5试题难度:三颗星知识点:分式有意义的条件3.分解因式结果为.答案:试题难度:三颗星知识点:先提取后公式4.在比例尺为1:2000000的地图上测得A、B两地间的距离为5cm,则A、B两地间的实际距离为km.答案:100试题难度:三颗星知识点:比例尺的应用5.如果不等式组的解集是,那么m的取值范围是.答案:m≧2试题难度:三颗星知识点:含字母的不等式组的已知解集求字母问题6.关于x的分式方程的解是一个非负数,则k的取值范围为.答案:k≧-3且k≠试题难度:三颗星知识点:含字母的不等式组的已知解集求字母问题7.如图,Rt△ABC∽Rt△ACD,AC=,AD=2,则BC= .答案:试题难度:三颗星知识点:相似三角形的判定与性质8.把命题“矩形的两条对角线相等”改写成“如果…,那么…”的形式为:如果,那么.答案:一个四边形是矩形;该四边形的两条对角线相等.试题难度:三颗星知识点:命题的条件和结论(命题结构)9.现有一大一小,形状相同的两张三角形年画,已知第一张的三边长为4dm、5dm、6dm,第二张的一边长为2dm,则第二张年画的周长为.答案:5dm或6dm或7.5dm试题难度:三颗星知识点:相似性质三、解答题(共7道,每道6分)1.请先化简1+,并在2,3,4选择一个你喜欢的数代入求值.答案:解:原式=1+=1+=1∵x≠±4且x≠2∴只能将x=3代入,原式=1综上,答案为试题难度:三颗星知识点:分式化简求值2.解分式方程:答案:解:方程两边同乘以x(x+1)得:去括号,合并同类项得:x=-1 检验:x=-1使得x(x+1)=0 综上:x=-1为原分式方程的增根.试题难度:三颗星知识点:解分式方程3.如图,若O是△ABC的内角的平分线交点,∠A=x°,∠BOC=y°,写出y与x函数关系式,并指出自变量x的取值范围.答案:解:如图,∵O是△ABC的内角的平分线交点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°-x).∵∠BOC=180°-(∠OBC+∠OCB),∴∠BOC=180°-(180-x),∴y=90°+x(0<x<180).试题难度:三颗星知识点:内角平分线的交点4.梯形ABCD的四个顶点分别为A(0,6),B(2,2),C(4,2)D(6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O为位似中心,使其与梯形ABCD的相似比为的位似图形;(2)画出位似图形向下平移五个单位长度后的图形.答案:解:(1)图形正确得(3分)(2)图形正确得(1分)试题难度:三颗星知识点:作图-位似变换5.我国从2011年5月1日起在公共场所“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一道记10分,答错(或不答)一题记-5分,现在知道小明参加本次竞赛的分数不小于100分,但不超过150分,那么他答对了多少道题?答案:解:设小明答对了x道题则有:100≦10x-5(20-x)≦150解得:∵x为正整数∴x=14,15,16 答:小明答对了14或15或16道题试题难度:三颗星知识点:一元一次不等式(组)的应用(关键词型)6.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据均为正整数),得频数分布表如下:根据表中提供的信息解答下列问题:(1)频数分布表中的_,_,_;(2)补充完整频数分布直方图(3)计算如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?答案:(1)根据频数与频率的正比例关系,可知,首先可求出a=8,再通过40-4-6-8-10=12,求出b=12,最后求出c=0.3;(2)(3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×200=60,∴在这一时刻噪声声级小于75dB的测量点约有60个.试题难度:三颗星知识点:图表信息型问题7.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.答案:(1)过点A作AK垂直BC于点K,过点D作DH垂直BC于点H,从而AK∥DH,如图①∵AK⊥BC,∠B=45°,AB=∴AK=BK=4∵AD//BC,AK∥DH,AK⊥BC∴ADHD为矩形∴AK=DH=4,KH=AD=3∵∠DHC=90°,DC=5∴HC=3∴BC=BK+KH+HC=3+3+4=10(2)依题意可知:CN=t,BM=2t,CM=10-2t(0≦t≦5),过点D作DG//AB交BC于点G,如图②,∵MN//AB∴DG//MN∴△GDC∽△MNC∵AD//BG,AB//DG∴AD=BG=3∴GC=BC-BG=10-3=7∵△GDC∽△MNC∴∵DC=5,CG=7,CN=t,CM=10-2t∴∴t=∵0≦≦5∴t=符合题意(3)0<t<5分三种情况讨论:①当NC=MC时,如图③,即t=10-2t,∴t=②当MN=NC时,如图④,过N作NE⊥MC于E,CE=∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴即∴t=③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴即∴t=.由于0<<5,0<<5,0<<5,所以均符合题意综上所述,当t=、t=或t=时,△MNC为等腰三角形.试题难度:三颗星知识点:相似中的动点问题。
2011学年度第二学期八年级第二次月检测数学卷答题时间:110分钟友情提示:答题请做在答题卷上一、选择题1.下列图形既是轴对称图形又是中心对称图形的是()2.在10,20,40,30,80,90, 40,50这8个数据中的极差是( )A.40 B.70 C.80 D.903.用反证法证明“三角形中至少有一个内角不小于60°”,•应先假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°4.在□ABCD中,AE垂直于CD,E是垂足,若∠B=65O,则∠DAE为()A.25O B. 35O C.45O D.无法计算5.下列计算正确的是()A.3= B、3327=÷ C.=2=-6.在□ABCD中,两条对角线AC、BD相交点O,其中两条对角线和为40,AB长为8,则△OCD周长为()A.48 B. 36 C. 44 D.287.在□ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:58.某人从A点出发,沿着六边形的公园顺时针转了一圈回到A处,如果他在五个转角处都转了58 o角,那么他必须在A处转()角才能仍面向原来的出发方向。
A 58 oB 60 oC 70 oD 75 o9.如图,在□ABCD中,BC=8cm,CD=6cm,∠D=40O,BE平分∠ABC,下列结论中错误的是()A.∠C=140O B.∠BED=150O C.AE=6cm D. ED=2cm10.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分()A、11B、12C、13D、14D二、填空题1.在□ABCD 中,∠A =60O,则∠B =2.证明命题“若x (2-x )=0,则x=0”是假命题的反例是:3.样本容量为80,共分为六组,前四个组的频数分别为20、14、18、16,第五组的频率是0.1,那么第六组的频率是 。
初二数学第二学期期末教学质量调研测试本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟,注意事项:答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上,并认真核对;答题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;考生答题必须答在答题卡上,保持纸面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一.选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中.只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.下列图形中,既是中心对称图形又是轴对称图形的是A B C D解析:根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解:A、此图形不是轴对称图形,是中心对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形不是中心对称图形,也不是是轴对称图形,故此选项错误;D、此图形是不是中心对称图形,是轴对称图形,故此选项错误.故选B.2.下面调查中,适合采用普查的是A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率解析:A、调查精确度比较高且调查的人数不是很多,应普查;B、全国中学生的数量比较庞大,所以应抽查;C、普查的可能性比较小,且难度大,应抽查;D、调查要求精确度相对不大,抽查即可.故选A.3.下列式子中,属于最简二次根式的是2=,故A 选项错误;=B 选项错误;C 选项正确;=,不是最简二次根式,故D 选项错误;故选:C .4. 下列事件中,属于必然事件的是 A .某校初二年级共有480人,则至少有两人的生日是同一天B .经过路口,恰好遇到红灯C .打开电视,正在播放动画片D .抛一枚硬币,正面朝上分析:找到一定会发生的事件的选项即可.解答:A 、某校初二年级共有480人,而一年只有365天,所以至少有两人的生日是同一天,是必然事件.B 、经过路口,可能遇到红灯,也可能遇到绿灯,还可能是黄灯 ,所以是随机事件;C 、打开电视,可能正在播放甲型H1N1流感的相关知识,也可能正在播放其它内容,是随机事件;D 、任意掷一枚均匀的硬币,可能正面朝上,也可能反面朝上,是随机事件; 故选A .点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念. ①必然事件指在一定条件下一定发生的事件; ②不可能事件是指在一定条件下,一定不发生的事件;③不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. =5=2=- ;其中运算正确的有A .1个 B.2个 C.3个 D.4个=-===,故③选项是正确; 12DE BC =2=,故④选项是错误;故选:C .6. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,AC=12,F 是DE 上一点,连接AF,CF,DF=1.若∠AFC =90°,则BC 的长度为A.12B.13C.14D.15 解析:∵∠AFC =90°,E是AC的中点∴12 EF AC=∵12,1AC DF==∴DE=DF+EF=7∵D,E分别是AB,AC的中点∴12 DE BC=∴BC=14 故选C7.若分式方程1133a xx x-+=--有增根,则a的值是A.1B.2C.3D.4解析∵方程有增根,∴最简公分母x-3=0,即增根是x=3.方程两边都乘(x-2),得1+x-3=a-x把增根x=3代入整式方程,得a=4.故选D.8.如图,小正方形的边长均为l,则下列图中的三角形(阴影部分)与△ABC相似的是 CA B C D解析:分析:三边对应成比例的两个三角形互为相似三角形,可求出三边的长,即可得出.解答:2 2 10,;A中三角形的边长为:15,22;B中三角形的边长为:25,3;C中三角形的边长为:125;25210=,即相似;D中三角形的边长为:2513故选C.点评:本题考查相似三角形的判定,三边对应成比例的两个三角形互为相似三角形.9.函数22k y x --=(k 为常数)的图像上游三个点1231(2,),(1,),(,)2y y y --,函数值123,,y y y 的大小为A. 123y y y >>B.213y y y >>C.231y y y >>D.312y y y >>解析:∵-k 2-2<0,∴函数应在二四象限,若x 1 <0,x 2 >0,说明横坐标为-2,-1的点在第二象限,横坐标为1/2 的在第四象限,∵第二象限的y 值总比第四象限的点的y 值大,∴那么y3最小,在第二象限内,y 随x 的增大而增大,∴y 1 <y 2 . 即y 3 <y 1 <y 2 . 选择B10. 如图l ,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于名的函数图象如图2所示,则△ABC 的面积是A.10B.16C.18D.20解析:点P 从点B 运动到点C 的过程中,y 与x 的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC 的长为4,当点P 在CD 上运动时,三角形ABP 的面积保持不变,就是矩形ABCD 面积的一半,并且动路程由4到9,说明CD 的长为5,然后求出矩形的面积.解:∵当4≤x≤9时,y 的值不变即△ABP 的面积不变,P 在CD 上运动当x=4时,P 点在C 点上所以BC=4当x=9时,P 点在D 点上 ∴BC+CD=9∴CD=9-4=5∴△ABC 的面积S=12ABBC=12×4×5=10 故选A .分析:本题考查的是动点问题的函数图象,根据矩形中三角形ABP 的面积和函数图象,求出BC 和CD 的长,再用矩形面积公式求出矩形的面积.二.填空题(本大题共8小题,每小题3分,共24分)把答案直接填在答题纸相对应位置上.11.23a -5 是同类二次根式,则的值为____4____.23a -5 ∴2a -3=5, 解得:a=4. 故答案为:3.12.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性 ___小于___摸出黄球可能性.(填“等于”或“小于”或“大于”).解析:∵袋子中有1个白球、1个红球和2个黄球,从中任意摸出一个球,①为白球的概率是14;②为黄球的概率是12;∴摸出白球可能性<摸出黄球的可能性,故答案为小于.13.某一时刻,身高1. 6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是3m,则该旗杆的高度是 ___12____m.考点:相似三角形的应用.设该旗杆的高度为xm,根据题意得,1.60.43x=,解得x=12(m).即该旗杆的高度是12m.故答案是1215.矩形的两条对角线的夹角为60°,较短的边长为12cm,则矩形较长的边长_123_m.16.如图,ABCD中,点E、F为对角线BD上两点,请添加一个条件,使四边形AECF成为平行四边形:_____BE=DF_______.(答案不唯一)17.曲线1yx=与直线23y x=-相交于点P(,)a b,则11a b-=________.解析∵双曲线1yx=与直线23y x=-相交于点P(a,b),∴1,23b a ba=-=,则112323b aa b ab---===-.故答案为:23-18.如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的个数有()①DC′平分∠BDE;②BC长为(22)a+;③△BC D'是等腰三角形;④△CED的周长等于BC的长.A.1个B.2个C.3个D.4个解析∵∠BDC′=22.5°,∠C′DE=45°,∴①错误;根据折叠的性质知,△C′ED≌△CED,且都是等腰直角三角形,2a,∴,(2AC a BC BE CE AB CEAC CE a a a==+=+=+=++=+∴②正确;∵∠ABC=2∠DBC,∴∠DBC=22.5°,∠DC C '=∠DBC′+∠BDC′, ∴∠DBC′=∠BDC′=22.5°, ∴BC′=DC′, 故③正确; ∴△CED 的周长=CE+DE+CD=CE+C′E+BC′=BC,故④正确. 故选②③④.三、解答题(本大题共10小题,共76分).把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(本题满分522| 解析: 考查二次根式的计算 原式=321=-=-答案:20.(本题满分5分)解方程:224124x x x +-=-- 解析分析:解分式方程,注意需要检验 方程两边同时乘以(2)(2)x x -+得,22(2)44x x +-=-441x x =-=-检验:当1x =-时,(2)(2)0x x -+≠,所以1x =-是原方程的解.21. 先化简222()5525x x xx x x -÷---,然后从不等组 23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值. 、解析:考查分式方程与一元一次不等式组的综合3(5)(5)3(5)522x x x x x x -++=⋅=-解:原式当1x =时,原式=9(代入求值的答案不唯一,有意义即可代入求值)22.在“3.15”植树节活动后,对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分:栽下的各品种树苗棵数统计表植树品种甲种乙种丙种丁种植树棵数150 125 125请你根据以上信息解答下列问题:(1)这次栽下的四个品种的树苗共_____棵,乙品种树苗_____棵;(2)图1中,甲_____%、乙_____%,并将图2补充完整;(3) 若经观测计算得出丙种树苗的成活率为89.6%,求这次植树活动的树苗成活率.答案: 500 100 30 20解析(1)根据丙种植树125棵,占总数的25%,即可求得总棵树,然后求得乙种的棵树;(2)利用百分比的意义即可求得甲和乙所占的百分比,以及成活率;(3)求得成活的总棵树,然后根据成活率的定义求解.解:(1)这次栽下的四个品种的树苗总棵树是:125÷25%=500(棵),则乙品种树苗的棵树是:500-150-125-125=100(棵),故答案为:500,100;(2)甲所占的百分比是:150500×100%=30%,乙所占的百分比是:100500×100%=20%,丙种成活的棵树:125×89.6%=112(棵).故答案为:30,20.(3)成活的总棵树是:135+85+112+117=449(棵),则成活率是:449500×100%=89.8%.23. (本题满分6分)(2013•天水)如图在平面直角坐标系xOy 中,函数14y x= (0x >)的图象与一次函数2y kx k =-的图象的交点为A (m ,2). (1)求一次函数的解析式;(2)观察图像直接写出使得12y y ≥ 的x 的取值范围;(3)设一次函数y=kx-k 的图象与y 轴交于点B ,若点P 是x 轴上一点,且满足△PAB 的面积是4,直接写出P 点的坐标.分析:(1)将A 点坐标代入14y x=(x >0),求出m 的值为2,再将(2,2)代入1y kx k =-,求出k 的值,即可得到一次函数的解析式;(2)将三角形以x 轴为分界线,分为两个三角形计算,再把它们相加. 解:(1)将A (m ,2)代入14y x=(x >0)得,m=2, 则A 点坐标为A (2,2),将A (2,2)代入y=kx-k 得,2k-k=2, 解得k=2,则一次函数解析式为y=2x-2;(2)02x <≤(3)∵一次函数y=2x-2与x 轴的交点为C (1,0),与y 轴的交点为(0,-2),S △ABP =S △ACP +S △BPC , ∴12×2CP+12×2CP=4,解得CP=2,则P 点坐标为(3,0),(-1,0).点评:本题考查了反比例函数与一次函数的交点问题,求出函数解析式并熟悉点的坐标与图形的关系是解题的关键. 24.(本题满分8分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.解析:(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴平行四边形AODE是菱形,故,四边形AODE是矩形;(2)∵∠BCD=120°,AB∥CD,∴∠ABC=180°-120°=60°,∵AB=BC,∴△ABC是等边三角形,∴OA=12×6=3,OB= 33∵四边形ABCD是菱形,∴OD=OB=33∴四边形AODE的面积=OA•OD=3×33.25.(本题满分8分)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.分析:(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.解答:解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要天.根据题意,得解得 x=90经检验,x=90是原方程的根.×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,需要施工费用:36×(8.4+5.6)=504(万元).∴工程预算的施工费用不够用,需追加预算4万元.点评:此题考查分式方程的应用,涉及方案决策问题,所以综合性较强.26.(本题满分10分)如图,在Rt△ABC 中,∠B=90°,AC=60,AB=30。
2011-2012学年第一学期期末教学质量检测八年级数学试题一、选择题(每小题3分,共36分.每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内.)1.和点P (-3,2)关于y 轴对称的点的坐标( ) A.(-3,2)B.(3,2)C.(-3,-2)D.(3,-2)2.已知下面一组数:2,6,9,8,x ,0,4,6,它们的平均数为5,那么x 为( ) A. 6 B. 5 C. 4 D. 33.对已知数据-4,1,2,-1,2,下列结论错误的是( )A. 平均数为0B. 中位数为1C. 中位数为0D. 众数为2 4.某地连续10天的最高气温统计如下:这组数据的中位数是( )A. 24B. 24.5C. 25D. 23.55.某市去年有2.3万名学生参加了初中毕业会考,为了解这2.3万名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A . 2.3万名考生是总体 B. 每位考生的数学成绩是个体 C. 这1000名考生是总体的一个样本 D. 1000名考生是样本容量6.下列说法正确的是( )A. 0.25是0.5的一个平方根B. 负数有一个平方根C. 27的平方根是7D.正数有两个平方根,且这两个平方根之和等于07.设面积为3的正方形的边长为x ,那么关于x 的说法正确的是( ) A. x 是有理数 B. 3±=x C. x 不存在 D. x 是1和2之间的实数 8.实数7-,-2 ,-3的大小关系是( )A. 7-<-3<-2 B. -3<7-<-2 C. -2<7-<-3 D. -3<-2<7-9.已知两条线段的长分别为2cm ,3cm ,那么能与它们组成直角三角形的第三条线段的长 是( )A. 1 cm B.5cm C. 5cm D. 1cm 与5cm10.不等式312->+x 的解集在数轴上表示正确的是( )C.D. 11.若不等式⎩⎨⎧>-<+mx x x 148的解集是3>x ,则m 的取值范围是( )A. 3>mB. 3≥mC. 3≤mD. 3<m12.某种商品的进价80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至少可打( ) A. 六折 B. 七折 C. 八折 D. 九折二、填空题(每小题3分,共24分)13.分解因式:2232xy y x x -+-= .-2 014.分式方程11112+=-+x x x 的解为 .15.今年端午节,某社区成立一支老年秧歌队,共20名队员,他们的身高情况统计如下:身高是160cm 的7人,身高是161cm 的8人,身高是162cm 的5人,这20名队员的平均身高是 . 16. 971的平方根是 ,25的算术平方根是 . 64-的立方根是 .17.在数轴上,到原点的距离为5个单位的点表示的数是 . 18.若等腰直角三角形的斜边长为2,则它的直角边为 .19.若b a >用“>”或“<”填空:①2-a 2-b ,②a 2- b 2-,③a --3 b --3. 20.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为 .三、解答题(解答应写出必要的计算过程、推演步骤或文字说明,共60分)21.(10分)计算(1)()()()224522+--+x x x (2)15151++÷-+-a a a a22.(8分)有一张长为5cm 的正方形纸片和一张长为18cm ,宽为8cm 的矩形纸片,要把这两张纸片剪、拼成一个正方形,求拼成的正方形的边长是多少?23.(9分)解不等式组()⎪⎩⎪⎨⎧-≥+<+-x x x x 2352612524.(11分)某车间有3个小组,计划在10天内生产500件产品(每天每个小组生产量相同),按原计划的生产速度,不能完成任务;如果每个小组每天比原计划多生产1件产品,就能提前完成任务,每个小组原计划每天生产多少件产品?(结果取整数)25.(11分)学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x 应超过多少分?26.(11分)如图,滑杆在机械槽内运动,∠ACB 为直角,已知滑杆AB 长为2.5米,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑杆顶端A 下滑多少米?A ECB D。
2011-2012学年第二学期期中考试八 年 级 数 学 试 卷(满分:100分 时间:100分钟 )一、选择题(每题3分,共30分)1.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知在□ABCD 中,AD =3cm ,AB =2 cm ,则□ABCD 的周长等于 ( ) A .10cm B .6cm C .5cm D .4cm3. 函数21-=x y 的自变量x 的取值范围是 ( ) A.x >-2 B.x <2 C.x ≠2 D.x ≠-2。
4. 下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是 ( ) A . 1.5,2,3a b c === B . 7,24,25a b c === C . 6,8,10a b c === D. 3,4,5a b c ===5. 反比例函数)0(≠=k xky 的图象经过点(2-,3),则它还经过点 ( )A. (6,1-)B.(1-,6-) C. (3,2) D.(2,3)6.下面正确的命题中,其逆命题不成立的是 ( ) A .旁内角互补,两直线平行 B.三角形的对应边相等C .对顶角相等 D.角平分线上的点到这个角的两边的距离相等 7.如图所示:数轴上点A 所表示的数为a ,则a 的值是A .+1 C 学校 班级 姓名: 学号AMNCB 8. 某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。
设B 型包装箱每个可以装x 件文具,根据题意列方程为 ( ) A .1080x =1080x -15+12 B .1080x =1080x -15-12C .1080x =1080x +15-12D .1080x =1080x +15+129.如图,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 阴影部分的面积为10π,则反比例函数的解析式为 ( A .y =3x B .y =5x C .y =10x D .y =12x10. 如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于 ( ) A.65 B. 95 C. 125 D. 165二、细心填一填:(每题3分,共30分)11. 根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么5级地震所释放出的相对能量相当于9级地震所释放出的相对能量的 .(用科学记数法表示) 12. 解方程:xx x -=+--23123的结果是 。
江苏省苏州市立达中学2011—2012学年度第 二 学期期中考试初二数学试卷一、填空题 1.若分式242x x -+的值为0,则x 的值为 .2. 若230x y -=,则x y x y-=+ .3. 在比例尺为1:2000的地图上测得A B 两地间的图上距离为5cm ,则A B 两地间的实际距离为 m . 4.若函数()251m y m x-=+是反比例函数,且图像在第二、四象限内,则m = .5.若直线–3y x =与双曲线5=t y x -交于点P (1-,n ),则t = .6.若关于x 的分式方程2133m x x =+--有增根,则m = .7.如图,在□A B C D 中,:1:2A E E B =,若3AEF S ∆=,则C DF S ∆= .第7题 第8题 第9题8.小亮同学想利用影长测量学校旗杆A B 的高度,如图,他在某一时刻立1m 长的标杆测得其影长为1.2m ,同时旗杆的投影一部分在地面上B D 处,另一部分在某一建筑的墙上C D 处,分别测得其长度为9.6m 和2m ,则旗杆AB 的高度是 m .9.如图,在三角形纸片(△ABC )中,090A ∠=,3A B =,5B C =,按图示方式进行折叠,使点B 落在边A C 上,记为点B ',折痕为E F .若以点B '、E 、C 为顶点的三角形与△ABC 相似,则B E 的长度是 .10.如图,在平面直角坐标系中,矩形O A B C 的顶点B 坐标为(4,2).将矩形O A BC 绕点O 逆时针旋转,使点B 落在y 轴上的点B '处,得到矩形O A B C ''',O A '与B C 相交于点D ',则经过点D 的反比例函数解析式是 . 二、选择题 第10题A B OEF CD题号 11 12 13 14 15 16 17 18 答案11.下列命题中,假命题的是( ) A .三角形两边之差小于第三边 B .三角形的外角和是360C .三角形的一条中线能将三角形分成面积相等的两部分D .等边三角形既是轴对称图形,又是中心对称图形 12.下列四个点中,有三个点在同一反比例函数k y x=的图象上,则不在..这个函数图象上的点是( )A .(5,)B .(1-,5)C .(53,3) D .(3-,53-)13.若点()13y -,、()22y -,、()31y ,在反比例函数2y x=的图像上,则下列结论正确的是( )A .123y y y >>B .213y y y >>C .312y y y >>D .321y y y >>14.小明乘出租车去科技文化艺术中心,有两条路线可供选择:路线一的全程是25千米 ,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,则根据题意,可得( ) A .()253010180%60x x-=+ B .()253010180%xx-=+C .()302510180%60xx-=+ D .()302510180%xx-=+15.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165cm ,下半身长x 与身高的比值是0.60,为尽可能达到好的效果,她应该穿的高跟鞋的高度大约为( ) A .4cmB .6cmC .8cmD .10cm16.如图,A B ∥C D ,:1:4B C C O =,点E 、F 分别是O C 、O D 的中点,则:A B E F 的值为( ) A .1:1B .1:2C .1:3D .1:4第16题 第17题 第18题17.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线()30y x x=>上的一个动点,当点B 的横坐标逐渐增大时,O A B △的面积( ) A .逐渐增大 B .逐渐减小 C .不变 D .先增大后减小 18.如图,A D 是R t A B C ∆斜边B C 上的中线,AE AD ⊥交C B 的延长线于点E ,则图中一定相似的三角形是( ) A .△AED 与△AC B B .△A E B 与△A C D C .△B A E 与△AC ED .△AEC 与△D A C三、解答题 19.化简: (1)222b a ab a ba ba b++-+-(2)2111211x x x x x x +⎛⎫+÷⎪--+-⎝⎭20.解方程: (1)12211x x x +=-+(2)22111x x x -=--21.如图,在直角坐标系中△ABC 的A 、B 、C 三点坐标为A (7,1)、B (8,2)、C (9,0).(1)试以点P(12,0)为位似中心,将△ABC以1:3的相似比进行放大(要求与△ABC 同在P点同一侧);(2)试写出点B′、C′的坐标:B′,C′.22.如图,在△ABC中,点D在AB边上,点E在AC边上,且∠1=∠2=∠3.求证:B C D∆∽C D E∆.23.如图,一次函数y kx b=+与反比例函数myx=的图象交于点A(2-,)、B(,n).(1)试确定上述反比例函数和一次函数的表达式;(2)试求A O B△的面积;(3)试根据图象写出使得一次函数的值小于反比例函数值的x的取值范围.24.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE =60°. (1)求证:ABD ∆∽D C E ∆;(2)若3B D =,2C E =,试求A B 的长.25.某市在一项市政工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成; (B )乙队单独完成这项工程要比规定工期多用5天; (C )▓▓▓▓▓,剩下的工程由乙队单独做,也正好如期完工. 一同学设规定的工期为x 天,根据题意列出方程:1545114=+-+⎪⎭⎫⎝⎛++x x x x①请你将方案(C )中被墨水污染的部分补充出来: ; ②施工方案 最节省工程款,试说明你的理由.③若你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?图(1)图(2)图(3)说明理由.26.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试:(1)如图(1),垂直于地面放置的正方形框架A B C D,边长A B为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A B'、D C'的长度和为6cm,则灯泡离地面的高度为cm.(2)不改变(1)中灯泡的高度,将两个边长为30cm的正方形框架按图(2)摆放,请计算此时横向影子A B'、D C'的长度和为多少?(3)若有n个边长为a的正方形按图(3)摆放,测得横向影子A B'、D C'的长度和为b,则灯泡离地面的距离为.(结果用含a、b、n的代数式表示)AB CDERPH QABCDERPH Q27.如图,Rt △ABC 在中,∠A =90°,AB =6,AC =8,D ,E 分别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y . (1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 备用图。
图2 DA图1m E DCBA 2011-2012学年度上学期期末考试八年级数学试题一、选择题(本大题共12小题, 每小题3分, 共36分)1、计算4的结果是()A.2B.±2C.-2D.42、函数 y =31-x 的自变量x 的取值范围是( )A.x >-3 B.x <3 C.x ≠3 D.x ≠-33、下列不是一次函数的是( ) A .y=x 1-x B. y=21x -1 C. y=21-x D. y=2x 4、 下面哪个点不在函数y=-x +3的图象上( ) A .(-1,2) B .(0,3) C .(3,0) D .(1,2) 5、点(4,5)关于y 轴的对称点的坐标是( ) A .(-4,5) B .(4,-5) C .(-4,-5) D .(4,5)6、如图1, 直线m是多边形ABCDE 的对称轴,其中∠A=130°,∠ABC =110°,那么∠BCD 的度数等于( ) A .50° B .60° C .70° D .80°7如图2,已知∠1=∠2,AC=AD ,增加下列条件之一:①AB=AE ;②BC=ED ; ③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( ) A .1个 B .2个 C .3个 D .4个 8、下列各式由左边到右边的变形中,是因式分解的为( )A .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(22-=-x x x xD .x x x x x 3)4)(4(3162+-+=+-9、已知一次函数(1)y a x b =-+的图象如图3所示,那么a 的取值范围是( ) A.1a > B.1a < C.0a > D.0a <10、如图4,李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )图3图411、如图5,△ABC 是等边三角形,D 是BC 中点,DE ⊥AC 于E ,若CE =1,则AB =( )A .2B ..3 D .412、如图6,Rt △ACB 中,∠ACB =90°,∠ABC 的角平分线BE 和∠BAC 的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D . 过P 作PF ⊥AD 交AC 的延长线于点H ,交BC 的延长线于点F ,连结AF 交DH 于点G .则下列结论:①∠APB =45°;②PF=P A ;③BD-AH=AB ;④DG=AP+GH .其中正确的是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(共4小题,每小题3分,共12分)13、计算: ⎪⎭⎫⎝⎛-⋅23313x x =________;24(2)a --=________;()532x x ÷= . 14、a 的算术平方根为8,则a 的立方根是__________。
苏州市2011~2012学年第二学期期末复习卷(一)初二数学(满分:100分时间:120分钟)一、选择题(每题2分,共20分)1.使分式24xx-有意义的x的取值范围是()A.x=2 B.x≠2 C.x≠-2 D.x≠02.如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为( )3.下列各式从左到右的变形正确的是( )A.122122x y x yx yx y--=++B.0.220.22a b a ba b a b++=++C.11x xx y x y+--=--D.a b a ba b a b+-=-+4.下列四组线段中,不构成比例线段的一组是( )A.1 cm,2 cm,3 cm,6 cm B.2 cm,3 cm,4 cm,6 cmC.1cm,2cm,3cm,6cm D.1 cm,2 cm,3 cm,4 cm5.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为31,那么袋中共有球()个A.6个B.7个C.9个D.12个6.函数y=k x+1与函数y=kx在同一平面直角坐标系中的图象大致是( )7.如图,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③AC ABCD BC=;④AC2=AD·AB.其中能够单独判定△ABC∽△ACD的条件个数为( ) A.1 B.2 C.3 D.48.若关于x、y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为( )A.a<4 B.a>4 C.a<-4 D.a>-49.如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于点F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABC;④△ADF与△CFB.其中相似的为( ) A.①④B.①②C.②③④D.①②③10.已知函数y=x-5,令x=12、1、32、2、52、3、72、4、92、5,可得函数图象上的十个点.在这十个点中随机取两个点P(x1,y1)、Q(x2,y2),则P、Q两点在同一个反比例函数图象上的概率是( )A.19B.445C.745D.25二、填空题(每题2分,共20分)11.若分式211xx-+的值为零,则x的值为_______.12.分式21 3x x-与229x-的最简公分母是_______.13.已知分式方程612axa x+=-的解是x=1,则a的值是_______.14.关于x的不等式3x-a≤0只有两个正整数解,则a的取值范围是_______.15.在比例尺为1:100 000的交通图上,距离为15厘米的甲、乙两地之间的实际距离约为_______千米.16.如图,在同一时刻,小明测得他的影长为1米,距他不远处的一棵树的影长为5米,已知小明的身高为1.5米,则这棵树的高是_______米.第16题 第17题 第18题 第20题17.如图,在等边△ABC 中,点D 、E 分别在AB 、AC 边上,且DE ∥BC .如果BC =8 cm ,AD :DB =1:3,那么△ADE 的周长等于_______cm .18.如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .19.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是_______.20.如图是一个山谷的横截面示意图,宽AA'为15 m ,用曲尺(两直尺相交成直角)从山谷两侧测量出OA =1m ,OB =3 m ,O'A'=O.5 m ,O'B'=3 m (点A 、O 、O'、A'在同一条水平线上),则该山谷的深h =_______m .三、解答题(共60分)21.(4分)计算:33(36)821+-+-.22. (5分)先化简:21111x x x ⎛⎫-÷ ⎪--⎝⎭,再选择一个恰当的x 值代入并求值.23. (5分)解分式方程:12211x x x +=-+.24.(6分)如图,在△ABC 中,AB =AC ,∠A =36°,线段AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE .(1)试说明:∠CBE =36°;(2)试说明:AE 2=AC ·EC .25.(6分)如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同,现将它们洗匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用画树状图或列表的方法求贴法正确的概率.26.(8分)如图,在以O为原点的平面直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B(a,b)在第一象限,四边形OABC是矩形,反比例函数y=kx(k>0,x>0)的图象与AB相交于点D,与BC相交于点E,且BE=CE.(1)试说明:BD=AD;(2)若四边形ODBE的面积是9,求k的值.27.(8分)某电器城经销A型号彩电,2011年四月份每台彩电售价为2 000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元.(1) 2010年四月份每台A型号彩电的售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1 800元,B型号彩电每台进货价为1 500元,电器城预计用不大于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?28.(10分)如图①,点C将线段AB分成两部分,如果AC BCAB AC=,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果121S SS S=,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图②所示,则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任意作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF,如图③所示,则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图④,点E是□ABCD的边AB上的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线,请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.29.(10分)在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、1.B 2.C 3.A 4.D 5.C 6.A 7.C 8.A 9.C 10.B二、11.1 12.x(x+3)(x-3)13.7 14.6≤a<9 15.15 16.7.5 17.618.2 19.1320.30三、21.8 22.x+1 23.x=3 24.略25.(1)12(2)列表如下:1626.(1)略(2)927.(1)2 500元(2)有四种进货方案:①购进A型号彩电7台,B型号彩电13台;②购进A型号彩电8台,B型号彩电12台;③购进A型号彩电9台,B型号彩电11台;④购进A 型号彩申.10台,B型号彩电10台(3)按方案①进货才能使电器城获利最大,最大利润是5 300元28.(1)直线CD 是△ABC 的黄金分割线 (2)三角形的中线不可能是该三角形的黄金分割线(3)略 (4)画法不唯一29.(1)如图,作BH ⊥x 轴,垂足为H ,那么四边形BCOH为矩形,OH =CB =3.在Rt △ABH 中,AH =3,BA =35,所以BH =6.因此点B 的坐标为(3,6). (2) 因为OE =2EB ,所以223E B x x ==,243E B y y ==,E (2,4). 设直线DE 的解析式为y =kx +b ,代入D (0,5),E (2,4),得5,2 4.b k b =⎧⎨+=⎩ 解得12k =-,5b =.所以直线DE 的解析式为152y x =-+. (3) 由152y x =-+,知直线DE 与x 轴交于点F (10,0),OF =10,DF =55. ①如图,当DO 为菱形的对角线时,MN 与DO互相垂直平分,点M 是DF 的中点.此时点M 的坐标为(5,52),点N 的坐标为(-5,52). ②如图,当DO 、DN 为菱形的邻边时,点N 与点O 关于点E 对称,此时点N 的坐标为(4,8).③如图,当DO 、DM 为菱形的邻边时,NO =5,延长MN 交x 轴于P .由△NPO ∽△DOF ,得NP PO NO DO OF DF==, 即51055NP PO ==. 解得5NP =,25PO =.此时点N 的坐标为(25,5)-.。
吴中区2012—2013学年第二学期期末考试初二数学2013.6 注意事项:1.本试卷满分130分,考试时间120分钟;2.答卷前将答题卡上的相关项目填涂清楚,所有解答均须写在答题卡上,在本试卷上答题无效.一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卡相应位置上.)1.分式方程3121x x=-的解为( )A.x=4 B.x=3 C.x=2 D.x=12.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于( )A.60°B.70°C.80°D.90°3.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A.15B.13C.38D.584.如果反比例函数y=kx的图象经过点(-2,-1),那么k的值为( )A.12B.-12C.2 D.-25.菱形ABCD中,如果E、F、G、H分别是各边的中点,那么四边形EFGH的形状是( ) A.平行四边形B.矩形C.菱形D.正方形6.化简211aaa---的结果是( )A.11a-B.-11a-C.211aa+-D.211a aa---7.如图,在正方形ABCD的外侧作等边△ADE,则∠AEB的度数为( )A .10°B .12.5°C .15°D .20°8.已知,如图(1)(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个三角形而言,下列说法正确的是( )A .都相似B .都不相似C .只有(1)相似D .只有(2)相似9.若M (-4,y 1)、N (-2,y 2)、H(2,y 3)三点都在反比例函数y =kx(k>0)的图象上,则y 1、y 2、y 3的大小关系为( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 3<y 1<y 2 10.如图,点A 是反比例函数y =3x(x>0)的图象上任意一点,AB ∥x 轴交反比例函数y =-4x的图象于点B ,以AB 为边作平行四边形ABCD ,其中C 、D 在x 轴上,则平行四边形ABCD 的面积为( ) A .4 B .5 C .6 D .7二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卡相应位置上).11.使分式11x 有意义的x 的取值范围是 ▲ . 12.如图,在两个同心圆中,四条直径把大圆分成八等份,若往 圆面投掷飞镖,则飞镖落在黑色区域的概率是_ ▲ .13.若23a b =,则a a b=+ ▲ .14.如图,正方形OABC 与正方形ODEF 是位似图形,O 为 位似中心,相似比为2:3,点A 的坐标为(2,0),则E 点的 坐标为 ▲ .15.甲车行驶30千米与乙车行驶40千米所用时间相同,若乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依题意列方程为_ ▲ . 16.如图,在Rt △ABC 中,∠ACB =90°, D 、E 、F 分别是AB 、BC 、CA 的中点, 若CD =10cm ,则EF = ▲ cm .17.如图,在平面直角坐标系中,O 为原点,四边形OABC 是矩形,A(10,0),C (0,3), 点D 是OA 的中点,点P 在BC 边上运动,若 △ODP 是腰长为5的等腰三角形,则满足条件 的点P 有 ▲ 个.18.下列命题中,其逆命题正确的是 ▲ .(只填写你认为正确的所有命题的序号) ①内错角相等,两直线平行; ②如果两个角是直角,那么它们相等: ③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.三、解答题(本大题共10题,共76分,解答时应写出文字说明、证明过程或演算步骤.) 19.(本题满分5分)计算:2111a a a a -++-.20.(本题满分5分)先化简再求值:2221211x x x x x x -+-∙--,其中x =12.21.(本题满分5分)解关于x的方程:2533322x xx x--=---.22.(本题满分6分)如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A 盘、B盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止,请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和是4的倍数的概率.23.(本题满分6分)已知:如图,∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC,AF⊥BC.求证:BF=FC.24.(本题满分6分)某校九年级两个班各为雅安地震灾区捐款900元.已知2班比1班人均捐款多2元,2班的人数比1班的人数少10%.求两个班人数各多少人?25.(本题满分8分)已知:如图,在□ABCD中,点E、F是对角线AC上两点,且AE =CF.求证:∠EBF=∠FDE.26.(本题满分8分)如图,矩形ABCD的顶点A、B的坐标分别为(-2,0)和(1,0),BC=2.反比例函数y=kx(x>0)的图像经过点C.(1)求k的值;(2)若OE∥AC交反比例函数的图像于点E,交DC的延长线于点F求:①四边形AOFC的面积;②点E的坐标.27.(本题满分8分)如图,等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,∠B =60°,P为下底上一点(不与B、C重合),连结AP,过P点作PE交DC于E,使得∠APE=∠B.(1)求证:△ABP∽△PCE;(2)若BP=1cm,求点E分DC所成的比?28.(本题满分9分)已知:如图,在矩形ABCD中,把∠B、∠D分别翻折,使点B、D 分别落在对角线BC上的点E、F处,折痕分别为CM、AN.(1)求证:△ADN≌△CBM.(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由?29.(本题满分10分)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=的图象相交于B(-1,5)、C(25,d)两点.点P(m,n)是一次函数y1=kx+b的图象上的动点.(1)求k、b的值;(2)若点P在线段AB上运动(A、B两点除外),过点P作x轴的平行线与函数y2=c x的图象相交于点D.试求△PAD的面积;(注:结果用含有字母m的式子表示)(3)若m>0,nm是整数,直接写出满足条件的所有点P的坐标.28. (1)证明:∵四边形ABCD是矩形,∴∠D=∠B,AD=BC,AD∥BC。
苏科八年级苏科初二下学期数学期末试卷及答案全一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .442.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC .其中一定能判断这个四边形是平行四边形的条件共有 A .1组B .2组C .3组D .4组3.某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( ) A .13B .12C .1D .04.如图,已知正方形ABCD ,对角线的交点M (2,2).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(﹣2012,2)B .(﹣2012,﹣2)C .(﹣2013,﹣2)D .(﹣2013,2)5.若分式42x x -+的值为0,则x 的值为( ) A .0 B .-2 C .4D .4或-26.若顺次连接四边形ABCD 各边的中点得到一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形7.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A .必然事件 B .随机事件C .确定事件D .不可能事件8.三角形两边长分别为3和6,第三边的长是方程x 2﹣13x+36=0的两根,则该三角形的周长为( ) A .13 B .15C .18D .13或189.如果把分式aa b-中的a 、b 都扩大2倍,那么分式的值一定( )A .是原来的2倍B .是原来的4倍C .是原来的12D .不变10.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )A .15°B .22.5°C .30°D .45°二、填空题11.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b >1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.12.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,∠OBC =30°,则∠OCD =_____°.13.若分式x 3x 3--的值为零,则x=______.14.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.15.为了了解某校学生的视力情况,随机抽取了该校50名学生进行调查.整理样本数据如表:根据抽样调查结果,估计该校1200名初中学生视力不低于4.8的人数是_____. 16.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.17.若点()23,在反比例函数ky x=的图象上,则k 的值为________. 18.任意掷一枚质地均匀的骰子,下列事件:①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数,这些事件发生的可能性大小,按从小到大的顺序排列为_____.19.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,则y1,y2的大小关系是y1_____y2.20.如图,在平面直角坐标系中,四边形OBCD是菱形,OB=OD=2,∠BOD=60°,将菱形OBCD绕点O旋转任意角度,得到菱形OB1C1D1,则点C1的纵坐标的最小值为_____.三、解答题21.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.22.如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.23.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q 为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.24.已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF求证:AC、EF互相平分.25.如图,在矩形ABCD中,AB=1,BC=3.(1)在图①中,P是BC上一点,EF垂直平分AP,分别交AD、BC边于点E、F,求证:四边形AFPE是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..标出菱形的边长.(保留作图痕迹,不写作法)26.解方程:x21 x1x-= -.27.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.28.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,BO=224AB AO-=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=124 2DE BD⋅=.故答案为B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.2.C解析:C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.3.A解析:A【分析】共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可. 【详解】所有机会均等的可能共有3种,而选到月季花的机会有1种, 因此选到月季花的概率是13, 故选A . 【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.4.A解析:A 【分析】根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2﹣n ,﹣2),当n 为偶数时为(2﹣n ,2),继而求得结果. 【详解】解:∵对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2﹣1,﹣2),即(1,﹣2), 第2次变换后的点M 的对应点的坐标为:(2﹣2,2),即(0,2), 第3次变换后的点M 的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n 次变换后的点M 的对应点的为:当n 为奇数时为(2﹣n ,﹣2),当n 为偶数时为(2﹣n ,2),∴连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为(﹣2012,2). 故选:A . 【点睛】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n 次变换后的对角线交点M 的对应点的坐标为:当n 为奇数时为(2﹣n ,﹣2),当n 为偶数时为(2﹣n ,2)是解此题的关键.5.C解析:C 【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值.【详解】解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩,由40x -=,得:4x =, 由20x +≠,得:2x ≠-. 综上,得4x =,即x 的值为4.【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题.6.D解析:D 【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得. 【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH 四边形EFGH 是矩形 90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥ BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形 故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.7.B解析:B 【详解】 随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断: 抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.8.A解析:A 【解析】试题解析:解方程x 2-13x+36=0得,即第三边长为9或4.边长为9,3,6不能构成三角形; 而4,3,6能构成三角形, 所以三角形的周长为3+4+6=13, 故选A .考点:1.解一元二次方程-因式分解法;2.三角形三边关系.9.D解析:D 【分析】把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论. 【详解】解:把2a 、2b 代入分式可得22222()a a aa b a b a b==---,由此可知分式的值没有改变, 故选:D . 【点睛】本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.10.B解析:B 【分析】由四边形ABCD 是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE ,BD=BE ,推出∠BDE=∠E ,即可求解. 【详解】∵四边形ABCD 是正方形, ∴∠ABD=45°, ∵∠ABD=∠E+∠BDE , ∵BD=BE , ∴∠BDE=∠E . ∴∠E=12×45°=22.5°, 故选:B . 【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.二、填空题11.【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可. 【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为(本), 故答案为. 解析:1a b - 【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可. 【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为1ab -(本), 故答案为1ab -. 【点睛】本题考查的是列代数式,掌握列代数式的方法是解题的关键.12.60 【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可. 【详解】解:∵菱形ABCD 的对角线AC 、BD 相交于点O , ∴AC⊥BD,∠DBC=∠BDC=30°, ∴∠DOC=90°解析:60 【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可. 【详解】解:∵菱形ABCD 的对角线AC 、BD 相交于点O , ∴AC ⊥BD ,∠DBC =∠BDC =30°, ∴∠DOC =90°,∴∠OCD =90°﹣30°=60°, 故答案为:60. 【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.13.-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零解析:-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.720【分析】先根据表格中的数据可得初中学生视力不低于4.8的人数占比,再乘以1200即可得.【详解】由表可知,初中学生视力不低于4.8的人数占比为则(人)即估计该校1200名初中学生视解析:720【分析】先根据表格中的数据可得初中学生视力不低于4.8的人数占比,再乘以1200即可得.【详解】由表可知,初中学生视力不低于4.8的人数占比为7914100%60% 50++⨯=则120060%720⨯=(人)即估计该校1200名初中学生视力不低于4.8的人数是720故答案为:720.【点睛】本题考查了利用样本所占百分比估计总体的数量,理解题意,掌握样本估计总体的方法是解题关键.16.35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是解析:35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE 的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=∠OCD=55°,又∵DE⊥AC,∴∠CDE=180°-∠OCD-∠DEC=180°-55°-90°=35°,故答案为:35.【点睛】本题考查了矩形的性质,三角形内角和,三角形外角的性质,掌握知识点是解题关键.17.6【详解】解:由题意知:k=3×2=6故答案为:6解析:6【详解】解:由题意知:k=3×2=6故答案为:618.①③②【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【详解】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;解析:①③②【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【详解】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为16;②面朝上的点数大于2的有4种结果,其概率为42 63 =;③面朝上的点数是奇数的有3种结果,其概率为31 62 =;∵112 623 <<,∴按从小到大的顺序排列为:①③②;故答案为:①③②.【点睛】考查了基本概率的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.19.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k =﹣1<0,∴在每个象限内,y 随x 的增大而增大,∵点A (﹣4,y1),B (﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】 ∵反比例函数1y x=-中,k =﹣1<0, ∴在每个象限内,y 随x 的增大而增大,∵点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x=-的图象上,且﹣2>﹣4, ∴y 1<y 2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键. 20.【分析】连接OC ,过点C 作CE⊥x 轴于E ,由直角三角形的性质可求BE =BC =1,CE =,由勾股定理可求OC 的长,据此进一步分析即可求解.【详解】如图,连接OC ,过点C 作CE⊥x 轴于点E ,解析:-【分析】连接OC ,过点C 作CE ⊥x 轴于E ,由直角三角形的性质可求BE =12BC =1,CE 勾股定理可求OC 的长,据此进一步分析即可求解.【详解】如图,连接OC ,过点C 作CE ⊥x 轴于点E ,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,∵CE⊥OE,∴BE=12BC=1,CE3∴2223OC OE CE=+=∴当点C1在y轴上时,点C1的纵坐标有最小值为3-,故答案为:23-【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键.三、解答题21.(1)50;(2)8,5;(3)108°;(4)240人.【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.【详解】(1)12÷24%=50人故答案为50.(2)a=50×16%=8人,b=50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×1550=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×1050=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.22.(1)见解析;(2)见解析【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.23.(1)15344t;(2)当t=52时,四边形MNQP为平行四边形,证明见解析;(3)AQ⊥CQ,证明见解析.【分析】(1)由勾股定理可求BD=5,由三角形的面积公式和S△DPQ=12(S△BED﹣S△BDP)可求解;(2)当t=52时,可得BP=52=12BE,由中位线定理可得MN∥BD,MN=12BD=5,PQ∥BD,PQ=12BD=5,可得MN∥PQ,MN=PQ,可得结论.(3)连接BQ,由等腰三角形的性质可得∠AQD+∠BQA=90°,由直角三角形的性质可得DQ=CQ,∠DCQ=∠CDQ,由“SAS”可证△ADQ≌△BCQ,可得∠AQD=∠BQC,即可得结论.【详解】解:(1)∵四边形ABCD是矩形,AB=3,BC=4,∴BC=4,CD=3,∴BD=22BC CD+=5,∴BD=BE=5,∵Q为DE的中点,∴S△DPQ=12S△DPE,∴S△DPQ=12(S△BED﹣S△BDP)=11135t3222⎛⎫⨯⨯-⨯⨯⎪⎝⎭=15344t-.故答案为:15344t-.(2)当t=52时,四边形MNQP为平行四边形,理由如下:∵M、N分别为AB、AD的中点,∴MN∥BD,MN=12BD=52,∵t=52时,∴BP=52=12BE,且点Q是DE的中点,∴PQ∥BD,PQ=12BD=52,∴MN∥PQ,MN=PQ,∴四边形MNQP是平行四边形.(3)AQ⊥CQ.理由如下:如图,连接BQ,∵BD=BE,点Q是DE中点,∴BQ⊥DE,∴∠AQD+∠BQA=90°,∵在Rt△DCE中,点Q是DE中点,∴DQ=CQ,∴∠DCQ=∠CDQ,且∠ADC=∠BCD=90°,∴∠ADQ=∠BCQ,且BC=AD,DQ=CQ,∴△ADQ≌△BCQ(SAS),∴∠AQD=∠BQC,且∠AQD+∠BQA=90°,∴∠BQC+∠BQA=90°,∴∠AQC=90°,∴AQ⊥CQ.【点睛】本题考查平行四边形中的动点问题,关键在于熟练掌握矩形的性质,全等三角形的性质和判定.24.证明见解析【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.25.(1)见解析;(2)见解析【分析】(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.【详解】(1)证明:如图①∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵EF垂直平分AP,∴AF=PF,AE=PE,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=PF=AE=PE,∴四边形AFPE是菱形;(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD内面积最大的菱形;此时设菱形边长为x,则可得12+(3-x)2=x2,解得x=53,所以菱形的边长为53.【点睛】本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.26.2x .【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.27.(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【分析】(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.【详解】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,故答案为1.5,1.5;(2)所有被调查学生阅读时间的平均数为:1100×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均阅读时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×40+18100=290(人).故答案为(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【点睛】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.28.(1)AE+CF=EF;(2)如图2,(1)中结论成立,即AE+CF=EF;如图3,(1)中结论不成立,AE=EF+CF.【分析】(1)根据题意易得△ABE≌△CBF,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC到H,使CH=AE,连接BH,根据题意可得△BCH≌△BAE,则有BH=BE,∠CBH=∠ABE,进而可证△HBF≌△EBF,推出HF=EF,最后根据线段的等量关系可求解;如图3,在AE上截取AQ=CF,连接BQ,根据题意易得△BCF≌△BAQ,推出BF=BQ,∠CBF=∠ABQ,进而可证△FBE≌△QBE,推出EF=QE即可.【详解】解:(1)如图1,AE+CF=EF,理由如下:∵AB⊥AD,BC⊥CD,∴∠A=∠C=90°,∵AB=BC,AE=CF,∴△ABE≌△CBF(SAS),∴∠ABE=∠CBF,BE=BF,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴11,22AE BE CF BF==,∵∠MBN=60°,BE=BF,∴△BEF是等边三角形,∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。
第 1 页 共 6 页2011-2012学年八年级下学期期末调研测试卷八年级 数学 (北师大版最新研究)一、选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个是正确..的) 1.已知a < b ,下列不等式中不正确...的是 A .a +1 < b +1 B .a –2 < b –2 C .–2a <–2b D .5a <5b2.使分式3x x-有意义的条件是 A . x=0 B .x ≠3C .x ≠-3D .x ≠±33.下列各式从左到右,是因式分解的是A .()()2b a b a 2b a 22--+=--B .()()1x 1x 1x 2-=-+C .c b a m c mb ma ++=++)(D . ()221x 1x 2x -=+- 4.下列调查方式合适的是A .为了了解全国中学生的睡眠状况,采用普查的方式;B .为了了解某种日光灯的使用寿命,采用普查的方式;C .为了了解我市市民实施低碳生活情况,采用抽样调查的方式;D .为了了解你们班同学的身高情况,采用抽样调查的方式。
5.不等式组⎩⎨⎧>+≤-23x 06x 3的解集在数轴上表示为6.化简ba 1a 1ab a 22--⨯--的结果是 A .b a - B .b a + C .b a -1 D . ba +17.下列命题属于真命题的是( )。
A .同旁内角相等,两直线平行;B .相似三角形也是全等三角形;-1 0 1 23A . -1 0 1 23D .-1 0 1 23B . -1 0 1 23C .ABCDP 图1第 2 页 共 6 页C .相似三角形的对应角相等,对应边成比例;D .三角形的一个外角等于它的两个内角之和。
8.如图1,已知AB//CD ,AD 与BC 相交于点P , AB = 4,CD = 6,AP = 5,则AD 的长等于( ) A .12.5 B .10 C .9 D .7.59.完成某项工程,甲单独做需a 天,乙独做需b 天,甲乙两人合作完成 这项工程的天数是( )。
2011-2012学年新人教版八年级(下)期末复习数学试卷2011-2012学年新人教版八年级(下)期末复习数学试卷一、选择题(每小题3分,共30分.)1.(3分)(2008•大庆)使分式有意义的x的取值范围是()>D.=.C D.4.(3分)(2008•深圳)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的6.(3分)(2008•齐齐哈尔)关于x的分式方程=1,下列说法正确的是()7.(3分)(2008•襄阳)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=10m3时,气体的密度是()8.(3分)(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()9.(3分)如图,将两张对边平行且宽度相等的纸条交叉叠放在一起,若∠DAB=60°,AD=2,则重合部分的面积为()C D10.(3分)如图,把长为10cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉部分的面积为12cm2,则打开后梯形的周长是())12+2二、填空题(每小题3分,共24分)11.(3分)写出一个含有字母x的分式(要求:不论x取任何实数,该分式都有意义)_________.12.(3分)人体中成熟的红细胞的平均直径为0.00000077m,用科学记数法表示_________m.13.(3分)(2007•白银)为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终决定买什么水果,最值得关注的应该是统计调查数据的_________.(中位数,平均数,众数)14.(3分)今年以来受各种因素的影响,猪肉的市场价格仍在不断下降,根据调查,今年1月份一级猪肉的价格是5月份猪肉价格的1.25倍.小英同学的妈妈同样用20元钱在一月份购得一级猪肉比在5月份购得的一级猪肉少0.4斤,那么今年一月份的一级猪肉每斤的价格是_________元.15.(3分)如图,直线y1=mx+n与双曲线两个交点的横坐标分别是﹣2和﹣,则使y1>y2时的x取值范围是_________.16.(3分)如图,菱形ABCD的对角线AC=8,BD=6,则菱形的面积S=_________.17.(3分)(2002•天津)如图,梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=5cm,BD=12cm,则该梯形的中位线的长等于_________cm.18.(3分)如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,∠ABO=30°,AB=6,D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在反比例函数y=的图象上,则k=_________.三、解答题(共46分)19.(4分)解方程:+=320.(6分)先化简代数式:(﹣)÷,然后选取一个你喜欢,且使原式有意义的x的值代入求值.21.(6分)如图,在四边形ABCD中,∠B=90°,AB=,∠BAC=30°,CD=2,AD=2,求∠ACD的度数.22.(10分)已知如图:矩形ABCD的边BC在x轴上,E为对角线BD的中点,点B、D的坐标分别为B(1,0),D(3,3),反比例函数y=的图象经过A点,(1)写出点A和点E的坐标;(2)求反比例函数的解析式;(3)判断点E是否在这个函数的图象上.23.(10分)(2010•通化)某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队?应付工程队费用多少元?24.(10分)如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出当t为何值时,①PD=PQ,②DQ=PQ.2011-2012学年新人教版八年级(下)期末复习数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.)1.(3分)(2008•大庆)使分式有意义的x的取值范围是()>,D.=、错误,应等于﹣;,错误,应等于=.C D.≠=,故本选项正确;=,故本选项错误;4.(3分)(2008•深圳)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的6.(3分)(2008•齐齐哈尔)关于x的分式方程=1,下列说法正确的是()7.(3分)(2008•襄阳)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=10m3时,气体的密度是()=1kg/m8.(3分)(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()9.(3分)如图,将两张对边平行且宽度相等的纸条交叉叠放在一起,若∠DAB=60°,AD=2,则重合部分的面积为()C D×=2.10.(3分)如图,把长为10cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉部分的面积为12cm2,则打开后梯形的周长是())12+2二、填空题(每小题3分,共24分)11.(3分)写出一个含有字母x的分式(要求:不论x取任何实数,该分式都有意义).答案不唯一,例如.12.(3分)人体中成熟的红细胞的平均直径为0.00000077m,用科学记数法表示7.7×10﹣7m.13.(3分)(2007•白银)为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终决定买什么水果,最值得关注的应该是统计调查数据的众数.(中位数,平均数,众数)14.(3分)今年以来受各种因素的影响,猪肉的市场价格仍在不断下降,根据调查,今年1月份一级猪肉的价格是5月份猪肉价格的1.25倍.小英同学的妈妈同样用20元钱在一月份购得一级猪肉比在5月份购得的一级猪肉少0.4斤,那么今年一月份的一级猪肉每斤的价格是12.5元.﹣=0.415.(3分)如图,直线y1=mx+n与双曲线两个交点的横坐标分别是﹣2和﹣,则使y1>y2时的x取值范围是﹣2<x<﹣或x>0.或<﹣或16.(3分)如图,菱形ABCD的对角线AC=8,BD=6,则菱形的面积S=24.AC×17.(3分)(2002•天津)如图,梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=5cm,BD=12cm,则该梯形的中位线的长等于 6.5cm.BE===BE=18.(3分)如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,∠ABO=30°,AB=6,D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在反比例函数y=的图象上,则k=.OE=OA=2OA=OE=2EF=,,的图象上K=3.三、解答题(共46分)19.(4分)解方程:+=3x=x=20.(6分)先化简代数式:(﹣)÷,然后选取一个你喜欢,且使原式有意义的x的值代入求值.﹣)(•=21.(6分)如图,在四边形ABCD中,∠B=90°,AB=,∠BAC=30°,CD=2,AD=2,求∠ACD的度数.BC=AD=222.(10分)已知如图:矩形ABCD的边BC在x轴上,E为对角线BD的中点,点B、D的坐标分别为B(1,0),D(3,3),反比例函数y=的图象经过A点,(1)写出点A和点E的坐标;(2)求反比例函数的解析式;(3)判断点E是否在这个函数的图象上.BC,由反比例函数的图象经过Y=,,y=为所求的解析式.()在这个函数的图象上.23.(10分)(2010•通化)某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队?应付工程队费用多少元?根据题意得24.(10分)如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出当t为何值时,①PD=PQ,②DQ=PQ.DQ(QE=ED=t=,t=t= t=参与本试卷答题和审题的老师有:mmll852;ljj;CJX;zhehe;星期八;HLing;zhjh;yu123;fuaisu;自由人;lanyan;wdxwzk;733599;ln_86;算术;Liuzhx;sch;蓝月梦;lf2-9;feng;马兴田;bjf;gbl210;Linaliu;王岑;lanchong (排名不分先后)菁优网2013年5月13日。
江苏省苏州市昆山市2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.为了节能减排,国家积极倡导使用新能源汽车,新能源汽车发展也取得了巨大成就.下列新能源汽车的车标既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.下列调查中,适合采用普查方式的是( ) A .了解某种型号电灯泡的使用寿命 B .了解央视“新闻联播”收视率的情况 C .检查北斗卫星上零部件的质量 D .调查长江的水质情况3.对于分式23xx -,下列说法错误的是( ) A .当3x ≠时,分式有意义 B .当3x =时,分式值为0 C .当1x =时,分式的值为1-D .分式的值不可能为24.对于反比例函数6y x=-,下列说法正确的是( )A .函数图象位于第一、三象限B .函数图象经过点()2,3--C .函数图象关于y 轴对称D .0x >时,y 随x 值的增大而增大5.如图,在ABCD Y 中,点E F 、分别是AB AC 、的中点,连接EF ,若1.5EF =,则AD 的长为( )A .1.5B .3C .4.5D .66.在ABCD Y 中,对角线AC 、BD 相交于点O ,添加下列一个条件,能使ABCD Y 成为矩形的是( ) A .AB BC =B .ABC ADC ∠=∠C .AC BD =D .AC BD ⊥7.反比例函数2y x=-的图象上有三点()11,A x y ,()22,B x y ,()33,C x y ,已知1230x x x <<<,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .312y y y >>D .132y y y >>8.如图,正方形ABCD 边长为1,延长BC 至点E ,使得BE AF 平分BAE ∠交BC 于点F ,连接DF ,则下列结论:①AF EF =;②AE 平分DAF ∠;③DF AE ⊥;④1CF = )A .①②③B .①②④C .①③④D .②③④二、填空题9.在一个不透明的口袋内有大小和形状相同的4个白球和2个红球,搅匀后从中摸出2个球,摸到1个白球和1个红球的是事件(填“必然”、“随机”或“不可能”). 10.计算3311x x x ---的结果是. 11.已知反比例函数8y x=,点(),A m n 是反比例函数图象上一点,则4mn -的值是. 12.如图,为测量平地上一块不规则区域(阴影部分)的面积,在不规则区域外画一个面积为24m 的正方形,现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在0.4,由此可估计该不规则区域的面积为2m .13.如图,在平面直角坐标系中,线段AB 的端点A 、B 分别在x 轴和y 轴的正半轴上,点A 的坐标()2,0,AB AB 绕点A 顺时针旋转90︒得到线段AC ,反比例函数()0ky k x=≠经过点C ,则k 的值是.14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,延长AB 到E ,使B E A B =,连接CE ,过点A 作AF CE ⊥于点F ,若3AB =,5BD =,则AF 的长为.15.如图,将矩形ABCD 对折后的折痕为MN ,已知4AB =,点E 在边BC 上,连接DE ,将DEC V 沿DE 折叠,点C 恰好落在点M 上,则CE 的值是.16.如图1,在菱形ABCD 中,点P 沿A B C --方向从点A 移动到点C ,设点P 的移动路程为x ,线段AP 的长为y ,点P 在运动过程中y 与x 的变化关系如图2所示,点P 运动到BC 边上时,当18x =,y 的值最小为12,则a 的值是.三、解答题 17.解分式方程:2124111x x x -=-+-18.先化简,再求值:x 23x 1x 1x 1-⎛⎫÷+- ⎪--⎝⎭,其中x 2. 19.如图,在直角坐标系中,ABC V 的三个顶点分别是()1,4A -,()5,4B -,()4,1C -.(1)将ABC V 向上平移4格,画出平移后的111A B C △;(2)将ABC V 以点O 为旋转中心顺时针旋转180︒,画出旋转后对应的222A B C △; (3)111A B C △与222A B C △关于点M 成中心对称,则对称中心M 的坐标是__________. 20.某校为了解八年级学生课外阅读的时间,从八年级随机抽取了部分学生,调查他们平均每周的课外阅读时间(单位:h ),整理所得数据绘制成如下不完整的统计图表. 平均每周的课外阅读时间(h )平均每周的课外阅读时间扇形统计图根据以上图表信息,回答下列问题:(1)这次被调查的同学共有__________人,m =__________;(2)C 组所在扇形圆心角n 的度数是__________︒;(3)八年级共600名学生,请你估计八年级学生中平均每周的课外阅读时间不少于8h 的人数.21.某学校组织学生去离学校60km 的红色基地开展研学活动,先遣队员和大队同时出发,先遣队的速度是大队速度的1.2倍,结果先遣队比大队早到0.2h .求先遣队和大队的速度各是多少?22.很多学生由于用眼不科学,导致视力下降,需要佩戴眼镜.研究发现,近视眼镜的度数y 度与镜片焦距x 米成反比例,且y 与x 的反比例函数图象如图所示.(1)当近视眼镜的度数是400度时,镜片焦距是多少米?(2)小明原来佩戴300度的近视眼镜,经过一段时间的矫正治疗加注意用眼健康,复查验光时,所配镜片焦距调整为0.4米,则小明的眼镜度数下降了多少度?23.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点D 作DE BD ⊥交BC 的延长线于点E ,连结OE .(1)求证:四边形ACED 为平行四边形; (2)若6AC =,8BD =,求OE 的长.24.如图,点A 是反比例函数12y x=图象上一点,过点A 作y 轴的平行线,交函数2k y x=的图象于点B ,连接OB ,交反比例函数12y x=的图象于点C ,已知3AOB S =△.(1)求k 的值;(2)连接AC ,若点A 的横坐标为4,求AOC V 的面积.25.定义:若点A 在一个函数图象上,且点A 的横、纵坐标相等,则称点A 为这个函数的“等点”.(1)关于“等点”,下列说法正确的有__________; ①函数2y x =有两个“等点”;②函数4y x =+有一个“等点”;③函数3y x=-没有“等点”. (2)已知反比例函数()0ky k x=≠与一次函数6y x =--的图象上有同一个“等点”,求反比例函数的表达式; (3)函数ky x=的图象上有两个“等点”A 、B ,设A 、B 两点之间的距离为m ,若m <k 的取值范围是__________.26.如图1,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N .(1)若32BAM ∠=︒,则ANM ∠=__________︒; (2)如图2,连接CN .求证:四边形AMCN 为菱形;(3)若AMN V 的面积与ABM V 的面积比为3:1,1BM =,求MN 的长.27.如图,在四边形ABCD 中,AD BC ∥,60B ∠=︒,90C ∠=︒,6cm AB =,10cm AD =.动点M 从点B 出发沿边BC 以2cm 速度向终点C 运动;同时动点N 从点D 出发,以4cm s 速度沿射线DA 运动,当点M 到达终点时,点N 也随之停止运动,设点M 运动的时间为s t .(1)当3t =时,AM =__________;(2)是否存在t 的值,使得A ,B ,M ,N 为顶点的四边形为平行四边形?若存在,求出t 的值;若不存在,请说明理由;(3)若动点M关于直线BN对称的点恰好落在直线AB上,请直接写出t的值.。
⊙学校:班级:姓名:考号⊙ ⊙……………⊙……………装…⊙……………订……⊙………线………⊙……………装…⊙……………订……⊙………线…………⊙……………⊙2011-2012学年八年级(下)----期末复习数学试卷 一、选择题(每小题2分,共20分.) 1.分式11+-x x 的值为0,则x 的值为( ) A 、x=-1 B 、x=1 C 、x=-1或x=1 D 、x 为任何实数 2.下列计算正确的是( )3.下列化简中正确的是( )4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述 错误的是( )5.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )7.如果关于x 的方程无解,则m 的值等于( ) 8.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )9. 如图,将两张对边平行且宽度相等的纸条交叉叠放在一起,若∠DAB=60°,AD=2,10.将函数y=kx+k 与函数的大致图象画在同一坐标系中,正确的函数图象是( ) AB 1.各分式,的最简公分母是 _________ .2.成熟的红细胞的平均直径为0.00000077m ,用科学记数法表示___ _________ m .3.为筹备联欢会,班长对全班学生爱吃哪几种水果作了民意调查.从而决定买什么水果,那么最值得班长关注的应该是调查数据的 _________ .(中位数,平均数,众数)4.请写出一个图象位于第一、三象限的反比例函数: _________ .(答案不唯一)5.当m= _________ 时,分式的值为零.6.如图,菱形ABCD 的对角线AC=8,BD=6,则菱形的面积S= _________ .7.如图,梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=5 cm ,BD=12 cm ,则该 梯形ABCD 中位线的长等于 _________ cm .8.若平行四边形ABCD 的周长为100cm ,两条对角线相交于点O ,△AOB 的周长比△BOC 的周长多10cm ,那么AB= _________ cm ,BC= _________ cm .9.数据1,2,8,5,3,9,5,4,5,4的中位数是_________.10.Rt△ABC中,∠C=90°,若a+b=14,c=10,则Rt△ABC的面积是_________。
昆山市2011~2012学年第二学期期末考试试卷
初二数学
注意事项:
1.本试卷共3大题,29小题,满分1 30分,考试时间120分钟;
2.答题前,考生务必将自己的学校、班级、姓名、考试号用0.5毫米黑色墨水签字笔填
写在答题卡相应的位置上,并用2B 铅笔将考试号所对应的标号涂黑;
3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦
干净后,再选涂其它答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题(作图可用铅笔); 4.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效.
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只
有一项是符合题目要求的) 1.在函数11
y x =
+中,自变量x 必须满足的条件是(▲)
A .x ≠1
B . x ≠-1
C . x ≠0
D . x>1 2.分式
()
1111a a a +
++的计算结果是(▲)
A .11
a + B .1
a a + C .1a
D .1a a
+
3.以下说法正确的是(▲)
A .在367人中至少有两个人的生日相同;
B .一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖;
C .一副扑克牌中,随意抽取一张是红桃K ,这是必然事件;
D .一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是3
5.
4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =2,则AC 的长是(▲)
A .2
B .4
C .2.
5.已知反比例函数y =
k x
的图象过点P(1,3),则该反比例函数的图象位于(▲)
A .第一、二象限
B .第一、三象限
C .第二、四象限
D .第三、四象限 6.小宸同学的身高为1.8m ,测得他站立在阳光下的影长为0.9m ,紧接着他把手臂竖直举
起,测得影长为1.2m ,那么小宸举起的手臂超出头顶的高度为(▲) A .0.3m B .0.5m C . 0.6m D .2.1m 7.高跟鞋的奥秘:当人肚脐以下部分的长m 与身高,的比值越接近0.618时, 越给人以一种匀称的美感,如图,某女士身高170cm ,脱去鞋后量得下半 身长为97cm ,则建议她穿的高跟鞋高度大约为(▲) A .4cm B .6cm C .8cm D .10cm
8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化
改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是(▲) A .
40004000210x x -=+ B .40004000210x x -=+ C .
40004000210
x x
-=- D .
40004000210
x
x -
=-
9.如图是反比例函数1k y
x
=和2k y x
=
(k 1<k 2)在第一象限的图象,直
线AB//y 轴,并分别交两条曲线于A 、B 两点,若S △AOB =4,则 k 2-k 1的值是(▲)
A .1
B .2
C .4
D .8
10.如图,已知DE 是直角梯形ABCD 的高,将△ADE 沿DE 翻
折,腰AD 恰好经过腰BC 的中点,则AE :BE 等于(▲) A .2:1 B .1:2 C .3:2 D .2:3
二、填空题(本大题共8小题,每小题3分.共24分)
11.画在比例尺为1:20的图纸上的某个零件的长是32cm ,这个零件的实际长是 ▲ cm . 12.当x = ▲ 时,分式
2
11
x x --的值为0.
13.若一次函数y =(m -1)x +2的图象,y 随x 的增大而减小,则m 的取值范围是 ▲ .
14.若
23
a b
=
,则
a b b
+= ▲ .
15.如图,在△ABC 中,已知DE ∥BC ,AB =8,BD =BC =6,则DE = ▲ . 16.使分式
41
m -的值为整数的所有整数m 的和是 ▲ .
17.如图,已知两点A(6,3),B(6,0),以原点O 为位似中心,相似比为1:3把线段AB
缩小,则点A 的对应点坐标是 ▲ .
18.如图,将三角形纸片的一角折叠,使点B 落在AC 边上的F 处,折痕为DE .已知AB =AC =3,BC =4,若以点E ,F ,C 为顶点的三角形与△ABC 相似,那么BE 的长是 ▲ . 三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明) 19.(本题共5分)解方程:3114
4x x x
--
=--.
20.(本题共5分)先化简,再求值:22
2
4111442a a a a
⎛⎫+⎛⎫
-÷- ⎪ ⎪-⎝⎭
⎝⎭ ,其中12a =.
21.(本题共6分)解不等式组:()30
2133x x x +>⎧⎪⎨-+≥⎪⎩
2是否为该不等式组的解.
22.(本题共6分)如图,在正方形ABCD 中,已知CE ⊥DF 于H .
(1)求证:△BCE≌△CDF:
(2)若AB=6,BE=2,求HF的长.
23.(本题共6分)有两堆背面完全相同的扑克,第一堆正面分别写有数字1、2、3、4,第二堆正面分别写有数字1、2、3.分别混合后,小玲从第一堆中随机抽取一张,把卡片上的数字作为被减数;小惠从第二堆中随机抽取一张,把卡片上的数字作为减数,然后计算出这两个数的差.
(1)请用画树状图或列表的方法,求这两数差为0的概率;
(2)小玲与小惠作游戏,规则是:若这两数的差为非负数,则小玲胜;否则,小惠胜.你
认为该游戏规则公平吗?如果公平,请说明理由.如果不公平,请你修改游戏规则,使游戏公平.
24.(本题共7分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相
似”(如图,已知D E D F
A B A C
(AB>DE),∠A=∠D,求证:△ABC∽△DEF)时,利用了转
化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).请利用上述方法完成这个定理的证明.
25.(本题共7分)如图,某一时刻垂直于地面的大楼AC的影子一部分在地上(BC),另一
部分在斜坡上(BD ).已知坡角,∠DBE =45°,BC =20米,BD =2米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度AC .
26.(本题共8分)如图,在平面直角坐标系内,已知OA =OB =2,∠AOB =30°. (1)点A 的坐标为( ▲ , ▲ );
(2)将△AOB 绕点O 顺时针旋转a 度(0<a<90). ①当a =30时,点B 恰好落在反比例函数y =
k x
(x>0)的图象上,求k 的值;
②在旋转过程中,点A 、B 能否同时落在上述反比例函数的图象上,若能,求出a 的
值;若不能,请说明理由.
27.(本题共8分)如图1,已知直线y =-2x +4与两坐标轴分别交于点A 、B ,点C 为线
段OA 上一动点,连结BC ,作BC 的中垂线分别交OB 、AB 交于点D 、E .
(l)当点C 与点O 重合时,DE = ▲ ; (2)当CE ∥OB 时,证明此时四边形
BDCE 为菱形;
(3)在点C 的运动过程中,直接写出OD 的 取值范围.
28.(本题共9分)如图①,将直角梯形OABC 放在平面直角坐标系中,已知OA =5,OC =4,
BC∥OA,BC=3,点E在OA上,且OE=1,连结OB、BE.
(1)求证:∠OBC=∠ABE;
(2)如图②,过点B作BD⊥x轴于D,点P在直线BD上运动,连结PC、P、PA和CE.
①当△PCE的周长最短时,求点P的坐标;
②如果点P在x轴上方,且满足S△CEP:S△ABP=2:1,求DP的长.
29.(本题共9分)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如
下的“模块”(如图①):
(1)请就图①证明上述“模块”的合理性;
(2)请直接利用
....上述“模块”的结论解决下面两个问题:
①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求
此时点B的坐标;
②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,
求点A关于直线CD的对称点E的坐标.。